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Abstract

Soft robots take advantage of rich nonlinear dynamics and large degrees of freedom to perform
actions often by novel means beyond the capability of conventional rigid robots. Nevertheless, there
are considerable challenges in analysis, design, and optimization of soft robots due to their complex
behaviors. This is especially true for soft robotic swimmers whose dynamics are determined by
highly nonlinear fluid-structure interactions. We present a holistic computational framework that
employs a multi-objective evolutionary method to optimize feedback controllers for maneuvers

of asoft robotic fish under artificial muscle actuation. The resultant fluid-structure interactions

are fully solved by using a novel fictitious domain/active strain method. In particular, we consider

a two-dimensional elastic plate with finite thickness, subjected to active contractile strains on both
sides of the body. Compared to the conventional approaches that require specifying the entire-body
curvature variation, we demonstrate that imposing contractile active strains locally can produce
various swimming gaits, such as forwarding swimming and turning, using far fewer control
parameters. The parameters of a pair of proportional-integral-derivative (PID) controllers, used

to control the amplitude and the bias of the active strains, respectively, are optimized for tracking a
moving target involving different trajectories and Reynolds numbers, with three objectives, tracking
error, cost of transport, and elastic strain energy. The resulting Pareto fronts of the multi-objective
optimization problem reveal the correlation and trade-off among the objectives and offer key insight

into the design and control of soft swimmers.

1. Introduction

There hasbeen tremendous interest in the development
and design of soft robots in recent years, owing to
rapid advancement of technology in soft actuators,
sensing, and additive manufacturing. Compared to
the conventional ‘rigid” robots, soft robots can take
advantage of a large number of degrees of freedom
to achieve versatile locomotion and dexterous
manipulation as many biological organisms do. These
abilities open up the possibility of soft robots that are
smaller, lighter,and more efficient than their traditional
counterparts [3, 14, 31, 32, 39]. While many promising
examples of soft robots have appeared, including soft
swimmers emulating rays [34], juvenile jellyfish [33],
and eel larvae [9], most soft robots use pneumatic
actuation or cable-driven actuation [39], which

presents challenges in terms of system complexity,
noise, and footprint, among other concerns. Liquid
crystal elastomers (LCE), dielectric elastomer (DEA)
[9], and shape memory alloy [18], offer the promise
of compact, muscle-like actuation for soft robots.
However, understanding of the interplay between soft
body and such muscle-like actuation remains limited.
In particular, a systematic design tool for soft robotic
systems is lacking that accounts for model dynamics
and multiple objectives of interest.

Taking a soft swimmer as an example, in this
paper we present a novel study on multi-objective
optimization of feedback controllers for soft robots
based on high-fidelity CFD simulation that explicitly
accounts for muscle-like biomimetic actuation. Simu-
lation of soft swimmers is challenging due to the cou-
pled fluid dynamics and soft body mechanics in the
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inertial regime where fast swimming motion requires
asignificantamount of momentum exchange between
the fluid and solid structures to overcome viscous drag
force. Nevertheless, instead of fully resolving such
nonlinear fluid/elastic-structure interactions (FESI),
people often oversimplify the problem by solving a
reduced fluid-solid coupling system in mathematical
modeling and numerical simulations. For example,
the majority of numerical studies of fish-like swim-
mers assume that the undulatory motion (or swim-
ming gait) approximately follows a traveling-wave
form which can be experimentally measured for a
free-swimming biological fish [18, 24, 46]. Typically,
one treats the fish body as deformable but prescribes
the curvature of its backbone deformation to a cer-
tain traveling-wave form [16, 43]. While convenient,
these studies may oversimplify the nonlinear FESI
to be a (quasi) one-way coupling problem, and, in
the meantime, introduce too many free parameters
to define the body actuation, which adds significant
complexities in designing control schemes later. More
importantly, soft swimmers will not always follow a
specific swimming gait, which only approximate the
solitary swimming motion at a quasi-steady state. In
reality, they can constantly switch between straight-
swimming and turning motions with acceleration/
deceleration, especially when coordinating with many
other swimmers during schooling [17,23, 35].

To model soft actuation materials, an alterna-
tive to prescribing the entire body deformation or
curvature is to build micro-mechanical models that
take into account the intrinsic muscle-like behaviors
locally. Generally speaking, there are typically two dif-
ferent ways of modeling the so-called artificial mus-
cles. One way is to decompose the total deformation
of the material into two parts: elastic deformation
caused by mechanical stress and active deformation/
strain caused by other stimuli [8, 30, 44]. For exam-
ple, deformation of hydrogel can be decomposed into
the elastic part and the swelling part [8]; deformation
of liquid crystal elastomer can also be decomposed
into the elastic strain and the stimuli-induced strain.
Another approach is the active stress method, where
the total stress is decomposed into a mechanical part
and an active part, both of which can induce deforma-
tion [41]. In many cases, the above two methods can
be flexibly used in achieving arbitrary deformations.
In fact they are mathematically identical, due to the
fact that the active deformation introduced here is a
first-order approximation of nonlinear elasticity, and
is independent of mechanical stress. These two meth-
ods have been widely used in modeling active soft
elastic structures in biological systems (e.g. cardiovas-
cular mechanics) and synthetic active soft materials
[1]. While these elasticity models provide much more
flexible yet simple local actuation schemes, solving for
the resultant nonlinear deformation is computation-
ally expensive when coupled with another (nonlin-
ear) flow solver. To address these challenges, we have
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recently implemented the active strain approach in a
fictitious domain (FD) method, and demonstrated
that the FD/active-strain method is capable of solving
the fully-coupled FESI for an arbitrary shape subjected
to distributed contractive active strains [30].

In this work, we develop a holistic computational
framework for the design, control, and optimization of
asoft robotic swimmer. With the aid of the high-fidelity
FD/active-strain simulator, we implement feedback
control strategies for the fully-coupled fluid/elasticity
systems under actuation. Here we model the robotic
fish asa 2D swimming elastic beam of a finite thickness,
with contractive strains being imposed on two sides
(with sharp decays in the thickness direction) periodi-
cally. When coupled with fluid flows, we demonstrate
that the resultant undulatory free-swimming motions
can be tuned by changing the active strain magnitude
and frequency. Moreover, turning motions of the
swimmer can be effectively accomplished by imposing
asymmetric active strains on the two sides of the body.
To achieve feedback control of the swimming motion,
we couple the FD simulator with model-free propor-
tional-integral-derivative (PID) control, which, argu-
ably, is the most widely used feedback control scheme
[38]. We seek optimal parameters of the PID control-
lers by using a genetic-algorithm-based multi-objective
evolution method, U-NSGA-III [40], which produces a
Pareto set of optimal solutions that clearly illustrate the
tradeoffs among the objectives, with which the designer
is able to make informed decisions.

To put the study in context, we consider a series of
tasks where the soft swimmer tracks a moving target
involving different trajectories and velocities, where a
pair of PID controllers are used to adjust the amplitude
and the bias of the active contractile strains imposed
on the swimmer. The parameters of the PID control-
lers are optimized with three objectives: (1) tracking
error, (2) cost of transport, and (3) the average elastic
strain energy of the morphing body. In particular, the
tracking error refers to the error between the swim-
mer position and the moving target position and is
thus a metric on tracking performance, while the cost
of transport represents a measure of locomotion effi-
ciency. The elastic strain energy is also of importance
because it is not only closely related to the required
performance of the actuator, but also to the rate of
fatigue failure to which soft materials can be prone.
The optimization is repeated at several Reynolds num-
bers for cases with different velocities and trajectories
of a moving target. The resulting Pareto fronts of the
multi-objective optimization problem reveal the cor-
relations and trade-offs among the objectives and offer
key insight into the design and control of soft swim-
mers. For example, the tracking error shows strong
inverse correlation with the elastic energy. As another
example, the optimized proportional gain parameters
are also inversely related to the tracking error. Finally,
the controller parameters produced via the proposed
multi-objective optimization method demonstrate
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Figure 1. (a) Schematic of a 2D beam under contractile actuation (view from above). The active segment is of length . The
microscopic mechanical model of the active contraction is illustrated by the zoom-in schematic on bottom. (b) Contractile
actuation applied alternatively on the surfaces of two sides, which exponentially decays in the thickness (y) direction (not shown in
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robustness across different conditions for the moving
target and for the fluid environment.

The paper is organized as follows. In section 2 we
briefly introduce the FD/active-strain method, and
the computation model for the 2D soft robotic fish. In
section 3 we integrate the CFD algorithm with a PID-
based muscle control scheme, the parameters of which
are optimized by using a higher-level multi-objec-
tive optimization algorithm. In section 4 we present
numerical results and analyses on optimizing the PID
controller parameters across a variety of swimming
patterns, speeds, and Reynolds numbers. Finally con-
clusions and discussions are provided in section 5.

2. Review of FD/active-strain method

In this section, we briefly review the major
components of the FD/active strain method,
which is the core of our CFD solver. The reader is
referred to [30] for more details, especially on the
derivation of the FD formulation and the numerical
schemes. Mathematically, the solid deformation
can be described by the deformation gradient tensor
F = 0x/0X, which projects the current deformed
state to the initial reference state. To capture the local
actuation, we decompose the deformation gradient
tensor F into an active deformation tensor F, and an
elastic deformation tensor F, following multiplicative
decomposition [25, 26] such that

F=F, F,. (1)

Here F, is effectively an arbitrary function applied
to the reference configuration that can be designed
in terms of the desired location, direction, sign
and strength. For incompressible solids that are
considered here, we apply an incompressible
restriction on actuation such that det(F) = 1, where
‘det’ represents the determinant. For simplicity,
F, can be defined in the principal coordinates and
transformed to the desired orientation by a standard
rigid body rotation coordinate transformation. For

an artificial muscle that contracts uniaxially when
activated, we define F, = diag[\;, Ay, A3}, where
A1 <1 represents a principal compression ratio,

and A\, = A5 =
homogeneous deformationin the other two directions.

With the total F being mapped appropriately, the
resultant elastic stress can be calculated through

\/A7! > 1 are correspondingly the

certain constitutive relation
T=71(F) :T(F~Fu_1) (2)

for various kinds of material (hyperelastic, viscoelastic,
composite, etc) conditions.

It is well understood that during an undulatory
motion, fish use the anisotropic viscous drag force
exerted in the longitudinal and transverse directions
along the wavy body to create a net propulsive force
[29]. As shown in figure 1(a), we adopt a simple 2D
rectangular beam of length L and uniform thickness
h to characterize the slender fish body shape. Without
using complicated interconnected spring models to
mimic the biological tissues’ mechanical properties
(e.g. the artificially coupled viscoelasticity and elec-
trophysiology effects as what have been done by using
the immersed boundary method [21, 45]), we assume
that the soft active material is a continuous hyperelas-
tic elastica which, at the microscopic level, is driven by
a contracting element with an initial length /, yield-
ing an effective local contraction ratio A\, = % At the
microscopic scale, it connects with a neo-Hookean
spring that generate elastic stresses in response to
the active input of the contraction field. The lat-
ter, in 2D, is simply chosen as a homogeneous field
F, = diag (\;, A\, !) applied on the active segment.

Here we follow the geometry adopted by Ham-
let et al [21] by choosing the first 10% of body
length from the left to be passive, and then con-
necting an active section of length 4. To activate the
beam, as shown in figure 1(b), we apply a constant
(Mg ~ 1 —a, for a fixed ) or time-dependent (e.g.
sinusoidal, A\, ~ 1 — assin (z%t)) contractile strain
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field alternatively on both sides within a time period
T. Here magnitude o characterizes the contraction
strength. In the meantime, the maximum strain is
imposed on the left (denoted by ‘L’) or right (denoted
by ‘R’) side with an exponential decay in the thickness
direction. Mathematically, it is convenient to define
the sinusoidal actuation scheme as

L1 _ . ip (21t
Ag=1 asm(T

SN—
D
2
ke
|
=
=]
=
N——

AR =,

In the above, d; controls the steepness of the decay, and
is chosen as h/3 in all simulations in this work. Typical
resultant bent shapes are illustrated in figure 1(a) by
a few snapshots of the midline position (grey dashed
lines). Therefore, continuously applying periodic
contractions on both sides lead to an undulatory
motion.

To resolve the FESI of soft robotic swimmers, we
implement the above active strain model using a ficti-
tious domain (FD) method [19, 30, 47]. The key idea
of the FD method is that the interior of the solid is
assumed to be filled with a fictitious fluid that is con-
strained to move at the same velocity with the solid by
apseudo body force (viaa Lagrange multiplier). Math-
ematically, it is very similar to the immersed bound-
ary method (IBM) [36] which typically employs
overlaid Eulerian and Lagrangian meshes to solve the
fluid-structure interactions: the Navier—Stokes (N-S)
equations are solved on a fixed Eulerian mesh; while
the embedded boundaries are tracked by a set of freely
moving Lagrangian points.

Suppose that a deformable body of density p; is
immersed in the incompressible Newtonian fluid
of viscosity 41 and density py. Let €2 denote the entire
computational domain containing both solid and
fluid domains, and S(¢) represent the solid domain. It
is noted that tracking swimming objects in the fixed
coordinates requires using a very large computational
domain, which makes computation expensive. Alter-
natively, here we employ an instantaneous inertial
frame €2 that co-moves with the swimmer at a certain
reference speed U [27]. Then the dimensionless FD
governing equations in the weak form become

8uf .
/ — + uy - Vuf -Vde—‘r
Q \ Ot

1
/ <—pI + (Vuf)T> : Vvpdx = /)\ - Vf
0 Re s

dx, (4)
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/ qV -updx =0, (5)
Q

where G = u; — U. The dimensionless governing
equations for neo-Hookean solid material
(T = G(B — 1)) are solved in the absolute references
as

(3)

oo (8- e

+/(Vvs)T : [KoInJI+ G(B —1I)]dx
S
- /S (Vv <—p1 + é[Vuf + (Vuf)T]) dx

=— / X - vdx, (6)
S

/S(uf —u,)-Cdx=0. (7)

Equations (4)—(7) represent the fluid momentum
equation, the fluid continuity equation, the solid
momentum equation, and the velocity constraint
in the solid domain, respectively. In these equations,
uy is the fluid velocity, u; the solid velocity, p the
fluid pressure, and A the pseudo body-force (i.e. the
Lagrange multiplier). The variables vy, vy, q and ¢
are the corresponding variations, respectively. In our
algorithm, we adopt a hybrid finite-difference/finite-
element scheme [30] where the flow equations (4) and
(5) are solved by the half-staggered finite difference
scheme and the projection method [47], and the
solid equation (6) is solved by using the finite element
method (see details in [30]). Similar mixed schemes
have also been implemented in the IBM solvers
when handling various fluid-structure interaction
applications [13,20,22].

Fortheoriginal FD methodforthe passive deforma-
tion model, B = F - FT is the left Cauchy—Green defor-
mation tensor, here F being the deformation gradient
tensor defined as: F = 9x/0X, in which x and X are
the current and reference configurations of the solid,
respectively. J is the determinant of F, and ] =1 for the
incompressible solid. In contrast, for the active strain
model studied, B=F,-F! = (F-F,; ') (F-F, )T,
whereF, is the elastic deformation tensor which causes
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the elastic stress, and F,, is an input deformation tensor
without generating elastic stress. In addition, g denotes
the gravitational acceleration. The following charac-
teristic scales are used for the non-dimensionlization
scheme: L, for length, U, for velocity, L. /U, for time,
psUZ for pressure p, and psUZ /L, for Lagrange multi-
plier A. The following dimensionless control param-

eters are also introduced: density ratio pr = ﬂ; mat-

erial parameters KO f[‘}z and G = UZ’ Reynolds
L L.
number Re = pf , Froude number Fr = g . Here

Ky is related to the compressibility property of the
material and G represents the shear modulus. It should
be mentioned that for soft swimmers, the character-
istic velocity is defined as U, = f.L. for a given refer-
ence actuation frequency f.. In addition, in order to
enforce the incompressibility constraint of the solid
material, i.e. J = 1, we adopt a penalty function-like
approximation by setting a large enough value for K,
(10*-10°).

3. Controller design and optimization

3.1. Controlscheme
The primary goal for our control scheme is to make
the soft swimmer effectively follow a moving target
point. Such situations could arise in applications such
as schooling (i.e. leader-follower configuration) or
simply following a pre-determined desired trajectory
[4, 10, 28]. By its 2D nature our soft swimmer (elastic
beam) is limited to forward swimming and turning,
based on which we propose the following actuation
scheme:

ar(t) = ap(t) + @, ar(t) = .
(8)
Here agr and «af correspond to the peak actuation
strength in the right and left muscles, respectively,
viewed in the body frame of the beam oriented from
the tail toward the head. This differs from previous
descriptions where both sides used a single value of
constant . It should be mentioned that as discussed
below, their time-dependent values are determined
via feedback control mechanisms. Here ay(t) is the
‘base’ contraction strength for a forward (straight)
swimming motion, which is assumed to be limited
to the range 0 < o < Quuay. After agy(f) being
computed in equation (8), we can compute the local
contractionratio \,(#) = 1 — ag,and then the active
deformation tensor F,(¢) = diag (A, A; ') (hence the
elastic stress 7 in equation (2)).

Turning can be achieved by biasing the contrac-
tion strength between the two actuated sides. The soft
swimmer tends to turn in the direction of the stronger
actuation, providing a means to control the beam’s
heading while swimming. Testing showed that this
mechanism allows the beam to turn even while it is
at rest with an averaged swimming speed of zero. The
bias that leads to turning is denoted by 5 and is limited

AHessetal
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Figure2. Schematic illustrating the control scheme based

on the translational and rotational motion of a soft swimmer
in relation to a moving target x;.

to the range — Byax < B < Buax- Based on the signs in
(8),a positive value of  causes the beam to turn to the
right and vice versa. Note that ag and o are limited
to the same range as oy due to the physical constraints
of the actuator, but the presence of 8 has the potential
to push their values outside of this envelope. To pre-
vent this while still achieving the desired bias, the por-
tion of the bias outside the envelope is shifted to the
opposite side. For example, if agr = ag + g > Qpaes
then agp = aupax and ap = e — B. This is sufficient
assuming that 5. < Qunay and in practice we typi-
cally set Bax = %amx.

To complete the control scheme it is necessary to
connect our control variables, oy and 3, to the physi-
cal state of the swimmer. We elect to use proportional-
integral-derivative (PID) controllers as they have been
widely used across disciplines. A general PID control-
ler takes the following form:

£(t) = kpe(t) +k/ £)dt' + kg d‘;(t) 9)
where f(t) is the control variable, e(t) is the error
corresponding to the difference between the target
and current state, and the constants k, k;, ks are tuning
parameters. The actuation strength f(t) = (¢) is
calculated based on the error e(t) = ¢;(¢) in position,
which is defined as:

ei(t) = [r|sgn (r-v). (10)
In the above, the vector v represents the moving
target’s velocity, and r = X; — X, connects the
swimmer’s center of mass (CoM) to the target position
with its magnitude determining the magnitude of
error (see schematicin figure 2). For stationary targets,
i.e. v =0, we simply use e;(¢) = |r|. On its own this
error magnitude would lead to the error being always
positive which can potentially promote overshoot and
lead the integral term to blow up. To prevent this we
determine the sign of the error by sgn(r - v) (here ‘-’
represents the vector inner product). If the target is
moving away from the swimmer, r - v will be positive
driving the swimmer to accelerate. Conversely, if
the target is moving toward the swimmer, r - v will
be negative causing the swimmer to slow down and
potentially stop. If the controller returns a value that
is out of bounds, the control variable is set to the
respective bound and integration is stopped to prevent
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windup of the integral term. The overall result is a
follower type scheme where the swimmer tends to
remain behind the target and overshoot behavior is
suppressed.

Special attention must be given to the derivative
term due to the noise in the error. This is a common
problem in PID controllers as noise can produce large
and drastically varying values of the derivative that can
lead to undesirable behavior. The undulatory motion
of the swimmer leads to a significant amount of sway
which appears in the error as an oscillation driven at
the forcing frequency. We filter out this oscillation by
calculating the derivative based on the moving-aver-
age of the error, with the window size for averaging
equal to that of the period of the forcing, T, as shown
in (11). In particular, the following algorithm is used to
approximate the derivative term:

de (1) & (t)—e(t— Ar) i)~ L !

~ N

0 A e (t)dt'.
(11)

Directional control is achieved by determining
f(¥) = B(t) via a separate PID controller, where the
error e(t) = e,(t) is based on the angle between the tar-
get vector, r, and the swimmer’s time-averaged head-
ing vector, f;,. Due to the highly flexible nature of the
swimmer, it is difficult to clearly define a body frame.
As such we choose to define our orientation in terms
of a chord line running from the tail to the head of the
swimmer, r;,. The large-amplitude motion of the head
and tail means that this vector will vary significantly
across a full swimming stroke, limiting its value as an
instantaneous measure. However, time-averaging
like that done in (11) provides a stable measure of the
swimmer’s heading. In sum, the bias control is based
on the error e,(t) = 6, the angle between the vectors

t—T

r and §, = % pIn(t)dt’. Here T, = Xpead — Xiai
represents the instantaneous direction vector that con-
nects the head and tail. From the definition, since ¥,
is already smoothed by the averaging, no special treat-

ment is necessary for the derivative term.

3.2. Multi-objective optimization
Multi-objective optimization makes it possible to view
the landscape of potentially optimal configurations.
This allows for better understanding of the trade-offs
between various objectives, leading to smarter design
decisions. For example, in a swimmer a small decrease
in speed may lead to sharp increase in efficiency or vice
versa. The possibility of such a trade-off would not be
apparent using single objective methods. The results of
multi-objective optimization appear as a Pareto front,
which is a surface in the objective space containing
all solutions where each solution cannot be further
improved in one objective without negatively affecting
another objective(s).

Our workis focused on employing high-fidelity FSI
simulations to investigate soft swimming mechanisms.
This limits the use of reduced-order models, making

AHessetal

evolutionary methods the most promising option for
optimization. Locomotion traditionally lends itself to
two major design objectives, swimming speed and effi-
ciency. However, our fully coupled model allows us to
consider other important design criteria such as those
related to the actuation of the swimmer. Soft materials
tend to have limited lifecycles and can experience pre-
mature fatigue failure compared to traditional actua-
tors, if cyclic loading conditions are not accounted for.
Thus the design of such soft swimmer robots may best
be done with the consideration of 3 or more objectives.

We elect to optimize the soft swimmer by employ-
ing a multi-objective evolutionary method, specifi-
cally the U-NSGA-III method as developed by Seada
and Deb [40]. NSGA-III [11] is a recent extension
of the widely used NSGA-II [12] that incorporates
the idea of predefined reference vectors, increasing
the possible number of objectives from 2 to 3+. The
weakness of NSGA-IIT is that this change also makes it
ineffective in the case of 2 or fewer objectives, meaning
itis not a replacement for NSGA-II but instead a com-
plementary method. U-NSGA-III solves this prob-
lem by extending NSGA-III in such a way that one or
two-objective optimization becomes possible, mak-
ing it a well rounded method capable of any number
of objectives.

The soft swimmer is driven by two PID controllers
with three tuning parameters each, leading to a total
of six parameters as summarized in Table 1. We opti-
mize these parameters in terms of three objectives:
combined average error (€), cost of transport (C,), and
average strain energy (E), which are elaborated below.

The combined average error is the sum of the indi-
vidually averaged errors as

¢=la| + 2] (12)

in which we track the entire evolution history during
. . _ t . . .

time ¢ via |&]| = 1 [ |e;(t)|dt, i = 1,2. This provides

a measure of tracking performance. The energy

efficiency of the swimmer is evaluated through the
measure of cost of transport,

E
Cazé, (13)

where Ef = fot Pdt is the total energy imparted to the
fluid calculated by integrating the imparted power P,
and d = fot [(u(t'))|dt’ is the path length determined
from the averaged motion of the center of mass,

in which we define (u) = 1 ;_T (u(t")) d' and
(u) = 3 [udV (here we calculate the integral for

the solid velocity u in the Lagrangian domain of size
V,and () denotes a spatial average). Finally, the average
total elastic strain energy is defined as

t
E:l/Ewmﬂ (14)
tJo

where we define E= [G(tr(B) —2)dV for an
incompressible neo-Hookean material [5]. This relates
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the force and energy requirements of the actuators as
well as the potential for fatigue due to cyclicloading.

4. Resultsand discussion

4.1. Undulatory swimming
We have observed that after the initial transient,
the soft swimmer quickly reaches a quasi-steady
forward swimming with periodic undulatory body
motion. In figure 3(a), we show a typical flow map of
the swimmer when choosing Re = 500, G = 1000,
0 = 0.4, T = 2, and symmetric actuation at o = 0.15
(namely, oy = 0.15, 8 = 0 in equation (8)). A pair
of vortices of opposite signs is generated during each
tail upward/downward beating, leading to a reverse
von Kdrmédn vortex street. In figure 3(b), we show that
the beam midline deformation extracted from the
simulation during each time period (top), which can
be approximately fitted by a weighted sine function
(bottom):
k(x,t) = (ax* + bx + ¢) sin 27 (kx + wt) + ¢].
(15)
In this case, we obtain the coefficients a = —1.27,
b=0.92,c=0.07,k = 0.4,w = 1.0,and¢ = 0.5.Upon

comparison, there is good match between the
simulation result and the fitted model in the middle
section while the front and tail sections show slight
discrepancies. Overall, we see that our simple three-
parameter (g, 3, T) actuation scheme with muscle
contraction is capable of reproducing various types
of traveling-wave-like swimming gaits that typically
require a larger parameter space.

For the forward swimming cases (8 = 0), we have
evaluated the mean values of swimming speed U, elas-
tic energy E, and cost of transport C,, as a function of
the amplitude o of muscle contraction when fixing
Re = 500 and T = 2. As shown in figure 3(c), the sys-
tem exhibits largely monotonic behaviors for the three
examined variables when the actuation strength « is
selected between 0.05 and 0.25, with an exception for
Co, which shows a local peak around a = 0.08. For
very small values of a (v < 0.05), the soft swimmer
does not show significant directional motion; when
o > 0.25, we find that the average swimming speed
(and hence also C,;) decreases as «v increases, suggest-
ing that large body deformation does not necessarily
lead to efficient swimming. In this study, we focus on
the monotonic regime to facilitate controller design.
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As discussed in section 1, specifying the empirical
traveling-wave form of equation (15) only applies to
the scenario of forward swimming. To achieve more
elaborate maneuvering such as turning, we introduce
a bias when applying contractions on the two sides of
the swimming body. A similar turning study of a 2D
eel-like swimmer was performed by Bhalla et al using
the IBM solver [6]. Nevertheless, they have to specify
the undulatory swimming motion on a curved body-
axis. In figure 4, we demonstrate the effectiveness of
the actuation scheme for turning with fixed actuation
strength o (ag = 0.2) butincreasing /3. In figure 4(a),
the swimmer’s instantaneous CoM positions clearly
show that it approximately follows a circular trajec-
tory, the radius of which decreases (tighter turn) as the
bias value 3 increases. Interestingly, the results in fig-
ure 4(b) suggest an almost linear relation between the
bias value of 3 and the trajectory curvature R! (recip-
rocal of the radius).

4.2. Optimization and analysis

4.2.1. Trajectory comparison

To make sure the controller is effective, we optimize
it by accounting for different scenarios of the moving
target’s characteristic velocity and the Reynolds
number Re as defined at the end of section 2. Note that
we define Reynolds number in terms of the actuation
frequency, not a physical velocity, so by varying Re
we are implying a change in the fluid properties,
namely the viscosity. In these studies we employ two
different types of target trajectories, a straight path as
characterized in equation (16) and a sinusoidal path as
expressed in equation (17). The swimmer starts from
at rest facing along the x axis. We describe the straight
trajectory of the target with a constant velocity v as

¥ = 7(0) (16)

For the sinusoidal trajectory, the moving target has a

constant velocity in the x direction, while its y position
follows a sinusoidal function of time:

x = vt + x(0)
X = .
' ¥ = Asinwt + y(0)

= e

(17)

Here we fix the amplitude, A =2, and angular
frequency, w = 0.057. The inclusion of sinusoidal
motion means that the swimmer has to constantly
adjust its velocity and direction, which demonstrates
its ability to follow complex paths. All cases are run
with a maximum (dimensionless) simulation time
of += 80, and as a precaution, the forward velocity
controller is not activated until = 2 and the heading
controller is not activated until t = 4. Before these
times, g = ey and B = 0. The idea is to allow a
smooth start and prevent potentially large values of 3
from negatively affecting the starting behavior of the
swimmer, by first allowing it to achieve a significant
forward velocity. However, testing has shown both
restrictions to be unnecessary if 3, is sufficiently
smaller than o,y

In figure 5, we show the performance of a soft
swimmer when subjected to different PID controllers
by comparing its CoM trajectories with the specified
straight (panel (a)) and sinusoidal (panel (b)) paths
(black lines). Here we select two optimal solutions,
corresponding to the case of lowest error & (min(eé))
and the case of a moderate error (¢ = 4.5) but lowest
elastic energy (min(E)) at Re = 500. For the minimum
error examples in both panels, the swimmer quickly
converges to the target point’s position and is able to
follow it closely. Note that the target is a moving point
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and not simply a designated path, meaning that a
close match to the target trajectory implies the swim-
mer must be matching both the desired heading and
velocity. Variation in the velocity can be discerned by
observing the variation in the wavelength of the undu-
latory oscillations in the CoM trajectory. For a fixed
driving frequency, the swimmer’s velocity will cor-
respond to the wavelength of this oscillation. At the
start the wavelength is long as the swimmer attempts
to reach the target as quickly as possible. The wave-
length then shortens as the swimmer approaches the
target and matches its velocity. In the sinusoidal case,
the wavelength is shorter near the peaks and longer
in between corresponding to the velocity of the sine
function which varies by the cosine. In contrast, for the
moderate error case, we see that the swimmer appears

to lag behind, and eventually fails to catch up to the tar-
get, although the small amplitudes (relative to the best
¢ cases) indicates lower contractile strengths which
implies less deformation of the body and thus lower
elastic strain energy.

4.2.2. Pareto fronts of optimized solutions

Here we show global views of the obtained optimal
solutions. Figure 6 compares the resulting Pareto
fronts (a set of nondominated optimal solutions if no
objective can be improved without sacrificing at least
one other objective) in the space of objectives when
the target velocity v takes different values while the
Reynolds number Re is kept at 500, for the cases of
straight trajectory ((a)—(d)) and sinusoidal trajectory
((e)—(h)), respectively. The obtained optimal solutions
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for these two different paths are approximately
allocated in the same regimes, exhibiting very
similar patterns. Figure 7 shows the results when the
Reynolds number is varied while the velocity is fixed
at 0.2. All datasets shown correspond to a total of 50
generations of evolution with a child population of
64. The swimmer’s body is neutrally buoyant with
0 = 0.5 and non-dimensional parameters G = 1000
and K, = 10*. It is worthwhile to mention that some
portions of the objective space, and the individual
solutions (PID parameters) that fall within, may be
undesirable. For example, there are scenarios when the
swimmer is barely moving and possibly not swimming
at all. This ‘trivial’ state can be interpreted using the
three objectives, where the ideal optimal value of
strain energy, E = 0, coincides with the trivial case of
zero actuation, ag = ay = 0. From the optimizer’s
prospective, this is a valid solution because our
objective functions do not in any way represent this
as a negative behavior. The objective functions could
possibly be modified to avoid this trivial solution by
adding a penalty function or cutoff, but such changes
are undesirable since they could potentially add
constraints or biases on the optimizer in unpredictable
ways. Thus we stick to the original form of objective
functions and remove trivial solutions in the end as
part of the final decision-making process.

A 2D view of the Pareto front on the projected
(E, &) plane can clearly reveal the effect of varying v on
the resulting optimal solutions, as seen in figures 6(c)
and (g). The distributions are clearly separate with
the profile shifting up and right as v increases, both as
expected, since increasing v indicates the increase in
tracking difficulty and the requirement of higher actu-
ation output. In comparison, the effect on C,; as seen
in figures 6 (b), (d), (f) and (h) appears to be minimal
with the profiles being nearly independent of v.

Varying Re proves to have a significantly different
effect with dependency apparent primarily in C,; and
E as can be seen in figure 7. From figures 7(b), (d), (f)
and (h), we see thatas Re increases, C,; drops. From fig-
ures 7(c) and (g), the elastic strain energy also drops

with increasing Re. As Re increases the viscous forces
acting on the swimmer decrease, leading to both a
lower C,; and actuation strength required to drive the
swimmer. In all cases, for the regions where the error
¢ is low, there is an inverse relationship between C,,
and the error. The error proves to be mainly domi-
nated by the positional error, e;, which in turn is logi-
cally inversely related to the swimmer’s velocity. From
this we can conclude that C,; increases with increasing
swimmer velocity as expected due to fluid drag.

4.2.3. Objective correlations and parameter trends

In figure 8 we further compare the Pearson correlation
coefficients of the objectives for each data set. The
most apparent result is that in all cases the coefficient
relating ¢ and E is approximately equal to —1.
This means that they are correlated strongly with
an inversely proportional relationship, which is
confirmed by observing panels (c) and (g) in figures 6
and 7 where the population in each dataset has a highly
linear distribution. Physically this indicates that lower
error requires stronger actuation. The strength of
this correlation also implies that these objectives are
not independent in our system. For example, it is not
possible to find an optimal solution that decreases
both and E simultaneously.

The Pearson coefficients relating é to C,, as well as
relating C,, to E do not show similarly clear patterns.
Qualitatively, in the regions of lower é there appear to
be noticeable and consistent trends; however, when
viewed as a whole, these fall apart. Thus without defin-
ing a criterion to trim the data set, a solid conclusion
cannot be made. Interestingly it can be noted that
coefficients relating & to C,, and those relating C,; to E
appear to be equal in magnitude and inverted in sign.
This can be explained by the objectives in each data-
set falling roughly in a plane such that the distribution
seen in panels (b) and (f) (corresponding to é to C,)
is the mirror of that seen in panels (d) and (h) (corre-
spondingto C,,to E).

Furthermore, we seek more quantitative under-
standings of how the controller parameters vary when
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moving through the objective space. Considering
the fact that the mapping between the objective and
parameter space is neither necessarily smooth nor con-
tinuous, we emphasize that regions or even individuals
in the Pareto optimal objective space must be ‘clas-
sified” into different groups that needs to be treated
separately. For our study there is an obvious choice
for classification, swimmers versus non-swimmers.
As noted previously, there are effectively trivial solu-
tions when E is near zero and the error is correspond-
ingly high. This occurs when the contraction strength
is sufficiently small such that the soft swimmer barely
moves. By excluding these high error individuals
(above roughly half the maximum error), we are left
with parameter regions that may exhibit qualitatively
clear trends in the objective space.

Figure 9 shows the trends of k; posirion Versus error for
all cases used in the optimization study at different val-
ues of v and Re. When near the minimum error, kj, ;-
rion appears to reach maximum values, which corre-
sponds to the optimal solutions near the upper bound
of contraction strength «. For fairly large error values,
kp position becomes negligible, corresponding to those
trivial solutions with low E. From the PID controller

Table 1. Summary of the variables and objectives considered in the
optimization.

Variables Objectives
kp,pusition e

ki,pusition Cut
kd,posirion E

kp,hmding

ki,heading

kd,heading

formulation in equation (9), ctg o< kp posirion€l> Suggest-
ing that when « is properly bounded, larger controller
gain k; posiion results in reduced error.

Besides the ky posirion — Error relations, however, we
did not find other clear trends when we sweep through
the parameter space and connect the tuning param-
eters to the objectives. The data appear to be highly
noisy, which is primarily due to the stochastic nature
of evolutionary methods. We have observed that often
times, they are able to converge rapidly to a certain
optimum region, and then slowly approach the opti-
mal solution(s) within via a stochastic search. Never-
theless, when comparing the obtained optimal tuning
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parameters for different target path (i.e. straight versus
sinusoidal) as well as across Reynolds numbers (e.g. see
figure 9), we have found that their values all fall into
approximately the same ranges, indicating that these
solutions indeed characterize the global optima. In
other words, the proposed optimization approach
seems to have produced PID controllers with near-
optimal behavior across varying target behaviors and
fluid environments.

5. Conclusion

In this paper we presented a new computational
framework for optimizing feedback control of soft
robotic fish enabled by muscle-like actuation. A
novel fictitious domain/active-strain method [30]
was employed to handle the resultant fluid-structure
interaction when local contractile active strains—
emulating muscle actuation—are imposed on the
soft swimmer. In particular, using a 2D elastic beam
with finite width as a model for the soft swimmer, we
demonstrated versatile swimming motions (forward
swimming and turning at different velocities and
radii, for example) by varying the strength and
bias of the active strains imposed on both sides of
the swimmer. Two PID controllers are adopted
for adjusting the actuation strength (cy) and bias
(68), respectively, for the swimmer to track a moving
target. With this setup, multi-objective optimization
of the controller parameters was conducted using
the U-NSGA-III algorithm, where three objectives
were considered, including the tracking error, cost
of transport, and elastic strain energy. The PID
controller parameters were optimized using a series
of moving target trajectories, involving different
speeds and Reynolds numbers for two types of paths
(straight and sinusoidal). By analyzing the resulting
Pareto fronts, the study revealed the trends of how
the obtained values of objectives are influenced by
the target trajectory conditions. It also showed the
correlation and trade-offs among the objectives
under feedback control, as well as how the optimized
controller parameters are related to the objectives and
trajectory conditions. Overall, this work has shown
the feasibility of using high-fidelity CFD to design and
optimize feedback control for soft robotic fish subject
to multiple, potentially conflicting objectives.

There are a few directions for future work. First,
we will consider the extension of the presented frame-
work to the case where the soft swimmer has a 3D
geometryand a more general form of distributed actu-
ation. However, compared to the 2D cases, dynamic
instabilities can raise significant challenges in robots
design and optimization, especially for light-weight
structures moving in fluid or air [ 15, 37]. Hence large-
scale computation is desirable to thoroughly explore
the parameter space to identify the phase bounda-
ries of the stable dynamic regime, which may further
suggest simplified dynamic models for analysis. In

AHessetal

the meantime, methods of sensitivity analysis can be
included in the optimization process to uncover and
compensate for these instabilities [2,42]. Second, while
PID controllers were used as an example of model-free
controller in this work, we plan to exploit the compu-
tation data and system ID techniques to obtain the
dynamic model of a soft swimmer, based on which
model-based controllers (such as linear quadratic reg-
ulator (LQR) and model-predictive control [7]) will
be developed and evaluated. Ultimately, it is our plan
to experimentally validate the modeling, control, and
optimization methods with a soft robotic fish proto-
type actuated by smart materials (e.g. shape memory
alloys or dielectric elastomer actuators).
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