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Colloidal nanocrystals consist of an inorganic crystalline core with organic ligands bound to the surface and

naturally self-assemble into periodic arrays known as superlattices. This periodic structure makes

superlattices promising for phononic crystal applications. To explore this potential, we use plane wave

expansion methods to model the phonon band structure. We find that the nanoscale periodicity of these

superlattices yield phononic band gaps with very high center frequencies on the order of 102 GHz. We

also find that the large acoustic contrast between the hard nanocrystal cores and the soft ligand matrix

lead to very large phononic band gap widths on the order of 101 GHz. We systematically vary nanocrystal

core diameter, d, nanocrystal core elastic modulus, ENC core, interparticle distance (i.e. ligand length), L,

and ligand elastic modulus, Eligand, and report on the corresponding effects on the phonon band

structure. Our modeling shows that the band gap center frequency increases as d and L are decreased,

or as ENC core and Eligand are increased. The band gap width behaves non-monotonically with d, L,

ENC core, and Eligand, and intercoupling of these variables can eliminate the band gap. Lastly, we observe

multiple phononic band gaps in many superlattices and find a correlation between an increase in the

number of band gaps and increases in d and ENC core. We find that increases in the property mismatch

between phononic crystal components (i.e. d/L and ENC core/Eligand) flattens the phonon branches and

are a key driver in increasing the number of phononic band gaps. Our predicted phononic band gap

center frequencies and widths far exceed those in current experimental demonstrations of 3-

dimensional phononic crystals. This suggests that colloidal nanocrystal superlattices are promising

candidates for use in high frequency phononic crystal applications.

1. Introduction

Phonons are vibrational waves that transport sound and heat.1

The phononic band diagram (also known as the dispersion

relationship) relates the frequency of a given phonon to its

corresponding wave vector and is analogous to electronic and

photonic band diagrams. By exercising control over the phonon

band structure, it is possible to manipulate the transport of

sound and heat. One common method of engineering band

structure is to create phononic crystals, which are articially

made materials with periodic variations in acoustic impedance

(e.g. alternating hard and so materials). This periodicity

results in a phononic band gap that forbids the propagation of

phonons in a particular frequency range.2–5 The phononic

crystal is the vibrational wave analogue to the well-known

photonic crystal, which uses periodic variations in refractive

index to create a photonic band gap.6,7 Two key characteristics

of a phononic band gap are its center frequency and its width.

The band gap fundamentally arises from wave interference,

which requires that the periodicity be comparable to the

phonon wavelength; hence shorter periodicities lead to pho-

nonic band gaps with higher center frequencies. The width of

the phononic band gap depends on the acoustic impedance

ratio of the phononic crystal's components; the further this

ratio deviates from unity, the wider the band gap.2 Hence

a phononic crystal made of alternating hard and so materials

will have a wider band gap than one made of two alternating

hard materials. Depending on the number of dimensions in

which periodicity occurs, phononic crystals are described as 1-,

2-, or 3-dimensional (i.e. periodic planes, cylinders, and

spheres, respectively). Phononic crystals are a promising class

of materials for sound and heat manipulation and have been

used to create phonon waveguides, cavities, lters, sensors,

switches and rectiers.8–14

Phononic crystals are commonly constructed through the

assembly of macroscopic building blocks or top-down fabrica-

tion methods such as lithography.15–17 These fabrication
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approaches have yielded phononic band gaps with center

frequencies in the �1 kHz to 10 GHz frequency range. Extend-

ing this center frequency range above 10 GHz is desirable

because such structures can potentially manipulate heat

conduction14,18,19 and/or enable novel optomechanical

devices.20–23 Creating phononic band gaps in this frequency

range generally requires nanostructured materials with peri-

odicities of #10 nm. While 1-dimensional phononic crystals

made via sequential thin lm deposition have achieved band

gaps in this frequency range,24,25 creating 3-dimensional peri-

odicities on this length scale is much more difficult. Phononic

band gaps with center frequencies above 10 GHz have yet to be

experimentally observed in 3-dimensional phononic

crystals.26,27

In this work, we suggest that colloidal nanocrystals form

a natural basis for the bottom-up assembly of 3-dimensional

phononic crystals with record high frequency band gaps.

Colloidal nanocrystals consist of an inorganic crystalline core

with organic ligands (e.g. oleic acid, alkanethiols, etc.) bound to

the surface (Fig. 1a). Elegant precision and control over

colloidal nanocrystal size, shape, and composition is now

commonplace and is summarized in a number of reviews.28–31

Colloidal nanocrystal-based materials have received attention

for a wide range of applications spanning photovoltaics,32,33

light-emitting diodes,34,35 thermoelectrics,36–38 thermal

storage,39–41 and electronics.42,43 In contrast, the use of colloidal

nanocrystals for phononic crystals has received very limited

attention.44,45 The diameter of a colloidal nanocrystal core is

typically controlled to be between�2 and 15 nm, which overlaps

nicely with the necessary length-scales needed to achieve pho-

nonic band gaps in the 101 to 102 GHz frequency range. In

addition, van der Waals interactions between the nanocrystal

ligand molecules facilitate the self-assembly of colloidal nano-

crystals into periodic three-dimensional arrays.46,47 Analogous

to the atomic lattice of a crystal, the colloidal nanocrystal

community refers to these assemblies as “nanocrystal super-

lattices.” These superlattices are a natural choice for phononic

crystals because their periodic nanocrystal cores and ligand

matrix can function as the two components of a phononic

crystal (Fig. 1b). In addition to having high band gap center

frequencies due to small-scale periodicity, colloidal nanocrystal

superlattices should also have wide band gaps due to the

acoustic contrast between the hard inorganic nanocrystal cores

and the so ligand matrix.

In this work, we use plane wave expansion (PWE) techniques

to model the phonon band structure of colloidal nanocrystal

superlattices and explore their potential as phononic crystals.

Our modeling demonstrates that superlattices can have pho-

nonic band gaps with center frequencies on the order of �102

GHz and band gap widths on the order of �101 GHz. We also

systematically vary nanocrystal core diameter, d, nanocrystal

core elastic modulus, ENC core, interparticle distance (i.e., ligand

length), L, and ligand elastic modulus, Eligand, and report on the

corresponding effects on the phonon band structure. Our

modeling shows that the band gap center frequency increases as

d and L are decreased, or as ENC core and Eligand are increased. The

band gap width behaves non-monotonically with d, L, ENC core,

and Eligand, and intercoupling of these variables can eliminate

the band gap. Lastly, we observe multiple phononic band gaps in

many superlattices and nd a correlation between an increase in

the number of band gaps and increases in d and ENC core. We nd

that increases in the property mismatch between phononic

crystal components (i.e., d/L and ENC core/Eligand) attens the

phonon branches and is a key driver in increasing the number of

phononic band gaps.

2. Methodology

Calculating the phonon band structure requires solving for the

phononic crystal's normal modes of vibration and determining

their corresponding characteristic frequencies. This is oen

accomplished using nite difference time domain methods,48–50

nite element methods,45,51,52 plane wave expansion (PWE)

methods,53–55 and combined molecular dynamics–lattice

dynamics approaches.44,56,57 We utilize the PWE method to

determine the phonon band structure in this paper. The PWE

method's chief strength is that in-house codes that are

computationally inexpensive and adaptable to parallel

Fig. 1 Schematics of (a) an individual colloidal nanocrystal and (b)

a face-centered cubic colloidal nanocrystal superlattice as viewed

along the [100] direction. an individual colloidal nanocrystal consists of

a crystalline inorganic core with organic ligands on its surface (e.g.

oleic acid, alkanethiols, etc.). When colloidal nanocrystals are assem-

bled into a superlattice, they form a phononic crystal that consists of

a periodic array of hard nanocrystal cores embedded in a soft ligand

matrix. The two key length scales in the phononic crystal are the

diameter of the inorganic nanocrystal core, d, and the interparticle

distance, L. The interparticle distance is primarily determined by the

ligand length.
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computation can be written with relative ease. This enables

users to achieve maximum control over their computational

goals. While many commercial nite element method packages

are available, computational exibility is lost when using these

packages. Although molecular dynamics and nite difference

time domain methods are also powerful approaches, they suffer

from being computationally expensive.

In the PWE method, the elastic wave equation is converted

into an eigenvalue/eigenvector problem by utilizing the peri-

odicity of the lattice and Bloch's theorem.58 Since the eigen-

vectors and eigenvalues correspond to the phonon wave vectors,

k, and angular frequencies, u, the PWE method directly yields

the phonon band diagram. Our implementation of the PWE

method follows the procedure described by Economou and

Sigalas.53,59 We begin with the elastic wave equation in three

dimensions for a locally isotropic medium:
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where t is time, i and l are indices (1, 2, or 3), and ui, ul, xi and xl
are the Cartesian components of the displacement vector, u(r),

and position vector, r, respectively. The spatially varying

density, rst Lamé coefficient, and second Lamé coefficient are

represented by r(r), l(r) and m(r), respectively. Since phononic

crystals are periodic, the local material properties are also

periodic and can be expressed using a spatial Fourier series for

the primitive unit cell.
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where G is a reciprocal lattice vector, j is the imaginary unit, and

subscript G refers to the Gth Fourier component of the indi-

cated property. Since all of the coefficients in the elastic wave

equation are periodic, we can employ Bloch's theorem to write:
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which has plane wave solutions in the form of:

u ¼ ej(k$r � ut) (4)

Eqn (1)–(4) can be combined to yield the following eigen-
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where k0 is a wave vector, G, G0 and G
00 are reciprocal lattice

vectors, and i, l, and n are indices that vary between 1, 2, and 3.

If the dimensions and mechanical properties of a phononic

crystal's constituent phases are specied, eqn (5) can be

rewritten in matrix form and solved to obtain the eigen-

frequencies, u, of the eigenvector, k0. Varying k0 throughout the

Brillouin zone then allows the phonon band diagram to be

mapped out. Whereas the above equations are written in terms

of l and m, experimental measurements on the mechanical

properties of nanocrystal superlattices have generally been re-

ported in terms of the bulk modulus, B, and elastic modulus,

E.60–62 If Poisson's ratio, n, is known, then bulk moduli can be

converted into elastic moduli. In addition, the mechanical

property set of E and n can be transformed into l and m via the

following relations:63

m ¼
E

2ð1þ nÞ
(6a)

l ¼
n� E

ðð1þ nÞ � ð1� 2nÞÞ
(6b)

Fig. 2 (a) Schematic of the conventional unit cell for a face-centered

cubic lattice with relevant geometrical parameters labeled: interpar-

ticle distance, L, lattice constant, a, and nanocrystal core diameter, d.

(b) Schematic of a primitive unit cell for a face-centered cubic lattice

and corresponding primitive lattice vectors, a1, a2 and a3. (c) Schematic

of the first brillouin zone (black lines) and the irreducible region of the

first brillouin zone (red lines).
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To apply the PWE method to colloidal nanocrystal super-

lattices we consider the nanocrystal cores and nanocrystal

ligands as the two components of a phononic crystal (i.e.

a periodic arrangement of inorganic spheres embedded in

ligand matrix). We focus our modeling effort on face-centered-

cubic lattices because this is the arrangement that colloidal

nanocrystal superlattices most commonly adopt.61 Fig. 2 illus-

trates the conventional unit cell, primitive unit cell, and rst

Brillouin zone of a face-centered cubic lattice with nanocrystal

diameter, d, interparticle distance, L, and lattice constant, a.

Of the many varieties of colloidal nanocrystal superlattices,

the most complete set of experimentally measured mechanical

properties correspond to superlattices consisting of PbS nano-

crystals with oleic acid ligands.60–62 Consequently we initiate our

phonon band diagram discussion on this particular superlattice

(Fig. 3), and use input values of interparticle distance, L ¼ 1.5

nm, nanocrystal core elastic modulus, ENC core ¼ 54 GPa, ligand

matrix elastic modulus, Eligand ¼ 2.6 GPa, nanocrystal core

density, rNC core ¼ 7600 kg m�3, ligand matrix density, rligand ¼

895 kg m�3, nanocrystal core Poisson's ratio, nNC core ¼ 1/3, and

ligand matrix Poisson's ratio, nligand ¼ 1/3. Unless otherwise

stated, these parameters are used in all of this paper's

calculations.

Since the PWE method assumes that the phonon medium

can be treated as a continuum, there is a maximum frequency

and minimum length scale for which it is valid. Past studies

have shown that continuum methods can reasonably predict

phonon band structures up to a frequency of�1 THz.64,65 To stay

well below this threshold, we limit our model to frequencies

#500 GHz. Furthermore, the shortest phonon wavelength

considered in our calculations is 37.9 Å (this corresponds to the

W point in the Brillouin zone for a nanocrystal core diameter of

2 nm and interparticle distance of 1 nm). This phonon wave-

length is an order of magnitude larger than typical interatomic

distances and represents a reasonable threshold for applying

continuum approximations. Our use of the elastic wave equa-

tion implicitly assumes that the mechanical response of the

material is within the linear regime, which means that our

model only considers small vibrational wave amplitudes. The

PWE method also uses periodic boundary conditions, which is

equivalent to having perfect superlattice order. The primary

effect of superlattice disorder would be to introduce phonon

scattering sites and/or localized phonons (i.e. phonons that are

not plane waves) that are not captured in the band diagram. In

addition to the physical approximations of our methodology,

numerical accuracy of our code is also important. To conrm

our accuracy, we have checked it for computational convergence

and benchmarked it against other PWE results in the literature

(see Fig. S2†). Additional details on the computational meth-

odology used in this work are available in the ESI.†

3. Results and discussion

Fig. 3 shows the phonon band diagram for a superlattice con-

sisting of PbS nanocrystals with oleic acid ligands and illus-

trates that these materials can have wide phononic band gaps

with center frequencies in the 100 GHz-range. Phononic crystals

with 3-dimensional periodicity commonly have band gaps that

exist only along particular crystallographic directions. A band

gap that exists in every direction is less common and is referred

to as an “absolute” or “complete” band gap.66 Fig. 3 shows that

the PbS nanocrystal – oleic acid ligand superlattice exhibits this

less common feature. The phonon branches that intersect the G

point at the origin are known as “acoustic” branches whereas

those that intersect the G point at non-zero frequency are known

as “optical” branches. These branches appear in groups of three

due to the three mechanical degrees of freedom. In typical

atomic crystals (e.g. bulk GaP, AlAs, GaSb, etc.), the band gap

commonly resides in between the acoustic phonon branches

and the rst set of optical branches. In contrast, the phononic

band gap in the nanocrystal superlattice falls in between the

rst and second set of optical branches. Accompanying this

band gap characteristic is a strong frequency overlap between

the rst set of optical phonon branches and the acoustic

branches. This frequency overlap creates a large phase space for

phonon–phonon scattering processes that satisfy scattering

selection rules (i.e., conservations of energy and crystal

momentum). This large phase space in turn creates opportu-

nities for fast energy transfer between acoustic and optical

phonons. Furthermore, since optical phonons interact with

Fig. 3 Phononic band diagram of a face-centered cubic colloidal

nanocrystal superlattice comprised of PbS nanocrystals (e ¼ 54 GPa, n

¼ 1/3, and r ¼ 7600 kg m�3) with oleic acid ligands (e¼ 2.6 GPa, n¼ 1/

3, and r ¼ 895 kg m�3). The nanocrystal core diameter and interpar-

ticle distance in this band diagram are d ¼ 5 nm and L ¼ 1.5 nm. To

improve clarity, the first 5 sets of branches (i.e., 15 branches) are color-

coded. The three acoustic branches are black, the first set of optical

branches are red, the second set of optical branches are green, and

subsequent sets of optical branches are purple and cyan, respectively.
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light and acoustic phonons do not, this frequency resonance

between the optical and acoustic phonons suggests that fast

energy transfer between photons and acoustic phonons can

occur in nanocrystal superlattices.

We next discuss the effect of changing the nanocrystal core

diameter, interparticle distance, and colloidal nanocrystal

mechanical properties on the phonon band structure. In prin-

ciple, there are eight phononic crystal variables, d, L, ENC core,

Eligand, rNC core, rligand, nNC core, and nligand. We vary the nano-

crystal core through a typical colloidal nanocrystal diameter

range of 2–15 nm. The interparticle distance in a nanocrystal

superlattice is controlled by the organic ligands on the nano-

crystal core surface. These ligands are typically small organic

molecules such as oleic acid and alkanethiols. Consequently we

vary the interparticle distance and matrix elastic modulus from

1–3 nm and 1–8 GPa, respectively, which are ranges that are

representative of typical organic ligands. Since a very wide

variety of nanocrystal core compositions are possible,28–31 we

vary the elastic modulus of the nanocrystal core over a large

range of 10–1250 GPa. We found that varying Poisson's ratio

had only a minor effect on the phononic band gap character-

istics, and we therefore leave out discussion of this parameter

(Fig. S6 in ESI†). Inspection of eqn (5) and (6) reveal that density

only shows up as a denominator for the elastic modulus and

Poisson's ratio (i.e. E/r and n/r). Since Poisson's ratio has only

a minor effect on the band gap characteristics, the effect of

varying density can be inferred by rescaling our results for

Fig. 4 The effect of nanocrystal core diameter on the center

frequency of the phononic band gap for: (a) varying interparticle

distance, L; (b) varying elastic modulus of the ligand matrix, Eligand; and

(c) varying elastic modulus of the nanocrystal core, ENC core. Unless

otherwise specified, L, Eligand, and ENC core are fixed at 1.5 nm, 2.6 GPa,

and 54 GPa, respectively. An equivalent version of this figure shown as

a function of nanocrystal core volume fraction can be found in Fig. S4

of the ESI.†

Fig. 5 The effect of nanocrystal core diameter on the phononic band

gap width for: (a) varying interparticle distance, L; (b) varying elastic

modulus of the ligand matrix, Eligand; and (c) varying elastic modulus of

the nanocrystal core, ENC core. Unless otherwise specified, L, Eligand, and

ENC core are fixed at 1.5 nm, 2.6 GPa, and 54 GPa, respectively. An

equivalent version of this figure shown as a function of nanocrystal

core volume fraction can be found in Fig. S5 of the ESI.†
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varying elastic modulus. Phononic crystals are oen described

in terms of their volume fraction of matrix inclusions, which in

our case corresponds to the nanocrystal core volume fraction.

Since our calculations vary both nanocrystal core diameter and

interparticle distance (which is directly related to ligand length,

see Fig. 1), our calculations implicitly span a nanocrystal core

volume fraction range of 4.7% to 61.0%. Lastly, we note that in

some cases we observe multiple phononic band gaps (see

below); however, the most prominent band gap is the gap

occurring between the rst and second set of optical branches.

Unless otherwise stated, the following discussion focuses on

this band gap.

Fig. 4a shows that decreasing the nanoparticle diameter and/

or interparticle distance increases the center frequency of the

band gap. This behavior arises because the center frequencies

of phononic band gaps correspond to wavelengths that satisfy

the Bragg condition (i.e., constructive interference of scattered

waves from a periodic medium). Decreasing the nanoparticle

diameter and/or interparticle distance decreases the unit cell

length, which decreases the Bragg wavelength and increases the

center frequency. The impact of changing interparticle distance

on the center frequency is most pronounced at smaller nano-

particle diameters. This is because interparticle distance

changes lead to large relative changes in unit cell sizes in this

diameter regime. For large nanoparticle diameters, the effect of

interparticle distance on center frequency is small because the

unit cell size is dominated by the nanoparticle diameter. The

band gap width can go to zero when combining small nano-

crystal diameters with large interparticle distances and so we do

not plot center frequencies in these instances (Fig. 4a).

As the elastic modulus of the ligand matrix or nanocrystal

core is increased, the center frequency of the phononic band

gap increases monotonically (Fig. 4b and c). Although the band

gap center frequency increases in all cases, the magnitude of

this increase is size dependent and depends on whether the

modulus of the nanocrystal core or ligand matrix is changing.

The ligand modulus has the greatest impact on the band gap

center frequency at small nanoparticle diameters (Fig. 4b). This

is intuitive because the ligands make up the greatest fraction of

the unit cell when the nanoparticle diameters are small. Anal-

ogously, the nanocrystal core modulus has the greatest impact

at large nanoparticle diameters because this is when the

nanocrystal cores make up the largest fraction of the unit cell

(Fig. 4c). Notably the band gap disappears at large diameters

when the nanocrystal core modulus is very so or very hard. For

example, we do not observe band gaps above 9 and 13 nm

diameters for nanocrystal core moduli of 1250 and 10 GPa,

respectively.

The acoustic contrast between the so ligand matrix and

hard nanocrystal cores leads to large band gap widths of up to

�130 GHz for 2 nm diameters and 1 nm interparticle distances

(Fig. 5a). Interestingly, we observe a non-monotonic relation-

ship between band gap width and nanoparticle diameter. The

band gap width rst rises with increasing diameter, reaches

Fig. 6 Frequency maps of the phononic band gaps in colloidal nanocrystal superlattices as a function of (a) nanocrystal core diameter and (b)

nanocrystal core elastic modulus. The number of band gaps corresponding to each diameter and elastic modulus are shown in parts (c) and (d),

respectively. Band gaps narrower than 5 GHz are not shown in these graphs. For diagram (a), the interparticle distance, ligand modulus, and

nanocrystal core modulus are 1.5 nm, 1 GPa, and 54 GPa, respectively. For diagram (b), the interparticle distance, nanocrystal core diameter, and

ligand modulus are 1.5 nm, 9 nm, and 2.6 GPa, respectively.

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 44578–44587 | 44583

Paper RSC Advances



a maximum value at a critical diameter, dcrit, and then

decreases. One implication of this non-monotonic behavior is

that not all colloidal nanocrystal superlattices will have pho-

nonic band gaps. For example, our model predicts the absence

of a phononic band gap for nanocrystal diameters below 4 nm

with an interparticle distance of 3.0 nm.

The combined effects of d, L, Eligand, and ENC core on pho-

nonic band gap width can be visualized in Fig. 5a–c. These

gures collectively reveal an intricate and rich behavior between

these parameters and phononic band gap width. This behavior

is best visualized in Fig. 5c, which shows the relationship

between phononic band gap width and nanocrystal core

diameter for a large range of ENC core, 10–1250 GPa. In addition

to an increasing band gap width below dcrit and a decreasing

band gap width above dcrit, a second non-monotonic behavior is

observed in Fig. 5c. For nanocrystal core diameters 4 nm and

larger, we see that the band gap width rst increases with

increasing ENC core, reaches a maximum, and then decreases

with increasing ENC core. For example, nanocrystal core diame-

ters of 8 nm have an increasing band gap width for 10 GPa <

ENC core < 170 GPa and decreasing band gap width for 170 GPa <

ENC core < 1250 GPa. This behavior causes the right sides of the

curves in Fig. 5c to rst sweep diagonally up and then sweep

diagonally down as ENC core is changed from 10 to 1250 GPa. A

Fig. 7 Phononic band diagrams for varying nanocrystal core diameters: (a) 2 nm, (b) 6 nm, and (c) 15 nm, and varying nanocrystal core elastic

moduli: (d) 10 GPa, (e) 150 GPa, and (f) 1250 GPa. For diagrams (a)–(c), the interparticle distance, ligand modulus, and nanocrystal core modulus

are 1.5 nm, 1 GPa, and 54 GPa, respectively. For diagrams (d)–(f), the interparticle distance, nanocrystal core diameter, and ligandmodulus are 1.5

nm, 9 nm, and 2.6 GPa, respectively. To improve clarity, the first 5 sets of branches (i.e. 15 branches) are color-coded in each diagram. The three

acoustic branches are black, the first set of optical branches are red, the second set of optical branches are green, and subsequent sets of optical

branches are purple and cyan, respectively.
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similar, but subtler behavior can be seen in Fig. 5a and b. The

subtlety of this behavior for changes in L and Eligand in Fig. 5

arises because these parameters span amore narrow range than

ENC core.

The fact that band gap width increases, reaches a maximum,

and then decreases as d, L, Eligand, and ENC core are varied

suggests that these four parameters impact band gap width in

similar manners. This type of behavior has also been observed

by Zanjani and Lukes,45 who found that as interparticle distance

increased, the phononic band gap width increased, reached

a maximum, and then decreased. They explained the origin of

this behavior by studying the Bragg frequencies of each pho-

nonic crystal component and utilizing a transfer matrix model.

Their modeling found that as the Bragg frequency mismatch

between the two components increased, the band gap rst

widened, then reached a maximum at moderate Bragg

frequency separation, and then narrowed. Since Bragg

frequency is proportional to the square root of elastic modulus

and inversely proportional to length, this Bragg frequency

explanation can also explain our observed effects of elastic

modulus on phononic band gap width. The four parameters

varied in Fig. 5, d, L, Eligand, and ENC core, all have similar effects

on the band gap width because each parameter has a role in

determining the overall Bragg frequency mismatch between the

nanocrystal cores and ligand matrix. In effect, the band gap

width data in Fig. 5 represents slices of a surface in a 4-

dimensional space (i.e. d, L, Eligand, and ENC core).

In many instances, we observe multiple band gaps in the

phonon band diagram (Fig. 6 and 7). The band gap between the

rst and second set of optical branches tends to be the widest

and higher frequency band gaps tend to be much more narrow.

Our data also shows a correlation between increases in nano-

crystal core diameter and the number of band gaps (Fig. 6a and

c) and increases in the nanocrystal core elastic modulus and the

number of band gaps (Fig. 6b and d). The origins of these

correlations can be explained by observing the band diagram

characteristics for changes in nanocrystal core diameter

(Fig. 7a–c) and nanocrystal core elastic modulus (Fig. 7d–f). It is

well known that increasing property mismatches causes at-

tening of the phonon dispersion branches.67 The effects of

increasing nanocrystal core diameter and increasing nano-

crystal core elastic modulus are to increase mismatch with the

ligand matrix (i.e. d/L and ENC core/Eligand increase). As the

phonon branches atten, this leads to more opportunities to

form phononic band gaps and hence we observe a correlation

between an increase in the number of band gaps and an

increase in nanocrystal core diameter and elastic modulus.

Another notable effect of changing nanocrystal core diam-

eter and elastic modulus on the phonon band diagram is a re-

scaling of the frequencies. While this frequency re-scaling

leads to meaningful changes in the phonon band structure,

its effects on the number of observed band gaps are articial in

nature. When downshiing the frequencies, one effect is the

appearance of seemingly more phonon branches. However this

apparent effect originates from our maximum frequency limi-

tation of 500 GHz due to the continuum nature of our PWE

model. These “new branches” are simply shiing from

frequencies above 500 GHz to frequencies below 500 GHz.

Another effect of this frequency re-scaling is the potential to

atten bands as the frequencies are downscaled. While one

might assume that this frequency re-scaling could be the origin

of band attening described in the above paragraph, it should

be noted that band attening due to frequency re-scaling and

band attening due to property mismatches are independent

effects. This is evident when inspecting Fig. 7f, which simulta-

neously has the attest optical bands and the least frequency

downscaling.

4. Conclusions

The results in this work illustrate that colloidal nanocrystals are

excellent candidates for the bottom-up assembly of 3-dimen-

sional phononic crystals. The nanoscale periodicity and

acoustic contrast between the hard nanocrystal cores and so

ligand matrix lead to phononic band gaps with center

frequencies on the order of �102 GHz and band gap widths on

the order of �101 GHz. In addition, these characteristics can be

tuned by changing the nanocrystal core diameter, nanocrystal

core elastic modulus, interparticle distance, and ligand

modulus. These results suggest that colloidal nanocrystal

superlattices are promising candidates for use in high

frequency phononic crystal applications that exert control over

sound and heat.
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