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Abstract

Modern metabolomic approaches that generate more comprehensive phytochemi-
cal profiles than were previously available are providing new opportunities for
understanding plant-animal interactions. Specifically, we can characterize the phy-
tochemical landscape by asking how a larger number of individual compounds af-
fect herbivores and how compounds covary among plants. Here we use the recent
colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides
melissa) to investigate the effects of indivdiual compounds and suites of covarying
phytochemicals on caterpillar performance. We find that survival, development time,
and adult weight are all associated with variation in nutrition and toxicity, including
biomolecules associated with plant cell function as well as putative anti-herbivore
action. The plant-insect interface is complex, with clusters of covarying compounds
in many cases encompassing divergent effects on different aspects of caterpillar per-
formance. Individual compounds with the strongest associations are largely special-
ized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins
are represented in our data by more than 25 individual compounds with beneficial
and detrimental effects on L. melissa caterpillars, which highlights the value of me-
tabolomic data as opposed to approaches that rely on total concentrations within

broad defensive classes.
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1 | INTRODUCTION

One of the conceptual pillars of trophic ecology is the idea that
herbivores must overcome the barrier of plant defensive chemistry
before extracting the nutrients necessary for growth and repro-
duction (Feeny, Rosenthal, & Berenbaum, 1992). The success of this
idea is reflected in several areas of research that include coevo-
lution (Agrawal, Petschenka, Bingham, Weber, & Rasmann, 2012),
ecological specialization (Dyer, 1995), and nutrient flow in ecosys-
tems (Hattenschwiler & Vitousek, 2000). In most cases, progress
has been made by chemical ecologists focusing on small subsets of
the specialized metabolites produced by plants and consumed by
herbivores. The focus on a few charismatic molecules or classes of
compounds, such as furanocoumarins (Berenbaum, 1983) or car-
diac glycosides (Zalucki, Brower, & Alonso-M, 2001), was at least in
part necessitated by early methods in natural products chemistry
that were targeted and not easily optimized for the discovery of
large suites of co-occurring metabolites (Dyer et al., 2018; Maag,
Erb, & Glauser, 2015). As technological limitations have dissipated,
the opportunity now exists for a more comprehensive understand-
ing of the challenges faced by herbivores, with the possibility of
discovering, among other things, novel compounds and syner-
gistic interactions among compounds (Prince & Pohnert, 2010;
Richards, Dyer, Smilanich, & Dodson, 2010; Sardans, Penuelas, &
Rivas-Ubach, 2011). More generally, an important task is to quan-
tify the phytochemical complexity of the antagonistic interaction
between plants and herbivores, with an eye toward understand-
ing constraints on the evolution of both players (Fordyce & Nice,
2008; Macel, van Dam, & Keurentjes, 2010) and predicting the for-
mation of new plant-herbivore interactions (Erbilgin, 2018). Here
we use the example of a specialized herbivore and a recently colo-
nized host plant to investigate the phytochemical landscape from
the perspective of developing caterpillars. By the "phytochemi-
cal landscape" we mean metabolomic variation among individual
plants and associated toxic and nutritional effects on, in our case, a
focal herbivore (Glassmire et al., 2019; Hunter, 2016; Wu, Wilson,
Chang, & Tian, 2019).

The Melissa blue butterfly, Lycaeides melissa, is specialized on
larval host plants in the pea family (Fabaceae), primarily in the gen-
era Astragalus and Lupinus. Within the last 200 years, L. melissa has
colonized introduced alfalfa, Medicago sativa (Fabaceae), at least
twice and probably multiple times (Chaturvedi et al., 2018), forming
a heterogeneous patchwork of association throughout the range of
the butterfly in western North America, often with naturalized or
weedy patches of M. sativa. In general, M. sativa is a suboptimal host
plant for L. melissa: individuals that feed on the plant have reduced
survival and performance relative to individuals feeding on native
hosts (Forister, Nice, Fordyce, & Gompert, 2009). M. sativa-associ-
ated populations do, however, show evidence for a slight increase
in the ability to develop on the novel resource relative to popula-
tions that remain on native plants (Gompert et al., 2015). Additional
evolutionary change in populations associated with the novel host is

evidenced by reduced female oviposition preference for native hosts
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(Forister et al., 2012) and reduced caterpillar performance on na-
tive hosts (relative to populations that have not shifted to the exotic)
(Gompert et al., 2015).

The genetic architecture of host use in this system is known to
be polygenic and characterized by loci with conditionally neutral
(host-specific) effects and ongoing local adaptation (Gompert et al.,
2015). What is needed next is an understanding of which plant
traits most affect L. melissa fitness. Previous work has suggested
that phytochemical variation among host populations is biologically
significant for caterpillars eating M. sativa (Harrison et al., 2016),
but the magnitude of these effects and the salient compounds
are unclear. Moreover, caterpillars do not encounter compounds
in isolation, but in combinations of covarying molecules, and it is
unknown how variation among hosts in phytochemical mixtures
affects herbivore evolution. For example, will the trajectory of fur-
ther local adaptation by L. melissa to M. sativa be a matter of evolv-
ing the ability to detoxify one or a large number of compounds?
A better understanding of how key compounds covary among
individual plants could also shed light on the potential for evolu-
tionary response of the plant to herbivores in its introduced North
American range. Here we use a common garden approach and cat-
erpillars individually reared in a controlled environment to address
these questions while describing the effects of metabolomic varia-

tion in M. sativa on L. melissa.

2 | METHODS
2.1 | Plants and caterpillars

Plants used in this project were grown at the University of Nevada,
Reno, Main Station experimental farm. The common garden was
planted in 2016 with seeds collected the previous year from 45
plants (previously studied by Harrison et al. (2018)) growing in a
fallow field in north-western Nevada on the western edge of the
Great Basin Desert. The focal butterfly, L. melissa, was present in
the source field but has not colonized the university farm where
experimental plants were grown. The 45 maternal plants each con-
tributed 15 offspring to a randomized grid design in the common
garden, irrigated with broadcast sprayers in 2016 and drip in 2017,
without supplemental fertilization. A single plant was randomly se-
lected from each maternal family for use in the rearing experiment
reported here as a way to capture as much genetic and phenotypic
variation as possible.

On 17 and 18 July 2017, a total of 45 L. melissa females were
collected from an alfalfa-associated population near Verdi, NV, and
confined to oviposition arenas (three females per arena, 500 ml
plastic cups) with host plant leaves and mesh lids sprayed with
Gatorade®, a sports drink with sugar, water, carbohydrates, salt,
and other ingredients that has been used elsewhere for captive
butterflies (Mattila & Otis, 2003). After 3 days, eggs were removed
from leaves, pooled, and kept at room temperature until hatching,

at which time caterpillars were placed individually in Petri dishes



FORISTER ET AL.

4364 WI LEy_Ecology and Evolution

Open Access,

(100 x 25 mm) with leaves of a particular M. sativa individual (which
became the only plant from which they were fed throughout the
experiment). Ten caterpillars were assigned to each of the 45 ex-
perimental M. sativa plants (for a total of 450 independently reared
caterpillars) and kept in a growth chamber set to 25°C and a 12 hr
light/12 hr dark cycle. Caterpillars were given new, undamaged
leaves as needed, approximately every 2-3 days. From each cater-
pillar we recorded survival to adult, sex, date of eclosion (if success-
ful), and adult weight to the nearest 0.01 mg on a Mettler Toledo
XP26 microbalance. Adult weight is taken as a proxy for fitness in L.

melissa (Forister et al., 2009).

2.2 | Phytochemistry and plant traits

Metabolomic variation among individual plants was characterized
with liquid chromatography-mass spectrometry (LC-MS) (Jorge,
Mata, & Antoénio, 2016) using leaves collected on a single day at
the start of the rearing experiment (as described above, one plant
was randomly selected from each of 45 maternal lines in a common
garden). Leaves were taken haphazardly from four different stems,
avoiding the youngest and oldest leaves, and combined in a single
paper collection envelope; we also avoided damaged leaves, al-
though plants were exposed to constant, low levels of natural her-
bivory from insect and small mammal herbivores before and during
the experiment (thus the present study does not address plasticity
of defense in response to herbivore attack). Vacuum-dried, ground
leaves (10 mg) were extracted in 2 ml of 70% aqueous ethanol, and
injected into an Agilent 1,200 analytical high performance liquid
chromatograph paired with an Agilent 6,230 Time-of-Flight mass
spectrometer via an electrospray ionization source. Resulting chro-
matograms were analyzed using MassHunter Quantitative Analysis
(v.B.06.00, Agilent, Santa Clara, CA), and major classes of com-
pounds were identified using characteristic relative mass defects
(Ekanayaka, Celiz, & Jones, 2015), as described further in Appendix
1. Leaf protein content was quantified with three replicates
(~2 mg each) per plant using the Bicinchoninic acid assay (Pierce
Biotechnology, Waltham, MA). Before grinding, five dried leaflets
from each sample were weighed to the nearest 0.1 mg, scanned,
and area was measured using ImageJ (v.1.52a); specific leaf area
(SLA) was calculated as leaf area divided by dry mass. Finally, leaf
toughness was measured on fresh material in the common garden,
at the start of the experiment (mid-July, when leaves were also sam-
pled for chemistry and protein) and at the end of the experiment
(mid-August), from three leaves per plant at each date, with a pen-
etrometer (Chatillon 516 Series) through the center of the middle
leaflet, as in (Harrison et al., 2018); the three leaves were selected
haphazardly, avoiding the oldest and youngest leaves. Leaf tough-
ness (averaged across the three leaves per plant at each collection)
was correlated between early and late in the season (r = 0.36), but
we focus on the measurements taken at the first time point in sub-
sequent analyses for consistency with samples taken at that time

for metabolomics.

2.3 | Overview of analyses of plant traits and
caterpillar performance

Our analytical strategy to understand the association between phy-
tochemical variation and caterpillar performance followed two com-
plementary paths, one focusing on reducing the number of variables
(through dimension reduction and feature selection) to produce rela-
tively simple models, and the other on the estimation of effects of
all individual compounds on caterpillars (without reducing the num-
ber of predictor variables). For the first path, involving dimension
reduction, we utilized an approach developed for gene transcription
studies that identifies groups or modules of correlated variables with
hierarchical clustering (Langfelder & Horvath, 2008); after cluster-
ing, we reduced the number of independent variables by selecting
among modules and other plant traits (specific leaf area, protein
and leaf toughness) using lasso regression (Ogutu, Schulz-Streeck,
& Piepho, 2012). Lasso regression shrinks coefficients for less im-
portant variables to zero, and is thus useful for model selection, in
contrast to ridge regression which constrains coefficients (providing
stable estimates) while not excluding variables. Modules (and other
plant traits) selected in the lasso regression step were subsequently
analyzed in Bayesian linear models that are useful in this context
because they allowed us to quantify our confidence in the sign of
effects (positive or negative) as continuous probabilities (as opposed
to relying on arbitrary significance cutoffs). For the second analyti-
cal path, we utilized ridge regression (Ogutu et al., 2012) to estimate
effects for all compounds simultaneously, which allowed us to in-
vestigate the distribution of effects among compounds and classes
of compounds. Both analytical paths incorporated cross-validation
during the lasso and ridge regressions (further details below in sec-
tion 2.4.2), and as a means of evaluating the predictive success of the
Bayesian models. We also used randomization tests to compare the
performance of modules and individual compounds with randomly

chosen suites of compounds.

2.4 | Dimension reduction and feature selection
2.4.1 | Clustering of phytochemical variables

We chose an approach (the first set of analyses mentioned above)
that reduces the number of independent variables while allow-
ing us to learn about the correlational structure of the data, spe-
cifically unsupervised hierarchical clustering as implemented in the
blockwiseModules function of the WGCNA package (Langfelder
& Horvath, 2008) in R (R Core Development Team, 2016). Among
the options in the pipeline, we used positive correlations among
variables (“signed” network type), merge cut height at 0.25, and
correlations raised to the power of five (which is where the scale
free topology index reached a plateau). Through experimentation,
we found that our results with LC-MS data were robust to varia-
tion in these choices, including the choice of signed or unsigned

networks. After an initial round of clustering, we took a remaining
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19 unassigned compounds and put them through a second round of
clustering (although the majority of consequential compounds were
identified in the first round). One output of the WGCNA procedure
is the first eigenvector from each cluster of compounds, which re-

duced our number of predictor variables by a factor of 10.

2.4.2 | Lasso regression and Bayesian models

The resulting eigenvectors plus protein, SLA (specific leaf area) and
leaf toughness were then put through the feature reduction step
of lasso regression (Ogutu et al., 2012), a penalized regression that
allows beta coefficients to be constrained to zero (thus excluding
variables). We used the cv.glmnet function of the glmnet package
(Friedman, Hastie, Simon, & Tibshirani, 2016) with cross-validation
during error reduction set to leave out one plant (and associated cat-
erpillars) at each iteration. The variables selected by the lasso were
then put into a Bayesian linear model to estimate coefficients and
associated credible intervals using JAGS (version 3.2.0) run in R with
the rjags package (Plummer, 2003). Two Markov chains were run for
10,000 steps for each analysis (no burn in was required) and chain
performance was assessed by plotting chain histories, and calcu-
lating the Gelman and Rubin convergence diagnostic and effective
sample sizes (Brooks & Gelman, 1998; Gelman & Rubin, 1992). For
all models, minimally influential priors for the regression coefficients
were modeled as a normal distribution with a mean of zero and vari-
ance of 100 (variance = 1/precision). We quantified our confidence
in the sign of coefficients (positive or negative) as the fraction of the
posterior samples that were less than zero (for coefficients with a
median negative value) or greater than zero (for coefficients with a
median positive value).

All analyses were done using the R statistical language (R Core
Development Team, 2016) on scaled (z-transformed) predictor vari-
ables, and both the lasso and Bayesian models used binomial (for
survival), Poisson (for development time), and Gaussian (for adult
weight) errors. The latter two analyses (development time and adult
weight) included sex as a factor. The analysis of development time
also included adult weight as a covariate; while (reciprocally) the
analysis of adult weight included development time as a predictor.
These variables are negatively correlated (r = -0.52), and they func-
tion as useful covariates of each other, allowing us to investigate the
possibility of unique plant effects on weight gain and development
time, which could not be discovered if, for example, these variables
were combined into a single performance index.

2.4.3 | Cross-validation and resampling to judge
model performance

The success of models developed with the dimension reduction
and feature selection pipeline was judged in two ways. We used a
cross-validation procedure in which we left out one plant (and as-

sociated caterpillars) in each iteration of the Bayesian model and
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then used the estimated coefficients (for phytochemical variables
and other plant traits) to predict the performance of the unobserved
caterpillars. After 45 iterations (one for each plant), we calculated a
simple correlation coefficient between the observed and predicted
performance of caterpillars across plants. In addition, we repeatedly
resampled the original LC-MS data to match the structure of the re-
duced set of predictor variables to ask to what extent randomly as-
sembled modules could outperform the empirically derived modules
(in other words, if a model contained two modules with 15 and 20
compounds, simulated predictors would include modules based on

15 and 20 randomly selected compounds).

2.5 | Individual compound effects

The second path of our two-part analytical strategy involved si-
multaneous estimation of the effects of all individual chemical
compounds on caterpillar survival, development time, and adult
weight. For this approach, we again used penalized regression (in
the glmnet package; Friedman et al., 2016), but this time with ridge
regression (instead of lasso) which constrains beta coefficients to
avoid variance inflation but does not eliminate variables. As with
the analyses above, ridge regression was done using the error struc-
tures appropriate to the specific response variables, and included
additional covariates where possible (in models of development time
and adult weight). The resulting coefficients associated with all in-
dividual compounds were examined as a second perspective on the
modules examined in the first set of analyses, and were used to ask
to what extent individual compound effects could be predicted by
the degree to which they vary among individual plants as quantified
with the simple coefficient of variation. To assess confidence in the
results of ridge regressions, we used a bootstrap approach, repeat-
edly resampling the data and estimating coefficients 1,000 times,
noting the compounds whose bootstrap confidence intervals did or
did not overlap zero (Delaney & Chatterjee, 1986). We also allowed
for the discovery of interactions among compounds using penalized
regression on all individual compounds and all pairwise interactions
between compounds. For ease of interpretation, this final analysis
of potential interactions used lasso (not ridge) regression, letting the
coefficients for many of the individual compounds and pairwise in-

teractions go to zero.

3 | RESULTS

Of the 450 caterpillars that started the experiment, 261 were reared
to eclosion as adults (a mortality rate similar to previous work with
this system; Gompert et al., 2015) on leaves from 45 individual al-
falfa plants that were characterized for protein, leaf toughness, spe-
cific leaf area, and 163 individual metabolomic features (see Figure 1
for variation among plants in caterpillar performance and a subset
of plant traits, and Table S1 for a list of compounds). Hierarchical

clustering identified 14 subsets (or modules) of compounds with
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generally low correlations among modules and high correlations
within modules (see Figures S1 and S2 for correlations within and
among modules, and Figure S3 for module variation among plants).
The correlational structure of the phytochemical dataiis illustrated as
an adjacency network in Figure 2 (and in Figure S4 colored by com-
pound class instead of module), where it can be seen that some mod-
ules (e.g., modules 1 and 2) contain a great diversity of compound
types, while other modules are made up of more narrow classes (e.g.,
modules 7 and 8 are mostly saponins, a class of defensive metabo-
lites; Levin, 1976). From the 14 eigenvectors summarizing variation
in the modules, as well as the other plant traits, lasso regression
(Ogutu et al., 2012) produced a reduced set of potential predictors
which were then used in Bayesian multiple regression models that
included between six and seven independent variables (Table 1). The
models had reasonably high performance in leave-one-out cross-
validation: correlations between the observed and predicted values
were between 0.50 and 0.59 (Table 1), and thus model predictions
explained between 25% and 35% of the observed variation in cat-
erpillar performance. Resampling analyses were similarly successful
(Figure S5), with only a small fraction (never more than 3%) of ran-
domly generated models exceeding the variance explained by the
models reported in Table 1.

Variation among plants in the suites of covarying compounds had
large effects on the caterpillar performance: for example, the beta

coefficient of —-0.40 (on the log-odds scale) associated with module

3 corresponds to a 0.10 reduction in the probability of survival
(relative to average) associated with a one unit change in that phy-
tochemical module (Table 1; note that in Table 1 and elsewhere neg-
ative coefficients for development time are associated with fewer
days, and thus can be thought of as potentially beneficial effects,
in contrast to negative coefficients for survival and weight that are
detrimental to caterpillars). The phytochemical predictor variables
are eigenvectors from clustering analysis, and thus are not entirely
straightforward to interpret, especially when the clustering analysis
was itself based on z-transformed data. It is important to note that
our LC-MS data (used in clustering analysis) consists of peak areas
divided by the peak of an internal standard, and again divided by the
dry weight of the sample (thus, in total, referred to as "relative abun-
dance per dry weight"; see Appendix 1 for additional details includ-
ing choice of standard). Variation in these numbers reflects variation
in concentrations within compounds (among plants), but care should
be used in comparing among compounds because of different ion-
ization responses relative to the standard (thus the use of z-trans-
formation for among-compound analyses). Nevertheless, the effects
reported in Table 1 reflect real variation in suites of compounds, as
can be seen in correlations between the eigenvectors and individual
compounds in Figure S2, and in variation among plants in average
z-scores in Figure S3.

In some cases, modules included in the multiple regression mod-

els had common effects across response variables (e.g., the positive
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FIGURE 2 lllustration of correlational
structure among compounds: each

node in the network is a compound, and
compounds are linked by a line if they

are correlated among individual plants

at 0.5 or above (links among compounds
in modules 12-14 represent weaker
correlations, greater than 0.1; see main
text for details). Nodes are clustered in
space for ease of visualization, but relative
distances among nodes (and the relative
lengths of lines) convey no additional
information. Two letter codes within
nodes indicate compound classes, as
explained in the legend. Colors of nodes
correspond to membership in modules

as determined by hierarchical cluster
analysis; the color key to the 14 modules
is shown in the lower left (also see Figure
S4 where nodes are colored by compound
class). Not shown are a small number

of compounds with weak connections

to all other compounds, including two
compounds that were not included in any
module (shown as module zero in Figure 3)

association of module 10 with both survival and adult weight or the
negative association of module 3 also with survival and weight),
while other modules had more specific effects on a single response
(e.g., modules 11 and 13 on survival). SLA had a negative associa-
tion with survival and adult weight, with the coefficients for SLA
(=0.32 for survival and -0.35 for weight) being of similar magnitude
to some of the phytochemical effects. Neither leaf toughness nor
protein had sufficiently strong associations with any of our caterpil-
lar response variables to pass the initial filter of the cross-validated
lasso regressions.

Module-based analyses (as in Table 1) focused on feature reduc-
tion with lasso regression; as a complementary analytical approach,
we also used ridge regression (Ogutu et al., 2012) on all of the indi-
vidual compounds (ridge regression estimates effects of compounds
without excluding variables as in lasso regression). Analyses of indi-
vidual compounds by ridge regression (Figure 3) were broadly con-
sistent with the strongest module-specific effects, as can be seen,
for example, with module 10 having positive effects on survival and
adult weight in module analyses (Table 1) and in compound-specific
analyses (Figure 3). Similarly, the individual compounds in module

3 had negative compound-specific effects on survival (Figure 3),

Ecology and Evolution o 4367
= WILEY- ¢

@, @

PO
Al = alkaloid ® '.

Ha = halogenated

Li = lipid Pi = pigment
Pe = peptide PP = phospholipid St = sterol
Pg = Phenolic glyco. Sa = saponin Su = sugar

and that module had the strongest negative effect on survival in
the eigenvector-based analyses in Table 1. Not surprisingly, the
larger modules (with a greater number of covarying compounds,
including many primary metabolites) tended to have a more com-
plex mix of positive and negative effects (for example, modules 1
and 2, Figure 3). For ease of interpretation, the coefficients from
compound-specific regressions of survival and development time (in
Figures 3 and 4) have been back-transformed to be on the scales of
probability and days (respectively), and displayed as changes relative
to intercepts. For example, a compound with a relatively large effect
on survival in Figure 3 could be associated with a 0.005 reduction
in the probability of survival relative to average survival and while
holding other compounds constant.

We saw some variation among classes of compounds in their ef-
fects on caterpillars (Figure 4). All classes included positive and nega-
tive effects, with saponins, alkaloids, and phenolic glycosides including
some of the stronger negative effects of individual compounds, while
lipids and sterols tended toward positive associations with survival and
development (Figure 4). We also considered potential pairwise inter-
actions among individual compounds, and found few interactions that

passed the filter of the penalized regression (Table S2), at least relative
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Survival coefficient Development time

(Cl; prob.) coefficient (Cl, prob.)

m2 0.14 (-2.06, 0.48; .80) -0.01 (-0.04,0.02; .77)
m3 -0.40 (-0.67, -0.14;

>.99)
m4
mé -0.01 (-0.03, 0.01; .80)
m9 -0.30(-0.63, 0.03; .96) 0.01 (-0.02, 0.04; .79)
m10 0.35(0.08, 0.62; >.99)
mi11 0.36(0.14, 0.58; >.99)
m13 -0.18 (-0.43, 0.06; .93)
m14 0.01(-0.02, 0.03;.71)
SLA -0.32(-0.56, -0.08;

>.99)
Sex / 0.06(0.02, 0.10; >.99)
mg / -0.03 (-0.05, -0.01; >.99)
Days / /
Intercept 0.34 (0.14, 0.54; >.99) 3.48 (3.45, 3.52; >.99)
Validation 0.59 0.59

TABLE 1 Results from Bayesian

Weight coefficient K R
regressions of module eigenvectors

(C1, prob.) and covariates predicting caterpillar
survival, development time, and adult
-0.44 (-0.84, weight (as binomial, Poisson, and
-0.03; .98) Gaussian regressions, respectively, with
0.29 (-0.14, 0.70: corresponding units in .Io.g-odds, log
91) number of days, and milligrams)

0.40(-0.01, 0.82;
.98)

-0.35(-0.72,
0.012; .97)

1.12(0.40, 1.84;
>.99)

/

-1.41 (-1.76, -1.05;
>.99)

10.36 (9.81, 10.91;
>.99)

0.50

Note: For each regression coefficient, numbers in parentheses are 95% credible intervals (Cl, the
first two numbers) and the probability that the coefficient has the estimated sign (e.g., 0.80 for
the m2 survival coefficient of 0.14 indicates a 80% probability that the m2 module has a positive
effect on survival). Note that negative coefficients for development time indicate faster caterpillar
development (fewer days) associated with variation in a particular module. Modules (listed in the
left column) are only shown if they were included in one of the three regressions following feature
selection using the lasso regression (see main text for additional details). Empty spaces in the Table
appear if a particular module was selected through the lasso regression for one or two analyses but
not all three (m3, for example, was not selected by lasso regression for development time). Slash
marks (/) indicate variables not considered for a particular analysis (e.g., sex, adult weight [mg], and
development time [days] were not possible for the survival analysis because they are not observed
on dead individuals). Values for “validation” shown in the last row are the correlation between

observed and predicted values in cross-validation (Figure S4).

to the large number of potential interactions. Saponins and alkaloids
tended to be overrepresented in the interactions that were detected,
and phenolic glycosides were involved in stronger negative interac-
tions relative to other compounds (Figure S6). We did not find evidence
that more or less variable compounds (among individual plants) had
differential effects on caterpillars (Figure S7).

4 | DISCUSSION

The results reported here represent a dissection of the phyto-
chemical landscape facing a specialized insect herbivore attacking
a recently colonized host plant (Hunter, 2016). The phytochemi-
cal landscape is both physical, referring to variation in compounds
among individual plants in a common garden (Figure S3), and hy-

pothetical to the extent that effects of individual compounds on

caterpillars are estimated, although compounds are, of course, not
encountered in isolation. Our exploration of the phytochemical
landscape facing L. melissa on M. sativa is necessarily a first draft
based on a single point in time. Despite the snapshot nature of our
study, models including suites of covarying metabolites and other
plant traits had predictive success for caterpillar performance and
suggested different natural products affecting survival, devel-
opment time and adult weight. Previous work with M. sativa and
other insect herbivores has focused on saponins (Levin, 1976), and
a simple outcome from our study could have been that one or a
small number of saponins have anti-herbivore properties that re-
duce fitness of our focal insect. Instead, we find large numbers of
compounds with potentially consequential effects on caterpillars
(Figure 3), and which were in some cases of similar magnitude or
greater than the effects of morphological features, including leaf

toughness and SLA (Carmona, Lajeunesse, & Johnson, 2011).
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FIGURE 3 Effects of individual compounds on survival, development time, and adult weight, as estimated by ridge regression (using
binomial, Poisson, and Gaussian models, respectively). The strength of effect for each compound is indicated by the horizontal extent of
each bar, and compounds are grouped by modules (m1, m2, etc.); the order of compounds along the vertical axis is arbitrary within modules
and fixed across columns. Orange colors indicate negative effects on survival, development, and weight, while blue colors are positive
effects (note that negative effects for development time correspond to fewer days, or more rapid development). The darker shades of
orange and blue mark coefficients whose 95% confidence intervals did not overlap zero in 1,000 bootstrap samples. Values for survival
and development time have been back-transformed from units on the log-odds and log scales to units of probability and days to pupation,
and are shown as changes from the mean or intercept values. For example, a negative (orange) survival coefficient of 0.005 means a
reduction of that amount from the average probability of survival associated with variation in a particular compound. The 15 compounds
with the largest coefficients (by absolute value) and bootstrap intervals not overlapping zero are labeled by compound classes (see Figure 2
for abbreviations) in each panel. Structural annotations are shown to the right for six compounds based on matches from the METLIN
metabolomics database, as follows by compound number: 154 (unidentified sterol); 9 (unidentified alkaloid); 60 (soyasaponin A3); 40
(unidentified saponin); 46 (medicagenic acid 3-O-triglucoside); 45 (medinoside E). Those same compounds are identified in parentheses in
the main panels next to bars corresponding to their individual effects

We find that prominent classes of specialized metabolites in our associated with feeding stimulation, as has been observed (along
focal plants, such as saponins and peptides, include compounds with with other positive effects) for other specialist herbivores and
both positive and negative effects on survival and development of plant toxins (Seigler & Price, 1976; Smilanich, Fincher, & Dyer,

caterpillars. Positive effects of these compounds are potentially 2016). Negative effects of saponins on insects potentially include
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disruption of hormone production (Chaieb, 2010), although exact
modes of action on L. melissa will await further study. Although many
of the compounds with strong effects are specialized metabolites
(including alkaloids and phenolic glycosides, as well as saponins and
peptides), we also find both positive and negative effects on cat-
erpillar performance associated with primary metabolites (Figure 4),
especially phospholipids (Figure 2). These could be direct effects
if a compound is suboptimal for development, or they could be as-
sociated with nutritional imbalance (Behmer, 2009), such that too
much of one nutrient makes it difficult for caterpillars to consume a
balanced diet. It has been suggested that the presentation of unbal-
anced nutrition can be a kind of anti-herbivore strategy (Berenbaum,
1995), although this has not been studied in the L. melissa-M. sativa
interaction.

The finding that our specialist herbivore is affected by a wide
range of metabolites that vary greatly even within a single host
population has implications for our understanding of heterogene-
ity in the system, and also for local adaptation of the herbivore to
the novel host. Lycaeides melissa typically colonizes weedy or feral
patches of M. sativa on roadsides or integrated into natural commu-
nities, and previous work has documented dramatic variation among
individual alfalfa locations (often in close proximity) in the extent
to which they can support caterpillar development (Harrison et al.,
2016). Previous phytochemical data with a lower resolution was less

successful in explaining that variation (Harrison et al., 2016), but the

Peptldes Phen. glyco Phospho Saponlns AIkaI0|ds Other

results reported here suggest that among-patch variation could be
explained by future studies using detailed metabolomic data. The
within-population complexity described in the current study also
raises the possibility that the novel host presents a multi-faceted
and potentially ever-shifting target from the perspective of evolv-
ing butterfly populations (Chaturvedi et al., 2018; Gompert et al.,
2015; Harrison et al., 2016). In particular, it is possible that M. sativa
defense against a specialist herbivore might be realized through dif-
ferent combinations (within and among populations) of individually
acting compounds, thus making it less likely that butterflies in any
one population possess an effective suite of alleles that improve fit-
ness on M. sativa.

The correlational structure of the phytochemical variation that
we observed has implications for the evolution of plant defense
and the accumulation of insect herbivores on M. sativa. Specifically,
correlations among modules (which are themselves composed of a
diversity of compound types) should make it possible to hypothe-
size directions of least resistance for defense evolution. Module
3, including an alkaloid with a prominent effect on caterpillars but
also phospholipids and saponins, had a negative effect on survival
(Table 1, Figure 3). Module 3 negatively covaried with module 2,
which was itself positively associated with caterpillar survival (in-
cluding a peptide of large effect but many other compound types
as well). Thus an increase in module 3 and an associated decrease

in 2 would be beneficial for the plant, at least with respect to
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herbivory by our focal herbivore. Predicting evolutionary response
by M. sativa would of course depend on a genetic understanding of
the relevant plant traits, which the present study does not include.
However, a recent study of M. melissa performance on a related
plant, Medicago truncatula, found that genetic variation in the plant
explained a substantial proportion of phenotypic variation (be-
tween 8% and 57%) in phytochemical and structural traits but also
in caterpillar performance (Gompert et al., 2019). Of course, most
plants do not have the luxury of optimizing defense against a single
herbivore, and it is easy to imagine that improvements in defense
against one enemy could lead to increased attraction to another
(Salazar et al., 2018), especially given the diversity of effects even
within major classes studied here, including saponins and phenolic
glycosides. Compounds in the latter class (phenolics) were found
to have strong positive and negative effects on assemblages of
arthropods associated with the maternal plants from which seeds
were collected to start the common garden used in the present
study (Harrison et al., 2018).

The results reported here raise a number of avenues for future
exploration, including the apparent overrepresentation of both sa-
ponins and alkaloids in interactions with other compounds (Figure
S6). Relative mass defect (RMD) is a useful tool for the categori-
zation of compounds (Table S1), but it has limitations in complex
mixtures; we are developing methods that use other data from
high-resolution mass spectrometry to further refine categoriza-
tion of Medicago metabolites (Philbin & Forister, n.d.). Also, in the
present study, we have not attempted to separate constitutive and
induced defenses (Jansen et al., 2009) as the plants in the common
garden were exposed to natural and continuous levels of herbivory.
We also acknowledge that feeding under laboratory conditions is
of course not natural, although we found in a previous study that
genetic variants (in caterpillars) associated with success in labora-
tory feeding trials were at least partially predictive of genetic varia-
tion associated with alfalfa use by L. melissa in the wild (Chaturvedi
et al., 2018). Thus it is clear that metabolomic data, such as those
analyzed here, have the potential to both open up new avenues
of conceptual development in plant-insect interactions and to link
micro-evolutionary trajectories across hosts and herbivores.
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ADDITIONAL PHYTOCHEMICAL METHODS 1: LC-TOF
ANALYSIS OF FOLIAR PLANT TISSUE

Foliar tissue was dried in vacuo and individual leaves were selected
haphazardly from individual plants and finely ground (TissueLyser
Il, Quiagen; Hilden, Germany). Approximately 10 mg of ground fo-
liar tissue was weighed and extracted in 2.00 ml of 70% aqueous
ethanol, and briefly vortexed before 15 min of sonication. This sus-
pension was centrifuged (500 rpm) for 10 min, then 1 ml aliquots of
the supernatant were filtered through a 96-well filter (AcroPrep,
1 ml, 1 pm glass fiber) into glass vial inserts and capped with a
silicone mat before analysis. Chromatography was performed on
an Agilent 1,200 analytical HPLC equipped with a binary pump,
autosampler, column compartment, and diode array UV detector,
coupled to an Agilent 6,230 Time-of-Flight mass spectrometer
via an electrospray ionization source (ESI-TOF; gas temperature:
325°C, flow: 10 L/m; nebulizer pressure: 35 psig; VCap: 3,500 V;
fragmentor: 165 V; skimmer: 65 V; octopole: 750 V). Extracts (1.00
pL) were co-injected with 0.50 pL of digitoxin internal standard
(0.200 mM, Sigma-Aldrich) and eluted at 0.500 ml/min through
a Kinetex EVO C18 column (Phenomenex, 2.1 x 100 mm, 2.6
p, 100 A) at 40°C. The linear binary gradient was comprised of
buffers A (water containing 0.1% formic acid) and B (acetonitrile
containing 0.1% formic acid) changing over 30 min accordingly:
0-1 min 5% B, ramp to 50% B at 4 min, ramp to 100% B at 21 min,
21-25 min 100% B ramping to 1.00 ml/min, before re-equilibrating
the column from 25-30 min at 5% B, 0.5 ml/min.

Individual compounds were quantified relative to the digi-
toxin internal standard using Agilent MassHunter Quantitative
Analysis. Digitoxin is a commercially available cardenolide which
has previously been used as an internal standard in saponin analysis
(Balsevich, Bishop, & Deibert, 2009). Its structural similarity to, and
lack of coelution with, saponins and its absence in Medicago extracts
make it an ideal internal standard for quantitation of saponins, the
focal phytochemical class in this study. While digitoxin allows for
the quantitation of saponins as “digitoxin equivalents,” this does not
extend to other phytochemical classes due to differences in ioniza-
tion efficiency inherent in structural differences for other classes.
In these cases, the digitoxin internal standard still serves to partially
correct for between-run variation in instrument response. We do
not make quantitative assertions between phytochemical classes,
only assertions based on their within-class variation for this reason.

Putative phenolics (200-400 ppm) and saponins (400-650 ppm)
were annotated using the relative mass defect (RMD) characteristic
of each phytochemical (see next appendix section). Compounds with
RMD greater than 650 were presumed to be lipids or sterols. These
assignments were revised by identifying presumed peptides based
on even m/z features. Mass spectra of presumed phenolics, sapo-
nins, and lipids were cross-referenced against the METLIN database
(Smith et al., 2005) to further categorize annotations into phospho-
lipids, vitamins (vitamin D derivatives), carotenoids, sterols, amino
acids, alkaloids, and sugars. One compound displayed an isotope
distribution characteristic of a chlorinated structure and was desig-

nated as being halogenated. Due to the lack of structural information
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in ESI-TOF mass spectra, annotation beyond this classification was
not possible.

ADDITIONAL PHYTOCHEMICAL METHODS 2: RELA-
TIVE MASS DEFECT (RMD)

Relative mass defect is a recently developed method for inferring
structural information from high-resolution mass spectrometry data
(Ekanayaka et al., 2015) which we have used to aid in the classifica-
tion of metabolites in M. sativa and to a lesser extent propose pu-
tative structures. Here we describe the theoretical background for
the calculation and use of relative mass defect. Mass defect is the
deviation of atomic mass (see definitions below) from its mass num-
ber (e.g., hydrogen: A, = 1, m, = 1.00784 Da, d,, = 0.00784). Relative
mass defect of an atom (RMD,) in ppm is calculated as:

m,—(A,)
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Where m is the atomic mass and A, is the mass number of that
atom. Although H has a positive mass defect (RMD,, = 7,780 ppm),
mass loss due to the strong nuclear force (Einstein, 1905) leads to
increasingly negative mass defect as A increases. Atoms commonly
found in natural products (RMDN =221, RMD.. = 0, RMD,, = -319,
RMD, = -846, RMD, = -873 ppm) have a relative mass defect which
is a full order of magnitude lower than that of hydrogen. As a result,
the relative mass defect (RMD,,) of a molecule estimates the num-
ber of hydrogen atoms relative to other atoms in a natural product:
a high RMD molecule has a higher %H than a low RMD molecule.
When chemical formula is known, computing the theoretical RMD,,

of a molecule M is facile:

N
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Where n_ is the count of the ath element in the set of elements
composing a natural product, and N is the number of elements in
that natural product. As a chemical formula this would appear in the
form C H N O, oPnpSns- When the chemical formula of a natural
product is unknown, the RMD of a molecule M can be calculated
from HRMS data:

m/zy—m/zy,
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Where m/z,, and m/z,,, are the mass to charge ratio and nominal
mass-to-charge ratio of molecular ion M, respectively.

The RMD of a molecular ion then serves as an experimental esti-
mate of degree of unsaturation; or more generally, how many H are
present per unit of molecular mass. This metric can be very useful
for discriminating natural products which may have the same nomi-
nal mass but differ in exact mass, obtained via HRMS data which
is accurate at a sub-ppm level. In Figure S8 (left), three structures
are listed which have the same nominal mass (270 Da) but have in-

creasing RMD as the contribution of H to the exact mass increases.
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Pinostrobin, the most unsaturated and oxidized molecule has the
lowest %H and lowest RMD (330 ppm) and as the %H increases
to estrone and then methyl palmitate, the RMD of each molecule
increases (600 ppm and 948 ppm, respectively). This approach is
useful when trying to discriminate flavonoid glycosides, such as the
apigenin glycoside (Figure S8, right, RMD = 255 ppm) from saponins
such as medicagenic acid glycoside (Figure S8, right, RMD = 494) in
M. sativa extracts. However, other phytochemicals in these extracts
may also have similar RMD, and this metric should not be solely re-
lied upon for annotation. Daughter ions may also differ in RMD from
their parent ions due to fragmentation or loss of H to form cationic
species. Other information, such as relative retention time, molec-
ular mass, and odd molecular masses indicating nitrogenous com-
pounds can also inform classification and annotation.

Definitions:

Atomic mass (m): exact mass of an atom measured in daltons (Da).

Mass number (A): the total number of nucleons (protons + neu-

trons) in an atom.

Mass to charge ratio (m/z): ion mass divided by charge. The
measured unit of mass in a mass spectrometer. When z = 1, m/z
equals ion mass.

Nominal mass to charge raio (m/z,): mass to charge ratio trun-
cated to zero decimals (or floor function). For example, the nominal
mass of m/z = 270.2559 is m/z, = 270.

High-Resolution Mass Spectrometry (HRMS): Mass spectromet-
ric techniques which yield masses accurate to four decimal places
which allows for prediction of putative chemical formulae.

Isobaric: molecules having the same mass.

Molecular ion: lonic species representing an intact molecule.

Parent ion: Molecular ion which becomes fragmented into daugh-
ter ions.

Daughter ions: Resultant ions from the fragmentation of parent

ions.



