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Human cardiomyocytes (CMs) have potential for use in therapeutic cell therapy and 

high-throughput drug screening. Because of the inability to expand adult CMs, their 

large-scale production from human pluripotent stem cells (hPSC) has been suggested. 

Significant improvements have been made in understanding directed differentiation 

processes of CMs from hPSCs and their suspension culture-based production at 

chemically defined conditions. However, optimization experiments are costly, time- 

consuming, and highly variable, leading to challenges in developing reliable and 

consistent protocols for the generation of large CM numbers at high purity. This study 

examined the ability of data-driven modeling with machine learning for identifying key 

experimental conditions and predicting final CM content using data collected during 

hPSC-cardiac differentiation in advanced stirred tank bioreactors (STBRs). Through 

feature selection, we identified process conditions, features, and patterns that are 

the most influential on and predictive of the CM content at the process endpoint, on 

differentiation day 10 (dd10). Process-related features were extracted from experimental 

data collected from 58 differentiation experiments by feature engineering. These features 

included data continuously collected online by the bioreactor system, such as dissolved 

oxygen concentration and pH patterns, as well as offline determined data, including 

the cell density, cell aggregate size, and nutrient concentrations. The selected features 

were used as inputs to construct models to classify the resulting CM content as being 

“sufficient” or “insufficient” regarding pre-defined thresholds. The models built using 

random forests and Gaussian process modeling predicted insufficient CM content for a 

differentiation process with 90% accuracy and precision on dd7 of the protocol and with 

85% accuracy and 82% precision at a substantially earlier stage: dd5. These models 

provide insight into potential key factors affecting hPSC cardiac differentiation to aid in 

selecting future experimental conditions and can predict the final CM content at earlier 
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process timepoints, providing cost and time savings. This study suggests that data- 

driven models and machine learning techniques can be employed using existing data 

for understanding and improving production of a specific cell type, which is potentially 

applicable to other lineages and critical for realization of their therapeutic applications. 

Keywords: machine learning, classification, feature selection, human induced pluripotent stem cells, 

cardiomyocytes, directed differentiation, bioreactor, cell production 

 

INTRODUCTION 

The heart is one of the least regenerative organs in the body; 

therefore, when disease or damage occurs to the myocardium, 

native cardiac muscle cells, cardiomyocytes (CMs), are replaced 

with fibrotic scar tissue. Recent work  has  shown  that  CMs  

can be derived from human pluripotent stem cells (hPSCs; 

including embryonic and induced pluripotent stem cells hESC 

and hiPSC, respectively) at more chemically defined conditions 

(Lian et  al.,  2012;  Burridge  et  al.,  2014)  and  that  these  

cells have immense therapeutic potential (Chong et al., 2014). 

However, due to the large  number  of  patients  that  suffer  

from cardiovascular disease along with the vast  number  of  

cells presumably needed for a therapeutic effect, scalable 

production of CMs  in  a  consistent  and  reproducible  manner 

is critical for the clinical translation and success of these 

treatments. Proof-of-concept for the production and directed 

cardiac differentiation of hPSCs in industry-compatible stirred 

tank bioreactors (STBRs) has been demonstrated (Kempf et al., 

2014, 2015; Kropp et al., 2016; Halloin et al., 2019). However, 

the  experimental  development,  optimization  and   upscaling 

of this complex, multifactorial process is time consuming, 

costly, and despite the recent success,  still  highly  variable.  

The multifaceted interplay of numerous cellular, physiological, 

and  mechanical  parameters  including  hPSC  expansion   at  

the pluripotent state, impacts their directed differentiation, 

leading to challenges  in  establishing  robust  protocols  for 

their efficient lineage-specific, i.e., cardiac, differentiation in 

bioreactors. The resulting variability in endpoint cell purity, or 

CM content, together with time constraints, CMs’ phenotype 

and  maturity  impede  commercial  production  and  progress   

to clinical translation. This also precludes the use  of  hPSC- 

CMs for other mass applications, including high-throughput 

screenings for drug development and safety pharmacology 

(Fonoudi et al., 2015; Sun and Nunes, 2017; Machiraju and 

Greenway, 2019) and faster progress in cardiac tissue engineering 

(Kensah et al., 2013). 

The potential of hPSCs for unlimited proliferation in vitro 

and their ability to differentiate into derivatives of the three 

germ layers (endo-, ecto-, and mesoderm) paved the way toward 

clinically relevant mass production of specific progenies required 

for disease-specific therapies, including CMs (Hazeltine et al., 

2013). Cardiomyocyte differentiation is inherently complex; 

cardiac differentiation from hPSCs occurs through specific stages, 

including early primitive-streak-like priming, mesendoderm 

specification, and cardiac progenitor induction, followed by their 

expansion, terminal differentiation, and maturation (Kempf et al., 

2016). Previously, a cardiac differentiation protocol to modulate 

the WNT signaling pathway in a heart  development-like  

fashion using small molecules was reported; this included early 

upregulation of the WNT pathway for primitive streak-like 

mesendoderm priming followed by latter suppression for cardiac 

progeny specification (Lian et al., 2012). The glycogen synthase 

kinase 3 (GSK3β) inhibitor CHIR99021 (CHIR) was used to 

activate the WNT pathway, which inhibits the destruction 

complex of β-catenin and results in its accumulation. The 

differentiation outcome is therefore strongly dependent on the β- 

catenin concentration, which is sensitive to CHIR concentration, 

the timing of CHIR supplementation, and the timing of 

subsequent WNT pathway suppression by chemical factors such 

as IWP2, IWR1, or Wnt-C59 (Lian et al., 2012). Downstream  

of the chemical WNT pathway modulation,  other  autocrine  

and paracrine pathways are activated, in particular, TGF and 

NODAL, which occur in a cell density-dependent manner 

previously termed the bulk cell density (BCD; Kempf et al., 

2016). Therefore, the process outcome is  also  influenced  by 

the inoculation and proliferation-dependent BCD, particularly 

during the first 24 h of differentiation induction, which ultimately 

impacts the CM yield and content. Even in tightly controlled 

systems, the inherent complexity of these differentiation steps 

and the high number of  molecular,  cellular,  environmental  

and physical parameters makes it challenging to consistently 

obtain uniform results, which is highly desirable for industrial 

and clinical applications. Notably, in reply to WNT pathway 

modulation, differentiation can result not only in the formation 

of CMs but also in multiple non-CM lineages of endodermal 

and/or mesodermal origin including, for example, endothelial 

cells (ECs) and fibroblasts (FBs) (Kempf and Zweigerdt, 2018). 

Moreover, hPSC-derived CMs may represent a subtype-specific 

mixture, including cardiac pacemaker-, atrial- and ventricular- 

like phenotypes, as suggested by their electrophysiological 

features (Zhang et al., 2009). 
Establishing  robust  and  scalable  CM  production processes 

from hPSCs is critical for obtaining clinically relevant cell 

numbers.  In  contrast  to  conventional  cell   culture   in   a  

dish, instrumented STBRs have the advantage of enabling 

continuous monitoring of numerous process parameters. For 

example, online measurements of pH and dissolved oxygen 

(DO) provide uninterrupted information on the cellular 

environment. Furthermore, bioreactor-based suspension culture 

enables continuous collection of process samples in adequate 

quantities for offline monitoring of additional parameters such  

as time-resolved changes in the aggregate size, cell-density 

(growth kinetics), and glucose and lactate levels, all of which 

provide valuable information on cell viability, proliferation, 

differentiation,  and  their  metabolic  status.  The  cultivation  of 
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hPSCs as cell-only aggregates in STBRs enabled the production 

of millions  of  cells  within  one  batch  (Kropp  et  al.,  2016).  

A scalable method utilizing spinner flasks for differentiating 

high purity CMs from hPSCs with scales up to 1 L has been 

reported with CM content of >96% (Chen et al., 2015). In that 

study, the impact of several parameters such as small molecule 

concentration, aggregate size, agitation rate, glucose and lactate 

concentrations, DO concentration, pH,  and  induction  timing  

on cardiac differentiation was evaluated. Furthermore, STBR- 

based suspension culture in  relatively  large  scales  (100  mL  

up to 1 L) has been carried out for  the  production  of  CMs 

from hPSC aggregates (Kempf et al., 2014; Chen et al., 2015; 

Fonoudi et al., 2015; Halloin et al., 2019). In all these studies, 

successful CM induction was reported typically yielding >85% 

CM content. However, it was also highlighted that large inter- 

process variability exists, which may lead to >96% CM content 

in some processes but <60% CM content in independent 

process repeats. In the context of this study, a yield of >90% 

CM content is considered sufficient, i.e., a process success, 

whereas <90% CM content is considered insufficient, i.e., process 

failure. Given the above indicated multifactorial complexity 

along the transition of hPSCs into contractile CMs, it is 

currently not apparent which individual parameter(s) or their 

combinations are directly involved in causing the undesired 

process heterogeneity. This fact is a key challenge for  the  

future envisioned CM production at GMP-compliant, industry 

compatible conditions in multi-liter scales. 

Machine learning techniques have been used in bioprocess 

development for the identification of critical experimental 

factors, for example, to aid in the optimization of the production 

of several proteins and cell lines. Du et al. (2016) presented a 

method for identifying essential model parameters of computer 

models of cardiac sodium channels using Gaussian process 

modeling, and for reducing the complexity of the models. 

Charaniya et al. (2010) identified several process parameters 

with strong associations to outcomes for the manufacturing of 

recombinant proteins using support vector machines. Caschera 

et al. (2011) successfully increased the yield of their cell-free 

protein synthesis process by 350% via designing experimental 

conditions using artificial neural networks (ANNs), which were 

recently also applied to find the optimal harvest time for xylitol 

production by Pappu and Gummadi (2016). Others have looked 

at maximizing protein production by identifying and optimizing 

key factors in the fermentation process, also using ANNs (Sinha 

et al., 2014; Amiri et al., 2015). 

Metabolic pathways are another target for manipulation to 

maximize protein production. The pathways have been modeled 

using both principal component analysis (PCA) (Alonso- 

Gutierrez et al., 2015) and an ensemble of ANNs (Zhou et al., 

2018). Sokolov et al. (2017) used regression techniques to achieve 

improved monoclonal antibody quality, which was measured 

with 14 quality attributes, including the quantities of charge 

variants, aggregates, and glycoforms. These attribute values were 

optimized by changing experimental conditions such as the cell 

culture media formulations and conditions (pH, temperature) 

using PCA and partial least squares regression models. Kotidis 

et al. (2019) determined ranges of process inputs that would 

consistently meet several protein product quality indicators using 

global sensitivity analysis. 

Although cardiac differentiation from hPSCs in suspension 

culture has recently become more  efficient  and  robust  

(Halloin et al., 2019),  there  still  exist  opportunities  for  

further understanding and improvement  of  these  processes.  

For example, limited knowledge exists on how perturbations    

in bioreactor parameters and culture  conditions  affect  cell  

yield and CM content. Utilizing data-driven modeling and 

machine learning techniques to understand mesendoderm 

differentiation, in particular cardiac priming, is an advantageous 

initial model. Notably, cardiac differentiation is a somewhat 

easier and better-studied model of lineage differentiation (Matsa 

et al., 2014; Kempf and Zweigerdt, 2018; Mummery, 2018) 

compared to more complex cell types such as hematopoietic 

lineages (Ackermann et al., 2018). Moreover, the in vitro cardiac 

differentiation process  can  be  controlled  by  a  low  number  

of chemical factors such as the WNT modulators CHIR and  

IWP and can be completed in 10–14 days from hPSC seeding. 

Furthermore,  there  is  substantial  knowledge  and  existing 

data for hPSC-CM differentiation in STBRs due to the large 

interest in this cell type, including the first mathematical model 

to understand the controlling factors for cardiac mesoderm 

specification (Gaspari et al., 2018). 
Based on our recent experience in a STBR-based hPSC- 

CM differentiation process (Halloin et al., 2019), we have here 

defined the induction of 90% CM content or higher as a “process 

success”; in contrast, induction of less than a 90% CM content  

is defined insufficient or a “process failure.” Using machine 

learning techniques like classification for the interpretation of 

existing experimental data sets, the goal of this paper was to 

identify the most informative parameters predictive of the CM 

differentiation efficiency in a bioreactor platform. As a result, we 

here report predictive parameters and algorithms for this process 

(Figure 1). The study supports both the early interruption of 

failing processes (providing cost and time savings) and the 

rationale for further process modifications that may ultimately 

avoid future process failures. 

 
 

MATERIALS AND METHODS 

Basic hiPSC Culture and Directed 
Differentiation in a Stirred Tank 
Bioreactor System 
The hiPSC line Phoenix (Haase et al., 2017) was cultured in E8 
medium as described (Kempf et al., 2015; Halloin et al., 2019). In 

brief, cells were seeded at 0.5 104 cells/ml on Geltrex-coated cell 

culture flasks in E8 medium supplemented with 10 µM Y-27632 

and passaged every 3.5 days. 

For process “pre-culture expansion and aggregate formation” 
(Figure 2A), a STBR system (DASbox, Eppendorf) was 

inoculated with 5    105  hiPSCs/ml in E8 supplemented with     

10 µM Y-27632 at a final volume of 150 ml per reactor vessel. 

Approximately 24 h after inoculation, perfusion was initiated 
with 4.2 ml/h fresh medium, as described in Kropp et al. (2016). 
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For inducing chemically defined, directed differentiation,  the 
cell density of the pre-culture was adjusted at 48 h after single 

cell inoculation to achieve 5 105 cells/ml in differentiation 

medium CDM3 with 5 µM CHIR and 5 µM Y-27632. After 24 h 

(dd1) the medium was replaced by CDM3 (Burridge et al., 2014) 

with 5 µM IWP-2; at 72 h (dd3; and every 2–3 days thereafter) 

100 ml consumed medium was collected from the bioreactor and 
replaced with fresh CDM3 (Halloin et al., 2019). 

 
Data Collection, Cell Sampling, Analysis, 
and Process Grouping Based on CMs 
Content 
Over  the  course  of  the  cultivation/differentiation  process, 

data was collected as schematically shown in  Figure 2.  DO 

and pH were constantly  measured  online,  whereas  data  on  

the cell density, aggregate  diameter,  nutrient  concentration  

and CM content were evaluated offline. Bioreactor-derived 

sampling of cell aggregates in 2 ml medium was performed as 

previously described (Kempf et al., 2014; Kropp et al., 2016; 

Halloin et al., 2019). For aggregate analysis, microscopic images 

were taken (Axiovert A1; Zeiss); on these images, a minimum of 

100 aggregates for each sample were assessed by an ImageJ macro 

to automatically define the mean diameter. 

For cell density assessment and flow cytometry analysis, 

aggregates were dissociated and automatically counted (Vi- 

CELL XR; Beckman Coulter); in the remaining supernatant, 

glucose and lactate concentration was measured (BIOSEN C-

line; EKF Diagnostic). For flow cytometry, 2.0 105
 

cells were fixed, permeabilized and incubated with the  

following CMs-specific primary antibodies: anti-cardiac 

Troponin T (1:200, clone 13-11, Thermo Scientific), anti- 

sarcomeric  α-actinin  (1:800,   EA53,   Sigma-Aldrich   or   

1:20, REA402, Miltenyi Biotec), anti-myosin heavy  chain  

(1:20, MF20, Hybridoma Bank); after incubation with 

appropriate Cy5-conjugated antibodies (1:200, Jackson 

ImmunoResearch)   data   were   acquired   on    an    Accuri    

C6 flow cytometer  (BD  Biosciences)  or  MACSQuant 

Analyzer 10 (Miltenyi Biotec) and analyzed using FlowJo 

software (Flowjo, LLC). 

By flow cytometry analysis of dd10 derived samples using 

the 3x CMs-specific antibodies outlined above, the average CMs 

content for each differentiation process was assessed; processes 

were consequently grouped into those with either sufficient or 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

FIGURE 1 | Schematic of process to generate data-driven models for prediction of final CM content from bioreactor experiments. Human pluripotent stem cells 

(hPSCs) were seeded in bioreactors for expansion for 48 h prior to initiation of cardiac differentiation. To initiate cardiac differentiation, a WNT amplifier, CHIR, was 

added for 24 h followed by 48 h of WNT inhibition using IWP2. Differentiation experiments lasted 10 days and endpoint analysis for final CM content in bioreactors 

was performed on differentiation day 10. During the time course of differentiation, the dissolved oxygen (DO) and pH were continually monitored. Samples were 

collected from the bioreactor during differentiation to analyze cell density, aggregate size, nutrient concentrations, and preculture conditions. From the 39 measured 

variables throughout differentiation, feature engineering was performed to extract 101 features; for example, the continuous data was separated by differentiation 

day to obtain averages, gradients, and second derivatives for each day. Feature selection was performed using surrogate models, principal component analysis, and 

correlations to determine which of the extracted features impacted the variance in the data and outcome of differentiation. After feature selection was performed, 

data-driven models were developed using surrogate models (MARS, RF, and GP) to predict final CM content by classification of the data in two categories (created 

with Biorender.com). 
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insufficient CM content, with insufficient content being defined 

as a process with a CM content of <90% (Figure 2B). 

 
 

COMPUTATIONAL METHODS AND 
THEORY 

Employing Experimental Data for Feature 
Engineering 
Experimental data used in computational analysis and model 

development were collected from 58 cardiac differentiation 

processes in bioreactors; notably, all processes performed in the 

relevant experimental setup were included in the study without 

any type of pre-selection procedure to explicitly exclude any 

investigator-dependent bias. Each of the differentiation process 

represents a single experimental datapoint to be used for model 

construction. In a first step, data sets from 42 of these processes 

were randomly chosen and used for constructing predictive 

models, while data sets from the remaining 16 processes were 

reserved for testing the models’ performance. 

From the data, a set of potential input variables, which we 

refer to as “bioprocess features,” for use in predictive models 

was generated with the goal of this set fully describing the 

experimental conditions over the entire differentiation process. 

For model construction using machine learning, a feature is an 

FIGURE 2 | Generation of experimental data. (A) Schematic bioreactor set-up of hPSCs expansion in suspension culture followed by directed cardiac differentiation 

by chemical WNT pathway modulation over 10 days. (B) Overview of Training and Test data spreads based on flow cytometry analysis of CM-specific 

MHC-expression. Definition: Endpoint analysis of processes resulting High ≥85% (green), middle 70–85% CM (orange) and low ≤70% CM content (red). (C–H) 

Representative patterns of process parameters, exemplifying processes typical for high (green), middle (orange), and low (red) CM content at process endpoint (day 

10). (C) Aggregate size distribution at respective days of differentiation. (D) Representative cell density kinetics. (E,F) Glucose and lactate values over the course of 

differentiation. (G,H) Representative dissolved oxygen and pH patterns monitored via online analysis over the course of differentiation. Please note that the orange 

Glucose pattern in (E) is hardly visible due to the close overlay of the red pattern. In (G,H) only representative DO and pH patterns for respective high (green) and low 

(red) CM content processes are displayed to avoid loss of clarity by overlapping patterns. 
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FIGURE 3 | Methods used for generation of features and evaluation of model performance. (A) Continuous measurements for pH and dissolved oxygen (DO) 

concentration were averaged by differentiation day. Yellow boxes represent time periods measurements were averaged over (i.e., differentiation days). Purple boxes 

represent measurements taken during media changes that were removed from the averaging. (B) Model performance was evaluated based on metrics from the 

classification confusion matrix. When the model correctly identified the result as “insufficient” or “sufficient,” it was labeled as a true positive (TP) or true negative (TN) 

result, respectively. A “sufficient” result incorrectly identified as “insufficient” was considered a false positive (FP), whereas an “insufficient” result incorrectly identified 

as “sufficient” was a false negative (FN). (C) During model training, the performance was validated using leave one out (LOO) cross-validation and Monte Carlo (MC) 

cross-validation. In LOO cross-validation, a single data point was set aside while the model was built with the remaining data points; a prediction is then obtained for 

the data point that was left out. This process was repeated for each data point, resulting in a prediction for each data point that were used in calculating performance 

metrics. (D) For MC cross-validation, a set of data was randomly selected to be excluded for validation, and the model was built using the remaining data. 

 

individual measurable or derived properties (using measured)   

of the system that is being modeled. Available experimental 

conditions included the rotation speed in the bioreactor and 

measurements such as differentiation day (dd) dependent cell 

densities, aggregate sizes, and nutrient concentrations, and 

measurements of DO concentration and pH over the course of 

the experiment. Examples of bioprocess features and how the data 

was collected are summarized in Figures 1, 2. 

The DO concentration and pH measurements were included 

as features by averaging their values over each day of the 

differentiation, illustrated in Figure 3A. Additional features were 

engineered from this data, as well as other time-dependent 

measurements, to capture how the conditions in the bioreactor 

were changing over time. These additional features were 

generated by estimating gradients and second  derivatives  for 

the cell density, aggregate size, DO concentration, and pH 
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measurements, resulting in a final set of 101 potential bioprocess 

features. The full list of bioprocess features is provided in 

Supplementary Table 1. Gradients and second derivatives were 

estimated using Eqs. (1) and (2), 
yti  − yti−1 

 
 

set of orthogonal axes in the direction of the highest variance    

of the data. Each of the axes, which is a linear combination       

of original axes, represents a PC. Principal components are 

assigned in ordinal format with the first PC explaining the highest 

percentage of the variance and the last PC the least. The PCs with 

gti = 
ti − ti−1 

(1)
 

the lower  ranks are generally  not considered in further analysis 
reducing the number of dimensions while preserving much of the 

hti 
gti  − gti−1 

ti − ti−1 

(2) 
original variance (Hotelling, 1933). 

Machine Learning Techniques 
where gti and hti are the gradient and second derivative, 

respectively, of bioreactor condition y at timepoint t i . 

Feature Selection Methods 
Because of the large number of  features  (101)  compared  to 

the number of experimental data points (58), feature selection 

was performed on the available data to discover which of the 

bioprocess features were most influential and predictive of the 

cardiomyocyte content on dd10. The feature selection methods 

employed include correlation coefficients, PCA, and the built-in 

feature selection capabilities of the machine learning techniques 

investigated for predictive modeling. Two sets of features, Feature 

Set 1 and Feature Set 2, were considered, each with bioprocess 

features measured at earlier points in the differentiation process. 

Feature Set 1 consists of all the collected bioprocess features 

measured up until the seventh differentiation day 7 (dd7). Feature 

Set 2 consists of bioprocess features measured up until the fifth 

differentiation day 5 (dd5). 

The dd7 and dd5 timepoints were chosen in order to use       

as much data as possible without using any data near the 

endpoint of the differentiation, such as dd9. Preliminary proof- 

of-concept studies revealed that classification was possible using 

data collected up to and including dd7, initiating analysis 

investigating the possibility of earlier predictions. Based on this 

analysis, dd5 was chosen as the earliest possible timepoint, as 

classification using data from earlier points in the differentiation 

did not yield satisfactory predictive capabilities. 

Correlations 

Pearson correlation coefficient 

The Pearson correlation coefficient measures the linear 

relationship between two variables. Its value ranges from    1    

to 1. A value of 1 corresponds to a perfect negative linear 

relationship between the variables, while a value of 1 indicates a 

positive linear relationship. A value of 0 demonstrates no linear 

correlation between the variables (Soper et al., 1915). 

Spearman correlation coefficient 

The Spearman correlation coefficient measures the strength and 

direction of a monotonic relationship between two variables. Its 

value ranges from 1 to 1. A value of 0 indicates no correlation 

between the variables. Values of 1 or 1 indicate a perfect 

negative or positive correlation, respectively (Spearman, 1904). 

Principal Component Analysis (PCA) 

Principal component analysis is a statistical dimension reduction 

tool. The method transforms a set of possibly correlated variables 

to uncorrelated principal components (PCs). It identifies a new 

Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines (MARS) models are non- 

parametric statistical models that consist of a linear summation 

of basis functions (Friedman, 1991). In general, basis functions 

are either a constant, a hinge function, or the product of two     

or more hinge functions. For the MARS models trained in this 

study, the Sci-Kit Learn pyEarth software package was used 

(Pedregosa et al., 2011). Detailed information MARS models 

and the other machine learning techniques described in this 

section are provided in the Supplementary Material (see section 

“Extended Machine Learning Technique Descriptions”). 

Random Forests 

Random forests (RFs) are a machine learning method that 

utilizes a set of decision trees for predicting an output based on 

input data. Each tree is built independently based on a random 

subspace of the training data. The final output of a  random 

forest model is determined by averaging the output value of 

every tree in the forest (Breiman, 2001). The features are selected 

according to the importance level calculated by the random forest 

model. The importance level is based on the impact of a feature 

on improving the separation of the data in each decision node   

of the tree. For the RF models trained in this study, the Sci-    

Kit Learn RandomForestRegressor software package was used to 

train forests with 5 trees (Pedregosa et al., 2011). 

Gaussian Process Regression 

Gaussian process regression (GPR) is a  non-parametric  

machine learning method where the prediction of the output 

corresponding to an unknown input is calculated based on a 

weighted average of outputs for known inputs using a similarity 

metric: the kernel function (Rasmussen and Williams, 2005). 

The kernel function used for all GPR models in this paper is a 

radial basis function. 

Gaussian process regression can be used for feature selection 

with its built-in automatic relevance determination (ARD) 

method. Further sensitivity analysis (Eq. 4) on the ARD results 

(Blix and Eltoft, 2018) provides an even greater separation of the 

features for selection. For the GPR models trained in this study, 

the Sci-Kit Learn GaussianProcessRegressor software package 

was used (Pedregosa et al., 2011). 

Cardiomyocyte Content Classification 
A binary process classification based on the CM content (%) at 

process endpoint (dd10) was applied, and the two classes defined 

were: “sufficient” for: CM content equal to and above 90%, and 

“insufficient” for CM content below 90%. A binary classification 

= 
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model was chosen after an initial analysis with a multiclass model 

revealed that the available bioprocess data was not rich enough to 

train a multiclass model at this time. 

To enable CM content prediction based on early process data, 

two regression models using MARS and GPR were built, and 

value of one for recall demonstrated that the model is able to 

classify all the actual positive results as positive. In CM content 

case, all the insufficient points would be identified as insufficient 

using a model with recall equal to one. When all the positive 

classes are falsely identified negative, the value of recall equals 

the data points were assigned to their classes (i.e., sufficient or 

insufficient) based on this predicted CM content value. For RFs, 

the classification is conducted directly using the classifier models, 

to zero. 

Recall 
  TP  

(7) 

(TP + FN) 
constructed by the RF. 

To evaluate and compare the performances of the 

classification models, four metrics were considered: accuracy, 

precision, recall, and the Matthews correlation coefficient 

(MCC). The range for the first three metrics is zero to one,     

and MCC is between 1 and 1. These metrics are calculated  

based on the confusion matrix (Sokolova and Lapalme, 2009), 

which is illustrated in Figure 3B. The confusion matrix describes 

the performance of a classification model (algorithm). In this 

paper, we assign the insufficient CM content class as the positive 

Matthews’s correlation coefficient (MCC) 

Matthews’s correlation coefficient (Eq. 8) defines the correlation 

between the predicted and actual classifications for all data points 

(Matthews, 1975). Value of one for MCC means there is  a 

strong correlation between the predicted results and the actual 

values, indicating that the predicted label is correct for all the 

points. Value of 1 for MCC metric demonstrates a strong  

inverse correlation. Values of zero for MCC corresponds to no 

correlation between the predicted and actual results. 

class (Figure 3B) and the sufficient class as the negative one 

(Figure 3B). The error of the predictions is broken down for 

each  class  using  the  confusion  matrix.  The  four  cells  of the 

  (TP    TN)   (FP   FN)  

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

(8) 

confusion matrix correspond to true positive, false negative,  

false positive, and true negative. The values associated with 

each of the  components  give  information  about  how  many  

of the positive/negative classification results were correctly 

predicted by the model. 

Classification Model Performance Metrics 

Accuracy 

Accuracy calculates the proportion of correct classifications 

(Sokolova and Lapalme, 2009). According to Eq. (5), accuracy 

is the number of  all  true  positives  and  negatives  compared  

to all prediction results. Accuracy of one indicates that the 

classification has been conducted accurately and that all the 

points with sufficient or insufficient CM content have been 

included in the right class (FP    FN    0). Zero accuracy defines 

a totally wrong classification model, which is not able to predict 

the label of the points correctly. 

The classification model performance metrics, accuracy, 

precision, recall, and MCC, were calculated using two different 

cross-validation techniques: (1) leave one out (LOO) cross- 

validation (Figure 3C), and (2) Monte Carlo (MC) cross- 

validation (Figure 3D). Cross-validation is a tool for assessing 

how well a model can be generalized to new data, which the 

model has never seen. In MC cross-validation, a set of data is 

selected randomly to be excluded for validation, and this data  

set is called the validation set. The model is built using the 

remaining data, and the model is used to predict the classes for 

the validation set (Burman, 1989). These predictions are used to 

calculate performance metrics. In LOO cross-validation, a single 

data point is set aside (i.e., left out) for validation. The model is 

built using the remaining data points, and a prediction is obtained 

for the data point that was left out. This process is repeated for 

each data point, resulting in a prediction for each. Figures 3C,D 

illustrates how these cross-validation methods were used for 

evaluating the performance metrics (Wong, 2015). 

 

 
Precision 

Accuracy 
  (TP + TN)  

(TP + TN + FP + FN) 
(5)  

RESULTS AND DISCUSSION 

Precision (Eq. 6) gives information about  the  proportion  of  

the times the points identified as positive were truly positive 

(Sokolova and Lapalme, 2009). Precision of one means that all the 

positive results are actually positive outcomes. When a classifier 

model with precision of one predicts insufficient CM content for 

a point, it is supposed to have insufficient CM content in practice. 

Value of zero for precision indicates that all the identified positive 

outcomes are false. 

Feature Selection 
Two different sets of features were  considered  for  building  

the classification models. Feature Set 1 contained all potential 

bioprocess features measured through dd7. Feature Set 2 

contained all features measured through dd5. Feature selection 

was performed on each feature set separately to identify potential 

features for predicting CM content class on dd10. Classification 

models were then built using these potential feature sets. We 

 

 
Recall 

Precision 
  TP 

 

(TP + FP) 
(6) 

employed PCA, and built-in capabilities of MARS, RFs, and GPR 

for feature selection. Feature selection resulted in eight potential 

feature sets for classifying the CM content on dd10. A visual 

summary of the feature selection results is provided in Figure 4. 

Recall, Eq. (7), is the proportion of actual positive results which 

were identified as positives (Sokolova and Lapalme, 2009). The 

Principal component analysis yielded five principal 

components (FS1-PCA) that explained 94% of the variance 
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FIGURE 4 | Feature selection results for features selected from (A) feature set 1 and (B) feature set 2. MARS (Multi-adaptive regression splines), RF (Random 

Forest), GPR (Gaussian process regression) were the surrogate models implemented for the selection of the features that have a significant impact on classification. 

The other feature selection methods were PCA (Principal component analysis) and correlations between the variables. 

 

in the input data for Feature Set 1 (Figure 4A) and yielded four 

principal components (FS2-PCA) that explained 94% of the 

variance for Feature Set 2 (Figure 4B). None of the principal 

components or bioprocess features strongly correlated with the 

CM content. The strongest linear correlation between a feature 

and the CM content was  0.51, and that feature was the time  

that the differentiation media was supplemented with WNT 

inhibitor IWP2. This lack of correlation indicates that none of the 

individual bioprocess features alone suffices to make a prediction 

on the CM content and that other means, such as machine 

learning techniques, are necessary to investigate the relationship. 

The number of features selected by each machine learning 

technique is provided in Figure 4. A list of features selected    

by each method is available in Supplementary Tables 1, 2. 

Tables 1, 2 give a listing of the bioprocess features selected by 

each modeling technique for Feature Sets 1 and 2, respectively. 
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TABLE 1 | Bioprocess features selected by each surrogate modeling technique 

from Feature Set 1 (X = selected). 

TABLE 2 | Bioprocess features selected by each surrogate modeling technique 

from Feature Set 2 (X = selected). 
 

Feature FS1-RF FS1-GPR FS1-MARS 
 

Feature FS2-RF FS2-GPR FS2-MARS 

Average DO concentration dd0 X 
   

Average DO concentration d0 X 
  

Average DO concentration X  X  Average DO concentration dd0 X   

gradient d0     Average DO concentration dd2  X 

Average DO concentration  X   Average DO concentration dd4 X   

gradient dd2 

Average DO concentration 

 
X 

   Average DO concentration X 

gradient d0 

  

gradient dd6 

Average DO concentration 

  
X 

  Average DO concentration X 

gradient dd2 

X  

gradient dd7 

d0 average pH gradient 

 
X 

   Average DO concentration X 

gradient dd4 

 X 

dd0 average pH gradient  X   Average DO concentration X   

dd0 average acceleration of cell X    gradient dd5   

density normalized DO gradient     d1 average pH gradient  X 

dd0–dd1 cell density gradient  X X  dd0 aggregate size  X 

dd1 aggregate size   X  dd0 cell density  X 

dd1 cell density X    dd0–dd1 cell density gradient X  

dd2 average pH X    dd1 average pH X  X 

dd7 average pH  X   dd1 average acceleration of cell X   

dd3 aggregate size   X  density normalized DO gradient   

dd3 average acceleration of DO   X  dd2 aggregate size X   

gradient     dd2 average acceleration of DO X  

dd3 average pH gradient X    gradient   

dd3 average acceleration of cell   X  dd2 average pH  X 

density normalized DO gradient     dd2 average pH gradient X   

dd5 average pH gradient     dd2 average acceleration of cell X   

dd5–dd7 aggregate size X    density normalized DO gradient   

gradient     dd2–dd3 aggregate size X   

dd5–dd7 cell density gradient   X  gradient   

dd7 cell density X X   dd3–dd5 cell density gradient  X 

Cell density normalized DO   X  dd4 average pH gradient X  

concentration dd2     dd5 average acceleration of cell X X  

Cell density normalized DO  X X  density normalized DO gradient   

concentration dd3     Cell density normalized DO X   

Cell density normalized DO X    concentration dd1   

concentration dd7     Average cell density normalized X  

Average cell density normalized X X   DO concentration gradient dd5   

DO concentration gradient dd2     IWP2 treatment time [h] X X 

Average cell density normalized  X   Overall aggregate size gradient X   

DO concentration gradient dd5 

Average cell density normalized 
 

X 

   Overall density gradient  X 

DO concentration gradient dd7        

IWP2 treatment time [h]   X     

Preculture time [h] X 
 

 

 
 

The features selected by MARS, RF, and GPR encompassed 

features with known biological implications as well as potential 

mechanistic explanations, although the impacts of the features  

in combination have not been previously investigated.  It  is  

well established in developmental biology, that a bi-phasic 

WNT pathway modulation is essential for cardiac mesoderm 

specification and subsequent CM formation. As outlined in 

Figure 2A, cardiac differentiation in this study was controlled by 

chemical WNT modulators added in a temporal pattern. hPSC 

differentiation was initiated by the addition of the chemical WNT 

pathway accelerator CHIR on dd0 for 24 h followed by 48 h of 

WNT attenuation through addition of IWP2. The small molecule, 

CHIR, is solely sufficient to induce early primitive streak (PS)-like 

priming in hPSCs in a concentration-dependent manner (Lian    

et al., 2012; Kempf et al., 2016; Gaspari et al., 2018). The higher 

the CHIR dose, the faster hPSC differentiation will progress 

from an (anterior) endoderm-like fate toward cardiac mesoderm 

specification and subsequently toward more posterior fates such 

as somatic mesoderm-like PS priming. The dynamics of the 

CHIR induced differentiation processes, particularly during the 

first 24 h of differentiation, play an important role regarding the 

degree of heterogeneity of the cardiac differentiation process, of 

which identifying the underlying factors is one of the objectives 

of this study. However, our recent work revealed that the 

accelerating effect of CHIR on differentiation progression is 
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counteracted by cell-secreted factors such as the transforming 

growth factor beta (TGFb) family members, Nodal signaling 

antagonists left-right determination factor 1 (LEFTY1) and 

CERBERUS (CER1) (Kempf et al., 2016). The cell density directly 

impacts the accumulation of such secreted factors, particularly 

during the first 24 h of differentiation (dd0–dd1) and plays a key 

role in the subsequent specification of cell fates and subsequently 

the CM content (assessed on dd10 in this study); this suggests 

that the selected features “dd0–dd1 cell density gradient” and “dd1 
cell density” identified by our modeling approach, have known 

mechanistic impacts on CM differentiation. 

It is of biological relevance that  the  “IWP2  treatment  
time” was also selected as an important feature for model 

development, given the importance of temporal WNT signaling 

for proper lineage differentiation in embryogenesis and in vitro 
as well  (Ueno  et  al.,  2007;  Burridge  et  al.,  2014;  Halloin  

et al., 2019). However, the feature selections “dd1 average 

acceleration of DO gradient” and “dd3 cell density normalized DO 
concentration” are non-obvious, interesting new observations. 

These model-extracted features strongly suggest that an 

acceleration/deceleration of the (cell density-normalized) DO 

gradient at a specific process interval impacts the final CM 

content.  This  may  relate  to  process-dependent  changes  in  

the overall density of (oxygen-consuming) cells, as well as 

differentiation stage-dependent changes in cells’ metabolism. 

During the differentiation process, the metabolism switches 

from predominantly glycolysis typical of undifferentiated  

hPSCs (Kropp et al., 2016), toward oxidative phosphorylation  

as a result of CM specification and maturation (Hu et  al.,  

2018). Thus, our modeling approach  suggests  a  concrete  

novel hypothesis requiring future experimental validation. 

Example values for these DO related features are illustrated in 

Supplementary Figure 1. 

After mesoderm priming and cardiac progeny specification 

during the first 72–96 h of our differentiation protocol, 

progressive differentiation into functional, sarcomere protein 

expressing CMs occurs in the period between dd5 and dd10 

(Halloin et al., 2019). It is thus interesting to note the MARS 

model selection of the features “dd5–dd7 cell density gradient” 

and “dd5 average DO concentration gradient” as being important 

for the CM content. A possible interpretation of this result is  

that the dd5–dd7 cell density/DO patterns may impact (i.e., 

inhibit or promote) the maturation of cardiac progenies into 

functional CMs. The cell density-dependent secretion of factors 

during this differentiation stage may impact the sarcomere 

protein expression including isotype switches resulting in CM 

maturation (Hu et al., 2018) equivalent to cell density-dependent 

mechanisms of primitive streak-like priming during the first 

24 h of differentiation. Furthermore, since the DO gradient 

correlates to the cell density gradient, the “dd5 average DO 
concentration gradient” feature may relate to the “dd5–dd7 cell 
density gradient” feature. 

Using the feature selection components of these data-driven 

models provides the possibility of examining bioprocess features 

in combination and in more detail. Some of the identified features 

presumably have known mechanistic impacts on the outcome   

of cardiac differentiation, as outlined above, thereby indicating 

the validity of our approach. However, there are several features 

identified by the feature selection but have not been previously 

examined or identified as important for predicting the CM 

content, including the dd5–dd7 cell density and DO gradients. 

On the other hand, it is worth noting that, for example, 

supraphysiological glucose concentration has been found to 

impact the cardiac differentiation of hESC (Crespo et al., 2010; 

Yang et al., 2016). In our model, the glucose and the related 

lactate concentration patterns were not classified as important 

features, i.e., were not identified as being predictive of the CM 

content in our differentiation process. But this finding is not 

excluding, per se, that the glucose concentration is important for 

the cardiomyogenesis of hPSCs. 

This in  mind,  it  is  important  to  note,  that  the  impact  of 

a selected feature on the differentiation outcome does not 

presumptively indicate a mechanistic relationship. This impact 

may  be  correlative  only  (rather  than  causative),  potentially  

a result of processes not captured  by  the  input  data  or  

through feature engineering. However, the identified features are 

informative for guiding future validation experiments; these can 

then be used to build more mechanistic models for understanding 

and potentially reducing variability in cardiac differentiation. 

Classification Results 
Classification models were constructed for predicting the 

outcome of the bioreactor experiments on dd10 using features 

measured up to dd7 and up to dd5, using each of the machine 

learning techniques described in Sections “Multivariate Adaptive 

Regression Splines,” “Random Forests,” and “Gaussian Process 

Regression.” The models were built using the bioprocess features 

selected from Feature Set 1 (for predicting using features 

measured until dd7) and Feature Set 2 (for predicting using 

features measured until dd5). Results for classification model 

performance for each of the eight feature sets from the feature 

selection are summarized in Tables 3, 4. Results were obtained 

using LOO cross-validation and are presented for both the 

bioprocess features selected by the built-in feature selection for 

each model, as well as for the PCs obtained from PCA. Both 

feature sets contained 42 data points chosen from the original  

set of 58 experiments for training. A visual summary of the 

results for each classification method with its associated feature 

sets is depicted in Figure 5. For all of the feature sets generated 

from Feature Set 1, for all of the techniques investigated, 

classification using the model-selected features always had a 

better performance than the principal components from PCA. 

Only two classification model-feature set combinations achieved 

favorable results for all four of the performance metrics, which is 

illustrated in Figure 5. RFs trained with feature set FS1-RF and 

GPR trained with FS1-GPR perform similarly for predicting if 

CM content will be insufficient for continuing the experiment. 

Both methods obtained accuracies of 90% and precisions around 

90%, meaning that if a model predicts the CM content will be 

insufficient, there is a 90% probability that it is insufficient. 
Similar  to those  generated from  Feature Set  1,  the  model- 

selected feature sets for Feature Set 2 resulted in a better 

performance than the PCs. This indicates that while the PCs 

successfully explain the variance in the data, they fail to accurately 
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TABLE 3 | Classification model performance (calculated with LOO 

cross-validation) for models trained with features from Feature Set 1. 
 

MARS RFs GPR 
     
 

FS1-MARS FS1-PCA 
 

FS1-RF FS1-PCA FS1-GPR FS1-PCA 

Accuracy 0.74 0.64  0.90 0.74 0.87 0.67 

Precision 0.81 0.66  0.90 0.74 0.89 0.67 

Recall 0.93 0.96  0.96 0.93 0.96 1.0 

MCC 0.55 −0.11  0.78 0.36 0.74 0 

Bold values indicate performance metrics for recommended, best-performing 

models. 

 

TABLE 4 | Classification model performance (calculated with LOO 

cross-validation) for models trained with features from Feature Set 2. 
 

 

MARS RFs GPR 

DO concentration gradient. This dd7 feature was identified as 

relevant for predicting dd10 CM content using a GPR and could 

be an indicator of levels of cell metabolism. 

Table 5 contains examples of  bioreactor  experiments  and 

the predictions for those experiments given by GPR models 

using FS1-GPR, as well as the values of the bioprocess features 

indicated by the GPR model to be relevant. For some of the 

experiments with different prediction types, the feature values are 

quite similar, for example, the “preculture time” of experiments 36 

and 26. However, for some experiments with the same prediction, 

the features have a wide range of values, for example, the “dd2 cell 

density normalized DO gradient” of experiments 16 and 26. These 

disparities indicate that the individual features alone are not 

sufficient to determine what will make a good or bad prediction 

and that all the selected features need to be considered as a whole. 

For model selection purposes, the MCC gives the most 
      important information about how the models perform, as it 

gives a measure of the correlation between the predicted and 

actual classes, similar to an R2 coefficient for a regression 

model. The other performance metrics should be assessed for 

their  importance  based  on  what  the  experimental  goal  of the 
 

MCC 0.04 0.11 0.62 0.22 0.23 0 bioprocess is. For example, if the differentiation process is being 

      studied primarily for data collection and evaluating the outcomes, 
Bold values indicate performance metrics for recommended, best-performing 

models. 

 
 

characterize the relationship between the features and the 

cardiomyocyte content. When only the features up to dd5 are 

considered, RFs most successfully predict if the CM content will 

be sufficient. The decrease in the performance for GPR models 

is possibly due to the removal of the dd7 average value of the 

then maximizing the number of experimental datapoints being 

retained becomes more important, meaning that the precision   

of the model needs to be prioritized. However, for another 

application, such as an in vivo study, it would be more beneficial 

to stop unsuccessful experiments and start over, meaning that 

recall and accuracy of the model in identifying which experiments 

would not produce high CM contents would be prioritized. RF 

and GPR models were confirmed to be the most predictive of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 5 | Classification results were based on four metrics including accuracy, precision, recall, and MCC (Matthews correlation coefficient) for selected features of 

FS1 and FS2. The classification models of MARS (Multi-adaptive regression splines), RF (Random Forest), and GPR (Gaussian process regression) were 

implemented. For accuracy, precision, and recall the values are categorized as follows: (---) for values < 0.3, (--) for 0.3 ≤ values < 0.6, (-) for 0.6 ≤ values < 0.7, (+) 

for 0.7 ≤ values < 0.8, (++) for 0.8 ≤ values < 0.9, and (+++) for value ≥ 0.9. Moreover, for the MCC metric, the categorization was done as: (---) for values < 0, (--) 

for 0 ≤ values < 0.1, (-) for 0.1 ≤ values < 0.3, (+) for 0.3 ≤ values < 0.7, (++) for 0.7 ≤ values < 0.9, and (+++) for value ≥ 0.9. 

 
FS2-MARS FS2-PCA 

 
FS2-RF FS2-PCA FS2-GPR FS2-PCA 

Accuracy 0.62 0.67  0.84 0.67 0.69 0.67 

Precision 0.68 0.68  0.82 0.73 0.70 0.67 

Recall 0.82 0.93  0.96 0.79 0.93 1.0 
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TABLE 5 | Examples of selected features from GPR-FS1. 
 

Exp. No. Prediction Average DO 

concentration 

gradient dd2 

Average cell 

density 

normalized 

Preculture 

Time [h] 

Average DO 

concentration 

gradient dd7 

dd0–dd1 cell 

density 

gradient 

dd0 average 

pH gradient 

Average cell 

density 

normalized 
   DO     DO 
   concentration     concentration 

   gradient dd2     gradient dd5 

3 TP 2.06 1.96 53 −3.23 0.02 −0.22 −6.06 

40 TP −1.01 −0.49 48 −1.71 1.34 −0.18 −3.08 

16 FP 1.08 0.58 46 0.63 0.41 −0.21 −1.54 

26 FP −3.07 −1.83 48 −0.34 0.34 −0.03 −1.77 

21 TN −1.40 −1.06 47 0.17 0.29 −0.03 −1.75 

42 TN −1.13 −0.60 48 −0.22 0.62 −0.01 −2.03 

36 FN −0.76 −0.61 48 −6.51 1.60 −0.05 −3.48 

 Minimum −80.07 −47.24 45 −6.51 −0.76 −0.23 −17.33 

 Maximum 14.37 7.00 56 9.61 2.63 0.08 3.73 

 

TABLE 6 | Model performance on test data. TABLE 7 | Model performance with constant IWP2 time. 
 

RFs GPR 
 

FS1-RF FS2-RF 

 
FS1-RF FS2-RF 

 
FS1-GPR FS2-GPR 

  
LOO Monte Carlo 

 
LOO Monte Carlo 

Accuracy 0.89 0.83  0.83 0.72  Accuracy 0.90 0.90  0.92 0.85 

Precision 0.92 0.81  0.92 0.72  Precision 0.91 0.90  0.91 0.86 

Recall 0.92 1.0  0.85 1  Recall 1.0 0.93  0.95 0.93 

MCC 0.72 0.57  0.61 0.11  MCC 0.90 0.82  0.84 0.75 

Bold values indicate performance metrics for recommended, best-performing 

models. 

 
 

dd10 cardiomyocyte content because their MCC values (around 

0.80) and their accuracy and precisions of about 90% were higher 

than the other models investigated. 

After testing how the models performed on the original 

dataset, their performance was evaluated using the test data.  

The test data consisted of data from the 16 processes that were 

not used for feature selection and model construction. The  

values of the selected features from those 16 “control processes” 

were used as inputs to make predictions of the final CM 

classification employing the trained models (Figure 1 Prediction 

by Classification), and those predictions were compared to the 

actual classifications from the process data. Since MARS had the 

worst performance for both feature sets, it was excluded from 

the analysis. The results are presented in Table 6. RFs and GPR 

had a similar performance for the test data for feature set FS1- 

GPR, both with an accuracy of 89%, precision and recall near 

90%, and MCC values of 0.72. However, for the sets selected from 

feature set 2, RFs outperformed GPR. The results obtained for 

the test data are comparable to those for the data the models 

were trained on with LOO cross-validation, indicating that the 

models accurately captured the relationship between the features 

and the CM content necessary to make the classifications, while 

avoiding overfitting. 

The “IWP2 treatment time” feature was consistently chosen 

as having high importance for the prediction of the  CM  

content. This feature describes the amount of time that the  

IWP2 molecule was allowed to remain in the bioreactor system, 

 
i.e., impact the differentiation process. However, this feature  

was only modulated for a fraction of  the  process  runs  and  

held constant at exactly 48 h for the rest. To evaluate if our 

models were able to classify the  CM  content  without  using 

that feature, an additional dataset was constructed. This data    

set was thus exclusively derived from the original set of 58 

processes using only those process runs where the time  of 

IWP2 presence was held constant at 48 h, and the “IWP2 

treatment time” feature was excluded in the  analysis.  Since 

RFs performed well for all the previously considered feature 

sets, the performance was only evaluated using this model.  

LOO cross-validation and Monte Carlo cross-validation were 

used to calculate the performance metrics. The Monte Carlo 

cross-validation used a test set size of 5 and 40 Monte Carlo 

trials. The results are summarized in Table 7. It is thus worth 

highlighting that, when the IWP2 feature is removed, RFs still 

successfully predict insufficient CM content with comparable 

performances for both LOO and Monte Carlo cross-validation 

for all the feature sets. 

 
 

CONCLUSION 

In this paper, we have constructed data-driven models for 

prediction of the CM content on dd10 of hPSC differentiation 

processes, using existing data sets from bioreactor-based 

experiments. Using features up to dd7, we were able to identify 

if an experiment would have an insufficient final CM content 
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of less than 90% with 90% accuracy and >90% precision with 

both RF and GPR models. Furthermore, we were able to identify 

if an experiment would have an insufficient final CM content  

on dd5 with 84% accuracy with a RF model. Through feature 

selection methods, these predictions used less than 16% of the 

collected data, potentially reducing the amount of resource- 

intense manual collection of data. Although these models can 

accurately and precisely predict final CM content, they do not 

provide any insight into the overall quantity of CMs produced  

or the resulting functionality and maturity of these cells. In 

addition, the prediction models were only constructed for small 

set of data with limited ranges of all the features. However, the 

ability to model the outcome of differentiation experiments at an 

early stage of differentiation, enables the timely interruption of 

failing experiments, providing savings in both time and resources. 

More importantly, results from the study provide valuable 

hypotheses for further experiments to improve robustness and 

reproducibility of cardiac differentiation processes, and have the 

potential to be leveraged for a broad variety of hPSC-derived cell 

and tissue production experiments. 
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