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1.  Introduction

There has been tremendous interest in the development 
and design of soft robots in recent years, owing to 
rapid advancement of technology in soft actuators, 
sensing, and additive manufacturing. Compared to 
the conventional ‘rigid’ robots, soft robots can take 
advantage of a large number of degrees of freedom 
to achieve versatile locomotion and dexterous 
manipulation as many biological organisms do. These 
abilities open up the possibility of soft robots that are 
smaller, lighter, and more efficient than their traditional 
counterparts [3, 14, 31, 32, 39]. While many promising 
examples of soft robots have appeared, including soft 
swimmers emulating rays [34], juvenile jellyfish [33], 
and eel larvae [9], most soft robots use pneumatic 
actuation or cable-driven actuation [39], which 

presents challenges in terms of system complexity, 
noise, and footprint, among other concerns. Liquid 
crystal elastomers (LCE), dielectric elastomer (DEA) 
[9], and shape memory alloy [18], offer the promise 
of compact, muscle-like actuation for soft robots. 
However, understanding of the interplay between soft 
body and such muscle-like actuation remains limited. 
In particular, a systematic design tool for soft robotic 
systems is lacking that accounts for model dynamics 
and multiple objectives of interest.

Taking a soft swimmer as an example, in this 
paper we present a novel study on multi-objective 
optimization of feedback controllers for soft robots 
based on high-fidelity CFD simulation that explicitly 
accounts for muscle-like biomimetic actuation. Simu-
lation of soft swimmers is challenging due to the cou-
pled fluid dynamics and soft body mechanics in the  
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Abstract
Soft robots take advantage of rich nonlinear dynamics and large degrees of freedom to perform 
actions often by novel means beyond the capability of conventional rigid robots. Nevertheless, there 
are considerable challenges in analysis, design, and optimization of soft robots due to their complex 
behaviors. This is especially true for soft robotic swimmers whose dynamics are determined by 
highly nonlinear fluid-structure interactions. We present a holistic computational framework that 
employs a multi-objective evolutionary method to optimize feedback controllers for maneuvers 
of a soft robotic fish under artificial muscle actuation. The resultant fluid-structure interactions 
are fully solved by using a novel fictitious domain/active strain method. In particular, we consider 
a two-dimensional elastic plate with finite thickness, subjected to active contractile strains on both 
sides of the body. Compared to the conventional approaches that require specifying the entire-body 
curvature variation, we demonstrate that imposing contractile active strains locally can produce 
various swimming gaits, such as forwarding swimming and turning, using far fewer control 
parameters. The parameters of a pair of proportional-integral-derivative (PID) controllers, used 
to control the amplitude and the bias of the active strains, respectively, are optimized for tracking a 
moving target involving different trajectories and Reynolds numbers, with three objectives, tracking 
error, cost of transport, and elastic strain energy. The resulting Pareto fronts of the multi-objective 
optimization problem reveal the correlation and trade-off among the objectives and offer key insight 
into the design and control of soft swimmers.
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inertial regime where fast swimming motion requires 
a significant amount of momentum exchange between 
the fluid and solid structures to overcome viscous drag 
force. Nevertheless, instead of fully resolving such 
nonlinear fluid/elastic-structure interactions (FESI), 
people often oversimplify the problem by solving a 
reduced fluid-solid coupling system in mathematical 
modeling and numerical simulations. For example, 
the majority of numerical studies of fish-like swim-
mers assume that the undulatory motion (or swim-
ming gait) approximately follows a traveling-wave 
form which can be experimentally measured for a 
free-swimming biological fish [18, 24, 46]. Typically, 
one treats the fish body as deformable but prescribes 
the curvature of its backbone deformation to a cer-
tain traveling-wave form [16, 43]. While convenient, 
these studies may oversimplify the nonlinear FESI 
to be a (quasi) one-way coupling problem, and, in 
the meantime, introduce too many free parameters 
to define the body actuation, which adds significant 
complexities in designing control schemes later. More 
importantly, soft swimmers will not always follow a 
specific swimming gait, which only approximate the 
solitary swimming motion at a quasi-steady state. In 
reality, they can constantly switch between straight-
swimming and turning motions with acceleration/
deceleration, especially when coordinating with many 
other swimmers during schooling [17, 23, 35].

To model soft actuation materials, an alterna-
tive to prescribing the entire body deformation or 
curvature is to build micro-mechanical models that 
take into account the intrinsic muscle-like behaviors 
locally. Generally speaking, there are typically two dif-
ferent ways of modeling the so-called artificial mus-
cles. One way is to decompose the total deformation 
of the material into two parts: elastic deformation 
caused by mechanical stress and active deformation/
strain caused by other stimuli [8, 30, 44]. For exam-
ple, deformation of hydrogel can be decomposed into 
the elastic part and the swelling part [8]; deformation 
of liquid crystal elastomer can also be decomposed 
into the elastic strain and the stimuli-induced strain. 
Another approach is the active stress method, where 
the total stress is decomposed into a mechanical part 
and an active part, both of which can induce deforma-
tion [41]. In many cases, the above two methods can 
be flexibly used in achieving arbitrary deformations. 
In fact they are mathematically identical, due to the 
fact that the active deformation introduced here is a 
first-order approximation of nonlinear elasticity, and 
is independent of mechanical stress. These two meth-
ods have been widely used in modeling active soft 
elastic structures in biological systems (e.g. cardiovas-
cular mechanics) and synthetic active soft materials 
[1]. While these elasticity models provide much more 
flexible yet simple local actuation schemes, solving for 
the resultant nonlinear deformation is computation-
ally expensive when coupled with another (nonlin-
ear) flow solver. To address these challenges, we have 

recently implemented the active strain approach in a 
fictitious domain (FD) method, and demonstrated 
that the FD/active-strain method is capable of solving 
the fully-coupled FESI for an arbitrary shape subjected 
to distributed contractive active strains [30].

In this work, we develop a holistic computational 
framework for the design, control, and optimization of 
a soft robotic swimmer. With the aid of the high-fidelity 
FD/active-strain simulator, we implement feedback 
control strategies for the fully-coupled fluid/elasticity 
systems under actuation. Here we model the robotic 
fish as a 2D swimming elastic beam of a finite thickness, 
with contractive strains being imposed on two sides 
(with sharp decays in the thickness direction) periodi-
cally. When coupled with fluid flows, we demonstrate 
that the resultant undulatory free-swimming motions 
can be tuned by changing the active strain magnitude 
and frequency. Moreover, turning motions of the 
swimmer can be effectively accomplished by imposing 
asymmetric active strains on the two sides of the body. 
To achieve feedback control of the swimming motion, 
we couple the FD simulator with model-free propor-
tional-integral-derivative (PID) control, which, argu-
ably, is the most widely used feedback control scheme 
[38]. We seek optimal parameters of the PID control-
lers by using a genetic-algorithm-based multi-objective 
evolution method, U-NSGA-III [40], which produces a 
Pareto set of optimal solutions that clearly illustrate the 
tradeoffs among the objectives, with which the designer 
is able to make informed decisions.

To put the study in context, we consider a series of 
tasks where the soft swimmer tracks a moving target 
involving different trajectories and velocities, where a 
pair of PID controllers are used to adjust the amplitude 
and the bias of the active contractile strains imposed 
on the swimmer. The parameters of the PID control-
lers are optimized with three objectives: (1) tracking 
error, (2) cost of transport, and (3) the average elastic 
strain energy of the morphing body. In particular, the 
tracking error refers to the error between the swim-
mer position and the moving target position and is 
thus a metric on tracking performance, while the cost 
of transport represents a measure of locomotion effi-
ciency. The elastic strain energy is also of importance 
because it is not only closely related to the required 
performance of the actuator, but also to the rate of 
fatigue failure to which soft materials can be prone. 
The optimization is repeated at several Reynolds num-
bers for cases with different velocities and trajectories 
of a moving target. The resulting Pareto fronts of the 
multi-objective optimization problem reveal the cor-
relations and trade-offs among the objectives and offer 
key insight into the design and control of soft swim-
mers. For example, the tracking error shows strong 
inverse correlation with the elastic energy. As another 
example, the optimized proportional gain parameters 
are also inversely related to the tracking error. Finally, 
the controller parameters produced via the proposed 
multi-objective optimization method demonstrate 
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robustness across different conditions for the moving 
target and for the fluid environment.

The paper is organized as follows. In section 2 we 
briefly introduce the FD/active-strain method, and 
the computation model for the 2D soft robotic fish. In 
section 3 we integrate the CFD algorithm with a PID-
based muscle control scheme, the parameters of which 
are optimized by using a higher-level multi-objec-
tive optimization algorithm. In section 4 we present 
numerical results and analyses on optimizing the PID 
controller parameters across a variety of swimming 
patterns, speeds, and Reynolds numbers. Finally con-
clusions and discussions are provided in section 5.

2.  Review of FD/active-strain method

In this section, we briefly review the major 
components of the FD/active strain method, 
which is the core of our CFD solver. The reader is 
referred to [30] for more details, especially on the 
derivation of the FD formulation and the numerical 
schemes. Mathematically, the solid deformation 
can be described by the deformation gradient tensor 
F = ∂x/∂X, which projects the current deformed 
state to the initial reference state. To capture the local 
actuation, we decompose the deformation gradient 
tensor F into an active deformation tensor Fa and an 
elastic deformation tensor Fe  following multiplicative 
decomposition [25, 26] such that

F = Fe · Fa.� (1)

Here Fa is effectively an arbitrary function applied 
to the reference configuration that can be designed 
in terms of the desired location, direction, sign 
and strength. For incompressible solids that are 
considered here, we apply an incompressible 
restriction on actuation such that det(F) = 1, where 
‘det’ represents the determinant. For simplicity, 
Fa can be defined in the principal coordinates and 
transformed to the desired orientation by a standard 
rigid body rotation coordinate transformation. For 

an artificial muscle that contracts uniaxially when 
activated, we define Fa = diag[λ1,λ2,λ3], where 
λ1 < 1 represents a principal compression ratio, 

and λ2 = λ3 =
√
λ−1
1 > 1 are correspondingly the 

homogeneous deformation in the other two directions. 
With the total F being mapped appropriately, the 
resultant elastic stress can be calculated through 
certain constitutive relation

τ = τ (Fe) = τ
(
F · F−1

a

)
� (2)

for various kinds of material (hyperelastic, viscoelastic, 
composite, etc) conditions.

It is well understood that during an undulatory 
motion, fish use the anisotropic viscous drag force 
exerted in the longitudinal and transverse directions 
along the wavy body to create a net propulsive force 
[29]. As shown in figure 1(a), we adopt a simple 2D 
rectangular beam of length L and uniform thickness 
h to characterize the slender fish body shape. Without 
using complicated interconnected spring models to 
mimic the biological tissues’ mechanical properties 
(e.g. the artificially coupled viscoelasticity and elec-
trophysiology effects as what have been done by using 
the immersed boundary method [21, 45]), we assume 
that the soft active material is a continuous hyperelas-
tic elastica which, at the microscopic level, is driven by 
a contracting element with an initial length l0, yield-

ing an effective local contraction ratio λa =
l
l0

. At the 

microscopic scale, it connects with a neo-Hookean 
spring that generate elastic stresses in response to 
the active input of the contraction field. The lat-
ter, in 2D, is simply chosen as a homogeneous field 
Fa = diag (λa,λ−1

a ) applied on the active segment.
Here we follow the geometry adopted by Ham-

let et  al [21] by choosing the first 10% of body 
length from the left to be passive, and then con-
necting an active section of length δ. To activate the 
beam, as shown in figure  1(b), we apply a constant 
(λa ∼ 1− α, for a fixed α) or time-dependent (e.g. 

sinusoidal, λa ∼ 1− α sin
(
2π
T t

)
) contractile strain 

Figure 1.  (a) Schematic of a 2D beam under contractile actuation (view from above). The active segment is of length δ. The 
microscopic mechanical model of the active contraction is illustrated by the zoom-in schematic on bottom. (b) Contractile 
actuation applied alternatively on the surfaces of two sides, which exponentially decays in the thickness (y ) direction (not shown in 
the figure).

Bioinspir. Biomim. 15 (2020) 035004



4

A Hess et al

field alternatively on both sides within a time period 
T. Here magnitude α characterizes the contraction 
strength. In the meantime, the maximum strain is 
imposed on the left (denoted by ‘L’) or right (denoted 
by ‘R’) side with an exponential decay in the thickness 
direction. Mathematically, it is convenient to define 
the sinusoidal actuation scheme as



λL
a = 1− α sin

(
2πt
T

)
exp

(
− h−y

d0

)
, t ∈

[
0, T

2

)
; λL

a = 0, t ∈
[
T
2 ,T

]
,

λR
a = 0, t ∈

[
0, T

2

)
; λR

a = 1− α sin
(
2πt
T

)
exp

(
− h−y

d0

)
, t ∈

[
T
2 ,T

]
.

� (3)

In the above, d0 controls the steepness of the decay, and 
is chosen as h/3 in all simulations in this work. Typical 
resultant bent shapes are illustrated in figure 1(a) by 
a few snapshots of the midline position (grey dashed 
lines). Therefore, continuously applying periodic 
contractions on both sides lead to an undulatory 
motion.

To resolve the FESI of soft robotic swimmers, we 
implement the above active strain model using a ficti-
tious domain (FD) method [19, 30, 47]. The key idea 
of the FD method is that the interior of the solid is 
assumed to be filled with a fictitious fluid that is con-
strained to move at the same velocity with the solid by 
a pseudo body force (via a Lagrange multiplier). Math-
ematically, it is very similar to the immersed bound-
ary method (IBM) [36] which typically employs 
overlaid Eulerian and Lagrangian meshes to solve the 
fluid-structure interactions: the Navier–Stokes (N-S) 
equations are solved on a fixed Eulerian mesh; while 
the embedded boundaries are tracked by a set of freely 
moving Lagrangian points.

Suppose that a deformable body of density ρs is 
immersed in the incompressible Newtonian fluid 
of viscosity µ and density ρf . Let Ω denote the entire 
computational domain containing both solid and 
fluid domains, and S(t) represent the solid domain. It 
is noted that tracking swimming objects in the fixed 
coordinates requires using a very large computational 
domain, which makes computation expensive. Alter-
natively, here we employ an instantaneous inertial 
frame Ω that co-moves with the swimmer at a certain 
reference speed U  [27]. Then the dimensionless FD 
governing equations in the weak form become

∫

Ω

(
∂uf
∂t

+ ûf · ∇uf

)
· vf dx+

∫

Ω

(
−pI+

1

Re
(∇uf )T

)
: ∇vf dx =

∫

S
λ · vf

dx,

�

(4)

∫

Ω

q∇ · uf dx = 0,� (5)

where ûf = uf − U. The dimensionless governing 
equations  for neo-Hookean solid material 
(τ = G(B− I)) are solved in the absolute references 
as

∫

S

[
(ρr − 1)

(
dus
dt

− Fr
g

g

)]
· vsdx

+

∫

S
(∇vs)

T : [K0 ln JI+ G(B− I)]dx

−
∫

S
(∇vs)

T :

(
−pI+

1

Re
[∇uf + (∇uf )

T ]

)
dx

= −
∫

S
λ · vsdx,

�

(6)

∫

S
(uf − us) · ζdx = 0.� (7)

Equations (4)–(7) represent the fluid momentum 
equation, the fluid continuity equation, the solid 
momentum equation, and the velocity constraint 
in the solid domain, respectively. In these equations, 
uf  is the fluid velocity, us the solid velocity, p  the 
fluid pressure, and λ the pseudo body-force (i.e. the 
Lagrange multiplier). The variables vf , vs, q and ζ  
are the corresponding variations, respectively. In our 
algorithm, we adopt a hybrid finite-difference/finite-
element scheme [30] where the flow equations (4) and 
(5) are solved by the half-staggered finite difference 
scheme and the projection method [47], and the 
solid equation (6) is solved by using the finite element 
method (see details in [30]). Similar mixed schemes 
have also been implemented in the IBM solvers 
when handling various fluid-structure interaction 
applications [13, 20, 22].

For the original FD method for the passive deforma-
tion model, B = F · FT is the left Cauchy–Green defor-
mation tensor, here F being the deformation gradient 
tensor defined as: F = ∂x/∂X, in which x  and X are 
the current and reference configurations of the solid, 
respectively. J is the determinant of F, and J  =1 for the 
incompressible solid. In contrast, for the active strain 
model studied, B = Fe · FTe = (F · F−1

a ) · (F · F−1
a )T , 

where Fe  is the elastic deformation tensor which causes 

Bioinspir. Biomim. 15 (2020) 035004
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the elastic stress, and Fa is an input deformation tensor 
without generating elastic stress. In addition, g denotes 
the gravitational acceleration. The following charac-
teristic scales are used for the non-dimensionlization 
scheme: Lc for length, Uc for velocity, Lc/Uc  for time, 

ρf U2
c  for pressure p , and ρf U2

c /Lc  for Lagrange multi-
plier λ. The following dimensionless control param

eters are also introduced: density ratio ρr =
ρs

ρf
, mat

erial parameters K0 =
K0

ρf U2
c
 and G = G

ρf U2
c
, Reynolds 

number Re =
ρf UcLc

µ , Froude number Fr = gLc
U2

c
. Here 

K0 is related to the compressibility property of the 

material and G represents the shear modulus. It should 
be mentioned that for soft swimmers, the character-
istic velocity is defined as Uc = fcLc  for a given refer-
ence actuation frequency f c. In addition, in order to 
enforce the incompressibility constraint of the solid 
material, i.e. J  =  1, we adopt a penalty function-like 
approximation by setting a large enough value for K0 
(104–105).

3.  Controller design and optimization

3.1.  Control scheme
The primary goal for our control scheme is to make 
the soft swimmer effectively follow a moving target 
point. Such situations could arise in applications such 
as schooling (i.e. leader-follower configuration) or 
simply following a pre-determined desired trajectory 
[4, 10, 28]. By its 2D nature our soft swimmer (elastic 
beam) is limited to forward swimming and turning, 
based on which we propose the following actuation 
scheme:

αR(t) = α0(t) +
β(t)

2
, αL(t) = α0(t)−

β(t)

2
.

� (8)

Here αR and αL correspond to the peak actuation 
strength in the right and left muscles, respectively, 
viewed in the body frame of the beam oriented from 
the tail toward the head. This differs from previous 
descriptions where both sides used a single value of 
constant α. It should be mentioned that as discussed 
below, their time-dependent values are determined 
via feedback control mechanisms. Here α0(t) is the 
‘base’ contraction strength for a forward (straight) 
swimming motion, which is assumed to be limited 
to the range 0 � α0 � αmax . After αR,L(t) being 
computed in equation (8), we can compute the local 
contraction ratio λa(t) = 1− αR,L, and then the active 
deformation tensor Fa(t) = diag (λa,λ−1

a ) (hence the 
elastic stress τ  in equation (2)).

Turning can be achieved by biasing the contrac-
tion strength between the two actuated sides. The soft 
swimmer tends to turn in the direction of the stronger 
actuation, providing a means to control the beam’s 
heading while swimming. Testing showed that this 
mechanism allows the beam to turn even while it is 
at rest with an averaged swimming speed of zero. The 
bias that leads to turning is denoted by β and is limited 

to the range −βmax � β � βmax . Based on the signs in 
(8), a positive value of β causes the beam to turn to the 
right and vice versa. Note that αR and αL are limited 
to the same range as α0 due to the physical constraints 
of the actuator, but the presence of β has the potential 
to push their values outside of this envelope. To pre-
vent this while still achieving the desired bias, the por-
tion of the bias outside the envelope is shifted to the 

opposite side. For example, if αR = α0 +
β
2 � αmax, 

then αR = αmax and αL = αmax − β. This is sufficient 
assuming that βmax � αmax and in practice we typi-

cally set βmax =
1
2αmax.

To complete the control scheme it is necessary to 
connect our control variables, α0 and β, to the physi-
cal state of the swimmer. We elect to use proportional-
integral-derivative (PID) controllers as they have been 
widely used across disciplines. A general PID control-
ler takes the following form:

f (t) = kpe(t) + ki

∫ t

0
e(t′)dt′ + kd

de(t)

dt
� (9)

where f (t) is the control variable, e(t) is the error 
corresponding to the difference between the target 
and current state, and the constants kp , ki, kd are tuning 
parameters. The actuation strength f (t) = α0(t) is 
calculated based on the error e(t)  =  e1(t) in position, 
which is defined as:

e1(t) = |r|sgn (r · v) .� (10)

In the above, the vector v represents the moving 
target’s velocity, and r = xt − xcom  connects the 
swimmer’s center of mass (CoM) to the target position 
with its magnitude determining the magnitude of 
error (see schematic in figure 2). For stationary targets, 
i.e. v = 0, we simply use e1(t) = |r|. On its own this 
error magnitude would lead to the error being always 
positive which can potentially promote overshoot and 
lead the integral term to blow up. To prevent this we 
determine the sign of the error by sgn(r · v) (here ‘·’ 
represents the vector inner product). If the target is 
moving away from the swimmer, r · v  will be positive 
driving the swimmer to accelerate. Conversely, if 
the target is moving toward the swimmer, r · v  will 
be negative causing the swimmer to slow down and 
potentially stop. If the controller returns a value that 
is out of bounds, the control variable is set to the 
respective bound and integration is stopped to prevent 

Figure 2.  Schematic illustrating the control scheme based 
on the translational and rotational motion of a soft swimmer 
in relation to a moving target xt .

Bioinspir. Biomim. 15 (2020) 035004
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windup of the integral term. The overall result is a 
follower type scheme where the swimmer tends to 
remain behind the target and overshoot behavior is 
suppressed.

Special attention must be given to the derivative 
term due to the noise in the error. This is a common 
problem in PID controllers as noise can produce large 
and drastically varying values of the derivative that can 
lead to undesirable behavior. The undulatory motion 
of the swimmer leads to a significant amount of sway 
which appears in the error as an oscillation driven at 
the forcing frequency. We filter out this oscillation by 
calculating the derivative based on the moving-aver-
age of the error, with the window size for averaging 
equal to that of the period of the forcing, T, as shown 
in (11). In particular, the following algorithm is used to 
approximate the derivative term:

de1(t)

dt
≈ ē1(t)− ē1(t −∆t)

∆t
, ē1(t) =

1

T

∫ t

t−T
e1(t

′)dt′.

� (11)

Directional control is achieved by determining 
f (t) = β(t) via a separate PID controller, where the 
error e(t)  =  e2(t) is based on the angle between the tar-
get vector, r, and the swimmer’s time-averaged head-
ing vector, r̄h. Due to the highly flexible nature of the 
swimmer, it is difficult to clearly define a body frame. 
As such we choose to define our orientation in terms 
of a chord line running from the tail to the head of the 
swimmer, rh. The large-amplitude motion of the head 
and tail means that this vector will vary significantly 
across a full swimming stroke, limiting its value as an 
instantaneous measure. However, time-averaging 
like that done in (11) provides a stable measure of the 
swimmer’s heading. In sum, the bias control is based 
on the error e2(t) = θ, the angle between the vectors 

r and r̄h =
1
T

∫ t
t−T rh(t

′)dt′. Here rh = xhead − xtail 
represents the instantaneous direction vector that con-
nects the head and tail. From the definition, since r̄h 
is already smoothed by the averaging, no special treat-
ment is necessary for the derivative term.

3.2.  Multi-objective optimization
Multi-objective optimization makes it possible to view 
the landscape of potentially optimal configurations. 
This allows for better understanding of the trade-offs 
between various objectives, leading to smarter design 
decisions. For example, in a swimmer a small decrease 
in speed may lead to sharp increase in efficiency or vice 
versa. The possibility of such a trade-off would not be 
apparent using single objective methods. The results of 
multi-objective optimization appear as a Pareto front, 
which is a surface in the objective space containing 
all solutions where each solution cannot be further 
improved in one objective without negatively affecting 
another objective(s).

Our work is focused on employing high-fidelity FSI 
simulations to investigate soft swimming mechanisms. 
This limits the use of reduced-order models, making 

evolutionary methods the most promising option for 
optimization. Locomotion traditionally lends itself to 
two major design objectives, swimming speed and effi-
ciency. However, our fully coupled model allows us to 
consider other important design criteria such as those 
related to the actuation of the swimmer. Soft materials 
tend to have limited lifecycles and can experience pre-
mature fatigue failure compared to traditional actua-
tors, if cyclic loading conditions are not accounted for. 
Thus the design of such soft swimmer robots may best 
be done with the consideration of 3 or more objectives.

We elect to optimize the soft swimmer by employ-
ing a multi-objective evolutionary method, specifi-
cally the U-NSGA-III method as developed by Seada 
and Deb [40]. NSGA-III [11] is a recent extension 
of the widely used NSGA-II [12] that incorporates 
the idea of predefined reference vectors, increasing 
the possible number of objectives from 2 to 3+. The 
weakness of NSGA-III is that this change also makes it  
ineffective in the case of 2 or fewer objectives, meaning 
it is not a replacement for NSGA-II but instead a com-
plementary method. U-NSGA-III solves this prob-
lem by extending NSGA-III in such a way that one or  
two-objective optimization becomes possible, mak-
ing it a well rounded method capable of any number 
of objectives.

The soft swimmer is driven by two PID controllers 
with three tuning parameters each, leading to a total 
of six parameters as summarized in Table 1. We opti-
mize these parameters in terms of three objectives: 
combined average error (ē), cost of transport (Cot), and 
average strain energy (Ē), which are elaborated below.

The combined average error is the sum of the indi-
vidually averaged errors as

ē = |ē1|+ |ē2|� (12)

in which we track the entire evolution history during 

time t via |ēi| = 1
t

∫ t
0 |ei(t)|dt , i = 1, 2. This provides 

a measure of tracking performance. The energy 
efficiency of the swimmer is evaluated through the 
measure of cost of transport,

Cot =
Ef
d
,� (13)

where Ef =
∫ t
0 Pdt  is the total energy imparted to the 

fluid calculated by integrating the imparted power P, 

and d =
∫ t
0 |〈u(t′)〉|dt

′  is the path length determined 
from the averaged motion of the center of mass, 

in which we define 〈u〉 = 1
T

∫ t
t−T 〈u(t

′)〉 dt′ and 
〈u〉 = 1

V

∫
udV  (here we calculate the integral for 

the solid velocity u in the Lagrangian domain of size 
V , and 〈〉 denotes a spatial average). Finally, the average 
total elastic strain energy is defined as

Ē =
1

t

∫ t

0
E(t′)dt′,� (14)

where we define E =
∫
G (tr(B)− 2) dV  for an 

incompressible neo-Hookean material [5]. This relates 
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the force and energy requirements of the actuators as 
well as the potential for fatigue due to cyclic loading.

4.  Results and discussion

4.1.  Undulatory swimming
We have observed that after the initial transient, 
the soft swimmer quickly reaches a quasi-steady 
forward swimming with periodic undulatory body 
motion. In figure 3(a), we show a typical flow map of 
the swimmer when choosing Re = 500, G  =  1000, 
δ = 0.4, T  =  2, and symmetric actuation at α = 0.15 
(namely, α0 = 0.15, β = 0 in equation  (8)). A pair 
of vortices of opposite signs is generated during each 
tail upward/downward beating, leading to a reverse 
von Kármán vortex street. In figure 3(b), we show that 
the beam midline deformation extracted from the 
simulation during each time period (top), which can 
be approximately fitted by a weighted sine function 
(bottom):

κ(x, t) = (ax2 + bx + c) sin [2π (kx + ωt) + φ] .
� (15)

In this case, we obtain the coefficients a  =  −1.27, 
b  =  0.92, c  =  0.07, k  =  0.4, ω = 1.0, and φ = 0.5. Upon  

comparison, there is good match between the 
simulation result and the fitted model in the middle 
section while the front and tail sections  show slight 
discrepancies. Overall, we see that our simple three-
parameter (α0,β,T ) actuation scheme with muscle 
contraction is capable of reproducing various types 
of traveling-wave-like swimming gaits that typically 
require a larger parameter space.

For the forward swimming cases (β = 0), we have 
evaluated the mean values of swimming speed U , elas-
tic energy E, and cost of transport Cot as a function of 
the amplitude α0 of muscle contraction when fixing 
Re = 500 and T  =  2. As shown in figure 3(c), the sys-
tem exhibits largely monotonic behaviors for the three 
examined variables when the actuation strength α is 
selected between 0.05 and 0.25, with an exception for 
Cot, which shows a local peak around α = 0.08. For 
very small values of α (α < 0.05), the soft swimmer 
does not show significant directional motion; when 
α > 0.25, we find that the average swimming speed 
(and hence also Cot) decreases as α increases, suggest-
ing that large body deformation does not necessarily 
lead to efficient swimming. In this study, we focus on 
the monotonic regime to facilitate controller design.

Figure 3.  Free-swimming of a 2D elastic beam at Re = 500 and T  =  2.0. (a) Instantaneous snapshot of vorticity field. (b) Envelope 
trajectories of the beam midline during one actuation period: (top) numerical results; (bottom) fitted results by equation (15). (c) 
Mean values of U , E, and Cot as function of contraction strength α.

Figure 4.  Simulation results for the soft swimmer at α0 = 0.2, Re  =  500, and G  =  1000: (a) center of mass (CoM) paths at different 
values of β; (b) Turning curvature R−1 as a function of β.
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As discussed in section 1, specifying the empirical 
traveling-wave form of equation (15) only applies to 
the scenario of forward swimming. To achieve more 
elaborate maneuvering such as turning, we introduce 
a bias when applying contractions on the two sides of 
the swimming body. A similar turning study of a 2D 
eel-like swimmer was performed by Bhalla et al using 
the IBM solver [6]. Nevertheless, they have to specify 
the undulatory swimming motion on a curved body-
axis. In figure 4, we demonstrate the effectiveness of 
the actuation scheme for turning with fixed actuation 
strength α0 (α0 = 0.2) but increasing β. In figure 4(a), 
the swimmer’s instantaneous CoM positions clearly 
show that it approximately follows a circular trajec-
tory, the radius of which decreases (tighter turn) as the 
bias value β increases. Interestingly, the results in fig-
ure 4(b) suggest an almost linear relation between the 
bias value of β and the trajectory curvature R−1 (recip-
rocal of the radius).

4.2.  Optimization and analysis
4.2.1.  Trajectory comparison
To make sure the controller is effective, we optimize 
it by accounting for different scenarios of the moving 
target’s characteristic velocity and the Reynolds 
number Re as defined at the end of section 2. Note that 
we define Reynolds number in terms of the actuation 
frequency, not a physical velocity, so by varying Re 
we are implying a change in the fluid properties, 
namely the viscosity. In these studies we employ two 
different types of target trajectories, a straight path as 
characterized in equation (16) and a sinusoidal path as 
expressed in equation (17). The swimmer starts from 
at rest facing along the x axis. We describe the straight 
trajectory of the target with a constant velocity v as

xt =

{
xt = vt + x(0)

yt = y(0)
.� (16)

For the sinusoidal trajectory, the moving target has a 
constant velocity in the x direction, while its y  position 
follows a sinusoidal function of time:

xt =

{
xt = vt + x(0)

yt = A sinωt + y(0)
.� (17)

Here we fix the amplitude, A  =  2, and angular 
frequency, ω = 0.05π. The inclusion of sinusoidal 
motion means that the swimmer has to constantly 
adjust its velocity and direction, which demonstrates 
its ability to follow complex paths. All cases are run 
with a maximum (dimensionless) simulation time 
of t  =  80, and as a precaution, the forward velocity 
controller is not activated until t  =  2 and the heading 
controller is not activated until t  =  4. Before these 
times, α0 = αmax and β = 0. The idea is to allow a 
smooth start and prevent potentially large values of β 
from negatively affecting the starting behavior of the 
swimmer, by first allowing it to achieve a significant 
forward velocity. However, testing has shown both 
restrictions to be unnecessary if βmax is sufficiently 
smaller than αmax.

In figure  5, we show the performance of a soft 
swimmer when subjected to different PID controllers 
by comparing its CoM trajectories with the specified 
straight (panel (a)) and sinusoidal (panel (b)) paths 
(black lines). Here we select two optimal solutions, 
corresponding to the case of lowest error ē (min(ē)) 
and the case of a moderate error (ē = 4.5) but lowest 
elastic energy (min(Ē)) at Re = 500. For the minimum 
error examples in both panels, the swimmer quickly 
converges to the target point’s position and is able to 
follow it closely. Note that the target is a moving point 

Figure 5.  CoM trajectories of a soft swimmer tracking a moving target that is moving along both the (a) straight and (b) sinusoidal 
paths (black lines), when the swimmer is subjected to the PID control. The (red) and (blue) lines correspond to the controllers 
that have the lowest and a moderate error ̄e (but lowest elastic energy Ē), respectively. The black arrows mark the target’s moving 
directions.
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and not simply a designated path, meaning that a 
close match to the target trajectory implies the swim-
mer must be matching both the desired heading and 
velocity. Variation in the velocity can be discerned by 
observing the variation in the wavelength of the undu-
latory oscillations in the CoM trajectory. For a fixed 
driving frequency, the swimmer’s velocity will cor-
respond to the wavelength of this oscillation. At the 
start the wavelength is long as the swimmer attempts 
to reach the target as quickly as possible. The wave-
length then shortens as the swimmer approaches the 
target and matches its velocity. In the sinusoidal case, 
the wavelength is shorter near the peaks and longer 
in between corresponding to the velocity of the sine 
function which varies by the cosine. In contrast, for the 
moderate error case, we see that the swimmer appears 

to lag behind, and eventually fails to catch up to the tar-
get, although the small amplitudes (relative to the best 
ē cases) indicates lower contractile strengths which 
implies less deformation of the body and thus lower 
elastic strain energy.

4.2.2.  Pareto fronts of optimized solutions
Here we show global views of the obtained optimal 
solutions. Figure  6 compares the resulting Pareto 
fronts (a set of nondominated optimal solutions if no 
objective can be improved without sacrificing at least 
one other objective) in the space of objectives when 
the target velocity v takes different values while the 
Reynolds number Re is kept at 500, for the cases of 
straight trajectory ((a)–(d)) and sinusoidal trajectory 
((e)–(h)), respectively. The obtained optimal solutions 

Figure 6.  Pareto fronts in the space of tracking error (ē), cost of transport (Cot), and elastic strain energy (Ē) for various target 
speeds v with Re  =  500. Blue-square: v  =  0.1. Red-triangle: v  =  0.2. Green-circle: v  =  0.3. Straight path: (a)–(d). Sinusoidal path: 
(e)–(h). The leftmost panels (a) and (e) are 3D views of the objective spaces. The panels to their right are 2D projections of the 
respective distribution that visualize the trends between each pair of objectives. (b) and (f): ̄e versus Cot. (c) and (g): ̄e versus Ē.  
(d) and (h): Cot versus Ē.

Figure 7.  Pareto fronts in the space of tracking error (ē), cost of transport (Cot), and elastic strain energy (Ē) for various Re with 
v  =  0.2. Blue-square: Re  =  500. Red-triangle: Re  =  1000. Green-circle: Re  =  1500. Yellow-diamond: Re  =  2000. Straight path: 
(a)–(d). Sinusoidal path: (e)–(h). The leftmost panels (a) and (e) are 3D views of the objective spaces. The panels to their right are 
2D projections of the respective distribution that visualize the trends between each pair of objectives. (b) and (f): ̄e versus Cot. (c) and 
(g): ̄e versus Ē. (d) and (h): Cot versus Ē.
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for these two different paths are approximately 
allocated in the same regimes, exhibiting very 
similar patterns. Figure 7 shows the results when the 
Reynolds number is varied while the velocity is fixed 
at 0.2. All datasets shown correspond to a total of 50 
generations of evolution with a child population of 
64. The swimmer’s body is neutrally buoyant with 
δ = 0.5 and non-dimensional parameters G  =  1000 
and K0 = 104. It is worthwhile to mention that some 
portions of the objective space, and the individual 
solutions (PID parameters) that fall within, may be 
undesirable. For example, there are scenarios when the 
swimmer is barely moving and possibly not swimming 
at all. This ‘trivial’ state can be interpreted using the 
three objectives, where the ideal optimal value of 
strain energy, Ē = 0, coincides with the trivial case of 
zero actuation, αR = αL = 0. From the optimizer’s 
prospective, this is a valid solution because our 
objective functions do not in any way represent this 
as a negative behavior. The objective functions could 
possibly be modified to avoid this trivial solution by 
adding a penalty function or cutoff, but such changes 
are undesirable since they could potentially add 
constraints or biases on the optimizer in unpredictable 
ways. Thus we stick to the original form of objective 
functions and remove trivial solutions in the end as 
part of the final decision-making process.

A 2D view of the Pareto front on the projected 
(Ē, ē) plane can clearly reveal the effect of varying v on 
the resulting optimal solutions, as seen in figures 6(c) 
and (g). The distributions are clearly separate with 
the profile shifting up and right as v increases, both as 
expected, since increasing v indicates the increase in 
tracking difficulty and the requirement of higher actu-
ation output. In comparison, the effect on Cot as seen 
in figures 6 (b), (d), (f) and (h) appears to be minimal 
with the profiles being nearly independent of v.

Varying Re proves to have a significantly different 
effect with dependency apparent primarily in Cot and 
Ē as can be seen in figure 7. From figures 7(b), (d), (f) 
and (h), we see that as Re increases, Cot drops. From fig-
ures 7(c) and (g), the elastic strain energy also drops 

with increasing Re. As Re increases the viscous forces 
acting on the swimmer decrease, leading to both a 
lower Cot and actuation strength required to drive the 
swimmer. In all cases, for the regions where the error 
ē is low, there is an inverse relationship between Cot 
and the error. The error proves to be mainly domi-
nated by the positional error, e1, which in turn is logi-
cally inversely related to the swimmer’s velocity. From 
this we can conclude that Cot increases with increasing 
swimmer velocity as expected due to fluid drag.

4.2.3.  Objective correlations and parameter trends
In figure 8 we further compare the Pearson correlation 
coefficients of the objectives for each data set. The 
most apparent result is that in all cases the coefficient 
relating ē and Ē is approximately equal to  −1. 
This means that they are correlated strongly with 
an inversely proportional relationship, which is 
confirmed by observing panels (c) and (g) in figures 6 
and 7 where the population in each dataset has a highly 
linear distribution. Physically this indicates that lower 
error requires stronger actuation. The strength of 
this correlation also implies that these objectives are 
not independent in our system. For example, it is not 
possible to find an optimal solution that decreases 
both ̄e and Ē simultaneously.

The Pearson coefficients relating ē to Cot as well as 
relating Cot to Ē do not show similarly clear patterns. 
Qualitatively, in the regions of lower ē there appear to 
be noticeable and consistent trends; however, when 
viewed as a whole, these fall apart. Thus without defin-
ing a criterion to trim the data set, a solid conclusion 
cannot be made. Interestingly it can be noted that 
coefficients relating ē to Cot and those relating Cot to Ē 
appear to be equal in magnitude and inverted in sign. 
This can be explained by the objectives in each data-
set falling roughly in a plane such that the distribution 
seen in panels (b) and (f) (corresponding to ē to Cot) 
is the mirror of that seen in panels (d) and (h) (corre
sponding to Cot to Ē).

Furthermore, we seek more quantitative under-
standings of how the controller parameters vary when 

Figure 8.  Comparison of the Pearson correlation coefficients (ρ) of the objectives for varying v (left) and varying Re (right). Blue-
square  =  e to Cot. Red-triangle  =  e to Ē. Yellow-circle  =  Cot to Ē.
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moving through the objective space. Considering 
the fact that the mapping between the objective and 
parameter space is neither necessarily smooth nor con-
tinuous, we emphasize that regions or even individuals 
in the Pareto optimal objective space must be ‘clas-
sified’ into different groups that needs to be treated 
separately. For our study there is an obvious choice 
for classification, swimmers versus non-swimmers. 
As noted previously, there are effectively trivial solu-
tions when Ē is near zero and the error is correspond-
ingly high. This occurs when the contraction strength 
is sufficiently small such that the soft swimmer barely 
moves. By excluding these high error individuals 
(above roughly half the maximum error), we are left 
with parameter regions that may exhibit qualitatively 
clear trends in the objective space.

Figure 9 shows the trends of kp ,position versus error for 
all cases used in the optimization study at different val-
ues of v and Re. When near the minimum error, kp ,posi-

tion appears to reach maximum values, which corre-
sponds to the optimal solutions near the upper bound 
of contraction strength α0. For fairly large error values, 
kp ,position becomes negligible, corresponding to those 
trivial solutions with low Ē. From the PID controller 

formulation in equation (9), α0 ∝ kp,positione1, suggest-
ing that when α0 is properly bounded, larger controller 
gain kp ,position results in reduced error.

Besides the kp ,position  −  Error relations, however, we 
did not find other clear trends when we sweep through 
the parameter space and connect the tuning param
eters to the objectives. The data appear to be highly 
noisy, which is primarily due to the stochastic nature 
of evolutionary methods. We have observed that often 
times, they are able to converge rapidly to a certain 
optimum region, and then slowly approach the opti-
mal solution(s) within via a stochastic search. Never-
theless, when comparing the obtained optimal tuning 

Figure 9.  The trends of kp ,position versus ̄e. (a) and (b) Cases of varying v. (c)–(d) Cases of varying Re. (Left) panels are from the 
straight path and (right) from the sinusoidal path. The black dashed lines delineate the borders between the meaningful and trivial 
solutions.

Table 1.  Summary of the variables and objectives considered in the 
optimization.

Variables Objectives

kp ,position ē

ki,position Cot

kd,position Ē

kp ,heading

ki,heading

kd,heading
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parameters for different target path (i.e. straight versus 
sinusoidal) as well as across Reynolds numbers (e.g. see 
figure 9), we have found that their values all fall into 
approximately the same ranges, indicating that these 
solutions indeed characterize the global optima. In 
other words, the proposed optimization approach 
seems to have produced PID controllers with near-
optimal behavior across varying target behaviors and 
fluid environments.

5.  Conclusion

In this paper we presented a new computational 
framework for optimizing feedback control of soft 
robotic fish enabled by muscle-like actuation. A 
novel fictitious domain/active-strain method [30] 
was employed to handle the resultant fluid-structure 
interaction when local contractile active strains—
emulating muscle actuation—are imposed on the 
soft swimmer. In particular, using a 2D elastic beam 
with finite width as a model for the soft swimmer, we 
demonstrated versatile swimming motions (forward 
swimming and turning at different velocities and 
radii, for example) by varying the strength and 
bias of the active strains imposed on both sides of 
the swimmer. Two PID controllers are adopted 
for adjusting the actuation strength (α0) and bias 
(β), respectively, for the swimmer to track a moving 
target. With this setup, multi-objective optimization 
of the controller parameters was conducted using 
the U-NSGA-III algorithm, where three objectives 
were considered, including the tracking error, cost 
of transport, and elastic strain energy. The PID 
controller parameters were optimized using a series 
of moving target trajectories, involving different 
speeds and Reynolds numbers for two types of paths 
(straight and sinusoidal). By analyzing the resulting 
Pareto fronts, the study revealed the trends of how 
the obtained values of objectives are influenced by 
the target trajectory conditions. It also showed the 
correlation and trade-offs among the objectives 
under feedback control, as well as how the optimized 
controller parameters are related to the objectives and 
trajectory conditions. Overall, this work has shown 
the feasibility of using high-fidelity CFD to design and 
optimize feedback control for soft robotic fish subject 
to multiple, potentially conflicting objectives.

There are a few directions for future work. First, 
we will consider the extension of the presented frame-
work to the case where the soft swimmer has a 3D 
geometry and a more general form of distributed actu-
ation. However, compared to the 2D cases, dynamic 
instabilities can raise significant challenges in robots 
design and optimization, especially for light-weight 
structures moving in fluid or air [15, 37]. Hence large-
scale computation is desirable to thoroughly explore 
the parameter space to identify the phase bounda-
ries of the stable dynamic regime, which may further 
suggest simplified dynamic models for analysis. In 

the meantime, methods of sensitivity analysis can be 
included in the optimization process to uncover and 
compensate for these instabilities [2, 42]. Second, while 
PID controllers were used as an example of model-free 
controller in this work, we plan to exploit the compu-
tation data and system ID techniques to obtain the 
dynamic model of a soft swimmer, based on which 
model-based controllers (such as linear quadratic reg-
ulator (LQR) and model-predictive control [7]) will 
be developed and evaluated. Ultimately, it is our plan 
to experimentally validate the modeling, control, and 
optimization methods with a soft robotic fish proto-
type actuated by smart materials (e.g. shape memory 
alloys or dielectric elastomer actuators).
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