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ABSTRACT
This paper focuses on building personalized player models solely
from player behavior in the context of adaptive games. We present
two main contributions: The first is a novel approach to player
modeling based on multi-armed bandits (MABs). This approach ad-
dresses, at the same time and in a principled way, both the problem
of collecting data to model the characteristics of interest for the cur-
rent player and the problem of adapting the interactive experience
based on this model. Second, we present an approach to evaluat-
ing and fine-tuning these algorithms prior to generating data in a
user study. This is an important problem, because conducting user
studies is an expensive and labor-intensive process; therefore, an
ability to evaluate the algorithms beforehand can save a significant
amount of resources. We evaluate our approach in the context of
modeling players’ social comparison orientation (SCO) and present
empirical results from both simulations and real players.
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1 INTRODUCTION
Player modeling focuses on modeling and predicting player charac-
teristics of interest, such as preferences, skill level, or behavior [31].
One of the reasons player modeling is interesting is because it
plays a key role in the creation of adaptive games. In this paper,
we present two main contributions to player modeling: (1) a novel
player modeling approach based on multi-armed bandits (MABs),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

and (2) an approach for evaluating and fine-tuning these algorithms
before having access to real player data in a user study.

A common approach to player modeling is the use of machine
learning (ML) [9, 26]; however, ML algorithms typically require
large amounts of training data. Our proposed approach to player
modeling based onMABs [2] solves both (1) this problem of training
data acquisition as well as (2) the problem of how to use the player
model to adapt the game.

We address the challenge of adapting a game to achieve a de-
sired effect on the player by periodically choosing one among many
potential ways to adapt the game. After observing the player’s
behavior in response to the bandit’s choice, a reward value is gener-
ated based on the efficacy of that choice, which the bandit observes.
We assume a lack of any prior training data before the user starts
interacting with the system (though pre-existing data can be ex-
ploited). MAB strategies naturally solve this problem by balancing
exploration (i.e., trying new ways to adapt the game to improve
its understanding of the player) and exploitation (i.e., adapting the
game in ways that have proved to work well in the past).

Moreover, a second problem needs to be solved to effectively
deploy this strategy, which constitutes our second contribution.
Consider the common problem of choosing the appropriate AI ap-
proach before performing an adaptive game user study. How can
we gain insights into which AI approaches would be best suited for
our user study before engaging in the resource-intensive activity of
actually carrying out the study? Additionally, how do we design the
parameters of the user study (e.g., participants, duration) without
knowing how the AI will perform? To solve this problem, we lever-
age publicly available data to create simulated players that exhibit
statistical behavior patterns close to actual humans. Through the
use case of modeling social comparison orientation (SCO) to maxi-
mize motivation toward physical activity, we show the promise of
our approach as well as the effectiveness of our simulated players
to evaluate MAB algorithms.

In the remainder of this paper, we first present some background
on player modeling, adaptive games, and MABs. We then present
ourMAB playermodeling framework, followed by ourmethodology
for creating simulated players. Finally, we present empirical results
from simulations (with the simulated players) and a real user study.

2 BACKGROUND AND RELATEDWORK
This section briefly introduces some basic concepts of player mod-
eling, adaptive games, multi-armed bandits, and simulated player-
based evaluations.
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2.1 Player Modeling and Adaptive Games
Adaptive games leverage knowledge of the player to automatically
adapt to better serve specific users or specific design goals [3, 22, 24,
28, 34]. These methods often rely on player modeling to detect or
predict a set of characteristics of the player that can inform the AI’s
decisions [31]. Previous work has shown applications in improving
learning outcomes [25] and health outcomes [33], adjusting game
difficulty [1, 14], managing user interfaces [12], or even adapting
game narratives [19, 23, 28].

Player models are often designed to leverage either a priori the-
ory and heuristics (“top-down”) or assumption-free statistical meth-
ods (“bottom-up”) to perform their task of differentiating or defining
players, where this dichotomy has also been suggested to define a
spectrum [31]. Our work is informed by both of these approaches;
though our application domain is derived from psychology theory,
we also wish to leverage the statistical power of context-agnostic
modeling in the form of an MAB strategy. Specifically, we based
our work on the psychology theory of social comparison (see Sec-
tion 3.1). Though heuristic-based models exist for classifying users
based on their social comparison tendencies [13], our work employs
a bottom-up approach using MAB strategies.

2.2 Multi-Armed Bandits
A multi-armed bandit (MAB) problem [2] is a class of sequential
decision problem where an agent needs to iteratively choose one
among k actions (called arms), after which it receives a stochastic
reward. This mirrors the problem faced by a player in a casino
deciding on which of the different gambling machines each of their
tokens should be spent. The goal of an MAB strategy is to balance
exploration and exploitation, assimilating new knowledge from re-
wards to “converge” on the arm with the maximum expected return
as quickly as possible. Popular MAB strategies include the ϵ-greedy
strategy, where the arm that has historically returned the highest
reward is always selected except in a portion of iterations (desig-
nated by ϵ) where a random arm is chosen. Another is UCB1 [2],
which considers the upper confidence bound of expected rewards.

MAB strategies are interesting for adaptive games if we consider
the different adaptation options as the arms in an MAB. Inves-
tigations into this have already begun in the context of adaptive
interventions such as those that promote behavior change [10] with
promising results. However, to the best of our knowledge, MABs
have not been used in the context of adaptive games or player
modeling.

Applying MABs to player modeling raises an important chal-
lenge, however. There is a very large collection of MAB strategies
proposed in the literature, each with their own practical and theo-
retical properties. These strategies are usually evaluated by their
behavior “in the limit” (i.e., with large numbers of interactions with
the environment). However, in a player modeling situation, we
cannot expect the system to interact with players for this long. This
means that MAB strategies that work with very few interactions
with users are needed, and thus we had to design an MAB strategy
that satisfies these constraints before carrying out the study.

Therefore, our work pushes the state of the art in two separate
ways. First, we present a novel player modeling framework based
on MAB strategies. Second, we present an approach for evaluating

strategies via simulated players to design an MAB strategy that is
effective with very few player interactions.

2.3 AI Tuning via Simulation
Carterette et al. [6] present a conceptualization of system evalua-
tions as a continuum between systems-based approaches involving
automated tests that evaluate predetermined scenarios and user
studies involving real user interactions with the system. The former
are viewed to have the advantages of stability, repeatability, and
low costs at the risk of oversimplifying assumptions that could
invalidate results. The latter are capable of answering more ques-
tions with potentially higher accuracy, but in exchange they carry
a burden of higher expense and variability. This is referred to as
the bias-variance tradeoff [6].

For adaptive games and player modeling, it is difficult to escape
the requirement of genuine user studies; however, researchers have
found value in simulations for a number of situations. These may
include the rarity of real players [7], the complexity of the test
space [27], a desire to maintain specific control over how a model is
trained [17], or the need to train an AI via techniques that require
very large data sets [30].

3 PLAYER MODELING VIA MABS
The key idea behind our multi-armed bandit approach is that the
MAB strategy serves both as (1) the method by which we model
players and (2) the AI that adapts the game to guide player experi-
ence in real time. Our approach consists of 3 main components:

• The arms: the set of possible ways in which the game can
be adapted and from which the MAB strategy chooses each
time it needs to adapt the game to the player.

• The reward: the numerical quantity the MAB strategy will
aim to maximize, such as the player’s daily steps in an ex-
ergame designed to encourage walking.

• The MAB strategy: the algorithm that chooses an arm, ob-
serves the reward resulting from that choice, and updates its
internal model of the player to make the next decision.

The execution cycle (Figure 1) works as follows:

(1) Initially, the MAB strategy has no information about the
player at hand (however, pre-existing individual or popula-
tion information could be used to initialize the strategy).

(2) The MAB strategy selects one of the possible arms, and the
game is adapted as designated by the arm.

(3) The player continues to interact with the game within this
adaptation, which results in some measurable metric or met-
rics that render a “reward” value.

(4) The MAB strategy observes this reward and updates its in-
ternal model of the player.

(5) The cycle repeats, and the MAB strategy chooses again.

MAB strategies aim to balance exploration and exploitation,
deciding when to exploit the arm that is currently believed to be the
best for the player (according to the objective encoded in the reward
function) and when to explore a different arm in order to learn
more about the current player. Therefore, in addition to making the
necessary decisions to adapt the game, MAB strategies naturally
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Figure 1: Execution cycle for our MAB strategy: 1) MAB
strategy selects among multiple configurations of compar-
isons to present to the player. 2) Comparison options are
presented. 3) Player interacts with the software. 4) Metrics
are generated (daily steps and self-reported motivation). 5)
Reward is observed and recorded by the MAB strategy.

facilitate methods for obtaining the necessary data to update the
player model.

3.1 Modeling SCO via Multi-armed Bandits
Social comparison is a psychological process in which individuals
use comparisons to others, often subconsciously, to assess their
degree of success (self-evaluation), to plan for future success (self-
improvement), or to view themselves in a favorable light (self-
enhancement) [29]. Even when objective standards are available,
comparisons to salient others can still be preferred and potentially
even more influential [18]. This carries into gaming, where leverag-
ing social comparison in team competitions has been shown to be
effective in influencing participant motivation toward increasing
physical activity (PA) [32].

The details that govern the ways in which a person conducts
these comparisons are regarded as individual traits that can be
described in aggregate as the person’s social comparison orientation
(SCO) [13], which includes their tendency to perform comparisons,
their preference in seeking out targets, and the influence that such
comparisons have on their future behavior [4]. Specifically, our
research is interested in modeling the degree to which an individual
tends to seek out comparison targets performing better than they
are (i.e., upward comparisons) or worse than they are (i.e., downward
comparisons). As discussed later, our simulated players model these
features.

In our broader research of leveraging motivation psychology
toward improving engagement and efficacy of game-related inter-
ventions, particularly social exergames [5], we seek to model player
SCO within adaptive games in a way that can provide dynamic
and individualized experiences. This paper is a first step in this
direction, where we evaluated our SCO player modeling approach
in a simpler web-based intervention that gave players an opportu-
nity to log in and compare themselves against other profiles. In our
application, we instantiated the three elements of the MAB player
modeling framework as follows (Figure 1):

• Arms: The MAB strategy had an opportunity each day to
choose which comparison opportunities were displayed. Our
setup had 3 arms: arm “A” presented the player with zero
upward comparison opportunities (i.e., all other displayed
profiles walked fewer steps than the player); arm “B” pre-
sented the player with two upward and two downward, and
arm “C” offered the player four upward comparisons. It is
expected that a player’s act of comparing themselves to these
profiles, depending on their individual SCO, would result
in a change in motivation. Once the configuration was cho-
sen, profiles were presented, and the player was given an
opportunity to investigate more details of only one of the
profiles.

• Reward: The player’s eventual steps s that day following
the session as well as a self-reported motivation scorem on
a 5-point Likert scale following the session (players reported
their motivation before the session as well) were used to cal-
culate a reward score rt using the following formula (where
µ and σ represent mean and standard deviation with respect
to all previously observed data for that player):

rt =

st−µs
σs +

mt−µm
σm

2
• MAB strategy: we evaluated a large collection of strategies
enumerated in Section 4.4.

The next section describes the approach we used to evaluate
the different MAB strategies and parameters by using simulated
players. As detailed later in the paper, we then evaluated the best
performing strategy with real players.

4 SIMULATED PLAYERS
The purpose of creating simulated players was to evaluate different
MAB strategies while modeling players that exhibit similar statis-
tical trends as real users (i.e., same variance in numbers of steps
per day). This was crucial in our case, as it was unclear whether
any MAB strategy would converge fast enough given the expected
duration of the study and the large degree of noise present in real
human data. Our simulated players had three main components:

(1) Step Model: A probabilistic model that simulated the number
of steps typical humans take in a day.

(2) SCO Data Model: A representation of a player’s tendency
toward upward and downward comparisons.

(3) SCO Behavioral Model: A set of functions implementing
player behavior given the step model, the SCO data model,
and the player’s social comparison activities.

4.1 Step Model
In order to obtain a realistic step model, and in consideration for
the bias-variance tradeoff discussed by Carterette et al. [6], we
opted to leverage existing behavioral data. Specifically, we obtained
data from a publicly available Mechanical Turk survey conducted
over three months in 2016 by Furberg et al. [11]. After omitting
days with zero steps, we confirmed via D’Agostino-Pearson and
Shapiro-Wilk tests that the data was not from a normal distribution
(both p < 0.01). Previous research has suggested human walking
patterns align with gamma distributions [21], reflecting a common
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Figure 2: Daily step data from the Mechanical Turk experi-
ment [11]. Histogram is overlayedwith a probability density
function curve for aGammadistributionwith k=2.8, θ=3100.

trend among intermittent human behaviors [16], which we used to
fit the data (Figure 2).

4.2 SCO Data Model
We considered the following SCO traits for the simulated players:

(1) Direction: A propensity for a player to more often make (de-
liberately or subconsciously) upward or downward compar-
isons. This is referred to as the player’s directional preference
for social comparison [29].

(2) Intensity: The general degree of influence that SCO activities
have in a simulated player’s motivation and behavior.

To achieve this, two parameters 0 ≤ u ≤ 1, 0 ≤ d ≤ 1 were used
that represent the simulated player’s affinity toward upward and
downward comparisons on a linear scale. This was chosen as two
separate variables to reflect the design of the common psychology
instrument used to measure SCO–namely, the upward and down-
ward comparison subscales of the Iowa-Netherlands Comparison
Orientation Measure (INCOM) [13].

The propensity to prefer one comparison over another (1) is
modeled as the proportion defined by the simulated player’s u and
d values. E.g., an assignment of (0.8, 0.4) would indicate a 2x pref-
erence toward upward comparisons. A simulated player’s general
sensitivity to either comparison (2) is modeled by the magnitude
of the value. E.g., an assignment of (0.0, 0.5) would designate a
simulated player not influenced at all by upward comparisons but
moderately influenced by downward comparisons.

4.3 SCO Behavioral Model
The simulated players were given a programmatic version of the
same exercise intended for real human users in an upcoming user
study. The details of this exercise are explained in further detail in
Section 5.2.1, and involve a repeated interaction over the course of
21 days (i.e., time steps). In each time step, the simulated player is
given a list of four profiles depicting the PA behavior and other de-
tails for four realistic (but fabricated) people. The PA performance

of these profiles would be strategically generated to provide up-
ward or downward comparisons for the player, according to the
simulated player’s own steps the previous day and the MAB strat-
egy’s assessment of their preference for social comparison. The
simulated player then chooses to view one of the profiles in detail,
and (presumably influenced by that experience of comparing their
PA output to that of another) afterward generates a value for their
“steps” that day.

The decisions made in this process and the value of the generated
steps were influenced by the simulated player’s internal SCO data
model via the behavioral models described below. Specifically, each
simulated player was equipped with three behavior models: selector,
step simulator, and motivation.

The selector component considers the list of the four potential
player profiles for comparison and chooses one of them. The choice
(resulting in a comparison target for that day) is determined by
the simulated user’s underlying (u,d) values, where a direction
preference is stochastically selected, weighted byu andd . E.g., if the
simulated player had values (0.4, 0.2), they would be twice as likely
to choose an upward comparison than a downward comparison.
Once the direction is determined, the user selects randomly among
the choices available in that direction. If no choices are available in
that direction (e.g., the simulated user chose to select downward
today but the MAB strategy chose Arm C and provided four upward
comparisons), a random choice is made from the remainder.

The step simulator component reports the simulated user’s daily
steps following this selection and resulting comparison event. To
do so, the step model is queried to sample a number of steps s ′t from
the gamma distribution discussed in Section 4.1. This is further
modified by the comparison target’s performance, sct as well as
(u,d). Specifically, the number of steps st reported for an upward
comparison is:

st = s
′
t

(
1 + u

sct − s ′t
s ′t

)
and

st = s
′
t

(
1 + d

s ′t − sct
s ′t

)
for a downward comparison.

The motivation component enables the simulated player to self-
report their motivation both before and after a comparison. Because
no public data existed for user motivation reporting, our simulated
players select uniformly at random from values 2, 3, and 4 in the
5-point custom Likert scale used for self-reporting motivation. Moti-
vation reported after the comparison is determined by an aggregate
affect value calculated as u −d for an upward comparison and d −u
for a downward comparison. If this aggregate affect value is pos-
itive, then a motivation score higher than or equal to the initial
value is randomly selected; if it is negative, than a motivation score
lower than or equal to the initial value is randomly selected; and if
it is zero, then a motivation score equal to or adjacent to (higher
and lower) the initial motivation is randomly selected.

4.4 MAB Strategies
We conducted experiments on our simulation reflecting the user
flow of the anticipated user study, using simulated players (instead
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of real players) and multiple MAB strategy variants. Specifically,
we compared the following MAB strategies:

• Random: used as a baseline strategy for evaluation where
the arms are always selected at random.

• UCB1 [2]: calculates a score for each arm based on past
average reward and a confidence interval (arms selected
less often have less data and therefore lower confidence in
expected value). UCB1 balances exploiting arms with proven
rewards and exploring arms not yet selected enough to create
tight confidence intervals.

• ϵ-greedy: selects the best historically performing arm except
for a certain percentage of the time (designated by ϵ) where
the strategy will randomly explore another arm.

• ϵ-first: selects randomly at the beginning of the experiment
until a point specified by ϵ , after which the best historically
performing arm is always selected.

• ϵ-decreasing with linear decay: similar to ϵ-greedy, except
that the ϵ parameter starts higher and gradually decreases
to a lower value over a specified number of steps.

• ϵ-decreasing with exponential decay: an ϵ-decreasing imple-
mentation that decreases the ϵ factor according to a specified
exponential decay curve rather than a linear schedule.

4.4.1 Regression Strategy Variants. Each of the MAB strategies
listed abovemaintains an internal expectation of the reward for each
arm, calculated as the average of all rewards previously reported
when selecting that arm. Since the amount of variance we observed
in the publicly available data was very large, we designed another
set of strategies equipped with better score estimation techniques.

Specifically, we used linear regression involving reported steps
and motivation over the previous days to predict the expected
score that would be obtained when selecting a given arm in the
next decision. We are aware that such a modification challenges
the status of these approaches as MAB strategies, because MAB
strategies are stateless; rather, the introduction of reward prediciton
via linear regression aligns more with a general reinforcement
learning paradigm. But for simplicity, we present these strategy
variants as modified MAB strategies.

Running linear regressions for each day in the Mechanical Turk
data set and observing p-values for the correlations of each feature,
we performed iterative backward elimination to ultimately end
with a model in which all features correlated with a significance of
p < 0.05. Our final model for predicting a person’s daily steps from
historical data consisted of their steps 1, 2, 3, 4, 6, and 7 days prior, as
well as whether the day of the week was Monday or Friday. Because
no such data existed for motivation, we chose an initial approach of
building our regression model from the three previously reported
motivation values.

We incorporated this regression model into the ϵ-based strate-
gies, where we replaced the mean operation with this linear regres-
sion, resulting in “regression-based” variants for each of them (e.g.,
“regression-based ϵ-decreasing with exponential decay”).

5 RESULTS
In this section, we examine both the results of our simulator runs
to prepare for the user study and the results of the user study
deploying the MAB strategy that worked best in simulation.

Figure 3: Average reward (vertical axis) obtained using a
UCB1 MAB strategy for different values ofC over time (hor-
izontal axis, top), and global averages (bottom).

Figure 4: Average reward (vertical axis) for three different
MAB strategies (UCB1, ϵ-greedy, and ϵ-decreasing) over time
(horizontal axis).

5.1 Results of Simulations
We performed three sets of experiments, where in each a specific
MAB configuration was tested with a given simulated player. Each
experiment conducted N experimental trials, where an experimen-
tal trial consisted of the simulated player interacting with the MAB
strategy over M steps (simulated days). In each step, the MAB
strategy was queried for its decision, which would be given to
the simulated player, and the player would simulate behavior in
response (e.g., selecting one of the four presented profiles and gen-
erating resulting steps for that day). This would be reported to the
MAB strategy, which would update its internal statistics. The MAB
state was reset at the beginning of each trial. We report the average
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Figure 5: Average reward (vertical axis) for three different
MAB strategies over time (horizontal axis) with a nine-step
forced exploration period, comparing strategies with linear
regression and without.

number of steps performed by the simulated players each of the
simulated days over all the experimental trials. We usedu = 0.3 and
d = 0.6 for all the simulated players in our experiments (estimating
the ranges of u and d values that most resemble human behavior is
part of our future work).

5.1.1 UCB1 C-Value Experiment. Some strategies needed to fine-
tune their parameters to the specific task, such as the ϵ parameter in
ϵ-greedy strategies or the C parameter in UCB1. In our simulation
experiment depicted in Figure 3, we report on a set of runs that
set out to to tune the C parameter for the UCB1 strategy. Notice
the uncommonly high values for C , as a result of the fact that the
reward function also returns very high values (far from the usual
[0 − 1] interval).

In this experiment, we ran N = 50 million trials of UCB1 for
C = k ∗ 400 for k ∈ {1, ..., 9}. The experiments targeted a horizon
of M = 21 steps in anticipation of a user study lasting 21 days.
Our UCB1 implementation requires that every arm be evaluated
one time before the strategy engages, which is the cause for the
lower results in the first three pulls. From this data, it appears that
C = 2400 achieved the largest reward in our experimental setup.

In the interest of space, we do not report the detailed results for
tuning ϵ-greedy strategies, but the best parameters were found to
be ϵ = 0.1 for ϵ-greedy, and ϵ = 1.0 for ϵ decreasing.

5.1.2 Strategy Comparison Experiment. In this experiment, we
compared three of the most promising strategies to determine the
top candidates to investigate for deployment in our user study.

Figure 4 shows the results of N = 50 million trials for each of
UCB1 (C = 2400), ϵ-decreasing (ϵ = 1.0), and ϵ-greedy (ϵ = 0.1).
As before, we targeted a horizon of M = 21 steps with a require-
ment that all test each arm once (steps 1-3) before engaging their
strategy (forced exploration). The results suggested an advantage
in the UCB1 strategy over the others. However, of the two ϵ-class
strategies, ϵ-decreasing appeared to perform the best.

5.1.3 Regression-Based Experiment. The last experiment compared
our best performing strategies from Experiment 2 to regression-
based strategies. Figure 5 graphs the results of the experiment
with N = 1 million trials. In this experiment, we also introduced
a nine-step forced exploration period in which each of the three
arms were pulled three times (in random order) before the MAB
strategy was engaged, an approach that has been found to be advan-
tageous in short-horizon MAB scenarios [15]. Our results showed
that the regression variants performed significantly better than the
non-regression models (experiments comparing different forced
exploration periods are not reported in the interest of space).

Results from simulated experiments ultimately led to our selec-
tion of MAB strategy for the user study: an ϵ-decreasing strategy
implemented with an exponential decay of 1/xϵ , an ϵ value of 1.0,
and a nine-step forced exploration period.

5.2 Results with Real Users
Finally, we evaluated the best performing MAB strategy from the
simulated experiments with real users via a 3-week study. Although
the long-term goal of this project is to design a full-fledged game
with this technology, we limited ourselves in this study to a web-
based activity as a first step toward that goal.

5.2.1 Methodology. The participants were recruited from psychol-
ogy and digital media courses at Drexel University, where they
were informed they would be participating in a study regarding
attitudes toward health. They were set up with pedometers (i.e.,
smartphones equipped with accelerometers and Fitbit software) to
track their daily steps and were then directed to engage in daily
sessions with a web-based software application. It was requested
from each participant that they complete one session (around 5
min.) each day for 21 days, which consisted of the following:

After logging in, participants were asked to rank their motiva-
tion to exercise on a scale from “very low” (1) to “very high” (5),
after which they were presented with their own step count from the
previous day. They were then shown four buttons representing pro-
files of other people that they could investigate. These profiles were
created by the research team and did not represent real people, but
they were presented as real and the participants were not informed
that they were fabricated. Participants were requested to select a
profile among the four options to view additional details regarding
that profile beyond simple step count (e.g., diet, hobbies, exercise
habits, profession, etc.). The MAB strategy’s choice would dictate
which profiles would be given in order to offer those comparisons.
After the players were done inspecting the selected profile, they
were asked again to report their motivation to exercise. Participants
were divided into two conditions: experimental (with MAB strat-
egy engaged) and a control condition (that received random arm
selections).

5.2.2 Results. A total of 53 people enrolled in the study, but five
participants did not finish enough sessions to qualify as having com-
pleted the study (at least 14 days). Of the remaining 48 participants,
25 were in the control condition and 23 were in the experimental
condition.

Results are shown on Table 1, where we found that participants
in the control group saw an average of 42 extra steps on the days
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Table 1: Difference in step counts (between previous day and
current day) and reported motivation (before and after ses-
sion) during the intervention period for participants with
and without the MAB strategy (2-tailed T-test, α=0.05).

Condition Steps change Motivation change
Control 42 0.013

Experimental 160 0.111
T-score: 0.3007 1.9908
p-value: 0.764 0.047

of their sessions (with respect to the day before) compared to 160
extra steps for participants in the experimental group. Though
perhaps representing a trend, this finding was not found to be
statistically significant (p=0.764) via two-sample T-test at α = 0.05
(two-tailed, dof=445). However, the change in motivation before
and after inspecting the selected user profile did demonstrate a
statistically significant difference (p=0.047) via two-sample T-test
at α = 0.05 (two-tailed, dof=388), where participants in the control
group saw an average motivation score increase of 0.013 compared
to an increase of 0.111 in the experimental group.

6 DISCUSSION
Though metrics such as daily steps and player motivation might
be affected by many factors, the increase in steps and the statisti-
cally significant increase in self-reported motivation suggest that
our bandit-driven manipulation of selecting individualized social
comparison targets for users was more effective than random as-
signment. This in turn appears to support our approach of defining
our player modeling problem as an MAB problem, to which we
were able to apply a wealth of theory and solutions already devel-
oped by that field. To our knowledge, this is the first case in which
an MAB-based approach has been applied toward player modeling
in order to implement an adaptive game.

In our case, this technique for player modeling via MAB strate-
gies allowed us to engage in both a top-down and bottom-up ap-
proach to player modeling simultaneously [31]. Theory borrowed
from the psychology field of social comparison helped to define the
arms for our MAB problem (i.e., enjoying the theory-based insight
inherent in top-down modeling), while avoiding the need to pro-
vision our classification system with context-specific heuristics to
define players (i.e., the advantages of bottom-up modeling). Rather,
in our case the mechanism is the model, and the context-agnostic
operation of the MAB strategy allowed the system to assess players
based simply on a reinforcement loop (i.e., user response in terms
of steps and self-reported motivation) instead of the researcher’s
perceptions or interpretations of player behavior.

Further, these results support the proposed benefits of the tech-
nique of implementing anAI-based intervention first as a simulation
in order to explore the potential options for the AI. In this practice,
simulated users were constructed with data and behavioral models
(based on psychology theory) that allowed them to exhibit behav-
iors on which we conducted multiple experiments. The results of
these experiments, which were achieved with greater speed and
lower cost than preliminary user studies, informed our decisions
prior to recruiting human players for our planned user study.

7 CONCLUSION
This paper presented a new approach to player modeling based
on multi-armed bandits (MABs). MABs naturally model both the
problem of exposing the player to different situations to build an
accurate player model and the problem of adapting a game to maxi-
mize features of interest to the designer.We also presented amethod
for creating simulated players to evaluate and fine-tune these MAB
techniques before deploying with real users.

Our results indicated that an ϵ-decreasing strategy with a nine-
step forced exploration period and a linear regression model to
estimate both steps andmotivation performed the best in simulation
and therefore was used with real users. Our results showed the
difference in step count increment with respect to the previous
day and motivation change were both higher for the experimental
condition using the MAB, although only the latter was found to
be statistically significant. This is no easy task, as the degree of
variance in both step and motivation data is very high, and the
MAB was able to select arms that achieved positive results in just
21 interactions with the users.

As part of our future work, we plan to improve our simulated
user framework to obtain more realistic user behavior models. We
also plan to investigate more sophisticatedMAB approaches such as
contextual bandits [8] or combinatorial bandits [20], which would
allow us to integrate state knowledge or engage complex decisions.
We are also interested in comparing the estimations built by the
MAB strategy with results obtained from standard psychological
SCO tests to measure agreement. Finally, our next step is to incor-
porate our new approach into our game prototype.
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