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SOME RECENT PROGRESS IN SINGULAR STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS

IVAN CORWIN AND HAO SHEN

ABSTRACT. Stochastic partial differential equations are ubiquitous in mathe-
matical modeling. Yet, many such equations are too singular to admit classical
treatment. In this article we review some recent progress in defining, approxi-
mating, and studying the properties of a few examples of such equations. We
focus mainly on the dynamical ®* equation, the KPZ equation, and the para-
bolic Anderson model, as well as a few other equations which arise mainly in

physics.
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1. INTRODUCTION

Partial differential equations (PDEs) and randomness are ubiquitous construc-
tions used to model both mathematical and physical phenomena. For instance,
PDEs have been used for centuries to describe the building block laws of physics,
and to model aggregate macroscopic phenomena, such as heat conduction, diffu-
sion, electro-magnetic dynamics, interface and fluid dynamics. Randomness has
become a default paradigm for modeling systems with uncertainty or with many
complicated or chaotic microscopic interactions.

Combining these two approaches leads to the study of stochastic PDEs (SPDEs)
in which the coefficients or forcing terms in PDEs are described via certain random
processes. While SPDEs have become increasingly important in applications, there
remain many fundamental mathematical challenges in their study—in particular,
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showing how they arise from microscopic particle based models remains a major
source of research problems and has seen some radical progress in the past decade.

The purpose of this article is to introduce a few important classes of SPDEs
and to describe how they arise and the mathematical challenges that go along with
demonstrating that. Though this article will mainly focus on nonlinear systems, we
will start our investigation in Section 2 in the simpler and more classical setting of
linear SPDEs which are very well understood. In Section 3 we turn our attention to
nonlinear SPDEs and introduce our two main examples (the dynamical ®* equation
and the KPZ (Kardar—Parisi-Zhang) equation) along with a host of other important
SPDEs which arise in physics. Our discussion in this section is heuristic and ignores
some of the serious mathematical challenges which arise when one tries to make
sense of what it means to “solve” an SPDE. This challenge is addressed in Section 4.
In the course of making sense of SPDEs, there are often renormalizations which arise
(effectively changing the equation). Section 5 describes how these renormalizations
have physical meaning and arise in certain discrete approximation schemes for the
continuum equations. Finally, Section 6 seeks to demonstrate how these SPDEs (in
particular, the KPZ equation) arise as universal limits from microscopic systems.

Before proceeding to our main text, one disclaimer. Our aim is to make this
material approachable to nonexperts. As such, we will not state precise theorems
or give proofs but rather will attempt to provide some intuition behind results and
the challenges which accompany proving them. An interested reader can find much
more detail and precision in the works cited or, can consult other survey articles
such as [GP18b, Gub18,CW17,Hailba, Hail4a).

2. A FIRST (LINEAR) SPDE

We will start our discussion on linear SPDEs with the stochastic heat equation
which is driven by a random additive noise term ¢:

(2.1) Owu(t, ) = 0% u(t, ) + £(t, ),

where ¢ is the so-called space-time white noise. It will take a bit of work to de-
fine this noise and make sense of what it means to solve this equation. However,
before going down that route, we will first address the question of what sort of
physical system does this model? In particular, we will explain heuristically how
this equation arises from a simple microscopic model of polymers in liquid.

Consider modeling a polymer chain (e.g., composed of DNA or proteins) in a
liquid. A simple model involves describing the polymer by a string of NV beads that
are linked together sequentially by springs and that are subject to kicking by noise,
as shown in Figure 2.1, where N = 13: Imagine that each bead of the polymer is
kicked by the surrounding liquid molecules. In our simplified model,! we describe
such a system via the following equations of motion for the position 7; € R? of the
ith bead:

(2.2) dri(t) = (rig1(t)—ri(t))dt+(ri—1(t) —ri(t))dt+w;(t) (t€ Ry, i=1,...,N)

1As usual, one always has to make various simplifying assumptions in order to describe a
complicated physical system via a mathematically analyzable model. It is natural to ask whether
having random kicking leads to a reasonable microscopic model. After all, the liquid itself is
governed by certain physical laws of motion for its particles. Such concerns arose early in the
development of Brownian motion as the model for a single tracer particle moving in a liquid; see
[Bru68] for a nice historical review. We do not provide further justification for this as a reasonable
microscopic model here.
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FIGURE 2.1. The dots represent the locations of the beads con-
nected by zigzag edges. The arrows represent the forces acting to
move the beads—partly due to spring force with the previous and
subsequent beads, and part due to some random kicking force (yet
to be specified).

where w;(t) is random kicking at time ¢, and where a boundary condition is given
by fixing rg —r1 = 0 and ry41 — ry = 0 for all time. Equation (2.2) means the
following.

e The linear drift terms (r;41 — 7;)dt and (r;—1 — r;)dt arise from assuming a
linear spring force between the ith bead with its neighboring (in the sense of
label number) beads. Without the kicking term w;(t), equation (2.2) would
simply be a coupled system of N ordinary differential equations.

e The term w;(t) represents the random kicking that is experienced by the ith
bead at time t. We make the simplifying assumption that the kicking is “over-
damped”,? and we model the kicks in terms of random jumps in the location
of the r;(t). Namely, for each particle r; there is a random sequence of kicking
times® t; 1 < t; o < ---. At the kicking time ¢; j, we update r; — r; + w;(t; ;),
where w;(¢; ;) is an R23-valued random variable. We assume that the w; are
statistically isotropic (i.e., their distribution is invariant under rotation) and
are all independent and identically distributed (i.i.d.). Note that the result-
ing r;(t) process is piecewise continuous, with jumps occurring at the kicking
times.

The question with which we are concerned is what happens to the polymer when
its length grows, and possibly space and time are scaled accordingly. By default
one might expect that as NV increases, the complexity of studying this system goes
likewise. However, it turns out that there is a very tractable continuum limit for the
evolution of our polymer model. That is to say, in the scaling limit, things simplify!
In fact, this limit is quite robust and (up to some scaling constants) is not affected
by various changes in the microscopic model, such as how we model the kicking
(e.g., different distribution on the w; or on the kicking times). This robustness can,
itself, be seen as evidence that the microscopic model may be reasonable.

2Essentially, this means that the kicks occur instantaneously in time and do not result in any
inertia. This effectively decouples the various kicks.

31t is natural to assume the gaps between times t;,;j—t;,j—1 are chosen according to independent
exponential random variables of mean 1. In this case, the times are distributed as a Poisson point
process of intensity 1.
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With the aim of demonstrating a continuum limit of our model, think of N as
large and define

1
2.3 un(t, ) == —=r N1 (N%t) € R3,

where z € [0, 1] encodes the label i via i = [xN] (the closest integer to xN). The
linear drift term in (2.2) is in fact a discrete Laplacian, so under our diffusive scaling
(that is, scaling « by N and ¢ by N?) it approximates a continuum Laplacian 92.
Thus, for large N one can expect that the following relation approximately holds:

(2.4) Brun (t, ) ~ O2un(t, ) + N 2wy (N?t) .

In the scaled coordinates, the kicking starts to add up. Namely, in a time-space
region of size dt x dx, there are roughly N2dt x Ndx kicks. By the central limit
theorem the sum of N2 x N ii.d. random variables divided by N 3 converges to
a Gaussian random variable. Thus, on each time-space region, the kicking adds
up to a Gaussian random variable with variance equal to the area of the region.
Different regions have covariance given by the area of their overlap. This limit is
called space-time (or time-space, given our ordering of variables) white noise and is
denoted by (¢, z). This heuristic leads us to the following type? of limit as N — oo,

(2.5) un(t,x) = u(t, z),

where dyu(t,z) = O2u(t, ) + £(t,x), and where £(t,z) is space-time white noise.

Equation (2.5) is our first example of an SPDE—it is called the linear stochastic
heat equation with additive noise. Even in this simple linear example we encounter
an equation which requires some work to make sense of because of the noise. For
convenience of our exposition, from this point forward, we will think of = as a
spatial variable (although in our example it actually stands for the parametrization
of the limiting polymer length); and although u and ¢ are R3-valued, the three
components are completely independent (decoupled), so it will be convenient to
simply consider equation (2.5) as R-valued instead of R3-valued in the rest of this
paper.

Let us look at equation (2.5) more closely, with spatial dimension d now being
arbitrary (recall d =1 corresponds with the above polymer example),

(2.6) Owu(t, x) = Au(t,x) +£(t, ), r€[0,1]* c R,

with, for instance, periodic boundary condition.

Consider the case d = 0, where (2.6) becomes the stochastic (ordinary) differ-
ential equation dyu(t) = £(t). The d = 0 white noise £(t) is defined to be the
derivative of Brownian motion so that u(t) = fot &(s) is a Brownian motion. Of
course, Brownian motion is famously almost nowhere differentiable, so £ is not
defined as a function. Rather, £(¢) can be defined as a random distribution in a
suitable negative regularity space (such as a negative Sobolev space). Since the
Holder regularity of Brownian motion is 1/2— (meaning any exponent below 1/2),
its derivative is said to have regularity —1/2—. There are other ways to define
£(t). For instance, if we restrict to a periodic ¢ € [0, T}, then §(t) = >, .4 Nrex(t),

4This type of convergence result was first proved by Funaki [Fun83] in the slightly different
setting where the r; are driven by Brownian motions. In the present setting, we do not know if
a precise result of this sort has been proved (though we have no doubt that it can be). We are
suppressing coefficients which may (depending on the nature of the discrete noise) arise in the
limiting equation.
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where the Ny are i.i.d. Gaussian random variables, and the {ex}rez constitute an
orthonormal basis of L2([0,T]). Alternatively, one can define £(¢) via the machinery
of Gaussian processes (see, for instance [Jan97]) wherein it suffices to specify its
mean and variance. By definition, £ is mean zero, and since £ is a distribution as
mentioned above, its covariance

E(g(1)Et) = ot — 1)

(here E represents the expectation value operator and § is a Dirac delta function)
must be interpreted in a distributional sense as well. For a smooth test function
f, one defines the stochastic integral £(f) = [ f(¢)€(¢). Then ¢ is defined by the
property that E(§ ( f)) = 0 for all test functions f, and for test functions f and g,

(2.7) E(¢(£)E(9) = (f.9)re-

The random distribution £ is defined from this information using Kolmogorov’s
continuity theorem.

For general dimension d > 1, space-time white noise can be defined via analogous
methods. As a Gaussian process, £(t,x) is a random distribution with covariance

(2.8) E({(t, x)E(, x/)) =58t —t)o(x— '),

where the last 0 is the Dirac delta function on d-dimensional space. Its action on
space-time test functions f and g has covariance given by (2.7). where the (-, )2
is L? product over space-time.

As the dimension d increases, the regularity of & decreases. We will work with
spaces of space-time distributions (for a < 0) or functions (for o > 0) denoted by
C®. These are essentially equivalent to the Besov spaces BS, ., in harmonic analysis,
and their precise definitions can be given via wavelets in [Haildb, Eq. (3.2)]. The
smaller « corresponds to less regular (or more singular) functions or distributions.
A well-known result is that the space-time white noise £ € C* for o < —#.5

Having made sense of &, it remains to understand what it means to solve equa-
tion (2.6). For a linear equation as (2.6), the meaning of solution is not hard to
define; essentially one only needs to give a suitable meaning to the inverted linear
differential operator acting on the noise &: given an initial data u(0,2) = ug(z),
the solution to (2.6) is defined by

(2.9) u= (0 — A)7Le + ePuy .

tA

Here e!® is the heat semigroup so that e'®ug(z) := f[o 174 P(t,z — y)uo(y)dy

solves the classical (deterministic) heat equation starting from wug, with heat ker-
@ 2
nel P(t,x) := (4wt)’%e’%. The expression (9; — A)71¢ also acts as an integral

operator on ¢ via

(2.10) @ =8) et = | /[ P s s dy),

5As we will primarily work with parabolic equations, these spaces C* have a built-in parabolic
scaling between time and space wherein time regularity is doubled. For instance a C? function
has second continuous spatial derivatives and first continuous time derivative. Extending the
situation discussed earlier for (d = 0) white noise, we have that space-time white noise £ € C* for
a< — dQﬂ The case d = 0 has £ € C~ 1~ which, given the doubling of time regularity, corresponds
to the —%— regularity discussed above.
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which is the space-time convolution of the heat kernel P(¢,z) with £. Just like &
itself, (0; — A)~1¢ is also a well-defined random distribution.

To get a bit more flavor of “solution theories” of stochastic PDEs, we list some
well-known properties for (2.6).

(P1) The solution, in the above sense, is obviously unique, since the difference
of two solutions would solve a deterministic heat equation with zero initial
condition which must be zero.

(P2) With the aforementioned regularity of £, by standard parabolic PDE theory,
in particular the Schauder estimate which states that the operator (9, — A)~1
increases regularity by 2, one has u € C* for any a < —% +2 = 2;—‘1. In
particular, u is (almost surely) a random continuous function in d = 1, and
a random distribution in d > 2. So the limiting polymer parametrized by
x € ]0,1] in the above example is a random continuous curve.

(P3) The random distribution (9; — A)~'¢ has Gaussian probability law. This
is because ¢ is Gaussian and any linear combination of Gaussian random
variables is still Gaussian.

(P4) Equation (2.6) has an invariant measure called the Gaussian free field. This
is a Gaussian random field on [0, 1]¢ with covariance given by the Green’s
function of the Laplace A. Being invariant means that if the initial data wg is
random and distributed as Gaussian free field, then wu(t,-) has the same law
of Gaussian free field for all ¢ > 0. On the other hand starting from arbitrary
ug, the law of u(t,-) will approach that of the Gaussian free field as t — cc.
We refer to [She07] for a nice review of the Gaussian free field.

(P5) Equation (2.6) is scaling invariant in any dimension d, namely,

u(t,x) = )\¥u()\2t, Az)  satisfies Oyu(t, z) = Au(t, z) + £(¢, x),

~ d+2

where £(t,z) == A2 £(A\%t, \z) faw &(t,x). The last scaling relation of the
white noise can be seen from its covariance (2.8) recalling that the Dirac ¢ on
n-dimensional space has scaling dimension —n. Note that the scaling taken in
(2.3) and (2.4) was precisely the one that leaves the limit equation invariant.

So far a reader who is new to the area of SPDEs should have acquired the follow-
ing message: the solution theories of SPDEs share some of the same fundamental
challenges as in the study of classical PDEs. These include showing that solutions
exist (or can be defined) both locally or globally, are unique within certain regular-
ity classes, and arise as a scaling limits for various approximation schemes. The rest
of this article will focus on recent progress on these challenges for nonlinear SPDEs.
Before doing so, let us briefly remark on another important challenge present both
for PDEs and SPDEs—explicitly representing solutions via formulas.

Linear PDEs always admit explicit solutions. Linear SPDEs, as we saw above,
have solutions which are random Gaussian processes with explicit mean and co-
variance (computable from the equation explicitly). Most nonlinear PDEs do not
admit explicit solutions; those that do are generally related to the area of integrable
systems. Likewise, most nonlinear SPDEs do not admit explicit descriptions for
the probability distribution of their solutions. There are, however, a few special
SPDEs (such as the KPZ equation discussed below) which can be explicitly solved
in this sense. The study of such SPDEs fall under the area of integrable probability
or exactly solvable systems; see for instance [Corl4, BP15] and references therein.
We will not pursue this direction further in this article.
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FIGURE 3.1

3. NONLINEAR SPDES

Linear systems are often insufficient to effectively model many interesting phe-
nomena. Indeed, as we will now see, nonlinear SPDEs arise in a number of im-
portant areas of physics (and many other directions that we will not discuss here).
Such nonlinear systems, however, are generally much more challenging to work
with. Before coming to that, let us start with a few examples.

Consider a piece of magnet that is being heated up, as in Figure 3.1. As the
temperature 1" increases, the magnetic field produced by the magnet weakens, and
at a critical temperature T,, known as the Curie temperature,’ the magnetic field
disappears. Though various magnet materials have different microscopic structures,
a common physical explanation for magnetism is that it comes from the alignment
of the magnetic moments of many of the atoms in the material. As a simplified
mathematical model one can imagine that a magnet is made up of millions of tiny
arrows (or spins) with directions oscillating over time. Below the Curie temperature,
i.e., T < T., the spins tend to align in order to minimize an interaction energy
(which energetically prefers alignment), which causes a macroscopic magnetization
(shown in the bottom-right picture); above the Curie temperature T > T, the spin
configurations are much more disordered due to strong thermal fluctuation,” and
as a result the magnetic fields cancel out (shown in the bottom-left picture).

A general mantra in statistical physics holds that “interesting scaling limits arise
at critical points”. In particular, here we would like to understand what happens
to the spin system when the temperature T approaches T, while time and space
are tuned accordingly. Near criticality, the spins start to oscillate more and more
drastically and the small scale disorder starts to propagate to larger and larger

6The Curie temperature is named after Pierre Curie who first experimentally demonstrated
that certain magnets lost their magnetism entirely at a critical temperature.

In statistical mechanics, thermal fluctuations are random deviations of a system from its low
energy state. All thermal fluctuations become larger and more frequent as the temperature in-
creases, and likewise they decrease as temperature approaches absolute zero. Thermal fluctuations
are a basic manifestation of the temperature of systems.
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416 I. CORWIN AND H. SHEN

scales. The resulting magnetic field fluctuations are believed to be described by the
nonlinear SPDE,

(®4) 0P = AP — P> 4 ¢,

when ® = ®(¢,z) and the spatial dimension of x is 1,2, or 3. This is called the
dynamical ®* equation since the deterministic part arises from the gradient of an
energy [ 2|V®|%+ 1@*dz. We will return to this equation later in Section 5.1 and
describe how it arises from a particular model of magnets.

As another example, we consider a model for interface growth, where each point
of the interface randomly grows up or drops down over time, with a trend to locally
smooth out the interface (like the spring force in the polymer example in Section 2).
Such systems are ubiquitously found in nature—for instance, the left image in
Figure 3.2 shows the end result of an interface grown in the ocean from a volcanic
eruption. We are interested in modeling the evolution of such interfaces.

)

B e T T

FIGURE 3.2

To drastically simplify the situation, let us assume our interface is a one-dimen-
sional function H (¢, z) for x € R. The simplest scenario is that the upward growth
and downward drop of H occurs equally likely, though randomly. In this case, it
turns out that the interface behaves similarly to the one-dimensional version of the
polymer in Section 2 whose beads are kicked by isotropic random force (see the
right image in Figure 3.2). Thus, the large scale fluctuation should be given by the
linear SPDE (2.5).

In the asymmetric scenario where the interface is more likely to grow up than
to drop down, one expects to see nontrivial fluctuation described by equation (2.5)
perturbed by a nonlinearity. In particular, the asymmetry should not be too strong
or it will overwhelm the local smoothing (the 2H term) and randomness (the &
term), and not be too weak or it will not change the limiting equation. This critical
tuning is called weakly asymmetric and results (under the same sort of scaling as in
the symmetric case) in the following SPDE description for fluctuation of H (¢, z):

(KPZ) O H = 02H + (0, H)? +¢.

Due to the asymmetry, the interface establishes an overall height shift. So, for the
above limit, we must recenter into this moving frame. The KPZ equation was first
proposed by Kardar, Parisi, and Zhang in [KPZ86]; see the nice review [KS91b] for
more background. We will return to this equation later in Section 6 and describe
why it arises from various models of interface growth.
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3.1. Some other important nonlinear SPDEs. Besides the (®*) and (KPZ)
equations discussed above, there are a number of physically important equations—
some of which we briefly review now. The reader is warned that it is a formidable
challenge to define the meaning of a solution to nonlinear SPDEs driven by very
singular noises. We postpone this important issue until Section 3.2.

e Stochastic Navier—Stokes equation (with spatial dimensions d = 2,3 of
particular physical interest),

(3.1) Qi+ -Vi=Ai—Vp+(, divi=0,

where p is the pressure and 5 is a d-vector valued noise. When the noise 5
is taken to be singular (for instance each component of 5 is an independent
space-time white noise), it models motion of fluid with randomness arising
from microscopic scales, and in this case we refer to [DPD02,ZZ15] for well-
posedness results.

We remark that while this article focuses on singular noises, when modeling
large scale random stirring of the fluid, the noise 5 is often assumed to be
smooth (it is called colored noise in contrast with white noise), and in fact
the most important case is that the equation is driven by only a small number
of random Fourier modes. In these situations the long-time behavior is of
primary interest, and various dynamical system questions such as ergodicity
and mixing are studied. There is a vast literature on this topic, and we only
refer to the book [KS12] and the survey articles [Mat03, F1a08, Kup10].

e Stochastic heat equation with multiplicative noise in one spatial di-
mension,

(3.2) Ou = Au+ f(u)g,

where f is some continuous function. The Itd solution theory successful for
stochastic ordinary differential equations (ODEs) can extend to this stochastic
PDE; see for instance the lecture notes [Wal86]. The specialization f(u) = u,
ie.,

(3.3) Ou = Au + ué,

has a significant connection to the KPZ equation: one can formally check that
if H solves KPZ, then the Hopf-Cole transform u := ef solves (3.3). Other
choices of f are

flu) = av/u and fw) = ayvu(l —u) (e € R),

which (along with f(u) = w) arise in modeling population dynamics and ge-
netics; see for instance [Daw72, Fle75].
e Nonlinear parabolic Anderson model in spatial dimensions d = 2, 3,

(3.4) Ou = Au+ f(u)C,

where f is a continuous function and ¢ is a noise which typically is assumed
to be spatially independent (i.e., white) but constant in time. This models
the motion of mass through random media. The assumption of constant in
time noise is consistent with the regime where the mass is assumed to move
much faster than the time scale in which the media changes. We refer to
[GIP15,HL18] and references therein for well-posedness results.
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The parabolic Anderson model, especially the linear case (f(u) = u), is a
simple model which exhibits intermittency over long time; for the study of
long time behavior, one often considers the spatial-discrete equation with ¢
being independent noises on lattice sites; see, for instance, the reviews [CM94]
and [K16] for further discussion and references regarding long time behaviors
of the parabolic Anderson model.

e Dynamical sine-Gordon equation,

(3.5) Opu = Au + sin(fu) + &, (t,x) € Ry x T2

This equation describes the natural dynamics of a class of two-dimensional
systems that exhibits the Berezinskii-Kosterlitz—Thouless (BKT) phase tran-
sition [Ber70,KT73,Jos13], such as two-dimensional Coulomb gas and certain
condensed matter materials.® See [MS77,FS81] for earlier studies of the model
in equilibrium. Here 3% represents the inverse temperature, and 32 = 8 is the
BKT critical point. See [HS16, CHS18] for the construction of local solutions
of this dynamic.

e Random motion of a curve in an N-dimensional manifold M driven by m
independent space-time white noises (see [Hail6, BGHZ19, RWZZ18]),

N m
(3.6) Oh™ = 02h* + Y TG, (W)0:hP0.h7 +) o2&  ae{l,2,...,N},
B,y=1 i=1
where h is a map from an interval to M, I'g, are the Christoffel symbols for
the Levi-Civita connection, and {o;}7*, is a collection of vector fields on the
manifold. This is a non-Euclidean generalization of (2.5).
e Stochastic Yang—Mills flow in spatial dimensions d < 4

(3.7) A= —dyFa+¢,

where the deterministic part (without £) is the Yang—Mills gradient flow intro-
duced in [DK90] which is extensively studied in geometry (see the monograph
[Feel4]). Here, in the setting of differential geometry, one fixes a Lie group,
A is a connection (or a Lie algebra valued 1-form), F4 is the curvature of
A, dy is the covariant derivative operator, and d% is its adjoint. The noise
& =&dry + -+ Egday is a 1-form with each component &; being an (inde-
pendent copy of) Lie algebra valued space-time white noise. See [Shel8] for
some initial progress in d = 2 in the case that the Lie group is Abelian. Note
that (3.7) is not a parabolic equation, and one usually adds an additional term
—dad’ A on the right-hand side to obtain a parabolic equation,

(3.8) O A = —dy Fa — dady A+,

which is gauge equivalent with the original equation (the Donaldson-De Turck
trick).

The study of geometric equations with randomness such as (3.6) and (3.7) is
of general interest. Equation (3.7) is motivated by the problem of quantization
of the Yang—Mills field theory; see also the next item.

8These include thin disordered super-conducting granular films. The phase transition is from
bound vortex—antivortex pairs at low temperatures to unpaired vortices and antivortices at some
critical temperature.
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e Stochastic quantization. This refers to a large class of singular SPDEs
arising from Euclidean quantum field theories defined via Hamiltonians (or
actions, energy, etc.). They were introduced by Parisi and Wu in [PW81].
Given a Hamiltonian 7 (®), which is a functional of ®, one considers a gradient
flow of H(®) perturbed by space-time white noise &:

SH(®)

gy
Here 5;;((;1)) is the variational derivative of the functional H(®); for instance,

when H(®) = 1 [(V®)2dx is the Dirichlet form, 42 = _A® and (3.9)
boils down to the stochastic heat equation (2.6). Note that ® can be also
multicomponent fields, with £ being likewise multicomponent. The aforemen-
tioned ®* equation, sine-Gordon equation, and stochastic Yang-Mills flow all
belong to this class of stochastic quantization equations, each corresponding
to a Hamiltonian H.

The significance of these stochastic quantization equations (3.9) is that given

a Hamiltonian #(®), the formal measure

(3.10) Le M ®) Do

(3.9) 9,0 = —

+£.

is formally an invariant measure® for equation (3.9). Here D® is the formal
Lebesgue measure and Z is a normalization constant. We emphasize that
(3.10) is only a formal measure because, among several other reasons, there is
no Lebesgue measure D® on an infinite-dimensional space and it is a priori not
clear at all if the measure can be normalized. These measures arise from Eu-
clidean quantum field theories. In their path integral formulations, quantities
of physical interest are defined by expectations with respect to these mea-
sures. The task of constructive quantum field theory is to give precise meaning
or constructions to these formal measures; see the book [Jaf00].

Given the very recent progress of SPDEs, a new approach to construct
the measure of the form (3.10) is to construct the long-time solution to the
stochastic PDE (3.9) and average the distribution of the solution over time.
This approach has been shown to be successful for the ®* model in d < 3
in a series of very recent works, which starts with [MW17b] on the torus T3
where a priori estimates were obtained to rule out the possibility of finite time
blowup. Then [GH18b, GH18a] established a priori estimates for solutions on
the full space R? yielding the construction of ®* quantum field theory on the
whole R3, as well as verification of some key properties that this invariant
measure must satisfy as desired by physicists, such as reflection positivity. See
also [AK17]. Similar uniform a priori estimates are obtained by [MW18] using
maximum principle.

e Random (nonlinear) Schrédinger equation,

(3.11) zili—l; = Au+ Nul?u + ué,

9Being invariant means that if the initial condition of (3.9) is random with probability law
given by (3.10), then the solution at any ¢ > 0 will likewise be distributed according to this same
probability law. For readers familiar with stochastic ODEs, one simple example is given by the
Ornstein—Uhlenbeck process, dX; = —%Xtdt + dB¢, where B; is the Brownian motion, and its

2
_ X7

invariant measure is the (one-dimensional) Gaussian measure \/%e 2 dX.

™
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where u is complex valued, and € is a real valued spatial white noise. The linear
case A = 0 is a model for Anderson localization (a complex version of (3.4);
see the recent works [AC15, GKR18]). In the nonlinear case, it describes the
evolution of nonlinear dispersive waves in a totally disordered medium, with
A > 0 corresponding to the focusing case and A < 0 to the defocusing case;
see [Conl12, GGF'12] for its physical background and [DW18, DM17, GUZ18§]
for recent mathematical results.
e (Nonlinear) stochastic wave equation,

(3.12) Ofu— Au+ F(u) =&,

with given initial data (u,d¢u)|t—p. The linear case (F' = 0) in d = 1 spatial
dimension, as Walsh explained in [Wal86], describes “a guitar left outdoors
during a sandstorm. The grains of sand hit the strings continually but irreg-
ularly.” If £(dt, dz) is the random measure of the number of grains hitting in
(dt,dx) (centered by subtracting the mean), then £ should be space-time white
noise since the numbers hitting over different time intervals or string portions
will be essentially independent. The position u(t, x) of the string should satisfy
(3.12) with F = 0.

Equation (3.12) with nonzero F are investigated in earlier works by [AHR96,
OR98] in spatial dimensions d = 2, 3, and they proved that with just a function
F (satisfying some nice properties) the solution to (3.12) is trivial, namely the
same with the solution for F' = 0; the reason for this triviality will be clear in
the next subsection.

More recently, [GKO18b] obtained nontrivial solutions with F' given (for-
mallyl—see the next subsection) by F(u) = Au* in d = 2, and F(u) = u + u?
in d =3 in [GKO18a]. [GUZ18] then studied a stochastic wave equation with
F(u) = u® and multiplicative noise (u£ on the right-hand side) in d = 2, 3.

Remark 3.1. Note that these nonlinear SPDEs are generally not scaling invariant,
unlike the linear stochastic heat equation (2.6), which is scaling invariant in any
dimension d (recall property (P5) at the end of Section 2). For instance, for the
KPZ equation, H(t,z) =\ H(A2t, \z) will satisfy 9, H = 5‘%]?—1—)\% (8, H)?+¢,
where EN is a new white noise and thus not invariant unless d = 2. (Indeed, any choice
of three scaling components for ¢, z, H cannot make four terms invariant.) This will
turn out to be important for defining solutions to these equations; see Remark 4.2.
Also, as we will see in Sections 5 and 6, it would not be possible to derive these
equations (that are not scaling invariant) as limits of scaling certain physical models,
unless the physical models have a weak asymmetry, a long interaction range, or a
weak intensity of noise, which sets an additional scale.

3.2. Challenge of solution theory. Solution theories for SPDEs have been de-
veloped since the 1970s. Earlier progress was recorded by the books written in the
1980s such as [KR82, Wal86], and more recent books such as [CR99, PR07, DKM 09,
DPZ14,LR15]. However, many very important equations, including some of those
listed above, remained poorly understood—that is, until very recently.

The difficulty in building solution theories to nonlinear SPDEs is that often
these equations are too singular; namely, the solution (if it exists) would have low
enough regularity so that certain parts of the equation do not a priori make sense.
Indeed, recall that for the linear equation (2.6) in d spatial dimensions, the solution

is almost surely an element of C* for a < 25—‘1, which is continuous when d = 1
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and is a distribution when d > 2. Since with nonlinear terms the solutions are not
expected to be more regular, the “®3” term in the ®* equation when d > 2 is a
priori meaningless because distributions in general cannot be multiplied. Similarly,
for the KPZ equation, if d > 1, d,H is distribution valued and thus the term
“(0,H)*" does not have a clear meaning. For this type of singular SPDE, it is
challenging to even interpret what one means by a solution.'©

Starting in the 1980s, the idea of renormalization entered the study of SPDEs
[JLMS85,AR91,DPDO03]. Recently, this idea has received far-reaching generalization
in work by Hairer [Hail4b], Gubinelli, Imkeller, and Perkowski [GIP15], and many
subsequent works. The idea is to subtract terms with infinite constants from the
nonlinearities. Taking the ®* equation as an example with spatial dimension d < 3,
one needs to consider the renormalized ®* equation,

(3.13) 0, = AD — (D3 — co®) + €.

This precisely means the following. Since the origin of the problem is the singu-
larity of the driving noise £, one starts by regularizing £. For instance, we take a
space-time convolution of £ with a mollifier ¢, that is a smooth function of space
and time with support of size € so that . — ¢ (the Dirac delta distribution) as
e — 0. Now we consider the ®* equation driven by &.,

(3.14) @ = AP, — D2+ &, where & = £ * ..

For any € > 0, due to the smoothness of the noise, we can solve the above PDE in
the classical sense, and £ € C* implies ¢, € C*. Ase — 0, £, — &, but &, do not
converge to any nontrivial limit!

The idea is that before the limit, one should insert renormalization terms (also
often called counter-terms in the context of quantum field theory'!)

(3.15) 0P, = AP, — (B2 — C.®,) + &,

where C. diverges as € — 0 at a suitable rate. If the sequence of constants C. is
suitably chosen, the sequence of smooth solutions ®. of (3.15) will converge to a
nontrivial limit as € — 0:

® = lim ..

e—0

This is what we mean by a solution to the (renormalized) ®* equation. Note that
we do not attempt to make sense of a limiting equation (3.13), but we construct
® via by a limit procedure, the limit of solutions to a sequence of regularized and
renormalized equations (3.15).

The same renormalization procedure applies to the KPZ equation (in one spatial
dimension) and many of the other singular SPDEs listed above.

This discussion prompts several questions:

e Why does ®. converge, and how does one choose suitable constants C.
to make this convergence happen? Is the resulting limit unique, or does
it depend on the mollification? This is essentially the question of “well-
posedness” which will be addressed in Section 4.

10T he same issue exists for the dispersive equations. For instance, the solution to the stochastic
wave equation (3.12) in spatial dimensions d > 2 is distributional, and this is exactly the reason
that the triviality result by [AHR96,OR98] for the nonlinear problem should be expected. Indeed,
their proofs are based on a Colombeau distribution machinery.

111n fact the corresponding quantum field theory requires a renormalization f %|V‘1>|2 + i@‘l -

%@2 dx for dimensions 2 and 3 which is well known in physics.
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e Why are we allowed to “change” the equation by inserting new terms that
are not negligible—in fact infinite? We address this renormalization ques-
tion in Section 5, in which we will see that the SPDEs such as ®* arise as
scaling limits of physical systems and the renormalization will turn out to
have physical meanings in these systems.

e How robust are these singular SPDEs under different approximation
schemes? This is a universality question, meaning that one singular SPDE
should be able to serve as the continuum large scale description of a class
of systems which may have different small scale details. We discuss this in
Section 6.

These questions are of course entangled in many ways. In terms of approxima-
tions and convergence, the procedure described as in (3.14) is the simplest way of
approximation and approaching a limit, but scaling limits of physical models are
essentially also ways of obtaining the limits. In terms of uniqueness, one expects to
get the same SPDE limit not only for different choices of mollifications in (3.14) but
also via scaling limits of perhaps apparently very different models, which is what
universality means. Section 5 below will focus on the meaning of renormalization
in physical models, and Section 6 will provide more detailed discussions on deriving
an SPDE from these physical models, and of course in all these endeavors one needs
to first understand the meaning of a solution as discussed in Section 4.

4. WELL-POSEDNESS OF SINGULAR SPDESs

We discuss how to choose suitable renormalization constants so that one can
obtain a nontrivial limit for solutions to renormalized equations. Our exposition
consists of two parts.

e Starting from the 1990s, solutions to renormalized singular SPDEs have
been constructed; see for instance [AR91, DPD03]. Here we present an
elegant argument due to [DPDO03] which illustrates a simple example of
renormalization, plus a standard Picard iteration (fixed point) PDE ar-
gument. This argument, despite its simplicity, yields solutions to several
singular (but not too singular) equations, such as the ®* equation in two
spatial dimensions.

e The above argument fails for more singular SPDEs, such as ®* in three
spatial dimensions and the KPZ equation in one spatial dimension. This
motivates us to turn to a more robust approach—the theory of regularity
structures introduced in [Hail4b]. We will also mention some alternative
theories or methods, such as paracontrolled distributions [GIP15] or renor-
malization groups [Kupl6].

To focus our discussion in this section, we will work with the ®* equation.

4.1. A PDE argument and renormalization. Consider the ®* equation, where
the spatial variable takes values in the two-dimensional torus. As explained above,
we take a sequence of mollified noises £, and consider the mollified equation (3.14).
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Write u. = (9, — A)7t¢. for the stationary solution'? to the mollified linear
stochastic heat equation (2.6) dyu. = Au. + &. The key observation is that the
most singular part of @ is u, so if we write

(4.1) D, = ug + v,

we can expect the remainder v. to converge in a space of better regularity. Sub-
tracting this linear equation from (3.14) gives

(4.2) Ove = Ave — (v + u6)3 = Av, — US — 3u€v§ — 3u§v5 —

°.
This equation looks more promising since the rough driving noise &, has dropped
out. This manipulation has not solved the problem of multiplying distributions,
since the limit of u. is still a distribution valued in two spatial dimensions (as we
discussed earlier—see the fact (P2) in the end of Section 2). However u. is a rather
concrete object since it is Gaussian distributed ((P3) in the end of Section 2). This
makes it possible to study the behavior of u? and u? via probabilistic methods.

As an illustration, consider the expectation
(4.3) Efuc(t,z)?] = /P(t —s,x —y)P(t — 1,2z — 2)o ) (s — r,y — 2) dsdydrdz,
where cp,g) is the convolution of . introduced in (3.14) with itself and P is the
heat kernel introduced in (2.10). Due to the singularity of the heat kernel P at
the origin, this integral diverges like O(loge) as € — 0 in two spatial dimensions.
Denoting C. := E[u.(t,z)?] (which does not depend on (¢,z) by stationarity of
u), this calculation indicates that in (4.2) we should subtract C. from w2, and
subtract'® 3C.u. from u2.

This amounts to considering the renormalized ®* equation

(4.4) 00, = AD, — (02 —3C. D) + & .

These renormalized powers of u. do converge to nontrivial limits. In fact, thanks to
Gaussianity of u., given a smooth test function f one can explicitly compute any
probabilistic moment of (u2—C.)(f) and prove its convergence. By choosing f from
a suitable set of wavelets or Fourier basis, one can apply a version of Kolmogorov’s
theorem™ to prove that u? — C. and ug — Cue converge in C for any o < 0. We
denote these limits :u? and :u3:. They are elements of C® for any o < 0.

To summarize, we have found that the renormalization constants can be found
through ezplicit moment calculations/expectations.

Passing (4.2) to the limit, we get

(4.5) O = Av — (v3 + 3uv? + 3w vt ) .

We can prove local well-posedness of this equation as a classical PDE, by a standard
fixed point argument. For this, we use a classical result in harmonic analysis under

12This corresponds to dropping the term involving initial data in (2.9) and integrating time
in (2.10) from —oo instead of 0. Stationarity means that the distribution of u. does not depend
on t. This assumption will be convenient when performing moment calculations, such as (4.3).
Namely, the moments will not depend on space-time points.

13The factor 3 arises from three ways of choosing two powers of u. from the cubic term u2.
A Wick theorem allows one to compute expectation of a product of arbitrarily many Gaussian

variables, and in two dimensions the Wick renormalized power :u™: = lim._,qC2 Hy(ue /V/Ce).
14This is a version of Kolmogorov’s theorem (formulated differently as the classical Kolmogorov
theorem) which is adapted to prove convergences in the C% spaces in the present context.
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the name Young’s theorem'® which states that if f € C*, g € C?, and a + 8 > 0,
then f-g € C™n(@h)  Thus if we assume that v € C? for, say, 8 = 1, then the
worst term in the parenthesis in (4.5) has regularity «. By the classical Schauder
estimate, which states that the heat kernel improves regularity by 2, the fixed point
map

(4.6) v (0 — AT (113 + 3uv? + 3w vt )

is well defined. Namely, it maps a generic element v € C? to a new element which
is again in CP for B = 1. This is since for a < 0 sufficiently close to 0 one has
Cot2 c CP. With a bit of extra effort, one can show that over a short time interval
the fixed point map is contractive and thus has a fixed point in C?, and this fixed
point v is the solution. (The sharp result is C? for any 8 < 2.) To conclude, one
has ® = u + v, which is the local solution to the renormalized ®* equation in two
spatial dimensions.

The above argument was first used by Da Prato and Debussche in [DPDO03],
and it applies to other equations, for instance the stochastic Navier—Stokes equa-
tion (3.1) with space-time white noise on a two-dimensional torus [DPD02]. Let
us mention another, somewhat surprising application, that is the dynamical sine-
Gordon equation (3.5) in two spatial dimensions in the regime 8% € (0,4r). The
renormalized equation reads

Oue = %Aus +C Sin(ﬂus) +&, BER,

2
where C. is a renormalization constant which diverges like O(e_ff_w). By writing
Ue = ¢ + ve with ¢ := (9, — A)7LE,, one finds that

Opve = %A'Ue + C: sin(Bee) cos(Bve) + Ce cos(Bee) sin(fve) -
[HS16] proved that C.et% = C_(cos(B¢.) + isin(B¢.)) converges to a nontrivial

limit in C_g_w7 so 3% € (0,47) is precisely'® the regime where the above classical
PDE argument applies. Note that the constant C, can be again found by calculating
the expectation of e**#%  i.e., the characteristic function of the Gaussian random
variable ¢..

The same idea (but with a slightly different transformation than (4.1)) applies
to the linear parabolic Anderson model in [HL15]:

Opue = Aue + ue (¢ — Ce), (t,z) € Ry x T2,
where (. is regularized spatial white noise on T?. With a transformation v, = u.es,
where AY, = (., one can simply check
Ove = Ave + v (|VY2]? = C.) — 2VY: - Vo, .
Again, Y. is a Gaussian process, and with C. := E|Y.|> = —%logs + O(1),

|VY.|?2 — C. converges to a nontrivial limit, and the equation for v is shown to be
locally well-posed by standard PDE methods as above. (In fact [HL15] constructed
a global solution on R x R?, making use of the linearity of the equation.) [DW18§]

15Note that the original form of Young’s theorem is only for one-dimensional functions of
finite p-variations, and the version of Young’s theorem we are referring to here can be found in
[Haildb, Proposition 4.14] and [BCD11, Theorems 2.47 and 2.52], for instance.

16Recall that, for the fixed point argument to work, we must have that the regularity plus 2 is
at least 1.
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studies the stochastic Schrédinger equation (3.11) on T2, in which a transformation
similar to that in [HL15] can be applied.

This type of strategy has also been applied to stochastic hyperbolic equations.
Consider the stochastic nonlinear wave equations,

Otu— Au+ub =¢, (z,t) € Ry x T?,

with given initial data (u, d;u)|—o, where ¢ is the space-time white noise on Ry x T2,
and k > 2. [GKO18b] adopts the above Da Prato—Debussche trick to write u as
a linear part plus a remainder. Such an idea previously appears in the context of
deterministic dispersive PDEs with random initial data in earlier work of McKean
[McK95] and Bourgain [Bou96]. The proof in [GKO18b] is based on a fixed point
argument for the remainder equation (as above), but with the Schauder estimates
replaced by Strichartz estimates for the wave equations. The key point is to use
function spaces where the wave equation allows for a gain in regularity. This gain is
sufficient to prove that the remainder has better regularity than the linear solution
and gives a well-defined nonlinearity for which suitable local-in-time estimates can
be established.

4.2. Regularity structures and paracontrolled distributions. The above ar-
gument fails for the ®* equation in three spatial dimensions. As dimension in-
creases, the space-time white noise (and thus the solution) becomes more singular.
To see how this problem rears its head, consider the term :u? v in (4.5). One can
show!” that in three spatial dimensions, as a space-time distribution, :u? € C®
for any o < —1. Thus, to multiply :u? with v, we would have to formulate the
fixed point map (4.6) for v € C% with B > 1. The product :u? v would then lie
in C* for any a < —1. Unfortunately, (9; — A)~! only provides two more degrees
of regularities, and thus the fixed point map (4.6) will not bring an element in C”
back to the same space.

A natural idea is to go one step further in the expansion (4.1). In view of the
equation (4.2), we define a second order perturbative term, w. := (9; — A)~! ;|
and rewrite the expansion as

(4.7) b, =u. —w:.+R..

It turns out that one can prove that w. converges in C* for a < 1 to a limit w.
It remains to see whether R, converges to a limit R with even better regularity.
Using (4.4), it is straightforward to derive an equation for R.:

(4.8) R.=(0,—A)! ( —3(u? — C.)R. — 3(u? — Co)w. + - ) ,

There should be eight terms in the parenthesis, but we have only written down the
two terms that are important for our discussion; the other terms (in “ --”) can be
treated by the standard PDE argument as in the two-dimensional case above. It
turns out that even after this higher order expansion (4.7), the above PDE fixed
point argument still does not work because of the two terms written on the right-
hand side of (4.8).

For the second term, (u? — C.)w., we have u? — C. — w? € C~ '~ and w. —
w € C2z~. This is below the borderline of applicability of Young’s theorem. It
is not hard to overcome this difficulty. In fact, in three spatial dimensions, the

5 1
17n three spatial dimensions & € C~2 7, therefore v € C~ 2. From this one can show that
:u?: € C717 (the rigorous proof of this fact is done by moment analysis).
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term (u2 — C.)w. requires further renormalization to converge to a nontrivial limit.
Since this term is nothing but a convolution of several heat kernels and Gaussian
noises, one can again carry out a moment analysis to find a suitable renormalization
constant C, which turns out to diverge logarithmically such that

(4.9) (u? - Co)we — Esug converges in C_%— .
This amounts to renormalizing the ®* equation in three spatial dimensions as

(4.10) 0P, = AP, — (B2 — (3C. + C.)®.) + & ,

where C. ~ e~ ! and C. ~ |loge|. See also Remark 4.1.

The first term, —3(u? — C.)R,, is of the same nature as :u? v in (4.6), so we
suffer exactly the same vicious circle of difficulty as in the discussion for :u?: v;
namely, the fixed point argument does not close. In fact, higher order expansions
beyond (4.7) will always end up with such a term so the same problem will remain.
This is the real obstacle. The idea of regularity structures (which overcomes this

obstacle) is that the solutions to the two equations,

(4.11) R=(3—A)"Y(-32%R), R=(0-A)7Y-3x%),

should have the same small scale behavior, because :u?: is more singular than R

and it is the factor :u?: that dominates the small scale roughness. (Here we have
ignored all the other terms in (4.8), which have better regularities than that of
:u?: R, in order to focus on the main issue of the problem.) This a priori knowledge
that R should locally look like R can be formulated as that when the space-time
points z and zy are close, one should expect that!®

(4.12) R(2) = R(z0) = R(20)(R(2) = R(z0)) + O(|z = z0) -

Namely, the local increment of R is approximately the same as the local increment
of fi—up to multiplying a factor R(zp) which depends on the base point zg; the
reason that this multiplicative factor should be R(z) is clear from the structure of
equation (4.11).

Since R is again a concrete object, which is simply convolutions of heat kernels
with powers of Gaussians, it is easy to prove RecCl- by analyzing its moments as
before. Thus if R satisfies (4.12), that is, locally looks like I~2, one has R € C'~ as
well. The converse is not true; the set of R satisfying (4.12) is a strictly smaller
set than C'~. The key is to formulate a fixed point problem in the space of all
functions R that have prescribed local expansion (4.12) (rather than in standard
function spaces such as C®). The aforementioned vicious term :u?: R, which could
not be defined for arbitrary R € C'~, can now be defined if R locally looks like
E, because % R is again simply a concrete combination of Gaussian processes
and heat kernels! It turns out that the fixed point argument closes in the space of
functions having such prescribed local expansions, and the fixed point R together
with (4.7) yields the solution to the ®* equation in three dimensions.

The above idea of solving stochastic equations in a space of functions or distri-
butions that have prescribed local approximations by certain canonical objects to

18Equation (4.12) is reminiscent of a Taylor expansion F(z) = F(z0) + F'(20)(z — 20) + - -,
where one approximates a differentiable function by Taylor polynomials. Here we approximate R
by R which is also an object that is simply a convolution of heat kernels with white noises. Taylor
polynomials are special examples of regularity structures, and the theory of regularity structures
is a generalization of Taylor expansion.
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some extent had its precursor in the simpler setting of stochastic ordinary differen-
tial equations, which is called rough path theory (see [Lyo98] or the book [FH14]) in
particular a formulation by [Gub04]. Constructing the solution to the ®* equation
on a three-dimensional torus was the first example of the theory built in [Haildb].
The review articles [Hail5a, Hail5b] have more detailed pedagogical explanations
on the theory and the application to this equation.

2 43 and v?w. and proved
convergence of the renormalized objects by moment analysis. Analyzing moments
of these random objects are the only probabilistic component of [Hail4b]. As the
equation in question becomes more singular, the number of such random objects
to be studied increases, and it is tedious or even impossible to analyze each of
them by hand. [CH16] develops a blackboz that provides systematic and automatic
treatment for renormalization and moment analysis for these perturbative objects
arising from general singular SPDEs. Moreover, there are also algebraic aspects for
the renormalization procedure (so-called renormalization groups), which has been
systematically treated in [BHZ16]. Finally, there is a question regarding what the
renormalized equation (e.g., (4.10)) will look like after renormalizing these random
objects, and this is answered in [BCCH17].

Remark 4.1. We have found the renormalization of 2

Hairer’s theory has been applied to provide solutions to other very singular
SPDEs, for instance, a generalized parabolic Anderson model (a generalization of

(3.4)),
O = Au + Zij fij(w)O;udju + g(u)g,

where f and g are sufficiently regular functions. The well-posedness of the KPZ
equation in one spatial dimension was solved in [Hail3] using the theory of con-
trolled rough paths [Gub04], which can now be viewed as a special case of regularity
structures; see the book [FH14] for rough paths, regularity structures, and applica-
tions to KPZ.

Other applications include (but are not limited to) the stochastic Navier—Stokes
equation (3.1) with white noise on the three-dimensional torus [ZZ15], the sto-
chastic heat equation with multiplicative noise (3.2) [HP15, HL18], the dynamical
sine-Gordon equation (3.5) on two-dimensional torus for arbitrary 42 < 8= [HS16,
CHS18], the stochastic quantization of Abelian gauge theory/stochastic gauged
Ginzburg-Landau equation by [Shel8], and the random motion of string in mani-
fold (3.6) [BGHZ19].

Besides Hairer’s theory [Hail4db], some alternative methods have also been intro-
duced. The paracontrolled distribution method of Gubinelli, Imkeller, and Perkowski
[GIP15] is based on a similar idea of controlling the local behavior of solutions, but it
is implemented in a different way by using Littlewood—Paley theory and paraprod-
ucts [BCD11]. See [GP18b] for a review on paracontrolled distribution. The para-
controlled distribution method has been also successfully applied to, for instance,
the KPZ equation [GP17b, Hosl8] in d = 1 (and more recently the construction
of a solution on the entire real line instead of a circle [PR18]), a multi-component
coupled KPZ equation [FH17], and the ®* equation [CC18b] in d = 3 (and more
interestingly, its global solution by [MW17b]).

The paracontrolled distribution method has not only allowed us to prove well-
posedness results for stochastic PDEs, but it also resulted in the construction of
other singular objects that could not be made sense of before. For instance, [AC15]
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constructed the Anderson Hamiltonian (i.e., Schrodinger operator) on the two-
dimensional torus, formally defined as 5 = —A+ &, where £ is a singular potential
such as white noise. As another example, [CC18a] proved existence and uniqueness
of solution for stochastic ordinary differential equations dX; = V (¢, X;)dt + dB;
with distributional valued drift V', where B is a d-dimensional Brownian motion,
and this is achieved via the study of the generator of the above stochastic ordinary
differential equations given by 0; + %A—i—V -V. [CC18a] also managed to make sense
of a singular polymer measure on the space of continuous functions formally given

by Qr(dw) = Zy ' exp (fOT §(ws)ds) Wr(dw), where W is the Wiener measure (i.e.,

the Gaussian measure for Brownian motions) on C([0,T],R%) for d = 2,3, £ is
a spatial white noise on the d-dimensional torus independent of W, and Zj is an
(infinite) renormalization constant.

We will discuss another application of the paracontrolled distribution method on
the scaling limit problem with a bit more detail in Section 5.2.

In the line of this paracontrolled distribution approach, [BB16] provided a semi-
group approach, which has been applied to the generalized parabolic Anderson
model (3.4) on a potentially unbounded two-dimensional Riemannian manifold.

Another method based on renormalization group flow was introduced by Kupi-
ainen [Kup16], which for instance has been applied to prove local well-posedness for
a generalized KPZ equation [KM17] introduced by H. Spohn [Spol4] in the context
of stochastic hydrodynamics.

With all these alternative methods, the theory of regularity structures is by
far the most systematic and general approach; for instance it has developed the
blackbox theorems as mentioned in Remark 4.1 which makes the implementation
of this theory very automatic, and it can deal with equations which are extremely
singular (that is, very close or even arbitrarily close to criticality, see Remark 4.2)
such as the random string in a manifold (3.6) or the dynamical sine-Gordon equation
(3.5) for arbitrary 32 < 8.

Remark 4.2 (Suberiticality of stochastic PDE). The methods developed in [Hail4b],
[BCD11], and [Kupl6] are all for subcritical semilinear stochastic PDEs. For sto-
chastic PDEs with white noise, the equation being subcritical means that the non-
linear term has better regularity than the linear terms; namely, small scale rough-
ness is dominated by the linear solution. For instance, for the ®* equation in three
spatial dimensions, the term ®3 has regularity —%— while A® and £ have regu-
larities —%—. Subcriticality often depends on spatial dimensions: (KPZ), (3.2),
and (3.6) are subcritical in d < 2, while (®?), the parabolic Anderson model (3.4),
the Navier—Stokes equation (3.1) with space-time white noise, and the stochastic
Yang-Mills heat flow (3.8) are subcritical in d < 4. The dynamical sine-Gordon
equation (3.5) however is subcritical for 32 < 8.

The stochastic PDEs being discussed here in supercritical regimes (i.e., above
the aforementioned criticalities) are not expected to have nontrivial meanings of
solutions. We only expect to get Gaussian limit, although the Gaussian variances
may be nontrivial; the reader is referred to [MU18, Theorem 1.1] for a flavor of
such a result for the KPZ equation in d > 3.

Critical dimensions are much more subtle. We refer to [CD18,CSZ17b, CSZ18,

Gul8] for the very new progress on the KPZ equation in d = 2.
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Remark 4.3. We remark that although we have focused on semilinear equations in
our expositions, the methods developed in [Hail4b,BCD11] have also extended to
quasilinear equations; see [OW18,FG19, BDH19, GH17b)].

4.3. A brief discussion on weak solutions. The solutions to SPDEs that we
have discussed so far are called strong solutions, as opposed to the weak solutions
that we will now briefly discuss.!® Let us immediately point out that the weak
solutions in the stochastic context have nothing to do with the weak solutions in
deterministic PDE theory; one sometimes adopts the terminology “probabilistically
weak solutions”.

For a strong solution, one starts with a probability space on which the noise
is defined and then builds a mapping from that probability space and the initial
data space to a space of functions (or distributions) that satisfies the prescribed
equation?” with probability 1 (i.e., for almost every point in the probability space).
Though subtle, it is important to understand that a strong solution to an SPDE
need not be function valued (as we saw, in some instances it is distribution valued,
living in some spaces of negative regularity).

For a standard PDE, a weak solution requires that the equation holds when
tested against a suitable class of functions. For SPDEs, the analogue of this in-
volves treating solutions statistically as probability measures on the solution space,
rather than as random variables supported on the probability space on which the
noise is defined. Roughly, a weak solution means that we can define some noise
(with the right distribution and measurability assumptions satisfied) so that the
canonical process?' on the solution space, along with the noise satisfying the de-
sired equation.?? As we will see, martingale problems provide a very convenient way
to demonstrate that a weak solution solves an SPDE (instead of demonstrating the
existence of a suitable noise as above).

Let us illustrate these ideas in the simplest setting of stochastic differential equa-
tions (SDEs). Let £(t) denote temporal white noise. Like its space-time counter-
part, this can be defined in various ways (e.g., as a series with random coefficients).
Consider the SDE dX; = £(t)dt, which in integrated form reads X; = X+ fg &(ds)
(let us assume that Xy = 0 for simplicity). Once integration with respect to white
noise is understood, this defines a solution map (and hence a strong solution) from

19Not all equations that admit weak solutions admit strong solutions. A famous stochastic
differential equation example is called Tanaka’s equation; see [KS91a, Example 3.5].

20 As we saw, making sense of what it means to satisfy the equation often takes significant work
and involves regularizations and renormalizations. There are also some measurability assumptions
which should be imposed on strong solutions so future noise cannot effect the evolution before its
time.

21The canonical process is the random variable whose probability space is defined as the
solution space equipped with the probability measure of the proposed solution.

22Here is a, hopefully, more intuitive explanation for this different notion of strong versus
weak. Imagine that human life were governed by an SPDE. Then, a strong solution would tell
us how each individual’s life would unfold, given the knowledge of all of the randomness which
befalls them, in addition to the world around them. A weak solution is statistical—it tells us that
people with certain characteristics have certain probabilities of having their life unfold in various
ways. Given such a prescription of probabilities, how can be verify that this is, indeed, a weak
solution to the “SPDE of life”? Well, we need to demonstrate that there exists randomness which
would, in fact, result in the aforementioned probabilities. Then, we would need to verify that the
randomness is distributed in the way that the SPDE of life claims (e.g., space-time white noise).
While this is all a bit tongue-in-cheek, we hope it helps explain the difference.
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(&, Xo) to the full trajectory of X; for ¢ > 0. One checks that ¢ — X is continuous
and that its marginal distributions are Gaussian with covariance of Xy and Xy,
given by the minimum of s and ¢. This, in fact, implies that the distribution of
the function ¢ — X; is a Wiener measure—that is, the distribution of Brownian
motion. If instead of X; we had another Brownian motion X; (for instance, we
could have )?t = —X,; or just an independent Brownian motion), then )N(t would
be a weak solution, but not a strong solution. This is because X; and )?t have the
same distribution, even if they are not “driven” by the same noise.

The martingale problem provides an alternative characterization to the Gaussian
description above for Brownian motion. The Lévy characterization theorem says
that X is distributed as a Brownian motion if it is almost surely continuous and
both X; and X? — t are martingales.?> A measure on X, that satisfies this is said
to satisfy the martingale problem characterizing Brownian motion.

What does it mean that X; (or X? — t) is a martingale? Roughly speaking,
this means that given the history of X; up to time ¢, the expected value of its
future location is exactly X;. This is like a fair gambling system in which your
future expected profit is always zero. Martingales are essentially a particular class
of centered noise.

Martingale problems exist for general classes of SDEs and are often very use-
ful for proving convergence results. For instance, to show that a discrete time
Markov chain converges to an SDE (e.g., a random walk converges to Brownian
motion), one can demonstrate that the discrete chain satisfies a discrete version of
the SDE’s martingale problem. Then, provided one can demonstrate compactness
of the measures (on the evolution of the Markov chain), all limit points must sat-
isfy the limiting SDE’s martingale problem. This generally proves uniqueness of
the limit points and, hence, convergence.

Weak solutions to linear SPDEs can also be characterized in terms of martingale
problems. Let us describe how this works for the multiplicative noise stochastic
heat equation (3.3), recalled here:?*

(4.13) Opu(t,z) — Au(t, z) = u(t, 2)&(t, x) (t,x) e Ry xR.

Let us write us(z) = u(t,z) and think of u as a measure on C'(R4,C(R)) (con-
tinuous maps from ¢t € R to continuous spatial functions). For any test function
© € C*(R), write u;(¢) = [wui(x)p(z)dz. With this notation, define the processes
(4.14)

Ni(p) = ut(w)—uo(w)—/o us(Ap)ds and  Q4(p) := Nt(w)Q—/O (u?, ) ds.

We say that u satisfies the martingale problem for the multiplicative noise stochastic
heat equation if both N; and @; are (local) martingales for all test functions ¢. Any
u that satisfies this is a weak solution; see for instance [BG97, Definition 4.10]. Just
as martingale problems are useful in proving convergence of Markov chains to SDEs,
so too can they be used in SPDE convergence proofs; see Sections 6.2 and 6.3 for
some examples where this type of martingale problem has been used for such a
purpose.

231In fact, local martingales.
24This equation also admits a strong solution which can be written as a chaos series of multiple
stochastic integrals against space-time white noise &.
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It is generally hard to formulate a martingale problem characterization for weak
solutions to singular nonlinear SPDEs. For the KPZ equation (in one spatial di-
mension) H, one can use the Hopf-Cole transform and define H as a Hopf-Cole
solution to the KPZ equation if u = e is a solution to the multiplicative noise
stochastic heat equation. This notion of solution agrees with those discussed ear-
lier in this text. However, such linearizing transformations are uncommon, and this
should be thought of as a rather useful trick, not a general theory.

Remarkably, for the stochastic Burgers equation (which is formally the equation
satisfied by the spatial derivative of the KPZ equation 0, H)

(4.15) du=102u— 10,(u?) + 0,¢,

[GJ14] found a way to formulate a martingale problem characterization and [GP17a]
(with a slightly improved formulation) matches the solution to this martingale
problem to the Hopf-Cole solution (see (3.3)) whereby showing uniqueness of the
solution to this martingale problem; they call it an energy solution. There were some
limitations of this notion of solution, namely it only works for particular types of
initial data; very recently, however, [GP18c] has generalized the notion of energy
solution to system configurations with finite entropy with respect to stationarity;
and [Yanl8] has extended this method to include more general initial data such
as flat initial data. It has proved to be quite useful in demonstrating convergence
results, as we explain later in Section 6.4. Finally, let us mention that very recently
[GP18a] developed a martingale approach for a class of singular stochastic PDEs
of Burgers type, including fractional and multicomponent Burgers equations.

Let us end this discussion by mentioning (without any explanation) another pow-
erful approach to defining weak solutions of SPDEs—Dirichlet forms. For example,
for the ®* equation in two spatial dimensions, before Da Prato and Debussche con-
structed their strong solution in [DPDO03], the paper [AR91] constructed a weak
solution via Dirichlet forms (which involves significant functional analysis). For
comprehensive discussion on this topic we refer to the book [FOT11] and the ref-
erences therein.

5. RENORMALIZATION IN PHYSICAL MODELS

Let us take stock of what we have learned so far. In Section 2 we observed that
(at least in the linear case) SPDEs arise as scaling limits for microscopic models
of physical systems. In Section 3 we introduced a number of nonlinear SPDEs
and claimed that they model various interesting physical systems. However, before
trying to justify that claim, we had to confront the challenge of well-posedness.
Namely, how to make sense of what a “solution” means to these equations. Section
4 surveyed the main techniques for doing this.

In defining a solution, we mollified (or smoothed) the noise and defined the
solution through a limit transition. From that perspective, it is reasonable to hope
that the same methods can be applied to other types of regularizations of the noise,
or equation—for instance to show that discrete systems converge to the SPDEs. We
will address this further in Section 6.

In Section 4 we found that besides regularizing the noise, we also had to introduce
certain renormalizations to our equations for them to admit limits. At first glance
this tweaking of the equation seems a bit crooked. In this section we will explain
how these renormalizations have concrete physical meaning, thus justifying our
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definitions. For instance, a diverging renormalization constant may relate to a
tuning for a microscopic system of the overall scale, reference frame, temperature,
or other physically meaningful parameters. We will focus our discussion on two
systems: the dynamic ®* equation and parabolic Anderson model. For the KPZ
equation, we save this discussion until Section 6, where we will also highlight the
notion of universality.

5.1. & equation. Let us consider the example of a magnet near its critical tem-
perature in Section 3. Many mathematical models have been proposed to describe
various behaviors of magnetic systems. Here we investigate one particular example
called the Kac-Ising model.?

We define the model in two dimensions. Denote by Ay = Z9/(2N +1)Z% a large
two-dimensional discrete torus of “radius” N = ¢~1 (we introduce € here to later
take to zero), which represents the space in which our magnetic material lives. Each
site k € Ay is decorated with a spin o(k) which for simplicity is assumed to take
values in {—1,+1}. Denote by ¥y = {1, +1}*~ the set of spin configurations on
An. For a spin configuration o = (o(k), k € An) € Xy, we define the Hamiltonian
as

(5.1) H(o):=—

N | =

> kylk—j)o(i)o(k),
k,jeEAN

where, for v € (0,1), k4 (k) is a nonnegative function®® supported on |k| < 4!

which integrates to 1. Then for any inverse temperature 3 > 0 we can define the
G'ibbs measure A\, on o € Y as

A(0) = % exp ( - 5H(U)) )

where Z(8) := 3 5, exp (— BH(0)) makes A, into a probability measure.

The measure A, is known as an equilibrium measure since the probability of
finding a configuration ¢ is proportional to the exponential of the energy of that
configuration. It is also known as equilibrium because it arises as the equilibrium
(or stationary, or invariant) measure for various simple, local stochastic dynamics
on the configuration space. We will consider one such example known as Glauber
dynamics [Gla63]. For j € Ay, let 07 € X denote the spin configuration that
coincides with o except the spin at position j is flipped: o7(j) = —o(j). The
Glauber dynamic is the following continuous time Markov process: For each j € Ay,

25The Ising model was introduced in 1920 by Lenz and named after his student Ising who
showed that in one spatial dimension it did not admit any phase transition. That original model
involves nearest-neighbor pair interactions of —1 and +1 spins. There are many generalizations
of this model besides the long-range Kac—Ising model we consider here. For instance, one can
consider the higher spin versions with ¢ different types of spins and interactions which award
equal spins along edges. This is known as the g-state Potts model.

26 A concrete choice of the interaction kernel k. is to set ki (k) = ¢y v¢ R(vk), where ®: R —
R is a smooth, nonnegative function with compact support and cy is chosen to ensure that

Sheny fa(k) = 1.
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FIGURE 5.1

the configuration o is updated to o7 at rate®” ¢, (o, j) where

N Av(Uj)

(52) C’Y(Ja]) T A,Y(O') + A,Y(O'j) .

Once an update occurs for some j, all rates are recalculated relative to the new
configuration. It is standard to show that the measure )\, is the unique invariant
measure for the Glauber dynamic, meaning that for any starting measuring, even-
tually the measure will converge in distribution to A,. Likewise, if started according
to A, then the distribution at any later time will still be distributed according to
that measure.

Figure 5.1 illustrates the dynamics where, for each fixed time ¢, one has a spin
configuration o(¢). We would like to observe a scaling limit of the system from a
large distance scale of e~ and a long time scale of a~'. At larger scales, the o
oscillating between +1 would yield a field in a very weak topology; it will be more
convenient to consider an averaged field?®

(5.3) hy(o(t),k) =Y ky(k—)o(t,0).

leAN

27For those not used to continuous time Markov processes, let us explain this more precisely.
Starting from some configuration o, to each j € Apj we associate independent exponentially
distributed random variables of rate c¢y(o,j) (i.e., with mean inverse to the rate). One then
compares all of these random variables, and for the j whose random variable is minimal, the
configuration updates to o7. The time at which this occurs is the value of the associated random
variable. From that point on, one repeats the whole story, choosing new exponential random
variables with rates given by the updated o7. Due to the “memoryless” property of exponential
random variables (i.e., for X exponential of rate 1, conditional on X > z, the law of X — z is that
of a rate 1 exponential random variable), this constructs a continuous time Markov process.

28Using the interaction kernel K~ to average out the field o is merely a matter of convenience,
and it will lead to a clean form of (5.5). Also, convergence of o follows a fortiori.
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We may also abuse notation and write h,(t,k) = h,(c(t), k), suppressing the ex-
plicit dependence on o ().

Remark 5.1. In order to prove an SPDE limit, we first write down a discretized
SPDE. Generally, this involves a coupled system of stochastic differential equations
driven by martingales (recall the brief discussion from Section 4.3). Without delving
deeply into details of the theory of Markov processes, let us illustrate this with a
simple example. Our applications of this general idea will be more involved, though
we will avoid going into details there also. Consider a continuous time random walk
x(t) on Z where a left jump (by 1) occurs at rate ¢ and a right jump (by 1) occurs
at rate r. For any function f : Z — R, the expected value u(t,y) = E, [ f(z(t))]
(where E, means the expected value assuming initial data x(0) = y) satisfies the
system of ODEs %u(t, y) = Lu(t,y), where the operator L acts on functions g(y) as
(Lg)(y) :==€(9(y—1)—g(y)) +r(9(y+1)—g(y)). Without taking the expectations,
f(z(t)) will satisfy the evolution equation

df (z(t)) = (Lf) (z(t))dt + dm(t),

where the first term is a drift and the extra term dm(t) is the time derivative of
a martingale. The martingale m(t) can be explicitly described in terms of what
are called compensated Poisson processes or, equivalently, in terms of its quadratic
variation. Under the diffusive scaling which takes z(t) to a Brownian motion, the
martingale converges to the time derivative of Brownian motion (what we called
one-dimensional white noise earlier in Section 4.3). This can be shown, for ex-
ample, via the martingale problem for Brownian motion. For more complicated
Markov processes, the story is analogous, albeit the analogues of L (known as the
instantaneous generator) and m(t) are more complicated.

There are three steps to finding an SPDE limit for the Glauber dynamic on the
Kac-Ising model.

5.1.1. Microscopic evolution. In the spirit of Remark 5.1 we may write down the
evolution the Markov process h, (5.3) in terms of a drift part (that we make explicit)
and a martingale part m (that we do not precisely describe below):

(5.4) dhy(o(t),x) = Z ey (0 (t), 3) (hy(0? (), 2) — hy(o(t),2)) dt + dm(o(t),z) .

JEAN

Recall that cy is given in (5.2). We may look for scaling so that X (t,z) :=
shy(o(a™'t),e7 x) converges to a limiting (nonlinear) SPDE. After Taylor ex-
panding the nonlinear dynamic (5.4) into polynomials in k- and passing to X.,, we
get the discrete equation

€21 -1 52

—_— — — —_—— 3 DRI
(5.5) dXW_(WQQAWXWL Xy - =X+ )t +d .

@
Here A, is a difference operator (based on the kernel ) which is approximately
the Laplacian. The martingale M is a rescaled version of m, whose quadratic

variation can be also explicitly calculated. We omit this, though we note that one
should think of the noise term dM as being of order O(ﬁ), in the sense that the

quadratic variation of M is of order O(%).
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5.1.2. Scaling. We may now seek suitable choices for €, v, 7, § such that the dynam-
ics converge to a limit (the ®* equation). In particular, we choose ¢ ~ 72, a &~ 72,
and 6 &~ 7 so that the Laplacian, cubic, and martingale terms all balance:

O(1) tune S~ . =1 O(1)

A~ —— = O(1)

€21 -1 82 s ~=
dXV:(ﬁaAWXW—k — X, - = X7+~-~)dt+dM .

The critical inverse temperature (at which the magnet loses magnetization) f. = 1
is precisely the value such that sending g — (. at a suitable rate will suppress the
linear term from blowing up. Tuning 8 = 1 + o(«), at large scales (i.e., v \, 0
with €, , § as above) one would expect that X, converges to the solution to the
equation?’
P =AD— 3 +¢.

This, however, is not the case. X,? only admits a nontrivial limit when suitably
renormalized.

5.1.3. Renormalization. Recalling the discussion in Section 4 (in particular equa-
tion (4.4)), the correct way of taking the limit is to subtract a renormalization term
C,X, after the cubic term where C, is the suitably divergent constant. We then
add this term back in the linear term so that the equation remains unchanged:

_ 2 2
8 1_5C7>X7 5

g2 1
ax, = (S-ax, + (5 .

7« @ @
In two spatial dimensions, C diverges logarithmically according to the calculation
in equation (4.3). Scaling ¢, «, v, § as above, but now tuning the inverse temperature
in the correct way B = 1+ §2C,, + o(«) so that 3 — S, = 1 but with a slightly
modified rate, X, converges to the solution to the renormalized ®* equation. This
is proved in [MW17a].30

We emphasize two important points: First, the model (5.1) is an interpolation
between the standard nearest-neighbor Ising model and a mean-field Ising model
(also called the Curie~Weiss model), where all sites interact equally with each other.
These two extreme cases have rather different behaviors than the Kac—Ising model.
For instance, limits of the nearest-neighbor Ising model lead to conformal invariant
objects; see, for example, [CHI15] and references therein. On the other hand, the
mean-field Ising model with interaction length of order N has Gaussian fluctuations
for the magnetization. The ®* equation arises in an intermediate or cross-over scale
where it is possible to balance all desired terms in (5.5).

The second point is that the renormalization constant in this model represents
the delicate rate at which the temperature approaches criticality. Instead, if we
did not tune 8 to B, properly, the (averaged) magnetic field would either become
deterministic (when § > f.) or completely disordered, like smoothed white noise

- (X,?—CWX)—km)dt—de.

290ne might be puzzled how we can obtain this limiting equation which is not scaling invariant
(recall Remark 3.1) via a scaling limit procedure. The reason is that the interaction range !
the model (5.1) sets an additional scale.

30A similar result in one spatial dimension was shown in the 1990s in [Fri87, FR95]. In one
or two spatial dimensions the ®* equation is not the only possible limit. [SW18] considered
a generalized ferromagnetic model (called the Kac-Blume-Capel model) and proves that the
Glauber dynamic converges to either the ®* or ®% equations in various regimes. In three spatial
dimensions the ®* equation is believed to be the only nontrivial SPDE limit one can obtain from
ferromagnetic models, though the proof is still open.

in
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(when 8 < B.). It is only in this critical scaling window that we see the balance
between these two ordered and disordered phases.

5.2. Parabolic Anderson equation. We turn to study the parabolic Anderson
model (PAM), which describes population dynamics.

5.2.1. Microscopic evolution. Consider the discrete PAM for v : R, x Z¢ — R:
(5.6) Ov(t, ) = Aqu(t,x) +v(t, z)n(z) .

Here A4 can be taken as the generator of a general symmetric random walk, but for
simplicity we will assume it is the discrete Laplacian on Z? (i.e., the generator of a
simple symmetric random walk). We also assume for simplicity that {n(z) : i € Z9}
is family of i.i.d. mean-zero Gaussian random variables (though in general this
randomness does not have to be Gaussian distributed).

The PAM (5.6) models random walks which can branch or die in a given random
environment 7. These are particles on the lattice Z? which all independently follow
the dynamics of Ag-generator random walk, and which at each lattice point 2 € Z¢
get killed with rate n(z)~ = max(—n(z),0) and branch into two particles with rate
n(x)™ = max(n(z),0); after the branching the two particles follow the same dynam-
ics. All particles evolve, branch, and die independently of each other. The function
v(t, z) is the expected number of particles at time ¢ in location x, conditioned on the
random environment 7. This model is used to study, for example, the population
evolution for microorganisms which flourish in regions with high concentrations of
nutrition (i.e., n large) and perish in regions with little concentrations of nutrition
(i.e., nn small).

o particles at time 0
e particles at time ¢
» killed particles

FIGURE 5.2. An illustration of a situation that starts from two
particles and, after branching and dying, ends up with four parti-
cles at time t.

In what follows we will assume that the dimension d < 3.

5.2.2. Scaling. Intuitively, v should have high peaks in regions where the environ-
ment is most favorable for the particles (7 large), and it should have deep valleys
elsewhere. After a long time, the bulk of the mass will be concentrated in differ-
ent scales in these isolated islands, a phenomena known as intermittency.3! Being

31We refer to the surveys [CM94] and [K16] for the intermittency properties of the discrete
PAM.
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intermittent, we cannot expect to see nontrivial behavior on large spatial scales,
since peaks and valleys are microscopic in their nature.

On the other hand, the heat equation (when we set 7 = 0) smooths particle
density. This suggests that in order to obtain a meaningful SPDE scaling limit
of the discrete PAM, we ought to tune the strength of the potential 7 so that its
influence (and the associated intermittency) balances with the smoothing effect of
the heat equation. This should be thought as analogous to the necessary tuning of
the magnetic interaction length scale y~! in Section 5.1, or, the weakly asymmetric
scaling that arises in KPZ equation convergence in Section 6 below. This kind
of tuning of the physical models is generally necessary in order to obtain limiting
SPDEs that are not scaling invariant; see Remark 3.1.

Instead of (5.6), let us consider the discrete PAM with weakened noise:

(5.7) O(t, ) = Av(t,x) + 2 2ot z)n(z),  (t,z) € Ry x Z7.

It is reasonable (though false) to believe that the diffusively rescaled solution
v(e~?t,e71x) of (5.7) should converge to the solution w of the continuous PAM,

(5.8) w(t, z) = Aw(t, x) + cw(t, x)§(x), (t,z) € Ry x R4,

where o2 is the variance of n(0) and ¢ is spatial white noise (i.e., the Gaussian
random field with mean zero and covariance E[¢(z)E(y)] = 6(z — y) described in
Section 2). Note that the choice of weak noise strength 52_%, e2 reflects the scaling
dimension of the Laplacian operator, and £~ % reflects the scaling dimension of the
noise ¢ (since the scaling dimension of § is —d).

5.2.3. Renormalization. It turns out that the above naive derivation of (5.8) from
(5.7) is not correct (nor is the result true) due to the singular nature of equation
(5.8). In fact, even to make sense of equation (5.8) in the continuum setting, one
has to introduce some renormalization. In dimensions d > 2, the total number of
particles grows exponentially (even with weak noise) and thus we have to renormal-
ize by this expected growth rate in order to see nontrivial behavior. More precisely,
for t > 0 the expected number of particles at time e~2¢ will be of order e!“s with
a specific constant C. = O(loge) > 0in d =2 and C. = O(e~!) > 0 in d = 3. So,
one should instead consider

ue(t,z) := e Ceu(e 2t e 1),
which solves the modified and scaled discrete PAM,
(5.9) Opue(t, ) = Auc(t, x) + ue(t, ) (ne(z) — C¢).

Here AF is a scaling of the discrete Lapacian which approximates the continuous
Laplacian as ¢ — 0, and 7. is a scaled version of n that converges to £. This
is precisely the form of the renormalized parabolic Anderson equation given by
regularity structures in [Hail4b] and paracontrolled distributions in [GIP15] if 7.
is a mollification of the white noise.

It was rigorously proved in [CGP17] that, when d = 2, the solution u. to (5.9)
converges in law to the solution of the renormalized (5.8), where the potential n
is assumed to be a generally distributed (under certain very weak assumptions),
and the discrete Laplacian can be generator of any symmetric random walk whose
increments have sufficiently many moments. In d = 3 the same result is expected
to hold under such general assumptions on the random walks and random environ-
ment. The proof of [CGP17] is based on paracontrolled distributions, introduced in
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Section 4.2. The result [CGP17] is further generalized by [MP17] which proves such
a convergence result for the nonlinear parabolic Anderson model (3.4) where the
factor f(u) models some interaction between the individual particles. The proofs
require showing convergence of the perturbative objects discussed in Section 4.2 in
the discrete settings, which is one of the main technical challenges; the argument
of (3.4) relies on some general tools developed by [CSZ17a].

6. SINGULAR SPDES AS UNIVERSAL OBJECTS

The singular SPDEs we have studied here are universal objects which arise under
various different approximation schemes. It can be shown that continuous mollifi-
cation in position space as in [Hail4b], regularization in Fourier space as in [GIP15],
and lattice approximations (for instance [GP17b,CM16] for KPZ, [HM18,ZZ18] for
®4, and references therein) will all lead to the same limiting solution for the SPDEs
we discussed in the previous sections. The choices of renormalization constants
generally depend on the specific way of approximation in order to obtain the same
limit.

Being universal objects means more: each of these singular SPDEs governs the
large scale fluctuation of a large class of physical models that have apparently
very different microscopic interactions and details. In this section we demonstrate
this universality for the KPZ equation by reviewing several recent scaling limit
results. We choose to focus on the KPZ equation because, on one hand, there has
been quite a lot of progress on KPZ in the last decade, and, on the other hand,
several different approaches to solution theories of the KPZ equation have been
found. These approaches all yield equivalent notions of solutions to this equation.
However, when proving that a convergence results, some notions are better adapted
to certain circumstances than others. Our examples will illustrate the application
of some of these solution theories.

We start by discussing a continuous formulation of such a universality result
proved for the KPZ equation, and then move to more discrete models.

6.1. KPZ equation with general nonlinearity. Consider the KPZ equation
with quadratic nonlinear strength A,

(6.1) O H = 0?H + M0, H)* + €,

and Gaussian space-time white noise . This is a widely accepted model for a
growing interface subject to three types of local forces: the term 92H models
a smoothing mechanism; the term \(9,H)? models lateral growth (the interface
tends to grow in the direction normal to the local slope), and ¢ models space-time
randomness arising on a microscopic scale. In the seminal work of Kardar, Parisi,
and Zhang [KPZ86], they justified their eponymous equation by saying that,

the noise has a Gaussian distribution,. .. although the actual form
of the distribution is irrelevant.

They continued to argue that,

growth occurs in a direction locally normal to the interface,. .. the
increment projected along the h axis is 6h = [(v6t)2+(v6td, )%z ~
[v+ 2(0yh)? 4 ---]6t,... the original equation is regained. Such
a nonlinear term is clearly expected in all situations where lateral
growth is allowed.
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This heuristic derivation of the KPZ equation represents a claim of universality
that can be formulated and proved mathematically. Consider the following class of
continuous interface growth models where the microscopic growth equation is given
by

(6.2) Ouh = 02h + /2F(9,h) + 1,

where F' is a continuous function modeling the microscopic lateral growth (which
could be rather complicated), and 7 is a continuous random field modeling the mi-
croscopic randomness (which is generally distributed and not necessarily Gaussian).
The coefficient 1/ here corresponds to the weakly asymmetric regime meaning that
the small scale interactions are tuned to be small (otherwise they would blow up
upon scaling). The challenge is to show that by scaling suitably and applying the
correct renormalization, one always obtains the standard KPZ equation (6.1).

Much progress has been achieved thanks to the recent developments of singular
SPDE solution theory. The following two results are achieved by the theory of
regularity structures.

Hairer and Quastel [HQ18] considered the above model (6.2), assuming that 7 is
Gaussian but F' is an arbitrary even polynomial. They proved that for the rescaled
height function defined by he(z,t) = e2h(e 'z, e~2t) there exist constants v, and
A such that fNLE (x,t) — vt converges as € — 0 to the solution to the KPZ equation
(6.1) with nonlinearity A(d,H)?. This might sound not very surprising because
under the above scaling, EE will satisfy a KPZ equation with error terms of the
form e¥(0,h. )22 with k > 1. However, a very nontrivial fact is that the mean
interface growth velocity v. (which is a renormalization constant in this context)
and the limiting interaction strength A depend explicitly on all coefficients of the
polynomial F'. The essence behind this nontrivial fact is again renormalization: via
a similar discussion as in Section 4.1, an error term, such as £(d,h.)?, needs to be
renormalized as

(6.3) e[(Ophe)* — C(0:he)? — T

in order to converge to zero; it turns out that C. ~ O(e~!), so that eC. is a
finite constant contributing to the limiting coefficient X\. The constant eC. is still
divergent and makes a nontrivial contribution to the velocity v.. Note that one
does not change the model (6.2) in this renormalization procedure; in fact one just
reshuffles the polynomial F' into linear combinations of renormalized terms like
(6.3).

In parallel, [HS17] focused on generally distributed n in (6.2) with F' assumed
to be quadratic F(9,h) = A(0;h)?. Under a very weak mizing assumption on the
non-Gaussian field n (so that n.(t,z) = 5*%77(6%, Z) converges to the Gaussian
white noise £ by the classical central limit theorem), they demonstrated that with
the correct choices of velocities v* and vY,

(6.4) he(z —v®t,t) — vVt

converges in law to the same solution to KPZ (6.1) driven by Gaussian white noise
&. Tt is important to note that the convergence of noise 7. — £ does not imply
convergence of solutions. In fact, this is the whole point of building the perturbative
random objects in Sections 4.1 and 4.2. Interestingly, the velocity v* in the Galilean
transformation shows up since the covariance of 7 is generally not symmetric under
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spatial reflection x — —z; and the mean velocity v(ys) ~ e 10y +e72C) + Co,

where C; and Cy depend on the third and fourth cumulants®® of 1, respectively.
The velocities v* and v¥ are renormalization constants which, as in our discussion
in Section 4, have explicit expressions in terms of the moments or cumulants of n
and heat kernels.

These two results [HQ18] and [HS17] to a large extent justify the heuristic deriva-
tion performed in [KPZ86] of the KPZ equation. In addition, they showed that the
microscopic details—such as higher order polynomial interactions and higher order
cumulants in the microscopic randomness—can contribute to the limiting coeffi-
cients or the reference frame in which the limit is observed, even when these details
seem to just vanish by scaling.

Proving universality theorems in this continuum setting remains an active di-
rection. More recently, [HX18b] generalized the result of [HQ18] by allowing the
more general function F' (not necessarily polynomial); they essentially only need to
assume certain decay of the local distributional norm of the Fourier transform of
F'. In particular, it includes the case F(u) = v/1+ u? as originally considered in
[KPZ86]. Under a strong assumption that the system is put into the equilibrium
state, [GP16] provided a very simple proof using the notion of energy solutions
(which is a weak solution as mentioned in Section 4.3).

Remark 6.1. One can ask the same universality questions for the so-called phase
coezistence models (or reaction-diffusion models) in three spatial dimensions which
have the dynamical ®* equation as a universal limit. Essentially, this is a continuous
version of the model discussed in (5.5), just like the problem (6.2) can be viewed
as continuous version of the models we will discuss in the following subsections.
We refer to [HX18a] where polynomial nonlinearities are treated, and to [FG17]
where assumptions on nonlinearities are generalized to C° functions. In the case
of polynomial nonlinearities, the noise in the phase coexistence models can be non-
Gaussian [SX16], but the case of general function nonlinearity with non-Gaussian
noise is still open. Note that the dynamical ®* equation in two spatial dimensions
does not have this universal property, because in two spatial dimensions the equa-
tion with any polynomial nonlinearity is subcritical in the sense of Remark 4.2;
while in three spatial dimensions, among the class of nonlinearities that are odd
under ® — —®, only the cubic nonlinearity is subcritical.

6.2. The solid-on-solid growth model. In the previous subsection we saw how
the KPZ equation arises as a universal limit of a large class of continuous inter-
face growth models. Another direction which has received a lot of interest is in
studying how the KPZ equation arises as a scaling limit of discrete growth models.
A particularly simple and well-studied one-dimensional interface growth model is
the solid-on-solid interface growth model, which is also called the corner growth
model or asymmetric simple exclusion process height process. The interface here
is an integer-valued function h(t,z) which depends on the continuous time variable
t € R4 and the discrete spatial variable x € Z, subject to the restriction that
|h(z + 1) — h(z)| =1 for all z.

The height function h evolves according to a simple Markov process. As shown
in Figure 6.1, a A-shaped corner is flipped down by 2 into a V-shaped corner at

32Gaussian random variables have zero cumulants of order three or higher. Therefore the third
and fourth cumulants of n represent some of the non-Gaussian bits of 7.
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FIGURE 6.1. A typical plot of a portion of h(t,-) at a given time ¢

rate p; and a V-shaped corner is randomly flipped up by 2 into a A-shaped corner
at rate ¢q. These flips occur independently and according to exponential waiting
times (just as described in Section 5.1 for the Kac—Ising model Glauber dynamics).
Analogously to the discussion in Remark 5.1, we may derive a microscopic evolution
equation for h,

(6.5) dh(t,z) = 2(q¢- Lan(t)>0 — P Lan(t,z)<o) dt + dm(t, z)

where m is an explicit martingale. Denoting V f(z) := f(x + 1) — f(z) and using
our assumption |Vh(z)| = 1, (6.5) can be written into the form of a discrete KPZ
type equation,

6.6)  dh(t,z) = ]%Ah at + 1L (1 Vh(t, x = 1)Vh(t,2) dt + dm(t, )

In principle, one could implement the theories discussed in the previous
sections, such as regularity structures, to prove that for a suitable choice of v,
E%h(€_1l‘,€_2t) — v.t converges to the solution of the KPZ equation. The main
technical challenge in proving this convergence will be showing convergence of the
perturbative objects (as described in the case of ®* equation in Section 4.2), which
are objects built from the discrete heat kernel and the martingale noise dm. The
martingale noise dm is difficult to deal with since it depends nontrivially on h, and
there are a fairly large number of such objects that need to be handled. Works
such as [MW17a,SW18, Mat18] have made progress in studying convergence of ap-
proximate SPDEs driven by martingales, but a complete treatment for the KPZ
equation is still under way.

Here we present a short-cut approach due to [BG97] which applies well to the
KPZ equation and a certain approximation thereof. It is not, however applicable
to general SPDEs. Recall from (3.3) that if u solves the stochastic heat equation
(SHE)

1
(6.7) Opu = §Au—|—u§,

then H = logu solves the KPZ equation. This defines the Hopf-Cole solution
and agrees with the other solution theories defined much later. The Hopf-Cole
transform makes rigorous sense as pointed out by [BC95] since the SHE is well-
defined in a classical Ité sense [Wal86] and since [Mue91] proved strict positivity
of u (given rather general initial data). If we can find a version of the Hopf-Cole
transform at a microscopic level (i.e., for the solid-on-solid model) and derive an
approximate SHE for the exponentiated height function, we can just work at the
level of the SHE.
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[Gir88, BG97] introduced3? the Girtner (or microscopic Hopf-Cole) transform:
(68) Z(t’x) = (p/q)%h(tvw)et(l_Q\/P_Q) .

As in Section 5 the evolution of Z can be decomposed into a drift part and a
martingale. The drift part turns out to precisely match a discrete Laplacian, namely

(6.9) dZ(t,z) = V/pgAZ(t, z)dt + dM(t,x) ,

with M a martingale. This is rather surprising since the change h(t, z) — h(t,x)£2
during time dt would seem to affect Z in a nonlinear way. The fact that it holds
crucially relies on the fact that Vh only takes two possible values {£1}. In fact,
for more general discrete growth processes, this miracle®* is generally lost and the
approach through the SHE is stymied (see, however, the work of [DT16] discussed
further below).

[BG97] proved that with p/q = e~ V& (i.e., weakly asymmetric), Z(¢2t, e~ x)
converges to the solution to the SHE. Under this scaling,

Z(E_Qt,E_lx) ~ e—%\/Eh(572t,eflac)—O(sfl)t7

so that the exponent proportional to ¢t in (6.8) is a vertical shift being subtracted
as a renormalization.

The proof in [BG97] relies on the notion of weak solution (or martingale prob-
lems) discussed in Section 4.3 (see, in particular, the discussion around equa-
tion (4.14)). In the present context, one only needs to prove that the discrete
analogues of the processes N; and @ in equation (4.14) are approximately martin-
gales. Indeed the fact that the discrete analogue of the process N; is martingale
can be immediately read off from (6.9). Showing that the discrete analogue of @Q; is
approximately martingale amounts to arguing that the quadratic variation of dM
in Section 6.9 is approximately the quadratic variation of the limiting term u¢, that
is, u2. An explicit calculation shows that the quadratic variation involves a term
which is approximately u? plus an error term which does not vanish pointwise when
passing to the limit. The most challenging part in the proof is to show that this
error term vanishes in a suitable averaged sense; we refer to [BG97, Eq. (3.16) and
Sect. 4.2 “Key estimate”] or [CGST18, Appendix A] for further details.

Remark 6.2. The solid-on-solid interface growth model is equivalent to the asym-
metric simple exclusion process which is a paradigmatic model for an interacting
particle system. Particles occupy sites indexed by Z with the restriction of at most
one particle per site (indicated by an occupation function at x € Z of n(x) = 1 for
a particle or n(z) = —1 for a hole). Each particle attempts to jump left or right
according to exponential rates ¢ and p, though it only takes the jump if the desti-
nation site is not occupied at that time. The occupation process 7(t, x) coincides
with the discrete derivative of the solid so that n(¢,z) = Vh(t,x) (where V acts in
the x variable). Due to this, the result of [BG97] also shows that the fluctuation of
7 converges (in a suitable sense) to the solution to the stochastic Burgers equation
(4.15) (which arises as the spatial derivative of the KPZ equation).

33With a slight tweak of notation adapted to our convention.

34There is, in fact, a broader class of discrete models which enjoy a version of this exact
microscopic transform. These are models which enjoy (at least one particle) Markov duality with
respect to exponential functions of the height. See [CP16] for a general class of systems which
enjoy such a relation, and [ACQ11,CT17,CST18,Lab17,CS18,Ghol7,Par17, CGST18,CT18] for
examples of applications of this Markov duality relation to KPZ equation convergence.
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FIGURE 6.2

The work [DT16] generalized the result of [BGI7] by allowing growth or recession
of a section (of length at most 4) of the interface; see the top of Figure 6.2. In
terms of an interacting particle system, this corresponds with allowing jumps left
and right further than distance 1. The challenge is that the exact match with a
discrete Laplacian as in (6.9) is no longer available and instead hydrodynamic limit
techniques are used to control the defect in this matching.

Another direction in which [BG97] has been generalized in [CS18,Parl7] is to
growth models on finite intervals with open boundaries (see the bottom of Figure
6.2). This means that within the interval, the growth rule is as usual, but at the two
ends, the height function randomly flips up or down with rates «, 5,7,d. With a
fine tuning of these parameters® it is proved that €2 h(s 'z, e~2t) — C.t (where C.t
is the same renormalization as the infinite interface case) converges to H which is
the solution of the KPZ equation on the spatial interval [0, 1], with inhomogeneous
Neumann boundary condition 0, H(t,7)|.=0 = A and 9, H(t,r)[,=1 = B. These
two boundary conditions are only formal because 9, H is distribution and some care
is needed to properly define this solution.36

6.3. Six vertex model. The six vertex model (6V), originally introduced by
[Pau3b], is generally defined on a finite box in the two-dimensional square lattice.
Each lattice site is occupied by a vertex of one of the six types, with the restriction
that vertices join up in a coherent manner (as shown in the following picture) and
respect given boundary conditions. Each vertex type has a weight parameter (so in
general the model has six parameters), and the probability of a configuration is pro-
portional to the product of all the vertex weights. The height function associated

35As in Remark 6.2 there is an underlying interacting particle system called the OpenASEP,
which is equivalent to the discrete derivative of this growth model. The OpenASEP exhibits
three phases: high density, low density, and maximal current depending on the choices of rate
parameters «, 3,7,5. The limiting SPDE arises when the parameters are tuned to approach a
triple critical point separating these three phases.

36[CS18] defines it via the Hopf-Cole transform of the SHE with Robin boundary condition,
which can be defined in the style discussed in Section 4.3. [GH17a] studied this type of equation
with boundary condition from the perspective or regularity structures, and [GPS17] via energy
solutions.
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FIGURE 6.3

with a configuration is the Z-valued function, denoted by N(z,y), that changes by
1 when crossing a line, as shown by the numbers Figure 6.3.

Two special situations are of particular interest: the stochastic 6V model and
the symmetric 6V model. Their vertex weights are given in Table 6.1.

TABLE 6.1
Vertex type I | |_
Stochastic 6V weights 1 1 by by 1—0b1 |1—0bo
Symmetric 6V weights a a b b c c

The stochastic 6V model, proposed by Gwa and Spohn [GS92] in 1992, depends
on two parameters by, bs € (0,1), as shown in Table 6.1. This choice is special since
if we treat the bottom and left edges coming into vertices as inputs and the top and
right edges as outputs, then the sum of weights over all outputs always equals 1.
This enables us to define the model on the entire first quadrant through a Markovian
update. Essentially, the lines can be thought of as paths taken by particles, and
the vertex weights determine the probabilities associated to the local moves made
by each particle. It is, in fact, also possible to define this particle system on the
full upper half-plane, in which case it is natural to think of the z-axis as space and
the y-axis as time (so we use ¢ instead of y to label this direction).

In [CGST18] it was proved that under a suitable weak asymmetry, where by —
b1, upon scaling and renormalizing, the fluctuation of the height function N(¢,z)
converges to the solution of the KPZ equation. More precisely, fixing any density
p € (0,1) of lines entering from the horizontal axis, b; € (0,1), and by = bye~ Ve,

(6.10) \/E(N(E_Qt, e w4 pe ) — pe o+ us_Qt)) — e %tlog\ = H(t,z)

in the topology C(R4,C(R)), for some constants g and A, where H is the solution
to the KPZ equation with more general coefficients

(6.11) OH = ¥0?H — 5(9,H)” + VD¢ .
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12_”111, K= 12_ng, and D = %}):p). The X\ and
u required in the convergence (6.10) also depend on by, by, p via explicit formulae,
which behave like A =1— py/e + O(g) and p =1+ blbj%llp\/g—k O(e).

Formula (6.10) shows that in order to observe the KPZ equation fluctuation, one
needs to follow a characteristic direction g, then tilt the height function by e~ !px
(since by definition the function N was tilted), and finally center the height function
by subtracting an overall growth speed multiplied by ¢ (i.e., the terms proportional
to t in (6.10)).

The proof of this result relies upon the Hopf-Cole solution, as in Section 6.2,

Here the equation coefficients v =

namely, for the KPZ equation as in (6.11), H = —Zlogu, where u solves the
stochastic heat equation with multiplicative noise as introduced in (3.3),
(6.12) Owu = gagu + @fu .

Remarkably (and owing to the one-particle duality from [CP16]), just as for the
solid-on-solid model in Section 6.2, the stochastic 6V model admits an exact mi-
croscopic analogue of this Hopf-Cole transform, transforming it into a discrete
version of (6.12). The proof that this discrete version of (6.12) converges to the
limiting continuous one requires control over the martingale quadratic variation.
The method of [BG97] discussed in Section 6.2 does not seem to apply here, and
[CGST18] had to introduce a new method relying upon the one- and two-particle
duality enjoyed by this model.

Turning very briefly to the older and very well-studied symmetric 6V model, as
originally proposed by [Pau35] in 1935, it turns out that the KPZ equation (or rather
stochastic Burgers equation) also arises here. Among the (widely believed, though
not generally proved or constructed) two-parameter family of infinite-volume, trans-
lation invariant ergodic Gibbs states, [Aggl6] (see also earlier observations of [BS95]
in physics) constructed a one-parameter subfamily of “stochastic Gibbs states” us-
ing the stochastic 6V model. This construction only applies in the ferroelectric
regime for parameters a,b, and c¢. Zooming into the ferroelectric-disorder phase
transition point, and scaling along characteristic directions in the manner described
above, these stochastic Gibbs states are shown in [CGST18] to converge to station-
ary solutions to the stochastic Burgers equation.

Let us mention that there are some other works studying SPDE limits of this
or closely related models; see, for example, [CT17,BO17] or [BG18, ST18] (the
latter involves a limiting linear hyperbolic SPDE termed the stochastic telegraph
equation).

6.4. Interacting Brownian motions. We recall one more convergence result for
interacting Brownian motions, as well as the method of energy solutions used.

Consider a collection of independent standard Brownian motions {W,(7) : i € Z},
and define an interface profile ¢; : Z — R via

(6.13)  dey(i) = {pV'(¢e(i + 1) — ¢1(i)) — ¢V (¢4 (i) — ¢e(i — 1))} dt + AW, (i),

for (t,4) € Ry x Z and p,q > 0 with p+ ¢ = 1. Here, V is a potential function.
When V is a constant potential, {¢:(i)}icz is simply a collection of independent
Brownian motions.

¢¢ may be thought of as a one-dimensional interface separating two phases, and
we are interested in the random dynamics of this interface. The case p = ¢ = 1/2
describes a type of balance between the two phases and the interface dynamics have
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no net growth; in this case the system is known as the (one-dimensional) Ginzburg—
Landau V¢ interface model which has been intensely studied; see [Fri87, GPVS8S,
Spo86, Zhu90, CY92].

[DGP17] proved that under weak asymmetry

(6.14) p=(+VA)/2, q=(0-vE)/2,
the properly scaled fluctuation of ¢ converges to the solution to the KPZ equation.
This result relies on the use of energy solutions as mentioned in Section 4.3, and has
only been proved for stationary initial data. In fact, the slope function (or discrete
derivative in %)

up(i) == ¢(i) — Ppe(i — 1)

admits a one-parameter family of stationary measures parametrized by A € R:

(6.15) wx(du) == H p)\(u(j))du(j) , where p(u) == Z;lex\u7\/(u)7

j=—o00

and Zy = [» M=V dy is a normalization constant. More precisely, [DGP17]
proved the following result. Assuming ug(i) = ¢o(i) — ¢o(i — 1) has the probability
distribution s for a fixed A € R, and let p’(A) := [ upx(u)du be the mean of the
coordinates u(j) under py. Then, under weak asymmetry (6.14), the scaled and
renormalized profile process

(6.16) e2(p(e2t, |e 'w — cct])) — C.

converge to the solution to

1
OH =—0°H — M3

0.H)? + &,

where ¢, == e~/ 20;2, the diverging renormalization constant C. is explicit, and

where my,  are the moments of the measure pj,

M,y 1= / (w— p'(\)*pa(u)du o3 =may .
R

Since the energy solution is defined for the stochastic Burgers equation, and the
solution to stochastic Burgers equals the spatial derivative of that of the KPZ
equation (Remark 6.2), the above result is proved via showing that

eV u(e?t e e — cat]) — P (V)

converges to the energy solution to the stochastic Burgers equation.

The energy solution method for the KPZ/stochastic Burgers equation conver-
gence was initiated in the work of Jara and Gongalves [GJ10] (cf. [Ass13]). Ini-
tially this approach only provided tightness, in other words, existence of limit,
and it was not known whether energy solutions were unique. Uniqueness (and
hence the identification with the Hopf—Cole solution of KPZ as discussed in the
previous sections) was proved in [GP17a]. This approach has been applied to
prove that a wide variety of particle systems converge to the KPZ equation; see
[GJ14,GJS15,FGS16,GJ13,GJ17, GPS17]. These results all require that the sys-
tem has an invariant measure (i.e., stationary, or equilibrium measure)—like the
measures (6.15) for the model (6.13) above—and that the initial condition is thusly
distributed. The method of proof relies heavily on having well-developed hydro-
dynamic theory estimates available. Quite recently, however, [GP18c] and [Yan18]
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have extended this method to include more general initial data as we mentioned in
Section 4.3.

Remark 6.3. Let us conclude this section with several remarks.

First, it would be interesting to compare the expressions (6.4) in the continu-
ous interface model, (6.10), in the six vertex model, and (6.16) for the interface
driven by Brownian motions. The common feature is that in all of these cases, the
KPZ equation arises via suitable adjustments of reference frames dictated by the
renormalizations in these discrete models.

Also, we have seen that the proof strategies of these convergence results depend
on which notion of solution is being chosen in the context. The Hopf—Cole solu-
tion to the KPZ equation has the obvious advantage in turning the problem to a
linear equation (6.7) and (6.12), as we demonstrated in the solid-on-solid growth
model and the six vertex model. Although it has been shown for a number of
models one can implement this Hopf—Cole transform at the microscopic level, this
relation certainly does not exactly hold in general; it is also a special feature for
KPZ that is absent for other nonlinear SPDEs discussed in Section 3. The energy
solution has been applied to proving KPZ/stochastic Burgers equation convergence
results of systems which have an equilibrium invariant measure and start from this
equilibrium. The recent works [GP18c, Yan18] extended the type of initial data,
and [GP18a] studied a more general class of equations; further extending the scope
of applicability of the energy solution to physical models seems to be an interest-
ing direction. The theory of regularity structures and paracontrolled distributions
method provide robust solution theories for very large classes of equations, and
they yielded universality results in the continuum setting of Section 6.1. Proving
such convergence results for discrete physical systems driven by martingale noises
in a more systematic way would be another interesting direction. In addition to the
results cited above, let us mention [HM18, EH17, Mat18] for some initial progress
on discrete regularity structures.
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