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One-Shot Coherence Distillation: Towards
Completing the Picture

Qi Zhao , Yunchao Liu, Xiao Yuan, Eric Chitambar , and Andreas Winter

Abstract— The resource framework of quantum coherence was
introduced by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett.
113, 140401 (2014)] and further developed by Winter and Yang
[Phys. Rev. Lett. 116, 120404 (2016)]. We consider the one-shot
problem of distilling pure coherence from a single instance of
a given resource state. Specifically, we determine the distillable
coherence with a given fidelity under incoherent operations (IO)
through a generalization of the Winter-Yang protocol. This is
compared to the distillable coherence under maximal incoherent
operations (MIO) and dephasing-covariant incoherent operations
(DIO), which can be cast as a semidefinite programme, that has
been presented previously by Regula et al. [Phys. Rev. Lett. 121,
010401 (2018)]. Our results are given in terms of a smoothed
min-relative entropy distance from the incoherent set of states,
and a variant of the hypothesis-testing relative entropy distance,
respectively. The one-shot distillable coherence is also related
to one-shot randomness extraction. Moreover, from the one-
shot formulas under IO, MIO, and DIO, we can recover the
optimal distillable rate in the many-copy asymptotics, yielding the
relative entropy of coherence. These results can be compared with
previous work by some of the present authors [Zhao et al., Phys.
Rev. Lett. 120, 070403 (2018)] on one-shot coherence formation
under IO, MIO, DIO and also SIO. This shows that the amount
of distillable coherence is essentially the same for IO, DIO, and
MIO, despite the fact that the three classes of operations are very
different. We also relate the distillable coherence under strictly
incoherent operations (SIO) to a constrained hypothesis testing
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problem and explicitly show the existence of bound coherence
under SIO in the asymptotic regime.

Index Terms— Quantum coherence, coherence distillation,
one-shot, quantum resource theory.

I. INTRODUCTION

COHERENCE, as the signature of non-classicality, has
applications in many quantum information process-

ing tasks, including cryptography [1], metrology [2], ran-
domness generation [3], [4], biological systems [5], [6]
and thermodynamics [7]–[11]. Recently, a resource theory
framework of quantum coherence has been introduced by
Baumgratz et al. [12] (after prior work of Åberg [13], as well
as Braun and Georgeot [14]). A general quantum resource
theory consists of two objects: a set of free states and a set of
free operations, with the latter acting invariantly on the former.
In the resource theory of coherence, the free states I for a
d-dimensional Hilbert space is the set of density matrices
that are invariant under conjugation by the phase unitary

Z =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0 e2π i/d
...

...
. . . 0

0 · · · 0 e2π i(d−1)/d

⎞⎟⎟⎟⎟⎠, (1)

with Z being expressed in an a priori fixed computational
basis {|x�}d

x=1. Furthermore, different physical and mathemat-
ical motivations have led to the proposal and study of different
classes of free operations, most notably the maximally incoher-
ent operations (MIO) [13], the dephasing-covariant incoherent
operations (DIO) [15], [16], the incoherent operations (IO)
[12], and the strictly incoherent operations (SIO) [17], [18].
For instance, SIO emerges as a natural class of operations to
consider when quantifying visibility in interferometer experi-
ments [19]. Several coherence measures have been introduced
to quantify the amount of coherence in a state, including the
relative entropy and �1-norm of coherence [12], the coherence
of formation [3], [13], and the robustness of coherence [20],
which have all been shown to possess different operational
meanings [3], [17], [20], [21]. An overview on recent devel-
opments of the resource theory of coherence can be found in
Ref. [22].

An important problem in the resource theory is convertibil-
ity of states via free operations, especially those between an
arbitrary state ρ and a maximal resource state |�M �. In an
M-level system, the superposition state |�M � = 1√

M

�M
i=1 |i�
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has the maximal coherence with respect to the aforementioned,
and indeed all, coherence measures, and the qubit state |�2�
serves as resource unit in the theory, the “cosbit” [23]. The
process of converting a given state ρ to |�M � is referred to
as coherence distillation and the reverse process as coher-
ence dilution. In the asymptotic case where an unbounded
number of independent and identically distributed (i.i.d.)
copies of the initial state are provided, the optimal rates
of asymptotic distillation and dilution are quantified by the
relative entropy of coherence and the coherence of formation,
respectively [17].

In practical scenarios, i.i.d. resources are not available and
an analysis of non-asymptotic tasks becomes crucial. In recent
work [24], the formation problem was addressed in the one-
shot setting under all four of the above operational classes.
Subsequently, the converse question of one-shot coherence
distillation was solved for the classes MIO and DIO [25]. In
the present paper, we close the remaining gap by providing
an analysis of general one-shot coherence distillation under
IO and SIO. Our results show that, while not being exactly
identical, the three classes MIO, DIO, and IO all lead to
essentially the same expression for the distillable coherence in
terms of a min-relative entropy distance from the incoherent
states; the differences are in the smoothing parameters and
universal additive terms. When extended to the asymptotic
case, our one-shot results imply that MIO, DIO, and IO
all have distillable coherence given by the relative entropy,
thereby recovering earlier work found in [17]. In contrast,
we show that the coherence distillation by SIO can behave
quite differently than its more general counterparts, and we
characterize the one-shot distillable coherence as a constrained
hypothesis testing problem. We further show that coherence
can be a bound resource under SIO, meaning that states exist
with zero distillable coherence but nonzero coherence cost. We
also show the relationship among the extractable randomness,
IO and DIO distillable rate, which are are indeed closely
related. The reason is that the distillation proceeds by a kind
of decoupling process, and can thus be related to randomness
extraction.

The structure of the remainder of the paper is as follows:
In Section II we review the four mentioned classes of inco-
herent operations and introduce the dilution and distillation
tasks for coherence in the one-shot setting. We present the
prior results on dilution in all four cases, and in Section III
review the prior results on distillation under MIO and DIO.
In Section IV we come to the first main result of the
present paper, a tight one-shot characterization of distilla-
tion with IO, showing in particular a distillation protocol
achieving the lower bound with an operation that is at
the same time IO and DIO. Then, in Section V we give
a one-shot formula for distillation under SIO, and most
importantly, show the existence of bound coherence in this
model. In Section VI we show how the obtained one-shot
formulas for IO, DIO and MIO imply the previously known
asymptotic distillation rate Cr (ρ), and finally Section VII
contains the discussion on the relation between random-
ness extraction and coherence distillation, after which we
conclude.

II. COHERENCE DILUTION AND DISTILLATION

A. Classes of Incoherent Operations

A general resource theory of coherence is constructed by
imposing restrictions on the allowed completely positive trace-
preserving (CPTP) maps � : L(A) → L(B), where L(A)
denotes the space of linear operators acting on a finite-
dimensional Hilbert space A and likewise for L(B). One
necessary restriction is that � acts invariantly on the set of
incoherent states I; i.e. �(δ) ∈ I whenever δ ∈ I. The
completely dephasing map �(ρ) = �d

x=1 |x��x |ρ|x��x | plays
an important role in this theory as it destroys all coherence
in a state, and it therefore maps any resource state to a free
one. The following classes of operations have been proposed
in [12], [13], [15]–[18], each motivated by different physical
considerations.
MIO Maximal Incoherent Operations [13] are characterized

by �(δ) ∈ I for all δ ∈ I, which may be expressed as
the identity � ◦� = � ◦� ◦�;

DIO Dephasing-Covariant Incoherent Operations [15], [16]
satisfy the stronger condition � ◦� = � ◦�;

IO Incoherent Operations [12] are those MIO with a
Kraus decomposition �(ρ) = �

α KαρK †
α , such that

KαδK †
α/Tr(KαδK †

α) ∈ I for all α and δ ∈ I;
SIO Strictly Incoherent Operations [17] are those IO with

a Kraus decomposition �(ρ) = �
α KαρK †

α such that
Kα = �

x cα,x | fα(x)��x |, and fα : [d] = {1, · · · , d} →
[d] is a one-to-one function for all α.

The relationships among these classes are

SIO � IO � MIO,

SIO � DIO � MIO; (2)

note that IO is not included in DIO and vice versa.
For later use, and because it will turn out to be significant,

we also give a name to the intersection of IO and DIO,

DIIO = IO ∩ DIO,

which we dub dephasing-covariant incoherent IO.

B. Coherence Dilution

The one-shot coherence dilution problem characterizes the
minimal resource required for the formation of a target state
with an allowed error ε. The definition of one-shot coherence
dilution is as follows.

Definition 1. Let O ∈ {MIO, DIO, IO, SIO} denote some
class of incoherent operations. Then for a given state ρ and
ε ≥ 0, the one-shot coherence formation cost with error ε
under O is defined as

Cε
c,O(ρ) = min

�∈O
	
log M : F(�(�M ), ρ)

2 ≥ 1 − ε


. (3)

where F(ρ, σ ) = Tr
�√

ρσ
√
ρ is the usual mixed state

fidelity. By default, here and throughout the paper, log ≡
log2 is the binary logarithm, in accordance with information
theoretic use.

In Ref. [24], several coherence monotones were proposed to
estimate the one-shot coherence cost. The first two are based
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TABLE I
COHERENCE DISTILLATION AND FORMATION RATES, WITH ATTRIBUTIONS WHERE THE CORRESPONDING RESULT WAS FIRST OBTAINED. OUR NEW

CONTRIBUTIONS (IN BOLD, AND MARKED BY ASTERISKS) ARE THE IO AND SIO DISTILLATION RATES IN THE ONE-SHOT SETTING; FURTHERMORE,
WE PROVE THAT MIO, DIO AND IO ONE-SHOT DISTILLATION RATES DIFFER ONLY BY VARYING THE SMOOTHING PARAMETER AND BY UNIVERSAL
ADDITIVE TERMS. THE ONE-SHOT DISTILLATION RATE UNDER SIO IS CONVERTED INTO AN OPTIMIZATION PROBLEM IN THEOREM 10, AND IN THE

ASYMPTOTIC CASE, WE PROVE THE EXISTENCE OF BOUND COHERENCE UNDER SIO, SHOWING THAT THE RATE IS DIFFERENT FROM THE RELATIVE

ENTROPY OF COHERENCE IN GENERAL

on the max relative entropy Dmax(ρ�σ) = log min{λ : ρ ≤
λσ }. Alternatively, one can introduce this quantity using the
sandwiched quantum α-Rényi divergence

D̃α(ρ�σ) = 1

α − 1
log

�
Tr


�
σ

1−α
2α ρσ

1−α
2α

�α��
, (4)

letting α → ∞ [27], [28]. One then defines

Cmax(ρ) = min
δ∈I

Dmax(ρ�δ) = log min
δ∈I

{λ : ρ ≤ λδ}, (5)

C�,max(ρ) = min
σ∈Aρ

Dmax(ρ�σ) = log min{λ : ρ ≤ λ�(ρ)},

(6)

where Aρ = {σ ≥ 0 : σ + tρ = (1 + t)�(ρ), t > 0} [29] and
Aρ is its closure. The quantity Cmax(ρ) is a monotone under
MIO, while C�,max(ρ) is a monotone under DIO, but not IO
in general. However, for a pure state |μ�, C�,max reduces to
its incoherent rank [29], defined as

C0(μ) := S0(�(μ)) = log rank[�(μ)], (7)

and the incoherent rank is a monotone under IO even for
stochastic pure state transformations [12]. Thus, one can obtain
a general mixed state monotone for IO by taking a convex roof
extension:

C0(ρ) := min
pi ,|μi �

max
i

C0(μi ), (8)

where the minimization is over all pure state ensembles satis-
fying ρ = �

i pi |μi ��μi |. Note, the minimization is followed
by a maximization rather than an averaging over the |μi � (as
typically done in such measures) because C0(μ) is a stochastic
IO monotone.

Since we allow ε error in our one-shot tasks, we likewise
apply an ε smoothing to our coherence measures. Depending
on the quantity, this is done by either minimizing or maximiz-
ing the measure over all states ρ� lying in an ε-ball around ρ.
For example, if C represents any one of the measures Cmax,
C�,max or C0, its ε-smoothed variant is given by

Cε(ρ) = min
ρ�∈Bε(ρ)

C(ρ�). (9)

Here Bε(ρ) = {ρ� : P(ρ�, ρ) ≤ ε} is defined with respect to
the purified distance P(ρ�, ρ) = �

1 − F(ρ�, ρ)2. Note that
the purified distance is related to the trace distance by [30]

1 −
�

1 − P(ρ�, ρ)2 ≤ 1

2
�ρ − ρ��1 ≤ P(ρ�, ρ).

As shown in [24], the measures Cε
max, Cε

�,max and Cε
0 precisely

characterize the one-shot coherence formation for MIO, DIO,
and IO/SIO, respectively (see Table I). Note that our definition
of Bε(ρ) differs from [24] by replacing ε ↔ √

ε.
The regularized (many-copy) coherence cost of formation

can then be defined using the one-shot quantities. For O ∈
{MIO, DIO, IO, SIO}, the asymptotic rate of coherence cost
for a state ρ under operations O is defined as

C∞
c,O(ρ) := lim sup

ε→0+
lim sup

n→∞
1

n
Cε

c,O(ρ
⊗n). (10)

Remarkably, for all four operational classes, the coherence
cost has a single-letter characterization. For MIO and DIO,
the regularized coherence cost is given by the relative entropy
of coherence, which we call the asymptotic coherence cost
under MIO, DIO [24], [26],

Cr (ρ) = min
δ∈I

D(ρ�δ) = S(�(ρ))− S(ρ), (11)

where D(X�Y ) = − Tr[X (log Y − log X)] is the relative
entropy, and we have

lim
ε→0+ lim

n→∞
1

n
Cε

c,MIO/DIO

�
ρ⊗n� = Cr (ρ). (12)

In the above, we use lim instead of lim sup or lim inf for
simplicity. On the other hand, for IO and SIO, the regularized
coherence cost is given by the so-called coherence of forma-
tion [17], which we call the asymptotic coherence cost under
IO, SIO and is defined as

C f (ρ) = min
pi ,|μi �

�
i

pi Cr (μi ), (13)

where

lim
ε→0+ lim

n→∞
1

n
Cε

c,IO/SIO

�
ρ⊗n� = C f (ρ). (14)

In contrast to the entanglement of formation, the coherence of
formation is an additive function [17].

C. Coherence Distillation

We next turn to the main focus of this paper, which is the
task of transforming a given state ρ into a maximally coherent
pure state. The one-shot distillation of the problem with ε error
is stated as follows.
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Definition 2. Let O ∈ {MIO, DIO, IO, SIO} denote some
class of incoherent operations. Then for a given state ρ and
ε ≥ 0, the one-shot coherence distillation rate with error ε
under O is defined as

Cε
d,O(ρ) = max

�∈O
	
log M : F(�(ρ),�M )

2 ≥ 1 − ε


. (15)

In order to quantify the one-shot distillable rates, we first
introduce two additional functions. The first one is based
on the min quantum Rényi divergence Dmin(ρ�σ) =
− log F(ρ, σ )2 = D̃1/2(ρ�σ) [27], α = 1

2 in Eq. (4). Using
this quantity, the min-entropy of coherence Cmin(ρ) can be
defined as

Cmin(ρ) = min
δ∈I

Dmin(ρ�δ). (16)

The properties of Cmin and its relationship between other
coherence monotones are discussed in [31].

The second quantifier of coherence relevant to our study
is based on the hypothesis testing relative entropy [32]–[34].
In the task of hypothesis testing, a positive operator valued
measure (POVM) with two elements {W,� − W } is used to
distinguish two possible states ρ and σ . The probability of
obtaining a correct guess on ρ is Tr(ρW ) and the probability
of obtaining a wrong guess on σ is Tr(σW ). The hypothesis
testing relative entropy characterizes the minimal wrong guess-
ing probability on σ , with the constraint that the probability
of the correct guess on ρ is no less than 1 − ε:

Dε
H (ρ�σ) = − log min

	
Tr σW : 0 ≤ W ≤ �,

Tr ρW ≥ 1 − ε


. (17)

This serves as a parent quantity for two other coherence
functions. Namely, we have

Cε
H (ρ) = min{Dε

H (ρ�δ) : δ ∈ I}, (18)�Cε
H (ρ) = min{Dε

H (ρ�σ) : σ = �(σ), Tr σ = 1}. (19)

The function �Cε
H (ρ) characterizes the one-shot distillable

coherence under MIO and DIO. Note that the set of σ in�Cε
H (ρ) is a larger set of operators than the set of incoherent

states I and does not need to be positive semi-definite. In the
many-copy scenario, the regularized coherence distillation rate
by operations O ∈ {MIO, DIO, IO, SIO} is defined as

C∞
d,O(ρ) = lim inf

ε→0+ lim inf
n→∞

1

n
Cε

d,O(ρ
⊗n). (20)

For MIO, DIO, and IO, the distillable coherence of ρ is
given by the relative entropy of coherence, which we call the
asymptotic coherence distillation rate [17], where

lim
ε→0+ lim

n→∞
1

n
Cε

d,MIO/DIO/IO

�
ρ⊗n� = Cr (ρ). (21)

Combining Eq. (12), (21), we can conclude that coherence is
asymptotically reversible under MIO/DIO. In contrast, as we
show below, certain coherent states are undistillable under
SIO. A summary of the distillation/formation rates for different
operations is given in Table I.

III. ONE-SHOT DISTILLATION UNDER MIO AND DIO

In this section, we review the results of [25] on MIO and
DIO distillation.

For a quantum channel � : L(A) → L(B), consider its
Choi operator

� = (id ⊗�)� =
�
i, j

|i�� j |R ⊗�(|i�� j |A), (22)

where R is isomorphic to A. Let �i j = �(|i�� j |A).
By Choi’s theorem, � is completely positive if and only
if � ≥ 0. Also, � is trace preserving if and only if
Tr �i j = δi j .

Now consider � ∈ MIO, meaning �(δ) ∈ I for all δ ∈ I,
which is equivalent to �(|i��i |) ∈ I for all i . For the Choi
matrix this says �ii ∈ I for all i . For � ∈ DIO, from
�(�(|i�� j |)) = �(�(|i�� j |)) for all i and j , we get δi j�i j =
�(�i j ).

Since �(ρ) = �
i, j ρi j�i j (by linearity), we have now,

F(�(ρ),�M )
2 = Tr[�(ρ)�M ] =

�
i, j

ρi j Tr �i j�M . (23)

The one-shot distillation under MIO/DIO can thus be
expressed as

max M s.t.
�
i, j

ρi j Tr �i j�M ≥ 1 − ε,
�
i, j

|i�� j | ⊗ �i j ≥ 0,

Tr �i j = δi j ,

�
�ii ∈ I[MIO],

δi j�i j = �(�i j )[DIO].
(24)

Suppose that the �i j satisfy the above constraints. Consider
the twirling transformation

��i j = 1

M!
�
π∈SM

Uπ�i j U
†
π , (25)

where SM denotes the permutation group on M objects, and
Uπ is the unitary representation of π as a permutation matrix.
It is easy to see that then the ��i j also satisfy the constraints,
and lead to the same objective function, due to the permutation
invariance of �M . Therefore, without loss of generality, we can
assume that each of the �i j is permutation-invariant and has
hence the form

�i j = αi j�M + βi j
�− �M

M − 1
. (26)

Furthermore, Tr �i j = αi j + βi j . We can see that both MIO
and DIO lead to the following constraints: When i �= j ,
we have βi j = −αi j and when i = j , we have αii = 1

M ,
βii = 1 − 1

M . For the matrices A = (αi j )i, j and B = (βi j )i, j ,
this translates into the simple relation B = � − A. Notice
that

� =
�
i, j

αi j |i�� j | ⊗�M +
�
i, j

βi j |i�� j | ⊗ �−�M

M − 1
, (27)

and we must satisfy �μ|�|μ� ≥ 0 for all |μ�. Consider the
special case |μ� = |u� ⊗ |v�; by choosing |v� = |�M �,
we learn that A ≥ 0. By choosing |v� orthogonal with |�M �,
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we see likewise that B ≥ 0. Conversely, A, B ≥ 0 implies
that � ≥ 0.

In conclusion, one-shot distillation under MIO/DIO can be
solved by the following SDP: Cε

d,MIO/DIO(ρ) = log Mopt, with

Mopt = max M s.t. Tr ρT A ≥ 1 − ε,

0 ≤ A ≤ �, Aii = 1

M
∀i. (28)

To express this result in terms of a suitable relative-entropy
distance, we recall the hypothesis testing relative entropy
introduced above [32]–[34],

Dε
H (ρ�σ) = − log min

	
Tr σW : 0 ≤ W ≤ �,

Tr ρW ≥ 1 − ε


, (29)

and the corresponding coherence measure

Cε
H (ρ) = min

δ∈I
Dε

H (ρ�δ). (30)

We show that the coherence measure Cε
H (ρ) can be com-

puted by SDP. Notice that

Cε
H (ρ) = − log max

δ∈I
min

W :0≤W≤�
Tr ρW≥1−ε

Tr δW

= − log min
W :0≤W≤�
Tr ρW≥1−ε

max
δ∈I

Tr δW

= − log min
W :0≤W≤�
Tr ρW≥1−ε

max
i

Wii , (31)

where in the second line we have appealed to the minimax
theorem [35], noting that the objective function, Tr δW , is lin-
ear in each of the two arguments, and that the domains of
optimization are closed convex sets.

The third line in Eq. (31) can now be expressed as an SDP
as follows:

μopt = maxμ s.t. Tr ρW ≥ 1 − ε,

0 ≤ W ≤ �, Wii ≤ 1

μ
∀i, (32)

where Cε
H (ρ) = logμopt. Notice that in Eq. (28) we have a

transpose on ρ, while in Eq. (32) we don’t. We can simply
change A into AT in the SDP (28) without changing its value,
so that the two SDPs have similar form, except that one has an
equality sign where the other other has a “≤”. In [25], it was
shown that the r.h.s. of Eq. (28) can be expressed in terms of
Dε

H , as well:

Cε
d,MIO/DIO(ρ) = max log M

s.t. Tr ρT A ≥ 1 − ε,

0 ≤ A ≤ �, Aii = 1

M
∀i

= min Dε
H (ρ�δ)

s.t. δ diagonal and Tr δ = 1

=: �Cε
H (ρ), (33)

where the minimization is crucially over Hermitian, but not
necessarily positive semidefinite matrices δ.

We record these findings in the following theorem.

Theorem 3 (Regula et al. [25]). For any state ρ, the one-shot
MIO- and DIO-distillable coherence is given by

Cε
d,DIO(ρ) = Cε

d,MIO(ρ) = �Cε
H (ρ) ≤ Cε

H (ρ). (34)

IV. ONE-SHOT DISTILLATION UNDER IO

Now we come to the main contribution of the present
paper, the extension of the one-shot distillation protocols to
the class IO.

To start, recall the definition of the min-relative entropy and
its smoothed version,

Dmin(ρ�σ) = − log F(ρ, σ )2,

Dε
min(ρ�σ) = max

ρ�∈Bε(ρ)
Dmin(ρ

��σ). (35)

The smooth min-relative entropy of coherence is defined as

Cε
min(ρ) = max

ρ�∈Bε(ρ)
min
δ∈I

Dmin(ρ�δ). (36)

One might wonder why we do not interchange min and max
here, but this is the version of the quantity that appears
naturally both in the achievability bound we will derive on
Subsection IV-A, and in the upper bound in Subsection IV-B.

A. An Achievable Lower Bound

We will generalize the protocol in [17, Thm. 6] to obtain a
min-relative-entropic lower bound on the distillable coherence.
In the process, the privacy amplification aspect will become
even more apparent.

Theorem 4. For an arbitrary state ρ and 0 < ε < 1,

Cε
d,IO(ρ) ≥ C

ε
2 −η
min (ρ)− 2 log

1

η
, (37)

for any 0 < η < ε
2 .

Proof. In order to accomplish our proof, we need to introduce
the conditional min/max entropy and their smoothed versions.
For a bipartite quantum state ρAB , the min-entropy of A
conditioned on B is defined as

Hmin(A|B)ρAB := − min
σ B

Dmax(ρ
AB��A ⊗ σ B), (38)

and the max-entropy of A conditioned on B is defined as

Hmax(A|B)ρAB := −Hmin(A|C)ρAC , (39)

where ρABC is a purification of ρAB and ρAC = TrB ρ
ABC .

It has been proven that the max-entropy has an alternative
form [36]

Hmax(A|B)ρAB := − min
σ B

Dmin(ρ
AB��A ⊗ σ B). (40)

Furthermore, the smoothed conditional min- and max-entropy
are defined by

H ε
min(A|B)ρAB := max

ρ�∈Bε(ρAB )
H ε

min(A|B)ρ�,

H ε
max(A|B)ρAB := min

ρ�∈Bε(ρAB )
H ε

max(A|B)ρ� . (41)
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In the following proof, we denote the system of interest as
A, i.e. ρA := ρ, and the incoherent basis as {|x�}. Denote
μ := |μ��μ|. Choose a purification of ρA,

|μ�AE =
�

x

√
px |x�A|μx �E ,

where TrE μ
AE = ρA , and introduce the dephased cq-state

θAE = (�⊗ id)μ =
�

x

px |x��x |A ⊗ μE
x .

According to [37, Cor. 5.6.1] (actually, a slight adaptation

to get rid of a factor of 2), for every log M ≤ H
ε
2 −η

min (A|E)θ−
2 log 1

η there exists a function G : X → [M] = {1, 2, . . . ,M}
such that the state

�K E := (G ⊗ id)θAE =
�

x

px |G(x)��G(x)|K ⊗ μE
x

satisfies
1

2

����K E − τK ⊗ σ E
���

1
≤ ε

2
,

for τ K = 1
M �K and a suitable state σ E (which may be equal

to θE , but it doesn’t have to be). Hence, because of the well-
known relation between trace distance and fidelity [30],

1 − F(ρ, σ ) ≤ 1

2
�ρ − σ�1 ≤

�
1 − F(ρ, σ )2,

we have F(�K E , τK ⊗ σ E ) ≥ 1 − ε
2 .

To turn this property, which encapsulates the uniformity and
independence of the “key” K = G(X) from E , into a coher-
ence distillation protocol, consider the following purification
of �K E :

|��K AE :=
�

x

√
px |G(x)�K |x�A|μx �E ,

which can be obtained from |μ�AE by applying the isometry

U : |x�A �−→ |G(x)�K |x�A.

Crucially, U is incoherent (even SIO). For τK ⊗ σ E , on the
other hand, we choose a purification |��K L ⊗|ζ �E F , with the
standard maximally entangled state |�� = 1√

M

�M−1
i=0 |i�|i�.

By Uhlmann’s theorem [38], there exists an isometry V : A �→
L F such that

|��|�ζ | · (�K E ⊗ V )|��| ≥ 1 − ε

2
. (42)

If we had |��K L |ζ �E F , we could clearly create a maxi-
mally coherent state �M on system K by tracing out F ,
and destructively measuring L in the Fourier conjugate basis
|�α� := Zα|�M �. Here Z is the phase unitary defined in Eq. (1).

With this, the protocol is clear: starting from ρA, first apply
U ; then apply V , followed by tracing out F , measuring L
in the Fourier basis {|�α�}α=0,...,M−1; finally, apply Zα on
K . The first and the third step clearly are incoherent (even
SIO); the second seems suspicious, and indeed V may not be
incoherent at all, but notice that we follow it by a destructive
measurement, and these are all IO. We can write Kraus
operators of the resulting map � : A → K as follows:

Mαβ := �
ZαK ⊗ ��α|L�β|F V

�
U,

where {|β�} is an arbitrary basis of F .

To analyze the fidelity of the protocol, we pass to the
purifications and look at eq. (42); by the monotonicity of
the fidelity under the CPTP maps � and TrE , we obtain
F

�
�(ρ),�M

� ≥ 1 − ε
2 and hence F

�
�(ρ),�M

�2 ≥ 1 − ε.

This shows that log M ≈ H
ε
2 −η

min (A|E)θ − 2 log 1
η is

achievable. Now, introducing the purification |θ�AB E =�
x
√

px |x�A|x�B |μx�, we have

H α
min(A|E)θ = −H α

max(A|B)θ
= − log min

θ�∈Bα(θ)
max
σ

F(θ�,�⊗ σ)2

≥ − log min
θ�∈Bα(θ)

max. correlated

max
σ

F(θ�,�⊗ σ)2

= − log min
θ�∈Bα(θ)

max. correlated

max
σ∈I

F(θ�,�⊗ σ)2

= − log min
ρ�∈Bα(ρ)

max
δ∈I

F(ρ�, δ)2

= max
ρ�∈Bα(ρ)

min
δ∈I

Dmin(ρ
��δ)

= Cα
min(ρ). (43)

Here, the second line follows from Eq. (40), and the
third line is motivated by the observation that θAB =�

xy
√

px py�μy |μx�|xx��yy| is a maximally correlated state,
so it is natural to impose the same structure on θ�; the
fourth line follows from the Z ⊗ Z†-invariance of maximally
correlated states, so by the concavity of the fidelity we can
impose w.l.o.g. the same structure on �⊗ σ , meaning that σ
is diagonal. The rest is straightforward algebra. �

Note that the equality in Eq. (43) can also be achieved by
directly using the results by Coles [39], or [31]:

Hmin(X |E)ρX E = min
δ∈I

Dmin(ρA�δ). (44)

Remark 5. The CPTP map �(·) = �
α,β Mαβ(·)M†

αβ we
constructed in the proof is not only IO but also DIO. To see
this, first expand

�(|x��y|) =
�
α,β

Zα|G(x)��G(y)|Zα†��αβ|V |x��y|V †|�αβ�

for any incoherent basis states |x� and |y� of system A. The key
observation is that fully dephased states are invariant under
conjugation by Zα , and moreover this conjugation commutes
with �, i.e. �[Zα(·)Zα†] = �(·). Hence if we dephase system
K after applying the map �, we find

�[�(|x��y|)] = δG(x)G(y)|G(x)��G(y)|
×

�
α,β

��αβ|V |x��y|V †|�αβ�

= δxy|G(x)��G(y)| = �[�(|x��y|)], (45)

where the second equality follows from the fact that {|�αβ�}α,β
forms a complete basis. Thus, � is a DIO map.

Corollary 6. For an arbitrary state ρ and 0 < ε < 1,

Cε
d,DIIO(ρ) ≥ C

ε
2 −η
min (ρ)− 2 log

1

η
, (46)

for any 0 < η < ε
2 , where DIIO refers to the intersection of

IO and DIO. �
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B. Upper Bound and Comparison With MIO Distillation

We have a partial converse theorem to Theorem 4 which
can bound Cε

d,IO(ρ) from both sides, as follows.

Theorem 7. For an arbitrary state ρ and 0 < ε < 1,

Cε
d,IO(ρ) ≤ C

√
ε(2−ε)

min (ρ). (47)

Proof. Due to the inclusion of the classes of operations, and
Theorems 3 and 4, we have the first four of the following
(in)equalities:

C
ε
2 −η
min (ρ)− 2 log

1

η
≤ Cε

d,IO(ρ)

≤ Cε
d,M/D IO(ρ) = �Cε

H (ρ)

≤ Cε
H (ρ)

≤ C
√
ε(2−ε)

min (ρ). (48)

The last one also follows essentially from known facts,
namely [34, Prop. 4.2]. Note only that our definition of Dε

H
differs from [34] by ε ↔ 1 − ε, and an additional term of
log(1 − ε) added. We made this choice for easier comparison
with the results from [25]. With this in mind, [34, Eq. (51)]
reads

Dε
H (ρ�σ) ≤ D

√
2ε

min (ρ�σ),
and looking at the last step of the proof, one observes that√

2ε can be improved to
√
ε(2 − ε). We can adapt the proof

in [34] to include the minimization over δ ∈ I, according
to the following Lemma 9. By applying it with S = I, and
maximizing over the

√
ε(2 − ε)-ball on the right hand side,

we precisely obtain the last inequality in Eq. 48. �

Remark 8. Combining Theorem 4 and Theorem 7, we con-
clude that Cε

d,IO(ρ) ≈ Cε�
min(ρ), with ε� ∈ [ ε2 ,

√
ε(2 − ε)].

Lemma 9. Let S be a closed convex set of states on a Hilbert
space A, and ρ a state. Then, for every 0 < ε < 1 there exists
a subnormalized density matrix ρ� with P(ρ, ρ�) ≤ √

ε(2 − ε),
such that

min
σ∈S

Dε
H (ρ�σ) ≤ min

σ∈S
D

√
ε(2−ε)

min (ρ��σ).

Proof. The crucial observation is that due to the convexity of
the sets of operators, S and {0 ≤ W ≤ � : Tr ρW ≥ 1 − ε},
we can invoke the minimax theorem [35], to obtain

max
σ∈S

min
0≤W≤�

Tr ρW≥1−ε
Tr σW = min

0≤W≤�
Tr ρW≥1−ε

max
σ∈S

Tr σW.

Thus, there exists an optimizer W0 of the second expression,
0 ≤ W0 ≤ �, Tr ρW0 ≥ 1 − ε, with

min
σ∈S

Dε
H (ρ�σ) = min

σ∈S
− log Tr σW0. (49)

Following the the example of [34, Prop. 4.2], we define a
subnormalized state ρ� = √

W0ρ
√

W0, which we claim to be
the sought-after object.

To start with, from optimality of W0, we have Tr ρ� =
Tr ρW0 = 1 − ε, hence from [34, Lemma A.3] (see also [40,
Lemma 7]), P(ρ�, ρ) ≤ �

1 − (Tr ρW0)2 = √
ε(2 − ε).

At the same time, choosing a purification of ρA =
TrB |ϕ��ϕ|AB , we get a purification of ρ� by letting |ϕ�� =
(
√

W0 ⊗�)|ϕ�. Conjugating the inequality ϕ ≤ � by
√

W0 ⊗�

this results in ϕ� ≤ W0 ⊗ �. Now, just as in the proof of [34,
Prop. 4.2], we employ the dual variational characterization of
the fidelity,

F(ρ�, σ )2 = min Tr σ Z s.t. ϕ� ≤ Z ⊗ �.

This implies, that Tr σW0 ≥ F(ρ�, σ ) in (49), for all
σ ∈ S, and so minσ∈S Dε

H (ρ�σ) ≤ minσ∈S − log F(ρ�, σ )2,
as claimed. �

V. DISTILLATION UNDER SIO

A. Characterizing One-Shot SIO Distillation

We now turn to coherence distillation under strictly inco-
herent operations (SIO). Ever since [17], it has been an open
question whether coherence distillation such as the protocol
in Sec. IV-A, or in [17, Thm. 6], really requires IO, or can
be performed within the smaller class of SIO (as all other
protocols discussed in [17] can). The crucial object in this
setting turns out to be the incoherent rank. Recall that the
incoherent rank of a positive operator � is defined by

C0(�) = min{λ j ,|φ j �}
max

j
log rank[�(φ j )], (50)

where the minimization is taken over all positive rank-one
decompositions of �.

Theorem 10. For any state ρ, the one-shot distillable coher-
ence under SIO is given by

Cε
d,SIO(ρ) = max log M s.t. Tr ρA ≥ 1 − ε,

0 ≤ A ≤ �, Aii = 1

M
∀i

C0(A) ≤ log M. (51)

Proof. Suppose that Tr[�(ρ)�M ] ≥ 1 − ε for some SIO map
� and |�M � = 1√

M

�M
i=1 |i�. Let �>M = 1

M

�dA
x=M+1 |x��x |.

Notice that

1 − ε ≤ Tr[�(ρ)�M ]
≤ Tr[�(ρ)(�M +�>M )]
= Tr[ρA], (52)

where A := �∗(�M ) + �∗(�>M ) and �∗ is the adjoint
channel of �. Using the form of SIO Kraus operators, we have

�∗(�M ) = 1

M

�
α

�
x s.t .

fα(x)∈[M]

�
x � s.t .

fα(x �)∈[M]

c∗
α,x |x��x �|cα,x �

= 1

M

�
α

|φα��φα|, (53)
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and likewise

�∗(�>M ) = 1

M

�
α

�
x s.t .

fα(x) �∈[M]

|cα,x |2|x��x |. (54)

Thus A has a decomposition into rank-one vectors each having
an incoherent rank no greater than M . Also, for any y ∈
{1, · · · , dA}, we see that

�y|A|y� = 1

M

⎛⎜⎝ �
α s.t .

fα(y)∈[M]

+
�
α s.t .

fα(y) �∈[M]

⎞⎟⎠ |cα,y|2 = 1

M
, (55)

i.e. Ayy = 1
M for all y.

The converse involves essentially reversing these steps.
Suppose that Tr ρA ≥ 1 − ε for some operator 0 ≤ A ≤ �

with C0(A) ≤ log M and Aii = 1
M . Then there exists a

decomposition

A = 1

M

�
α

|φα��φα|

= 1

M

�
α

dA�
x,x �=1

cα,xc∗
α,x � |x��x �|, (56)

where (cα,x)x contains at most M nonzero elements for each α.
Hence we can define permutations fα on the set {1, · · · , |A|}
such that fα(x) ∈ [M] for every x and α with cα,x �= 0. The
Kraus operators Kα = �dA

x=1 c∗
α,x | fα(x)��x | satisfy�

α

K †
α�M Kα = �. (57)

Furthermore,
�
α K †

αKα = �
α

�dA
x=1 |cα,x |2|x��x | = �, since

by assumption

1

M
= �x |A|x� = 1

M

�
α

|cα,x |2.

Therefore, the {Kα}α define a CPTP SIO map � satisfying
Tr�(ρ)�M ≥ 1 − ε. �

Remark 11. Comparing with Eq. (33), we see that the one-
shot distillable coherence under SIO takes the form of DIO
distillation with the added constraint of C0(A) ≤ log M.

Remark 12. An explicit calculation of the incoherent rank
C0 can be made through semi-definite programming tech-
niques [41]. However the number of computational constraints
scales as

� d
M

�
for certifying whether a d-dimensional state ρ

has C0(ρ) ≥ log(M + 1).

B. Bound Coherence Exists Under SIO

The constraint on the incoherent rank of A in Theorem 10
greatly diminishes the power of SIO to distill coherence. Here
we illustrate this effect by a dramatic example. Consider the
state

ρ = 1

2

�|+��+| ⊗ |+��+| + |−��−| ⊗ |�+���+|�, (58)

where

|+�|+� = 1

2
(|00� + |01� + |10� + |11�)

|−�|�+� = 1

2
(|00� + i |01� − |10� − i |11�).

The n-copy state ρ⊗n is then an equal mixture of states
belonging to the ensemble

En := {|+�|+�, |−�|�+�}⊗n .

We will show that not a single cosbit of coherence can
be distilled from ρ⊗n by SIO with an error smaller than the
minimal one-copy error. In comparison, n bits of coherence
can be distilled by IO error-free: the first system in each
copy of ρ is simply measured with the IO Kraus operations
{|0��+|, |1��−|} followed by a suitable controlled phase on
the second qubit. Such a measurement is not possible by SIO.

Theorem 13. For the state ρ defined in Eq. (58),
C∞

d,SIO(ρ) = 0.

The proof of this will follow by studying the structure of
ρ⊗n and showing that for a fixed value of ε (independent of
n), Tr ρ⊗n A < 1 − ε for any operator A having an incoherent
rank of two and satisfying the conditions of Theorem 10.
The key property we use is that the eigenvectors of ρ⊗n will
always be maximally coherent states with complex phases
belonging to {0, π2 , π, 3π

2 }. For the n-copy analysis to be
tractable, we need to introduce some new notations. Let
b j = (b j,0, b j,1, · · · , b j,n−1) ∈ {0, 1}n denote the j th binary
sequence of length n. We then define an ensemble of 2n

equiprobable states {|b j �}2n

j=1, where

|b j � :=
1√
4n

3�
m0,··· ,mn−1=0

exp

�
i
π

2

n−1�
k=0

b j,kmk

� ���� n−1�
k=0

4kmk

�
. (59)

We claim that, up to relabelling, this ensemble is precisely En .
For example, when n = 1 we have

|b1� = 1

2
(|0� + |1� + |2� + |3�)

|b2� = 1

2
(|0� + i |1� − |2� − i |3�) ,

and for n = 2 we have

|b1� = 1

4
(|0� + |1� + |2� + |3� + |4�

+ |5� + |6� + · · · + |14� + |15�)
|b2� = 1

4
(|0� + i |1� − |2� − i |3� + |4�

+ i |5� − |6� − · · · − |14� − i |15�)
|b3� = 1

4
(|0� + |1� + |2� + |3� + i |4�

+ i |5� + i |6� + · · · − i |14� − i |15�)
|b4� = 1

4
(|0� + i |1� − |2� − i |3� + i |4�

− |5� − i |6� + · · · + i |14� − |15�).
The case of general n can be checked by induction.
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Now for any two distinct vectors �m = (m0, · · · ,mn−1) and
�m� = (m�

0, · · · ,m�
n−1) belonging to {0, 1, 2, 3}n , let us denote

the kets

| �m� :=
���� n−1�

k=0

4kmk

�
, | �m�� :=

���� n−1�
k=0

4km�
k

�
. (60)

The relative phase between | �m� and | �m�� in any |b j � is defined
to be

π

2

n−1�
k=0

b j,k(m
�
k − mk) ∈

�
0,
π

2
, π,

3π

2

�
. (61)

We now make a crucial observation about the distribution of
relative phases among the |b j � in En .

Proposition 14. For any fixed pair of distinct vectors �m and
�m�, at most half of the |bi � in En have the same relative phase
between | �m� and | �m��.

Proof. Let k ∈ {0, · · · , n−1} be chosen such that m�
k−mk �= 0.

Let �m = m�
k − mk . Consider all the states |b j � ∈ En

with binary sequence b j such that b j,k = 0; this represents
exactly half of all states in the ensemble En . We partition
these states into four groups, A0, Aπ/2, Aπ , and A3π/2,
according to their respective relative phases between | �m� and
| �m��. Now we consider the other half of the states in En ,
those having b j,k = 1. We likewise partition these states
into sets B0, Bπ/2, Bπ , and B3π/2 of common relative phase
between | �m� and | �m��. Notice that for any |b j � in, say, Aπ/2,
there will be a corresponding |b j �� in Bπ/2(1+�m) and vice
versa, the only difference between b j and b j � being their kth

component. Hence |A0| = |Bπ/2�m|, |Aπ/2| = |Bπ/2(1+�m)|,
|Aπ | = |Bπ/2(2+�m)| and |A3π/2| = |Bπ/2(3+�m)|, where all
arithmetic is done modular 4. Therefore, the total number of
states in the ensemble having a relative phase of, say, π/2 is

|Aπ/2| + |Bπ/2| = |Aπ/2| + |Aπ/2(1−�m)| ≤ 2n−1.

The same bound likewise holds for the other three relative
phases. �

Proof of Theorem 13. Consider an arbitrary vector in the
complex linear span of | �m�, | �m��,

|μ� = cos θ | �m� + sin θeiφ | �m��. (62)

Let N0, Nπ/2, Nπ , N3π/2 denote the number of states in En

having a relative phase between | �m� and | �m�� of 0, π/2, π ,
and 3π/2, respectively. We can then explicitly compute

�μ|ρ⊗n |μ� = 1

2n4n

2n�
i=1

|�μ|bi �|2

= N0

2n4n
| cos θ+e−iφ sin θ |2 + Nπ/2

2n4n
| cos θ+ie−iφ sin θ |2

+ Nπ
2n4n

| cos θ−e−iφ sin θ |2 + N3π/2

2n4n
| cos θ−ie−iφ sin θ |2

= 1

4n
+ sin 2θ

2n4n

�
(N0−Nπ ) cosφ + (N3π/2−Nπ/2) sin φ

�
,

(63)

where the last line follows by expanding out the squared
amplitudes, the identity 2 cos θ sin θ = sin 2θ , and using the
fact that N0+Nπ/2+Nπ+N3π/2 = 2n . Our goal is to maximize
(63) under the constraint that max{N0, Nπ/2, Nπ , N3π/2} ≤
2n−1. This constraint implies that |N0 − Nπ | ≤ 2n−1 and
|N3π/2 − Nπ/2| ≤ 2n−1, and so

�μ|ρ⊗n |μ� ≤ 1

4n (1 + cos θ sin θ(| cosφ| + | sin φ|))

≤ 1

4n

�
1 +

√
2

2

�
. (64)

Suppose now that A has an incoherent rank of two and satisfies
Tr[A] = 4n

2 . Then by the previous calculation we have the
fidelity bound

Tr ρ⊗n A ≤ (Tr A)
1

4n

�
1 +

√
2

2

�
= 1

2

�
1 +

√
2

2

�
= 1 − ε, (65)

where ε = 1
2 −

√
2

4 is independent of n. This is precisely
the single-copy error bound. As a consequence, it follows that
C∞

d,S I O(ρ) = 0, proving the theorem. �

Remark 15. This result should be compared with the
recent proof, by Marvian [42], that coherence distillation is
generally impossible in the resource theory of energy conser-
vation, which is characterized by the class of so-called time-
translation-covariant operations (TIO). That class is difficult
to compare with DIO, as at the single-system level, TIO is
contained in DIO, but since the composition of systems works
differently, it may result in TIO operations outside DIO on the
multi-system level.

The result of [42] shows that for generic mixed states, the
rate of distilling cosbit states |�2� is zero, but that at the same
time it is possible to obtain a single cosbit (or a sublinear
number) with fidelity going to 1 as asymptotically many copies
of the mixed resource become available. In contrast, here we
showed that under SIO the fidelity remains bounded away from
1, irrespective of the number of resource states.

VI. RECOVERING THE INFORMATION THEORETIC LIMIT

In the asymptotic limit, the coherence distillation rate under
operation class O is defined as

C∞
d,O(ρ) = lim inf

ε→0+ lim inf
n→∞

1

n
Cε

d,O(ρ
⊗n). (66)

From [17] and [25] (see also [26]) we know that C∞
d,IO(ρ) =

C∞
d,DIO(ρ) = C∞

d,MIO(ρ) = Cr (ρ). Below we show that our
results on one-shot IO distillation can be used to recover the
asymptotic limit, at the same time improving the result by
showing that the limit exists and equals Cr (ρ) for any fixed
0 < ε < 1; such a statement is known as a strong converse in
information theory.

Theorem 16. For any state ρ and any 0 < ε < 1,

lim
n→∞

1

n
Cε

d,IO(ρ
⊗n) = lim

n→∞
1

n
Cε

d,DIO(ρ
⊗n)

= lim
n→∞

1

n
Cε

d,MIO(ρ
⊗n) = Cr (ρ).
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Proof. Recall the results in Theorems 4 and 7, which state
that for any η < 1

2ε,

C
ε
2 −η
min (ρ)− 2 log

1

η
≤ Cε

d,IO(ρ)

≤ Cε
d,MIO(ρ)

= Cε
d,DIO(ρ) ≤ C

√
ε(2−ε)

min (ρ). (67)

Hence, to show the theorem, we only need to prove that for
all 0 < δ < 1,

lim
n→∞

1

n
Cδ

min(ρ
⊗n) = Cr (ρ), (68)

which is equivalent to

lim
n→∞

1

n
max

ρ�∈Bδ(ρA⊗n
)

Hmin(X
n |En)θ� = Cr (ρ). (69)

Here, θ�
Xn En = (�An ⊗ idEn )|μ ���μ �| and |μ �� is an arbitrary

purification of ρ�
A . Recall the quantum asymptotic equiparti-

tion theorem [43], which states that for any 0 < η < 1,

lim
n→∞

1

n
max

ρ�
AB ∈Bη(ρ

⊗n
AB )

Hmin(A|B)ρ�
AB

= H (A|B)ρAB . (70)

Now, in one direction, if we have a state ρ� ∈ Bδ(ρ⊗n),
then by Uhlmann’s characterization of the fidelity there exists
a purification μ � ∈ Bδ(μ⊗n), hence θ� = (�An ⊗ idEn )μ � ∈
Bδ(θ⊗n), with θX E = (�A ⊗ idE )μ . In the other direction,
for θ�� ∈ Bδ(θ⊗n), it is known that since θ is a cq-state,
an optimal θ�� for Hmin(Xn |En) may be assumed to be a cq-
state as well [37], hence we can find a μ � ∈ Bδ(μ⊗n) such
that θ�� = (�An ⊗ idEn )μ �. Thus, we can conclude that

max
ρ�

A∈Bδ(ρA⊗n
)

Hmin(X
n |En)θ� = max

θ��∈Bδ(θ⊗n)
Hmin(X

n |En)θ�� ,

where the left hand side corresponds to Eq. (69).
But this means that we can apply the quantum AEP directly,

and get

lim
n→∞

1

n
Cδ

min(ρ
⊗n) = lim

n→∞
1

n
max

θ�∈Bδ(θ⊗n)
Hmin(X

n |En)θ�

= H (X |E)θ = Cr (ρ),

as claimed. �

VII. COHERENCE DISTILLATION AND

RANDOMNESS GENERATION

Suppose a purification of ρA is written as

|μ�AE =
�

x

√
px |x�A|μx �E ,

we use this state to generate randomness by first performing a
computational basis measurement. The dephased cq-state after
measuring A in the computational basis is

θAE = (�⊗ id)μ =
�

x

px |x��x |A ⊗ μE
x .

Considering the measurement as a raw randomness generation
process, a subsequent randomness extraction (via a determin-
istic function G) can further extract a random string that

Fig. 1. The different schemes for extracting randomness. (a) Extracting
randomness using incoherent strategy in [44]. Alice is allowed to perform
the unitary IO operation on her system together with another ancilla system
prepared in |0��0|. (b) The randomness extraction process defined in our
protocol. The extractor is implemented by a deterministic function G (c) and
(d) Applying DIO distillation for extracting secure randomness. Due to the
property of DIO, we can achieve a new operation (blue part) combining the
DIO distillation operation and original extractor.

is almost uniform and independent of E . We think of the
function as an incoherent operation, by letting G(|x��y|) =
δxy|G(x)��G(x)|. This identification is natural as every inco-
herent (MIO) operation � defines an associated classical
channel via �(|x��x |) = �

y �(y|x)|y��y|.
Denote �εext to be the maximum length of the extractable

randomness that is ε-close to a string that it is perfectly
uniform and independent of E , i.e.

�εext(ρA)=max
G

�
log M : 1

2

���(G⊗id)θAE −τ K ⊗θE
���

1
≤ ε

�
,

(71)

where we recall the notation τ K = 1
M �K for the maximally

mixed state of the M-dimensional key system.
Note that our definition of extractable randomness differs

somewhat from the one in [44]; in that work, a model
based on incoherent operations was proposed, which is shown
in Fig. 1(a). The main process consists of three parts,
incoherent operations �, dephasing operation �, a random
hashing function as the extractor Ext. Here our definition
is more straightforward and we do not need to perform the
real incoherent operations. As shown in Fig. 1(b), after the
dephasing operation �, we use a function G as an extractor
to extract the secure randomness. This function has to be
deterministic, as opposed to a noisy channels, since otherwise
infinite randomness can be generated independent of E .

Moreover, in order to obtain the optimal G in our defini-
tion, we first consider the randomness extraction process via
DIO which is shown in Fig. 1(c), where we apply the DIO
distillation followed by dephasing operation �, a classical
extractor (which may not be needed). Benefiting from the
property of DIO, we can change the order of DIO and �,
which implies that the DIO distillation may act as a good
extractor (the blue part in Fig. 1(d)). The only remaining
problem here is that we would have to show that this DIO
operation gives rise to a deterministic classical channel, which
is in general not true. For instance, the optimal coherence
distillation process under DIO derived in Theorem 3 has the
property that �(|x��x |) = τK for all x . Via the permutation
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twirling Eq. (25), this can be imposed equally on any optimal
IO distillation process, and hence even on DIIO = IO∩DIO.

Instead, inspired by Remark 5, we know that a suboptimal
but achievable IO distillation operation is also a DIO operation
and after a modification (another dephasing channel) we can
construct a valid extractor G from it, which is shown in the
proof of Theorem 17.

We first recall that every valid G can be used for IO
distillation. Here, we consider G as a deterministic function,
and θE = μE is the reduced state of θAE on system E. For
every function G satisfying 1

2

��(G ⊗ id)θAE − τ K ⊗ θE
��

1 ≤
ε, we can substitute it in the proof of Theorem 4 and obtain an
incoherent distillation channel. Thus as the maximal distillable
rate Cε

d,IO(ρ), it satisfies

C2ε
d,IO(ρ) ≥ �εext(ρ). (72)

The IO map achieving C2ε
d,IO(ρ) can also be applied to

extract randomness by the following theorem.

Theorem 17. For an arbitrary state ρ and 0 < ε < 1,

�
√

2ε
ext (ρ) ≥ C

( ε2 −η)2/2
d,IO (ρ)− 2 log

1

η
, (73)

for any 0 < η < ε
2 .

Proof. Recall that the distillable coherence under IO is given
by

Cε
d,IO(ρ) = max

�∈IO

	
log M : F(�(ρ),�M )

2 ≥ 1 − ε


.

Suppose � is the IO that achieves the right hand side of

Theorem 4, that is C
ε
2 −η

min (ρ) − 2 log 1
η = log M where 0 <

η < ε
2 and F(�(ρ),�M )

2 ≥ 1 − ε. Note that � is not
necessarily an optimal IO coherence distillation operation. For
the purification state |μ�AE , the resulting state by applying �
on system A is given by

�AE = (�⊗ id)(|μ��μ|AE ),

and it follows that

F(�AE ,�M ⊗�E )2 ≥ (1 − ε)2.

To prove that, suppose a purification of �AE is |��AA� E . Then,
considering an orthogonal basis {|φx�A} of system A such that
|φ0�A = |�M �, we can write

|��AA� E =
�

x

αx |φx�A|μx �A� E .

As F(�(ρ),�M )
2 ≥ 1 − ε and

�(ρ) =
�
x x �
αxα

�
x �μx � |μx �A� E |φx��φx � |A,

we have F(�(ρ),�M )
2 = |α0|2 ≥ 1−ε. The fidelity between

�AA� E and � A
M ⊗ μ A� E

0 is

F(�AA� E ,� A
M ⊗ μ0

A� E )2 = |α0|2 ≥ 1 − ε.

Denoting�A� E = TrA �
AA� E , then the fidelity between�AA� E

and � A
M ⊗�A� E is

F(�AA� E ,� A
M ⊗�A� E )2 = |α0|4 ≥ (1 − ε)2.

Then F(�AE ,�M ⊗ �E )2 ≥ (1 − ε)2 can be obtained by
tracing out system A�.

Applying the dephasing operation � on system A,

F
�
(�⊗ id)�AE , τ K ⊗�E

�2 ≥ F(�AE ,�M ⊗�E )2.

From the Remark 5, we know that � is also a DIO which
commutes with �, so we have equivalently

F
�
(�⊗ id)θAE , τ K ⊗�E

�2 ≥ F(�AE ,�M ⊗�E )2

≥ (1 − ε)2. (74)

In order to construct a deterministic G, we apply another
dephasing operation after the incoherent channel �,

F
�
(� ◦�⊗ id)θAE , τ K ⊗�E

�2 ≥ (1 − ε)2, (75)

hence

1

2

���(� ◦�⊗ id)θAE − τ K ⊗�E
���

1
≤ √

2ε.

Note that from Remark 5, the map � ◦ � acts on the
incoherent basis states |x��x | as

�[�(|x��x |)] = |G(x)��G(x)|, (76)

which is deterministic. From the achievable distillation IO
map, we can construct an extractor and obtain

�
√

2ε
ext (ρ) ≥ C

ε
2 −η

min (ρ)− 2 log
1

η
. (77)

Recall the result in Theorem 7,

Cε
d,IO(ρ) ≤ C

√
ε(2−ε)

min (ρ) ≤ C
√

2ε
min (ρ), (78)

and we obtain

�
√

2ε
ext (ρ) ≥ C

( ε2 −η)2/2
d,IO (ρ)− 2 log

1

η
, (79)

finishing the proof. �
Combining with Eq. (72), we have

C
√

8ε
d,IO(ρ) ≥ �

√
2ε

ext (ρ) ≥ C
( ε2 −η)2/2
d,IO (ρ)− 2 log

1

η
. (80)

In the regime of vanishingly small ε, the distillable coher-
ence rate Cd,IO(ρ) and �ext(ρ) are hence essentially the same.
Whether Cd,DIO(ρ) and �ext(ρ) are the same is still an open
problem. Though DIO can commute with dephasing operation,
the difficulty stems from that the combination of DIO and
extractor (the blue part in Fig. 1(d)) may be not deterministic
thus not a valid extractor.

VIII. DISCUSSION

We have considered the problem of one-shot coherence
distillation under the classes MIO, DIO, IO, and SIO of
incoherent operations. Our results indicate that the distillation
rates under IO, MIO, DIO are roughly the same, up to different
smoothing parameters and universal additive terms. The results
allow us to recover the asymptotic (many-copy) limit, in which
the distillation rates for all these three classes tend to be
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relative entropy of coherence, which is consistent with the
previous results in [17], [25], [26].

The smallest class for which we have been able to show
a non-trivial distillation of coherence is that of dephasing-
covariant incoherent IOs, DIIO = IO∩DIO. On the other hand,
interestingly, there is a gap between distillation rates under
SIO and DIIO, both in the one-shot, and more importantly in
the asymptotic regime. As a matter of fact, we showed that
there is bound coherence under SIO; no pure coherence can
be distilled under SIO from these states though they possess
coherence, as shown by distillable coherence under IO.

An interesting future direction is then to study the case
involving another system to help this distillation process,
which referred as assisted coherence distillation for such
bound coherence with SIO [45]–[48]. Furthermore, our work
also connects the distillation of coherence to randomness
extraction. The distillation process is also related to the
decoupling in cryptography. Thus our results also shed light
on other quantum information processing tasks like random
number generation, extraction and cryptography.

Note added: After completion of this work and circulating
a preliminary preprint, Ludovico Lami et al. [49] have shown
that the bound coherence under SIO is in fact a generic
phenomenon, showing that the fidelity of distilling even a
single cosbit is bounded away from 1 for all but a measure-
zero set of mixed states.
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