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Human cardiomyocytes (CMs) have potential for use in therapeutic cell therapy and
high-throughput drug screening. Because of the inability to expand adult CMs, their
large-scale production from human pluripotent stem cells (hPSC) has been suggested.
Significant improvements have been made in understanding directed differentiation
processes of CMs from hPSCs and their suspension culture-based production at
chemically defined conditions. However, optimization experiments are costly, time-
consuming, and highly variable, leading to challenges in developing reliable and
consistent protocols for the generation of large CM numbers at high purity. This study
examined the ability of data-driven modeling with machine learning for identifying key
experimental conditions and predicting final CM content using data collected during
hPSC-cardiac differentiation in advanced stirred tank bioreactors (STBRs). Through
feature selection, we identified process conditions, features, and patterns that are
the most influential on and predictive of the CM content at the process endpoint, on
differentiationday 10(dd10). Process-relatedfeatures were extracted fromexperimental
datacollected from 58 differentiation experiments by feature engineering. Thesefeatures
included data continuously collected online by the bioreactor system, such as dissolved
oxygen concentration and pH patterns, as well as offline determined data, including
the cell density, cell aggregate size, and nutrient concentrations. The selected features
were used as inputs to construct models to classify the resulting CM content as being
“sufficient” or “insufficient” regarding pre-defined thresholds. The models built using
random forests and Gaussian process modeling predicted insufficient CM content for a
differentiation process with 90% accuracy and precision on dd7 of the protocol and with
85% accuracy and 82% precision at a substantially earlier stage: dd5. These models
provide insight into potential key factors affecting hPSC cardiac differentiation to aid in
selecting future experimental conditions and can predict the final CM content at earlier
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process timepoints, providing cost and time savings. This study suggests that data-
driven models and machine learning techniques can be employed using existing data
for understanding and improving production of a specific cell type, which is potentially
applicable to other lineages and critical for realization of their therapeutic applications.

Keywords: machine learning, classification, feature selection,

human induced pluripotent stem cells,

cardiomyocytes, directed differentiation, bioreactor, cell production

INTRODUCTION

The heart is one of the least regenerative organs in the body;
therefore, when disease or damage occurs to the myocardium,
native cardiac muscle cells, cardiomyocytes (CMs), are replaced
with fibrotic scar tissue. Recent work has shown that CMs
can be derived from human pluripotent stem cells (hPSCs;
including embryonic and induced pluripotent stem cells hESC
and hiPSC, respectively) at more chemically defined conditions
(Lian et al., 2012; Burridge et al., 2014) and that these
cells have immense therapeutic potential (Chong et al., 2014).
However, due to the large number of patients that suffer
from cardiovascular disease along with the vast number of
cells presumably needed for a therapeutic effect, scalable
production of CMs in a consistent and reproducible manner
is critical for the clinical translation and success of these
treatments. Proof-of-concept for the production and directed
cardiac differentiation of hPSCs in industry-compatible stirred
tank bioreactors (STBRs) has been demonstrated (Kempf et al.,
2014, 2015; Kropp et al., 2016; Halloin et al., 2019). However,
the experimental development, optimization and upscaling
of this complex, multifactorial process is time consuming,
costly, and despite the recent success, still highly variable.
The multifaceted interplay of numerous cellular, physiological,
and mechanical parameters including hPSC expansion at
the pluripotent state, impacts their directed differentiation,
leading to challenges in establishing robust protocols for
their efficient lineage-specific, i.e., cardiac, differentiation in
bioreactors. The resulting variability in endpoint cell purity, or
CM content, together with time constraints, CMs’ phenotype
and maturity impede commercial production and progress
to clinical translation. This also precludes the use of hPSC-
CMs for other mass applications, including high-throughput
screenings for drug development and safety pharmacology
(Fonoudi et al., 2015; Sun and Nunes, 2017; Machiraju and
Greenway, 2019) and faster progress in cardiac tissue engineering
(Kensah et al., 2013).

The potential of hPSCs for unlimited proliferation in vitro
and their ability to differentiate into derivatives of the three
germ layers (endo-, ecto-, and mesoderm) paved the way toward
clinically relevant mass production of specific progenies required
for disease-specific therapies, including CMs (Hazeltine et al.,
2013). Cardiomyocyte differentiation is inherently complex;
cardiac differentiation from hPSCs occurs through specific stages,
including early primitive-streak-like priming, mesendoderm
specification, and cardiac progenitor induction, followed by their
expansion, terminal differentiation, and maturation (Kempf et al.,
2016). Previously, a cardiac differentiation protocol to modulate

the WNT signaling pathway in a heart development-like
fashion using small molecules was reported; this included early
upregulation of the WNT pathway for primitive streak-like
mesendoderm priming followed by latter suppression for cardiac
progeny specification (Lian et al., 2012). The glycogen synthase
kinase 3 (GSK3@) inhibitor CHIR99021 (CHIR) was used to
activate the WNT pathway, which inhibits the destruction
complex of P-catenin and results in its accumulation. The
differentiation outcome is therefore strongly dependent on the -
catenin concentration, which is sensitive to CHIR concentration,
the timing of CHIR supplementation, and the timing of
subsequent WNT pathway suppression by chemical factors such
as IWP2, IWRI1, or Wnt-C59 (Lian et al., 2012). Downstream
of the chemical WNT pathway modulation, other autocrine
and paracrine pathways are activated, in particular, TGF and
NODAL, which occur in a cell density-dependent manner
previously termed the bulk cell density (BCD; Kempf et al.,
2016). Therefore, the process outcome is also influenced by
the inoculation and proliferation-dependent BCD, particularly
during the first 24 h of differentiation induction, which ultimately
impacts the CM yield and content. Even in tightly controlled
systems, the inherent complexity of these differentiation steps
and the high number of molecular, cellular, environmental
and physical parameters makes it challenging to consistently
obtain uniform results, which is highly desirable for industrial
and clinical applications. Notably, in reply to WNT pathway
modulation, differentiation can result not only in the formation
of CMs but also in multiple non-CM lineages of endodermal
and/or mesodermal origin including, for example, endothelial
cells (ECs) and fibroblasts (FBs) (Kempf and Zweigerdt, 2018).
Moreover, hPSC-derived CMs may represent a subtype-specific
mixture, including cardiac pacemaker-, atrial- and ventricular-
like phenotypes, as suggested by their electrophysiological
features (Zhang et al.,2009).

Establishing robust and scalable CM production processes
from hPSCs is critical for obtaining clinically relevant cell
numbers. In contrast to conventional cell culture in a
dish, instrumented STBRs have the advantage of enabling
continuous monitoring of numerous process parameters. For
example, online measurements of pH and dissolved oxygen
(DO) provide uninterrupted information on the cellular
environment. Furthermore, bioreactor-based suspension culture
enables continuous collection of process samples in adequate
quantities for offline monitoring of additional parameters such
as time-resolved changes in the aggregate size, cell-density
(growth kinetics), and glucose and lactate levels, all of which
provide valuable information on cell viability, proliferation,
differentiation, and their metabolic status. The cultivation of
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hPSCs as cell-only aggregates in STBRs enabled the production
of millions of cells within one batch (Kropp et al., 2016).
A scalable method utilizing spinner flasks for differentiating
high purity CMs from hPSCs with scales up to 1 L has been
reported with CM content of >96% (Chen et al., 2015). In that
study, the impact of several parameters such as small molecule
concentration, aggregate size, agitation rate, glucose and lactate
concentrations, DO concentration, pH, and induction timing
on cardiac differentiation was evaluated. Furthermore, STBR-
based suspension culture in relatively large scales (100 mL
up to 1 L) has been carried out for the production of CMs
from hPSC aggregates (Kempf et al., 2014; Chen et al., 2015;
Fonoudi et al., 2015; Halloin et al., 2019). In all these studies,
successful CM induction was reported typically yielding >85%
CM content. However, it was also highlighted that large inter-
process variability exists, which may lead to >96% CM content
in some processes but <60% CM content in independent
process repeats. In the context of this study, a yield of >90%
CM content is considered sufficient, i.e., a process success,
whereas <90% CM content is considered insufficient, i.e., process
failure. Given the above indicated multifactorial complexity
along the transition of hPSCs into contractile CMs, it is
currently not apparent which individual parameter(s) or their
combinations are directly involved in causing the undesired
process heterogeneity. This fact is a key challenge for the
future envisioned CM production at GMP-compliant, industry
compatible conditions in multi-liter scales.

Machine learning techniques have been used in bioprocess
development for the identification of critical experimental
factors, for example, to aid in the optimization of the production
of several proteins and cell lines. Du et al. (2016) presented a
method for identifying essential model parameters of computer
models of cardiac sodium channels using Gaussian process
modeling, and for reducing the complexity of the models.
Charaniya et al. (2010) identified several process parameters
with strong associations to outcomes for the manufacturing of
recombinant proteins using support vector machines. Caschera
et al. (2011) successfully increased the yield of their cell-free
protein synthesis process by 350% via designing experimental
conditions using artificial neural networks (ANNs), which were
recently also applied to find the optimal harvest time for xylitol
production by Pappu and Gummadi (2016). Others have looked
at maximizing protein production by identifying and optimizing
key factors in the fermentation process, also using ANNs (Sinha
etal.,2014; Amiri et al., 2015).

Metabolic pathways are another target for manipulation to
maximize protein production. The pathways have been modeled
using both principal component analysis (PCA) (Alonso-
Gutierrez et al., 2015) and an ensemble of ANNs (Zhou et al.,
2018). Sokolov etal. (2017) used regression techniques to achieve
improved monoclonal antibody quality, which was measured
with 14 quality attributes, including the quantities of charge
variants, aggregates, and glycoforms. These attribute values were
optimized by changing experimental conditions such as the cell
culture media formulations and conditions (pH, temperature)
using PCA and partial least squares regression models. Kotidis
et al. (2019) determined ranges of process inputs that would

consistently meet several protein product quality indicators using
global sensitivity analysis.

Although cardiac differentiation from hPSCs in suspension
culture has recently become more efficient and robust
(Halloin et al., 2019), there still exist opportunities for
further understanding and improvement of these processes.
For example, limited knowledge exists on how perturbations
in bioreactor parameters and culture conditions affect cell
yield and CM content. Utilizing data-driven modeling and
machine learning techniques to understand mesendoderm
differentiation, in particular cardiac priming, is an advantageous
initial model. Notably, cardiac differentiation is a somewhat
casier and better-studied model of lineage differentiation (Matsa
et al., 2014; Kempf and Zweigerdt, 2018; Mummery, 2018)
compared to more complex cell types such as hematopoietic
lineages (Ackermann et al., 2018). Moreover, the in vitro cardiac
differentiation process can be controlled by a low number
of chemical factors such as the WNT modulators CHIR and
IWP and can be completed in 10-14 days from hPSC seeding.
Furthermore, there is substantial knowledge and existing
data for hPSC-CM differentiation in STBRs due to the large
interest in this cell type, including the first mathematical model
to understand the controlling factors for cardiac mesoderm
specification (Gaspari et al.,2018).

Based on our recent experience in a STBR-based hPSC-

CM differentiation process (Halloin et al., 2019), we have here
defined the induction of 90% CM content or higher as a “process
success”; in contrast, induction of less than a 90% CM content
is defined insufficient or a “process failure.” Using machine
learning techniques like classification for the interpretation of
existing experimental data sets, the goal of this paper was to
identify the most informative parameters predictive of the CM
differentiation efficiency in a bioreactor platform. As a result, we
here report predictive parameters and algorithms for this process
(Figure 1). The study supports both the early interruption of
failing processes (providing cost and time savings) and the
rationale for further process modifications that may ultimately
avoid future process failures.

MATERIALS AND METHODS

Basic hiPSC Culture and Directed
Differentiation in a Stirred Tank

Bioreactor System
The hiPSC line Phoenix (Haase et al., 2017) was cultured in E8
medium as described (Kempfet al., 2015; Halloin et al., 2019). In
brief, cells were seeded at 0.5¢ 10* cells/ml on Geltrex-coated cell
culture flasks in E8 medium supplemented with 10 pM Y-27632
and passaged every 3.5 days.

For process “pre-culture expansion and aggregate formation”
(Figure 2A), a STBR system (DASbox, Eppendorf) was
inoculated with 5 % 10° hiPSCs/ml in E8 supplemented with
10 pM Y-27632 at a final volume of 150 ml per reactor vessel.
Approximately 24 h after inoculation, perfusion was initiated
with 4.2 ml/h fresh medium, as described in Kropp et al. (2016).
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FIGURE 1 | Schematic of process to generate data-driven models for prediction of final CM content from bioreactor experiments. Human pluripotent stem cells
(hPSCs) were seeded in bioreactors for expansion for 48 h prior to initiation of cardiac differentiation. Toinitiate cardiac differentiation, a WNT amplifier, CHIR, was
added for 24 h followed by 48 h of WNT inhibition using IWP2. Differentiation experiments lasted 10 days and endpoint analysis for final CM content in bioreactors
was performed on differentiation day 10. During the time course of differentiation, the dissolved oxygen (DO) and pH were continually monitored. Samples were
collected from the bioreactor during differentiation to analyze cell density, aggregate size, nutrient concentrations, and preculture conditions. From the 39 measured
variables throughout differentiation, feature engineering was performed to extract 101 features; for example, the continuous data was separated by differentiation
day to obtain averages, gradients, and second derivatives for each day. Feature selection was performed using surrogate models, principal component analysis, and
correlations to determine which of the extracted features impacted the variance in the data and outcome of differentiation. After feature selection was performed,
data-driven models were developed using surrogate models (MARS, RF, and GP) to predict final CM content by classification of the data in two categories (created

For inducing chemically defined, directed differentiation, the
cell density of the pre-culture was adjusted at 48 h after single
cell inoculation to achieve 5¢ 103 cells/ml in differentiation
medium CDM3 with 5 M CHIR and 5 pM Y-27632. After 24 h
(dd1) the medium was replaced by CDM3 (Burridge et al., 2014)
with 5 M IWP-2; at 72 h (dd3; and every 2-3 days thereafter)
100 ml consumed medium was collected from the bioreactor and
replaced with fresh CDM3 (Halloin et al., 2019).

Data Collection, Cell Sampling, Analysis,
and Process Grouping Based on CMs

Content

Over the course of the -cultivation/differentiation process,
data was collected as schematically shown in Figure 2. DO
and pH were constantly measured online, whereas data on
the cell density, aggregate diameter, nutrient concentration
and CM content were evaluated offline. Bioreactor-derived
sampling of cell aggregates in 2 ml medium was performed as
previously described (Kempf et al., 2014; Kropp et al., 2016;
Halloin et al., 2019). For aggregate analysis, microscopic images
were taken (Axiovert Al; Zeiss); on these images, a minimum of

100 aggregates for each sample were assessed by an ImageJ macro
to automatically define the mean diameter.

For cell density assessment and flow cytometry analysis,
aggregates were dissociated and automatically counted (Vi-
CELL XR; Beckman Coulter); in the remaining supernatant,
glucose and lactate concentration was measured (BIOSEN C-
line; EKF Diagnostic). For flow cytometry, 2.0 103 X
cells were fixed, permeabilized and incubated with the
following CMs-specific primary antibodies: anti-cardiac
Troponin T (1:200, clone 13-11, Thermo Scientific), anti-
sarcomeric @®-actinin (1:800, EAS53, Sigma-Aldrich or
1:20, REA402, Miltenyi Biotec), anti-myosin heavy chain
(1:20, MF20, Hybridoma Bank); after incubation with
appropriate  Cy5-conjugated  antibodies  (1:200, Jackson
ImmunoResearch) data were acquired on an  Accuri
C6 flow cytometer (BD Biosciences) or MACSQuant
Analyzer 10 (Miltenyi Biotec) and analyzed using FlowJo
software (Flowjo, LLC).

By flow cytometry analysis of dd10 derived samples using
the 3x CMs-specific antibodies outlined above, the average CMs
content for each differentiation process was assessed; processes
were consequently grouped into those with either sufficient or
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FIGURE 2 | Generation of experimental data. (A) Schematic bioreactor set-up of hPSCs expansion in suspension culture followed by directed cardiac differentiation
by chemical WNT pathway modulation over 10 days. (B) Overview of Training and Test data spreads based on flow cytometry analysis of CM-specific
MHC-expression. Definition: Endpoint analysis of processes resulting High >85% (green), middle 70-85% CM (orange) and low <70% CM content (red). (C-H)
Representative patterns of process parameters, exemplifying processes typical for high (green), middle (orange), and low (red) CM content at process endpoint (day
10). (C) Aggregate size distribution at respective days of differentiation. (D) Representative cell density kinetics. (E,F) Glucose and lactate values over the course of
differentiation. (G,H) Representative dissolved oxygen and pH patterns monitored via online analysis over the course of differentiation. Please note that the orange
Glucose patternin (E) is hardly visible due to the close overlay of the red pattern. In (G,H) only representative DO and pH patterns for respective high (green) and low
(red) CM content processes are displayed to avoid loss of clarity by overlapping patterns.

insufficient CM content, with insufficient content being defined
as a process with a CM content of <90% (Figure 2B).

relevant experimental setup were included in the study without
any type of pre-selection procedure to explicitly exclude any
investigator-dependent bias. Each of the differentiation process
represents a single experimental datapoint to be used for model
construction. In a first step, data sets from 42 of these processes
were randomly chosen and used for constructing predictive
models, while data sets from the remaining 16 processes were
reserved for testing the models’ performance.

From the data, a set of potential input variables, which we
refer to as “bioprocess features,” for use in predictive models

COMPUTATIONAL METHODS AND
THEORY

Employing Experimental Data for Feature
Engineering

Experimental data used in computational analysis and model
development were collected from 58 cardiac differentiation
processes in bioreactors; notably, all processes performed in the

was generated with the goal of this set fully describing the
experimental conditions over the entire differentiation process.
For model construction using machine learning, a feature is an
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metrics. (D) For MC cross-validation, a set of data was randomly selected to be excluded for validation, and the model was built using the remaining data.

Data

l

Training

Data

Validation

individual measurable or derived properties (using measured)
of the system that is being modeled. Available experimental
conditions included the rotation speed in the bioreactor and
measurements such as differentiation day (dd) dependent cell
densities, aggregate sizes, and nutrient concentrations, and
measurements of DO concentration and pH over the course of
the experiment. Examples of bioprocess features and how the data
was collected are summarized in Figures 1, 2.

The DO concentration and pH measurements were included
as features by averaging their values over each day of the
differentiation, illustrated in Figure 3A. Additional features were
engineered from this data, as well as other time-dependent
measurements, to capture how the conditions in the bioreactor
were changing over time. These additional features were
generated by estimating gradients and second derivatives for
the cell density, aggregate size, DO concentration, and pH
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measurements, resulting in a final set of 101 potential bioprocess
features. The full list of bioprocess features is provided in
Supplementary Table 1. Gradients and second derivatives were
estimated using Egs. (1) and (2),

Yo = Yy
84 =
f— ti—1 M
hti _ 8t — 8ty (2)
ot

where g, and h; are the gradient and second derivative,
respectively, of bioreactor condition y at timepoint £ ; .

Feature Selection Methods

Because of the large number of features (101) compared to
the number of experimental data points (58), feature selection
was performed on the available data to discover which of the
bioprocess features were most influential and predictive of the
cardiomyocyte content on dd10. The feature selection methods
employed include correlation coefficients, PCA, and the built-in
feature selection capabilities of the machine learning techniques
investigated for predictive modeling. Two sets of features, Feature
Set 1 and Feature Set 2, were considered, each with bioprocess
features measured at earlier points in the differentiation process.
Feature Set 1 consists of all the collected bioprocess features
measured up until the seventh differentiation day 7 (dd7). Feature
Set 2 consists of bioprocess features measured up until the fifth
differentiation day 5 (dd5).

The dd7 and dd5 timepoints were chosen in order to use
as much data as possible without using any data near the
endpoint of the differentiation, such as dd9. Preliminary proof-
of-concept studies revealed that classification was possible using
data collected up to and including dd7, initiating analysis
investigating the possibility of earlier predictions. Based on this
analysis, dd5 was chosen as the earliest possible timepoint, as
classification using data from earlier points in the differentiation
did not yield satisfactory predictive capabilities.

Correlations

Pearson correlation coefficient

The Pearson correlation coefficient measures the linear
relationship between two variables. Its value ranges from _1
to 1. A value of 1 corresponds to a perfect negative linear
relationship between the variables, while a value of 1 indicates a
positive linear relationship. A value of 0 demonstrates no linear
correlation between the variables (Soper et al., 1915).

Spearman correlation coefficient

The Spearman correlation coefficient measures the strength and
direction of a monotonic relationship between two variables. Its
value ranges from 1 to 1. A value of 0 indicates no correlation
between the variables. Values of -1 or 1 indicate a perfect
negative or positive correlation, respectively (Spearman, 1904).

Principal Component Analysis (PCA)

Principal component analysis is a statistical dimension reduction
tool. The method transforms a set of possibly correlated variables
to uncorrelated principal components (PCs). It identifies a new

set of orthogonal axes in the direction of the highest variance
of the data. Each of the axes, which is a linear combination
of original axes, represents a PC. Principal components are
assigned in ordinal format with the first PC explaining the highest
percentage of the variance and the last PC the least. The PCs with
the lower ranks are generally not considered in further analysis
reducing the number of dimensions while preserving much of the
original variance (Hotelling, 1933).

Machine Learning Techniques

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) models are non-
parametric statistical models that consist of a linear summation
of basis functions (Friedman, 1991). In general, basis functions
are either a constant, a hinge function, or the product of two
or more hinge functions. For the MARS models trained in this
study, the Sci-Kit Learn pyEarth software package was used
(Pedregosa et al., 2011). Detailed information MARS models
and the other machine learning techniques described in this
section are provided in the Supplementary Material (see section
“Extended Machine Learning Technique Descriptions”).

Random Forests

Random forests (RFs) are a machine learning method that
utilizes a set of decision trees for predicting an output based on
input data. Each tree is built independently based on a random
subspace of the training data. The final output of a random
forest model is determined by averaging the output value of
every tree in the forest (Breiman, 2001). The features are selected
according to the importance level calculated by the random forest
model. The importance level is based on the impact of a feature
on improving the separation of the data in each decision node
of the tree. For the RF models trained in this study, the Sci-
Kit Learn RandomForestRegressor software package was used to
train forests with 5 trees (Pedregosa et al., 2011).

Gaussian Process Regression

Gaussian process regression (GPR) is a  non-parametric
machine learning method where the prediction of the output
corresponding to an unknown input is calculated based on a
weighted average of outputs for known inputs using a similarity
metric: the kernel function (Rasmussen and Williams, 2005).
The kernel function used for all GPR models in this paper is a
radial basis function.

Gaussian process regression can be used for feature selection
with its built-in automatic relevance determination (ARD)
method. Further sensitivity analysis (Eq. 4) on the ARD results
(Blix and Eltoft, 2018) provides an even greater separation of the
features for selection. For the GPR models trained in this study,
the Sci-Kit Learn GaussianProcessRegressor software package
was used (Pedregosa et al.,2011).

Cardiomyocyte Content Classification

A binary process classification based on the CM content (%) at
process endpoint (dd10) was applied, and the two classes defined
were: “sufficient” for: CM content equal to and above 90%, and
“insufficient” for CM content below 90%. A binary classification
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model was chosen after an initial analysis with a multiclass model
revealed that the available bioprocess data was not rich enough to
train a multiclass model at thistime.

To enable CM content prediction based on early process data,
two regression models using MARS and GPR were built, and
the data points were assigned to their classes (i.e., sufficient or
insufficient) based on this predicted CM content value. For RFs,
the classification is conducted directly using the classifier models,
constructed by the RF.

To evaluate and compare the performances of the
classification models, four metrics were considered: accuracy,
precision, recall, and the Matthews correlation coefficient
(MCC). The range for the first three metrics is zero to one,
and MCC is between 1 and 1. These metrics are calculated
based on the confusion matrix (Sokolova and Lapalme, 2009),
which is illustrated in Figure 3B. The confusion matrix describes
the performance of a classification model (algorithm). In this
paper, we assign the insufficient CM content class as the positive
class (Figure 3B) and the sufficient class as the negative one
(Figure 3B). The error of the predictions is broken down for
each class using the confusion matrix. The four cells of the
confusion matrix correspond to true positive, false negative,
false positive, and true negative. The values associated with
each of the components give information about how many
of the positive/negative classification results were correctly
predicted by the model.

Classification Model Performance Metrics

Accuracy

Accuracy calculates the proportion of correct classifications
(Sokolova and Lapalme, 2009). According to Eq. (5), accuracy
is the number of all true positives and negatives compared
to all prediction results. Accuracy of one indicates that the
classification has been conducted accurately and that all the
points with sufficient or insufficient CM content have been
included in the right class (FP 4+ FN = 0). Zero accuracy defines
a totally wrong classification model, which is not able to predict
the label of the points correctly.

Accuracy = (1) &)

(TP + TN + FP + FN)

Precision

Precision (Eq. 6) gives information about the proportion of
the times the points identified as positive were truly positive
(Sokolova and Lapalme, 2009). Precision of one means that all the
positive results are actually positive outcomes. When a classifier
model with precision of one predicts insufficient CM content for
a point, it is supposed to have insufficient CM content in practice.
Value of zero for precision indicates that all the identified positive
outcomes are false.

y T
Precision _ (6)

~ (TP +FP)

Recall
Recall, Eq. (7), is the proportion of actual positive results which
were identified as positives (Sokolova and Lapalme, 2009). The

value of one for recall demonstrated that the model is able to
classify all the actual positive results as positive. In CM content
case, all the insufficient points would be identified as insufficient
using a model with recall equal to one. When all the positive
classes are falsely identified negative, the value of recall equals
to zero.

Recall _ —Ir 7

~ (TP + FN)

Matthews’s correlation coefficient (MCC)

Matthews’s correlation coefficient (Eq. 8) defines the correlation
between the predicted and actual classifications for all data points
(Matthews, 1975). Value of one for MCC means there is a
strong correlation between the predicted results and the actual
values, indicating that the predicted label is correct for all the
points. Value of 1 for MCC metric demonstrates a strong
inverse correlation. Values of zero for MCC corresponds to no
correlation between the predicted and actual results.

(TP TN) (FP_ FN)
Y (TP+EP)(TP+EN)(TN+FP)(TN+FN)

The classification model performance metrics, accuracy,
precision, recall, and MCC, were calculated using two different
cross-validation techniques: (1) leave one out (LOO) cross-
validation (Figure 3C), and (2) Monte Carlo (MC) cross-
validation (Figure 3D). Cross-validation is a tool for assessing
how well a model can be generalized to new data, which the
model has never seen. In MC cross-validation, a set of data is
selected randomly to be excluded for validation, and this data
set is called the validation set. The model is built using the
remaining data, and the model is used to predict the classes for
the validation set (Burman, 1989). These predictions are used to
calculate performance metrics. In LOO cross-validation, a single
data point is set aside (i.e., left out) for validation. The model is
built using the remaining data points, and a prediction is obtained
for the data point that was left out. This process is repeated for
each data point, resulting in a prediction for each. Figures 3C,D
illustrates how these cross-validation methods were used for
evaluating the performance metrics (Wong,2015).

MCC = @®)

RESULTS AND DISCUSSION

Feature Selection
Two different sets of features were considered for building
the classification models. Feature Set 1 contained all potential
bioprocess features measured through dd7. Feature Set 2
contained all features measured through dd5. Feature selection
was performed on each feature set separately to identify potential
features for predicting CM content class on dd10. Classification
models were then built using these potential feature sets. We
employed PCA, and built-in capabilities of MARS, RFs, and GPR
for feature selection. Feature selection resulted in eight potential
feature sets for classifying the CM content on dd10. A visual
summary of the feature selection results is provided in Figure 4.
Principal component analysis yielded five principal
components (FS1-PCA) that explained 94% of the variance

Frontiersin Bioengineering and Biotechnology | www.frontiersin.org

July 2020 | Volume 8 | Article 851


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Williams et al.

Multifactorial Modeling hPSC Cardiomyocyte Differentiation

A Feature Selection

Selected Features

Surrogate Models

101 Original Features

[ wars —

~

(FS1)

[ PCA

\[ Correlations

No Correlation /

40 features

not selected by
any method

Feature Selection

Selected Features

Surrogate Models

84 Original Features

(FS2)

[ PCA

k[ Correlations

> No Correlation /

36 features

not selected by
any method

FIGURE 4 | Feature selection results for features selected from (A) feature set 1 and (B) feature set 2. MARS (Multi-adaptive regression splines), RF (Random
Forest), GPR (Gaussian process regression) were the surrogate models implemented for the selection of the features that have a significantimpact on classification.
The other feature selection methods were PCA (Principal component analysis) and correlations between the variables.

in the input data for Feature Set 1 (Figure 4A) and yielded four
principal components (FS2-PCA) that explained 94% of the
variance for Feature Set 2 (Figure 4B). None of the principal
components or bioprocess features strongly correlated with the
CM content. The strongest linear correlation between a feature
and the CM content was —0.51, and that feature was the time
that the differentiation media was supplemented with WNT
inhibitor IWP2. This lack of correlation indicates that none of the

individual bioprocess features alone suffices to make a prediction
on the CM content and that other means, such as machine
learning techniques, are necessary to investigate the relationship.
The number of features selected by each machine learning
technique is provided in Figure 4. A list of features selected
by each method is available in Supplementary Tables 1, 2.
Tables 1, 2 give a listing of the bioprocess features selected by
each modeling technique for Feature Sets 1 and 2, respectively.
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TABLE 1 | Bioprocess features selected by each surrogate modeling technique
from Feature Set 1 (X = selected).

Feature FS1-RF FS1-GPR FS1-MARS

Average DO concentration dd0 X

Average DO concentration X X
gradient dO

Average DO concentration X

gradient dd2

Average DO concentration X

gradient dd6

Average DO concentration X

gradient dd7

d0 average pH gradient X

dd0 average pH gradient X

dd0 average acceleration of cell X

density normalized DO gradient

dd0—dd1 cell density gradient X X
dd1 aggregate size X
dd1 cell density X

dd2 average pH X

dd7 average pH X

dd3 aggregate size X
dd3 average acceleration of DO X
gradient

dd3 average pH gradient X

dd3 average acceleration of cell X
density normalized DO gradient

dd5 average pH gradient

dd5-dd7 aggregate size X

gradient

dd5-dd7 cell density gradient X
dd7 cell density X X

Cell density normalized DO X
concentration dd2

Cell density normalized DO X X
concentration dd3

Cell density normalized DO X

concentration dd7

Average cell density normalized X X

DO concentration gradient dd2

Average cell density normalized X

DO concentration gradient dd5

Average cell density normalized X

DO concentration gradient dd7

IWP2 treatment time [h] X

Preculture time [h] X

The features selected by MARS, RF, and GPR encompassed
features with known biological implications as well as potential
mechanistic explanations, although the impacts of the features
in combination have not been previously investigated. It is
well established in developmental biology, that a bi-phasic
WNT pathway modulation is essential for cardiac mesoderm
specification and subsequent CM formation. As outlined in
Figure 2A, cardiac differentiation in this study was controlled by
chemical WNT modulators added in a temporal pattern. hPSC
differentiation was initiated by the addition of the chemical WNT
pathway accelerator CHIR on dd0 for 24 h followed by 48 h of

TABLE 2 | Bioprocess features selected by each surrogate modeling technique
from Feature Set 2 (X = selected).

Feature FS2-RF FS2-GPR FS2-MARS

Average DO concentration dO X
Average DO concentration dd0 X
Average DO concentration dd2 X
Average DO concentration dd4 X

Average DO concentration X
gradient dO

Average DO concentration X X
gradient dd2

Average DO concentration X X
gradient dd4

Average DO concentration X
gradient dd5

d1 average pH gradient X
dd0 aggregate size X
ddo cell density X
dd0—dd1 cell density gradient X

dd1 average pH X X
dd1 average acceleration of cell X

density normalized DO gradient

dd2 aggregate size X

dd2 average acceleration of DO X

gradient

dd2 average pH X
dd2 average pH gradient X

dd2 average acceleration of cell X
density normalized DO gradient

dd2—-dd3 aggregate size X

gradient

dd3—dd5 cell density gradient X
dd4 average pH gradient X

dd5 average acceleration of cell X X
density normalized DO gradient

Cell densitynormalized DO X
concentration dd1

Average cell density normalized X
DO concentration gradient dd5

IWP2 treatment time [h] X X
Overall aggregate size gradient X
Overall density gradient X

WNT attenuation through addition of IWP2. The small molecule,
CHIR, is solely sufficient to induce early primitive streak (PS)-like
priming in hPSCs in a concentration-dependent manner (Lian
et al., 2012; Kempf et al., 2016; Gaspari et al., 2018). The higher
the CHIR dose, the faster hPSC differentiation will progress
from an (anterior) endoderm-like fate toward cardiac mesoderm
specification and subsequently toward more posterior fates such
as somatic mesoderm-like PS priming. The dynamics of the
CHIR induced differentiation processes, particularly during the
first 24 h of differentiation, play an important role regarding the
degree of heterogeneity of the cardiac differentiation process, of
which identifying the underlying factors is one of the objectives
of this study. However, our recent work revealed that the
accelerating effect of CHIR on differentiation progression is
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counteracted by cell-secreted factors such as the transforming
growth factor beta (TGFb) family members, Nodal signaling
antagonists left-right determination factor 1 (LEFTY1) and
CERBERUS (CER1) (Kempfetal.,2016). The cell density directly
impacts the accumulation of such secreted factors, particularly
during the first 24 h of differentiation (dd0—dd1) and plays a key
role in the subsequent specification of cell fates and subsequently
the CM content (assessed on dd10 in this study); this suggests
that the selected features “dd0-dd1 cell density gradient” and “dd1
cell density” identified by our modeling approach, have known
mechanistic impacts on CM differentiation.

It is of biological relevance that the “IWP2 treatment
time” was also selected as an important feature for model
development, given the importance of temporal WNT signaling
for proper lineage differentiation in embryogenesis and in vitro
as well (Ueno et al.,, 2007; Burridge et al., 2014; Halloin
et al., 2019). However, the feature selections “ddl average
acceleration of DO gradient” and “dd3 cell density normalized DO
concentration” are non-obvious, interesting new observations.
These model-extracted features strongly suggest that an
acceleration/deceleration of the (cell density-normalized) DO
gradient at a specific process interval impacts the final CM
content. This may relate to process-dependent changes in
the overall density of (oxygen-consuming) cells, as well as
differentiation stage-dependent changes in cells’ metabolism.
During the differentiation process, the metabolism switches
from predominantly glycolysis typical of undifferentiated
hPSCs (Kropp et al., 2016), toward oxidative phosphorylation
as a result of CM specification and maturation (Hu et al.,
2018). Thus, our modeling approach suggests a concrete
novel hypothesis requiring future experimental validation.
Example values for these DO related features are illustrated in
Supplementary Figure 1.

After mesoderm priming and cardiac progeny specification
during the first Z2-96 h of our differentiation protocol,
progressive differentiation into functional, sarcomere protein
expressing CMs occurs in the period between dd5 and dd10
(Halloin et al., 2019). It is thus interesting to note the MARS
model selection of the features “dd5-dd7 cell density gradient”
and “dd5 average DO concentration gradient” as being important
for the CM content. A possible interpretation of this result is
that the dd5—dd7 cell density/DO patterns may impact (i.e.,
inhibit or promote) the maturation of cardiac progenies into
functional CMs. The cell density-dependent secretion of factors
during this differentiation stage may impact the sarcomere
protein expression including isotype switches resulting in CM
maturation (Hu et al., 2018) equivalent to cell density-dependent
mechanisms of primitive streak-like priming during the first
24 h of differentiation. Furthermore, since the DO gradient
correlates to the cell density gradient, the “dd5 average DO
concentration gradient” feature may relate to the “dd5-dd7 cell
density gradient” feature.

Using the feature selection components of these data-driven
models provides the possibility of examining bioprocess features
in combination and in more detail. Some of the identified features
presumably have known mechanistic impacts on the outcome
of cardiac differentiation, as outlined above, thereby indicating

the validity of our approach. However, there are several features
identified by the feature selection but have not been previously
examined or identified as important for predicting the CM
content, including the dd5—dd7 cell density and DO gradients.

On the other hand, it is worth noting that, for example,
supraphysiological glucose concentration has been found to
impact the cardiac differentiation of hESC (Crespo et al., 2010;
Yang et al., 2016). In our model, the glucose and the related
lactate concentration patterns were not classified as important
features, i.e., were not identified as being predictive of the CM
content in our differentiation process. But this finding is not
excluding, per se, that the glucose concentration is important for
the cardiomyogenesis of hPSCs.

This in mind, it is important to note, that the impact of
a selected feature on the differentiation outcome does not
presumptively indicate a mechanistic relationship. This impact
may be correlative only (rather than causative), potentially
a result of processes not captured by the input data or
through feature engineering. However, the identified features are
informative for guiding future validation experiments; these can
then be used to build more mechanistic models for understanding
and potentially reducing variability in cardiac differentiation.

Classification Results
Classification models were constructed for predicting the
outcome of the bioreactor experiments on dd10 using features
measured up to dd7 and up to ddS, using each of the machine
learning techniques described in Sections “Multivariate Adaptive
Regression Splines,” “Random Forests,” and “Gaussian Process
Regression.” The models were built using the bioprocess features
selected from Feature Set 1 (for predicting using features
measured until dd7) and Feature Set 2 (for predicting using
features measured until dd5). Results for classification model
performance for each of the eight feature sets from the feature
selection are summarized in Tables 3, 4. Results were obtained
using LOO cross-validation and are presented for both the
bioprocess features selected by the built-in feature selection for
each model, as well as for the PCs obtained from PCA. Both
feature sets contained 42 data points chosen from the original
set of 58 experiments for training. A visual summary of the
results for each classification method with its associated feature
sets is depicted in Figure 5. For all of the feature sets generated
from Feature Set 1, for all of the techniques investigated,
classification using the model-selected features always had a
better performance than the principal components from PCA.
Only two classification model-feature set combinations achieved
favorable results for all four of the performance metrics, which is
illustrated in Figure 5. RFs trained with feature set FS1-RF and
GPR trained with FS1-GPR perform similarly for predicting if
CM content will be insufficient for continuing the experiment.
Both methods obtained accuracies of 90% and precisions around
90%, meaning that if a model predicts the CM content will be
insufficient, there is a 90% probability that it is insufficient.
Similar to those generated from Feature Set 1, the model-
selected feature sets for Feature Set 2 resulted in a better
performance than the PCs. This indicates that while the PCs
successfully explain the variance in the data, they fail to accurately
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TABLE 3 | Classification model performance (calculated with LOO
cross-validation) for models trained with features from Feature Set 1.

MARS RFs GPR

FS1-MARS FS1-PCA FS1-RF FS1-PCA FS1-GPR FS1-PCA

Accuracy 0.74 0.64 0.90 0.74 0.87 0.67
Precision 0.81 0.66 0.90 0.74 0.89 0.67
Recall 0.93 0.96 0.96 0.93 0.96 1.0
McC 0.55 -0.11 0.78 0.36 0.74 0

Bold values indicate performance metrics for recommended, best-performing
models.

TABLE 4 | Classification model performance (calculated with LOO
cross-validation) for models trained with features from Feature Set 2.

MARS RFs GPR

FS2-MARS FS2-PCA FS2-RF FS2-PCA FS2-GPR FS2-PCA

Accuracy 0.62 0.67 0.84 0.67 0.69 0.67
Precision 0.68 0.68 0.82 0.73 0.70 0.67
Recall 0.82 0.93 0.96 0.79 0.93 1.0
MCC 0.04 0.11 0.62 0.22 0.23 0

Bold values indicate performance metrics for recommended, best-performing
models.

characterize the relationship between the features and the
cardiomyocyte content. When only the features up to dd5 are
considered, RFs most successfully predict if the CM content will
be sufficient. The decrease in the performance for GPR models
is possibly due to the removal of the dd7 average value of the

DO concentration gradient. This dd7 feature was identified as
relevant for predicting dd10 CM content using a GPR and could
be an indicator of levels of cell metabolism.
Table 5 contains examples of bioreactor experiments and
the predictions for those experiments given by GPR models
using FS1-GPR, as well as the values of the bioprocess features
indicated by the GPR model to be relevant. For some of the
experiments with different prediction types, the feature values are
quite similar, for example, the “preculture time” of experiments 36
and 26. However, for some experiments with the same prediction,
the features have a wide range of values, for example, the “dd2 cell
density normalized DO gradient” of experiments 16 and 26. These
disparities indicate that the individual features alone are not
sufficient to determine what will make a good or bad prediction
and that all the selected features need to be considered as a whole.
For model selection purposes, the MCC gives the most
important information about how the models perform, as it
gives a measure of the correlation between the predicted and
actual classes, similar to an R? coefficient for a regression
model. The other performance metrics should be assessed for
their importance based on what the experimental goal ofthe
bioprocess is. For example, if the differentiation process is being
studied primarily for data collection and evaluating the outcomes,
then maximizing the number of experimental datapoints being
retained becomes more important, meaning that the precision
of the model needs to be prioritized. However, for another
application, such as an in vivo study, it would be more beneficial
to stop unsuccessful experiments and start over, meaning that
recall and accuracy of the model in identifying which experiments
would not produce high CM contents would be prioritized. RF
and GPR models were confirmed to be the most predictive of the

Selected Features Classification models Outcomes
T acauracy | preciion | Recall | wce
= FS1-MARS kG =t +++ ar
MARS ’%—b FS2-MARS - - ++ —
xs FS1-PCA - - +++ ——
FS2-PCA - - +++ =
/ FS1-RF T el =it =1
j RF k___—-r FS2-RF ++ ++ +++ r
\ FS1-PCA + + +++ +
FS2-PCA - + + -
FS1-GPR Sisi=ts Sk +++ Si=is
4- FS2-GPR - = S -
% GP ’é——» FS1-PCA - - +++ =
\ / \ FS2-PCA = = e+ -
FIGURE 5 | Classification results were based on four metrics including accuracy, precision, recall, and MCC (Matthews correlation coefficient) for selected features of
FS1 and FS2. The classification models of MARS (Multi-adaptive regression splines), RF (Random Forest), and GPR (Gaussian process regression) were
implemented. For accuracy, precision, and recall the values are categorized as follows: (---) for values < 0.3, (--) for 0.3 < values < 0.6, (-) for 0.6 < values < 0.7, (+)
for 0.7 < values < 0.8, (++) for 0.8 < values < 0.9, and (+++) for value > 0.9. Moreover, for the MCC metric, the categorization was done as: (---) for values < 0, (--)
for 0 < values < 0.1, (-) for 0.1 < values < 0.3, (+) for 0.3 < values < 0.7, (++) for 0.7 < values < 0.9, and (+++) for value > 0.9.
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TABLE 5 | Examples of selected features from GPR-FS1.

Exp. No. Prediction Average DO Average cell Preculture Average DO dd0—dd1 cell dd0 average Average cell
concentration density Time [h] concentration density pH gradient density
gradient dd2 normalized gradient dd7 gradient normalized

DO DO
concentration concentration
gradient dd2 gradient dd5

3 TP 2.06 1.96 53 -3.23 0.02 -0.22 —6.06

40 ™ -1.01 —-0.49 48 -1.71 1.34 -0.18 —-3.08

16 FP 1.08 0.58 46 0.63 0.41 -0.21 —1.54

26 FP -3.07 -1.83 48 -0.34 0.34 -0.03 -1.77

21 TN -1.40 -1.06 47 0.17 0.29 -0.03 -1.75

42 TN -1.13 —-0.60 48 -0.22 0.62 -0.01 —-2.03

36 FN —-0.76 —-0.61 48 —-6.51 1.60 —-0.05 —3.48

Minimum -80.07 —47.24 45 -6.51 -0.76 -0.23 —-17.33
Maximum 14.37 7.00 56 9.61 2.63 0.08 3.73
TABLE 6 | Model performance on test data. TABLE 7 | Model performance with constant IWP2 time.
RFs GPR FS1-RF FS2-RF
FS1-RF FS2-RF FS1-GPR FS2-GPR LOO Monte Carlo LOO Monte Carlo

Accuracy 0.89 0.83 0.83 0.72 Accuracy 0.90 0.90 0.92 0.85

Precision 0.92 0.81 0.92 0.72 Precision 0.91 0.90 0.91 0.86

Recall 0.92 1.0 0.85 1 Recall 1.0 0.93 0.95 0.93

McC 0.72 0.57 0.61 0.11 McCC 0.90 0.82 0.84 0.75

Bold values indicate performance metrics for recommended, best-performing
models.

dd10 cardiomyocyte content because their MCC values (around
0.80) and their accuracy and precisions of about 90% were higher
than the other models investigated.

After testing how the models performed on the original
dataset, their performance was evaluated using the test data.
The test data consisted of data from the 16 processes that were
not used for feature selection and model construction. The
values of the selected features from those 16 “control processes”
were used as inputs to make predictions of the final CM
classification employing the trained models (Figure 1 Prediction
by Classification), and those predictions were compared to the
actual classifications from the process data. Since MARS had the
worst performance for both feature sets, it was excluded from
the analysis. The results are presented in Table 6. RFs and GPR
had a similar performance for the test data for feature set FS1-
GPR, both with an accuracy of 89%, precision and recall near
90%, and MCC values of 0.72. However, for the sets selected from
feature set 2, RFs outperformed GPR. The results obtained for
the test data are comparable to those for the data the models
were trained on with LOO cross-validation, indicating that the
models accurately captured the relationship between the features
and the CM content necessary to make the classifications, while
avoiding overfitting.

The “IWP2 treatment time” feature was consistently chosen
as having high importance for the prediction of the CM
content. This feature describes the amount of time that the
IWP2 molecule was allowed to remain in the bioreactor system,

i.e., impact the differentiation process. However, this feature
was only modulated for a fraction of the process runs and
held constant at exactly 48 h for the rest. To evaluate if our
models were able to classify the CM content without using
that feature, an additional dataset was constructed. This data
set was thus exclusively derived from the original set of 58
processes using only those process runs where the time of
IWP2 presence was held constant at 48 h, and the “IWP2
treatment time” feature was excluded in the analysis. Since
RFs performed well for all the previously considered feature
sets, the performance was only evaluated using this model.
LOO cross-validation and Monte Carlo cross-validation were
used to calculate the performance metrics. The Monte Carlo
cross-validation used a test set size of 5 and 40 Monte Carlo
trials. The results are summarized in Table 7. It is thus worth
highlighting that, when the IWP2 feature is removed, RFs still
successfully predict insufficient CM content with comparable
performances for both LOO and Monte Carlo cross-validation
for all the feature sets.

CONCLUSION

In this paper, we have constructed data-driven models for
prediction of the CM content on dd10 of hPSC differentiation
processes, using existing data sets from bioreactor-based
experiments. Using features up to dd7, we were able to identify
if an experiment would have an insufficient final CM content
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of less than 90% with 90% accuracy and >90% precision with
both RF and GPR models. Furthermore, we were able to identify
if an experiment would have an insufficient final CM content
on dd5 with 84% accuracy with a RF model. Through feature
selection methods, these predictions used less than 16% of the
collected data, potentially reducing the amount of resource-
intense manual collection of data. Although these models can
accurately and precisely predict final CM content, they do not
provide any insight into the overall quantity of CMs produced
or the resulting functionality and maturity of these cells. In
addition, the prediction models were only constructed for small
set of data with limited ranges of all the features. However, the
ability to model the outcome of differentiation experiments at an
early stage of differentiation, enables the timely interruption of
failing experiments, providing savings in both time and resources.
More importantly, results from the study provide valuable
hypotheses for further experiments to improve robustness and
reproducibility of cardiac differentiation processes, and have the
potential to be leveraged for a broad variety of hPSC-derived cell
and tissue production experiments.
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