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ABSTRACT

Tensor decompositions are powerful tools for large data ana-
lytics, as they jointly model multiple aspects of data into one
framework and enable the discovery of the latent structures
and higher-order correlations within the data. One of the
most widely studied and used decompositions, especially in
data mining and machine learning, is the Canonical Polyadic
or PARAFAC decomposition. However, today’s datasets are
not static and often grow and change over time. To operate
on such large dynamic data, we present OCTEN, the first
ever compression-based online parallel implementation for
the CP/PARAFAC decomposition. We conduct an exten-
sive empirical analysis of the algorithms in terms of fitness,
memory used and CPU time and in order to demonstrate
the compression and scalability of the method, we apply
OCTEN to big tensor data. Indicatively, OCTEN performs
on-par or better than state-of-the-art online and offline meth-
ods in terms of decomposition accuracy and efficiency, while
achieving memory savings ranging in 40-200%.

1. INTRODUCTION

A Tensor is a multi-way array of elements that represents
higher-order or multi-aspect data. In recent years, tensor de-
compositions have gained increasing popularity in big data
analytics [11]. Tensor decompositions are capable of finding
complex patterns and higher-order correlations within the
data. In the era of information explosion, data is generated
or modified in large volume. In such environments, data
may be added or removed from any of the dimensions with
high velocity. When using tensors to represent this dynami-
cally changing data, an instance of the problem is that of a
“streaming”, “incremental”, or “online” tensors.

As the volume and velocity of data grow, the need for
time- and space-efficient online tensor decomposition is
imperative. There already exists a modest amount of prior
work in online tensor decomposition both for Tucker [1, 14]
and CP [9, 18, 16]. However, most of the existing online
methods [1, 18, 9] , model the data in the full space, which
can become very memory taxing as the size of the data
grows. There exist memory efficient tensor decompositions,
indicatively MET for Tucker[8] and PARACOMP [13] for
CP/PARAFAC, neither of which are able to handle online

Research was supported by the Department of the Navy, Naval En-
gineering Education Consortium under award no. N00174-17-1-0005,
National Science Foundation CDS&E Grant no. OAC-1808591 and by an
Adobe Data Science Research Faculty Award.

{Pa1,Pa2…Pap}
{Pb1,Pb2…Pbp}
{Pc1,Pc2…Pcp}

{As1,As2…Asp}
{Bs1,Bs2…Bsp}
{Cs1,Cs2…Csp}

JO
IN

{As,Bs,Cs}

{U1,V1,W1}
{U2,V2,W2}

{Up,Vp,Wp}

Y1

Y2

Yp

X1

X2

Xp

Z1

Z2

Zp

{A,B,C}

{Pa,Pb,Pc}

Xold

J

I

J

I

Fork

Parallel Compressed  old summaries
[Q x Q x Q]

[Q x Q x Q]
Parallel Compressed  new summaries

Old tensor data

Incoming Slice(s)

U
pdate 

Sum
m

aries

Parallel CP-
Decomposition

Matching
Factors

Compressed 
Matrices

System of Linear Equations

[Q x Q x Q]

~    ~      ~
~    ~      ~

~    ~      ~
~    ~      ~

~    ~      ~

~    ~      ~

Fig. 1: Framework. Compressed tensor summaries Yp and
Zp are obtained by applying randomly generated compression
matrices (Up,Vp,Wp) and (U

0
p,V

0
p,W

0
p) to Xold and Xnew

respectively. The updated summaries are computed by Xp =
Yp + Zp. Each Xp is independently decomposed in parallel.
The update step anchors all compression and factor matrices
to a single reference i.e. (Pa,Pb,Pc) and (As,Bs,Cs), and
solves a linear equation for the overall A, B, and C.

tensors. In this paper, we fill that gap. Our contributions are
summarized as follows:

• Novel Parallel Algorithm We introduce OCTEN, a
novel compression-based algorithm for online tensor
decomposotion that admits an efficient parallel im-
plementation. We do not limit to 3-mode tensors,
our algorithm can easily handle higher-order tensor
decompositions.

• Correctness guarantees By virtue of using random
compression, OCTEN provides the identifiability of
the underlying CP/PARAFAC decomposition in the
presence of streaming updates.

• Extensive Evaluation Through experimental evalua-
tion on various datasets, we show that OCTEN provides
stable decompositions (with quality on par with state-
of-the-art), while offering up to 40-250 % memory
space savings.

2. PROBLEM FORMULATION

Given (a) an existing set of summaries {Y1,Y2 . . .Yp},
which approximate tensor Xold of size { I

(1) ⇥
I
(2) ⇥ . . . I

(N�1) ⇥ told} at time t , (b) new in-
coming batch of slice(s) in form of tensor Xnew

of size {I(1) ⇥ I
(2) ⇥ . . . I

(N�1) ⇥ tnew}, find up-
dates of (A(1)

,A(2) , . . . , A(N�1), A(N)) incre-
mentally to approximate tensor X of dimension
{I(1) ⇥ I

(2) ⇥ . . . I
(N�1) ⇥ I

(N)} and rank R, where
I
(N) = (told + tnew) = I

(N)
1...n + I

(N)
(n+1)...m after

appending new slice or tensor to N
th mode.



3. PROPOSED METHOD : OCTEN

In this section, we introduce OCTEN, a new method for
parallel incremental decomposition designed with two main
goals in mind: G1: Compression, speed, simplicity, and par-
allelization; and G2: correctness in recovering compressed
partial results for incoming data, under suitable conditions.
The algorithmic framework we propose is shown in Figure
1 and is described below:

We assume that we have a pre-existing set of summaries

of the X before the update. Summaries are in the form
of compressed tensors of dimension [Q ⇥Q ⇥Q]. These
are generated by multiplying random compression matrices
{U,V,W}, that are independently obtain from an abso-
lutely continuous uniform distribution with respect to the
Lebesgue measure, with tensor’s corresponding mode i.e.
U is multiplied with I-mode and so on; see Figure 1 and
Section 3.2 for its role in correct identification of factors.

In the following, Xold is the tensor prior to the update
and Xnew is the batch of incoming slice(s). Considering
S =

Q[N�1]
i=1 I

(i) and T =
P[N�1]

i=1 I
(i), we can write space

and time complexity in terms of S and T . Given an incoming
batch, OCTEN performs the following steps:

3.1. Parallel Compression and Decomposition

When handling large tensors X that are unable to fit in main
memory, we may compress the tensor X to a smaller tensor
that somehow apprehends most of the systematic variation in
X. Keeping this in mind, for incoming slice(s) Xnew, during
the parallel compression step, we first need to create ’p’
parallel triplets of random compression matrices (uniformly
distributed) {Up,Vp,Wp} of X. Thus, each worker (i.e.
Matlab parpool) is responsible for creating and storing these
triplets of size U 2 RI⇥Q

,V 2 RJ⇥Q and W 2 Rtnew⇥Q.
These matrices share at least ’shared’ amount of column(s)
among each other so that at final step we merge it correctly.
Mathematically, we can describe it as follows:

X =

2

664

{U1,V1,W1}
{U2,V2,W2}

. . .
{Up,Vp,Wp}

3

775 =

2

664

{(u U10), (v V10), (w W10)}
{(u U20), (v V20), (w W20)}

. . .
{(u Up0), (v Vp0), (w Wp0)}

3

775

(1)
where u, v and w are shared and have dimensions of
RI⇥m

,RJ⇥m and Rtnew⇥m, here m = Qshared.
For compression matrices, we choose to assign each

worker create a single row of each of the matrices to reduce
the burden of creating an entire batch of {U0

p,V
0

p,W
0

p} of
Xnew. We see that each worker is sufficient to hold these
matrices in main memory. Now, we created compressed
tensor replica or summaries {Z1,Z2 . . .Zp} by multiplying
each triplets of compression matrices and Xnew;see Figure
1. Zp is 3-mode tensor of size RQ⇥Q⇥Q. Since Q is consid-
erably smaller than [I ,J, K], we use O(Q3) of memory on
each worker.

For Xold, we already have replicas {Y1,Y2 . . .Yp}
obtained from each triplets of compression matrices
{Up,Vp,Wp} and Xold; see Figure 1. In general, the com-
pression comprises N-mode products which leads to overall

complexity of (Q(1)Stnew + Q(2)Stnew + Q(3)Stnew +
. . . Q(N)Stnew) for dense tensor X, if the first mode is
compressed first, followed by the second, and then the third
mode and so on. We choose to keep Q1, Q2, Q3 . . . QN

of same order as well non-temporal dimensions are of
same order in our algorithm, so time complexity of parallel
compression step for N-mode data is O(QStnew) for each
worker. The summaries are always dense, because first
mode product with tensor is dense, hence remaining mode
products are unable to exploit sparsity. However, the size of
summaries are extremely less than incoming data.

After appropriately computing summaries {Z1,Z2 . . .Zp}
for incoming slices, we need to update the old summaries
{Y1,Y2 . . .Yp} which were generated from previous data.
We don’t save entire Xold, and instead we only save the
compressed summaries i.e. Y. Each worker reads its
segment and process update in parallel as given below.
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where k is the number of slices of incoming tensor and q

is the slice number for the compressed tensor. Further, for
the decomposition step, we processed ’p’ summaries on dif-
ferent workers, each one fitting the decomposition to the
respective compressed tensor {X1,X2 . . .Xp} created by
the compression step. We assume that the updated com-
pressed tensor {X1,X2 . . .Xp} fits in the main memory,
and performs in-memory computation. We denote p

th com-
pressed tensor decompositions as (As(p),Bs(p),Cs(p)) as
discussed above. The data for each parallel worker Xp can
be uniquely decomposed, i.e. (Ap,Bp,Cp) is unique up
to scaling and column permutation. Furthermore, parallel
compression and decomposition is able to achieve Goal G1.

3.2. Factor match for identifiability

According to Kruskal [6], the CP decomposition is unique
(under mild conditions) up to permutation and scaling of the
components i.e. A,B and C factor matrices. Consider an
3-mode tensor X of dimension I , J and K of rank R. If
rank

rc = F =) K � R& I(I�1)(J�1) � 2R(R�1), (3)

then rank 1 factors of tensor X can be uniquely computable[6,
7]. Kronecker product[2] property is described as (UT ⌦
VT ⌦ WT )(A � B � C) = ((UTA) � (VTB) �
(WTC)) ⇡ (eA, eB, eC). Now combining Kruskal’s unique-
ness and Kronecker product property, we can obtain correct
identifiable factors from summaries if

min(Q, rA) + min(Q, rB) + min(Q, rC) � 2R+ 2 (4)

where Kruskal-rank of A, denoted as rA, is the maximum
r such that any r columns of A are linearly independent;
see [13]. Hence, upon factorization of 3-mode Xp into
R components, we obtain A = a

T
p A⇧p�

(1/N)
p , where



ap is shared among summaries decompositions, ⇧p is a
permutation matrix, and �p is a diagonal scaling matrix
obtained from CP decomposition. To match factor ma-
trices after decomposition step, we first normalize the
shared columns of factor matrices (As(i),Bs(i),Cs(i)) and
(As(i+1),Bs(i+1),Cs(i+1)) to unit norm ||.||1 . Next, for
each column of (As(i+1),Bs(i+1),Cs(i+1)), we find the
most similar column of (As(i),Bs(i),Cs(i)), and store the
correspondence. Finally, we can describe factor matrices as
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(5)

where eAs,
eBs, and eCs are matrices of dimension eAs 2

RpQ⇥R
, eBs 2 RpQ⇥R and eCs 2 RpQ⇥R respectively

and N is number of dimensions of tensor. For 3-mode ten-
sor, N = 3 and for 4-mode tensor, N = 4 and so on.
Even though for 3-mode tensor, A and B do not increase
their number of rows over time, the incoming slices may
contribute valuable new estimates to the already estimated
factors.Thus, we update all factor matrices in the same way.
This is able to partially achieve Goal G2.

3.3. Update results

Final step is to remove all the singleton dimensions from
the sets of compression matrices {Up,Vp,Wp} and stack
them together. Now, we can write compression matrices as

ePa =

2
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3

777775
, ePb =

2

666664

V(:, :, 1)T

V(:, :, 2)T

.

.

.
V(:, :,p)T

3

777775
, ePc =

2

666664

W(:, :, 1)T

W(:, :, 2)T

.

.

.
W(:, :,p)T

3

777775
(6)

where ePa,
ePb, and ePc are matrices of dimension ePa 2

RpQ⇥I
, ePb 2 RpQ⇥J and ePc 2 RpQ⇥K respectively. The

updated factor matrices (A, B, and C) for 3-mode tensor X
(i.e. Xold +Xnew) can be obtained by :

A = eP�1
a ⇤ eAs, B = eP�1

b ⇤ eBs, C =
⇥
Cold; eP�1

c ⇤ eCs

⇤

(7)
where A,B and C are matrices of dimension RI⇥R

, RJ⇥R

and RK1...n,(n+1)...m⇥R respectively. Hence, we achieve
Goal G2.

The time and space complexity of OCTENis O(p2QI +
p
2
QIR+QStnew) and pQ(pT+tnew+R)+(T+told)R+

Q
3 respectively.

4. EMPIRICAL ANALYSIS

4.1. Experimental Setup

Baselines: In this experiment, four baselines namely On-
lineCP[18], SambaTen[5], RLST[9] and ParaComp[13]
have been selected as the competitors to evaluate the perfor-
mance.

Evaluation Measures: We evaluate OCTEN and the
baselines using three quantitative criteria: Fitness(%), Pro-
cessor Memory used (MBytes), and CPU-Time (in seconds).

The specifications of each synthetic dataset are given in
Table 1. For real datasets, we use AUTOTEN [10] to find
rank of tensor.

Table 1: Table of Datasets analyzed.

I=J=K NNZ BATCH SIZE P Q SHARED NOISE (µ, �)

50 125K 5 20 30 5 (0.1, 0.2)
100 1M 10 30 35 10 (0.2, 0.2)
500 125M 50 40 30 6 (0.5, 0.6)
1000 1B 20 50 40 10 (0.4, 0.2)
5000 7B 10 90 70 25 (0.5, 0.6)
10000 1T 10 110 100 20 (0.2, 0.7)
50000 6.25T 4 140 150 30 (0.6, 0.9)

4.2. Results

4.2.1. Memory efficient, Fast and Accurate

For all datasets we compute Fitness(%), CPU time (sec-
onds) and Memory(MB) space required. For OCTEN, On-
lineCP, ParaComp, Sambaten and RLST we use 10% of
the time-stamp data in each dataset as existing old ten-
sor data. The results for qualitative measure for data is
shown in Figure 2. All state-of-art methods address the
issue very well. Compared with OnlineCP, ParaComp, Sam-
baten and RLST, OCTEN give comparable fitness and re-
duce the mean CPU running time by up to 2x times for
big tensor data. For all datasets, PARACOMP’s accuracy
(fitness) is better than all methods. But it is able to handle
upto X 2 R104⇥104⇥250 size only. For small size datasets,
OnlineCP’s efficiency is better than all methods. For large
size dataset, OCTEN outperforms the baseline methods w.r.t
fitness, average running time (improved 2x-4x) and mem-
ory required to process the updates. It significantly saved
40-200% of memory as compared to Online CP, Sambaten
and RLST as shown in Figure 2. It saved 40-80% memory
space compared to Paracomp. Hence, OCTEN is compa-
rable to state-of-art methods for small dataset and outper-
formed them for large dataset.

4.2.2. Scalability Evaluation

To evaluate the scalability of our method, firstly, a tensor
X of small slice size (I 2 [20, 50, 100]) but longer time
dimension (K 2 [102 � 106]) is created. Its first 10%
timestamps of data is used for Xold and each method’s run-
ning time for processing batch of 10 data slices at each
time stamp measured. As can be seen from Figure 2(d,
e), increasing length of temporal mode increases time con-
sumption quasi-linearly. However the slope is different for
various non-temporal mode data sizes. In terms of mem-
ory consumption, OCTEN also behaves linearly. This is
expected behaviour because with increase in temporal mode,
the parameters i.e. p and Q also grows. Once again, our
proposed method illustrates that it can efficiently process
large sized temporal data.

4.2.3. Parameter Sensitivity

We extensively evaluate sensitivity of number of compressed
cubes required, size of compressed cubes and number of
shared columns required for OCTEN. we fixed batch size
to ⇡ 0.1 ⇤ K for all datasets, where K is time dimension
of tensor. The results are shown in figure 3 We observe
thatfor identifiability ’p’ must satisfy the condition, p �
max([ (I�shared)

(Q�shared)
J
Q

K
Q ]), to achieve better fitness, lower

CPU Time (seconds) and low memory space (MB).
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4.2.4. Effectiveness on real world dataset

In order to truly evaluate the effectiveness of OCTEN, we
test its performance against five sparse (density ⇡ 10�5)
real datasets present in Table 2. American College Foot-
ball Network (ACFN) [115 x 115 x 10k] dataset includes
interaction between players of Division IA colleges games
during Fall 2000; Foursquare-NYC [1k x 40k x 310] dataset
contains 10 months check-in data in New York city col-
lected from Foursquare; Facebook Links [63k x 63k x 650]
dataset contains a list of all of the user-to-user links from
the Facebook New Orleans sub-network; NELL [12k x 9k
x 28k] dataset is an entity-relation-entity tuple snapshot of
the Never Ending Language Learner knowledge base and
NIPS Publications [2.5k x 2.8k x 14k] dataset consists of
papers published from 1987 to 2003 in NIPS. The OCTEN’s
performance in terms of timing and memory utilization on
datasets are summarized in Table 2 and 3. OCTEN outper-

Dataset OnlineCP SambaTen RLST ParComp OCTEN

ACFN [12] 12.91 16.45 43.52 20.23 14.48
Foursquare-NYC [17] 712.21 746.20 761.42 1.2k 642.37
Facebook Links [15] n/a 4.7k n/a n/a 3.9k

NELL [3] 42k 37k n/a n/a 35k
NIPS Publications [4] 372.03 343.98 1.6k 448.63 315.47

Table 2: Average CPU Time (sec) over all the batches. The lower
the better. The best performance is shown in bold.
forms other baseline methods in most of the real dataset. In
the case of Foursquare-NYC, Facebook-links, NELL and
NIPS dataset, OCTEN gives better results compared to the
baselines, specifically in terms of memory used (better up

to average 50-70 times) and CPU time (better up to av-

erage 5-8%). OCTEN outperforms for ACFN dataset in
terms of memory usage and CPU time is comparable to

other methods. Due to high dimensions of dataset, RSLT
and PARACOMP are unable to execute within 12 hours for
Facebook-links and NELL datasets. OCTEN took advan-
tage of parallel compression and decomposition of incoming
slices and save huge amount of memory requirements along
with giving comparable run time.

Dataset OnlineCP SambaTen RLST ParComp OCTEN

ACFN 1.47 1.21 1.11 2.06 0.02
Foursquare-NYC 2.36 2.18 2.13 4.34 0.34
Facebook Links n/a 45.49 n/a n/a 12.78

NELL 17.11 16.61 n/a n/a 9.43
NIPS Publications 3.18 2.08 3.86 6.7 0.45

Table 3: Average Memory (GB) usage over all the batches. The
lower the better. The best saving performance is shown in bold.

5. CONCLUSIONS

We proposed OCTEN a novel compression-based frame-
work for online CP/PARAFAC decomposition for gen-
eral high-order tensors, with identifiability guarantees.
OCTEN approximately preserves order of component of the
underlying CP/PARAFAC decomposition in the presence of
streaming updates. We experimentally validate OCTEN’s
effectiveness and accuracy, and we demonstrate its memory
efficiency, outperforming state-of-the-art approaches (by 40-
200 % ). Future work will focus on investigating different
tensor decomposition methods and incorporating various
such tensor mining methods into our framework.
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