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Epistemic Uncertainty Quantification in
State-Space LPV Model Identification Using
Bayesian Neural Networks

Yajie Bao ', Javad Mohammadpour Velni

Abstract—This letter presents a variational Bayesian
inference Neural Network (BNN) approach to quantify
uncertainties in matrix function estimation for the state-
space linear parameter-varying (LPV) model identification
problem using only inputs/outputs data. The proposed
method simultaneously estimates states and posteriors of
matrix functions given data. In particular, states are esti-
mated by reaching a consensus between an estimator
based on past system trajectory and an estimator by recur-
rent equations of states; posteriors are approximated by
minimizing the Kullback-Leibler (KL) divergence between
the parameterized posterior distribution and the true poste-
rior of the LPV model parameters. Furthermore, techniques
such as transfer learning are explored in this letter to
reduce computational cost and prevent convergence failure
of Bayesian inference. The proposed data-driven method
is validated using experimental data for identification of a
control-oriented reactivity controlled compression ignition
(RCCI) engine model.

Index Terms—State-space linear parameter-varying
model identification, uncertainty quantification, Bayesian
neural networks.

. INTRODUCTION

ATA-DRIVEN methods have been increasingly

developed for global identification of linear parameter-
varying (LPV) state-space (SS) models [1]. For LPV-SS
identification given only inputs/outputs data, the majority
of the current LPV identification methods, including direct
prediction-error minimization (PEM) methods and global sub-
space and realization-based techniques (SID), assume affine
scheduling dependency with known basis functions, which
restricts the complexity of a representation. The authors in [2]
used kernelized canonical correlation analysis (KCCA) to
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estimate state sequence and then a least-squares support vector
machine (LS-SVM) to capture the dependency structure,
which suffers from the kernel selection and computational
complexity. Moreover, SID techniques first identify a specific
IO structure and then construct SS models by either a direct
realization or a projection to estimate state sequence, which
suffers heavily from the curse of dimensionality, and finally
estimate system matrices [3]. The expectation-maximization
algorithms estimate states and matrices alternatively [4]. In
a very recent work, the authors in [5] have used artificial
neural networks to simultaneously estimate states and explore
LPV model structural dependency. Most of the available
methods in the literature, however, focus on estimating a
set of parameters rather than characterizing the statistical
properties of the estimation. This approach typically produces
good models in the sense of minimizing the expected loss.
However, the accuracy under a few operating points can be
poor, which can later result in a low-performing controller.
Furthermore, robust control techniques cannot be employed
without quantifying the uncertainty of estimated model.

In model identification, there are two categories of uncer-
tainty [6]: epistemic uncertainty and aleatoric uncertainty.
Epistemic uncertainty is systematic and represented by the
uncertainty in model parameters while aleatoric uncertainty
is stochastic and representative of the unknowns that result in
different system outputs given identical inputs. Multiplicative
disturbances in [7] correspond to epistemic uncertainty while
additive disturbances correspond to aleatoric uncertainty. The
objective of uncertainty quantification is to reduce the epis-
temic uncertainty to aleatoric uncertainty, as epistemic uncer-
tainty can be reduced by increasing the number of data
points while aleatoric uncertainty can be quantified but not
reduced [8]. This letter assumes that aleatoric uncertainty is
known and aims to quantify epistemic uncertainty given an
input/output dataset, as matrix function uncertainties have a
significant impact on control design. Additionally, extending
the model in this letter to simultaneously capture and quantify
these two categories of uncertainties is briefly discussed.

One approach to uncertainty quantification is Bayesian
framework. Given a prior distribution of model parameters,
the posterior distribution conditioned on a dataset is esti-
mated by maximizing the likelihood of the dataset. The authors
in [9] used a recurrent network in a Bayesian framework to
perform nonlinear system identification. The authors in [10]
used a Gaussian process as a prior distribution to obtain a
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posterior distribution of coefficient functions given the mea-
sured data for identifying LPV models in an input/output
(I0) form with an autoregressive with exogenous variable
noise structure. The authors in [11] assumed parameter-
varying matrices to be component-wise, zero-mean normally
distributed and approximated the posterior distribution of
system parameters and latent variables via variational infer-
ence. However, the linear parameterization of matrix functions
restricts model expressiveness of complex systems. Moreover,
Gaussian priors can be improper and have negative effects on
inference. Additionally, authors in [12] designed deep varia-
tional Bayesian filters to improve information content of the
latent state-space embedding for state estimation. However,
the approach in [12] was not adapted to the general LPV-SS
model identification problem.

Inspired by weight uncertainty in neural networks [13] and
based on our previous work on identification of state-space
LPV models using artificial neural networks (ANN) [5], we
propose to use variational Bayesian inference neural networks
(BNN), a combination of ANN and variational inference to
identify LPV-SS models. Different from [10], [11], [12], the
proposed method can simultaneously estimate states, explore
arbitrary structural dependency of matrix functions of a rep-
resentative LPV model and approximate posteriors of the
parameters with non-Gaussian priors. States and matrix func-
tions are estimated using State Integrated Matrix Function
Estimation (SIME), which is an integrated ANN model in [5]
while uncertainties are introduced by assigning each weight of
ANN a prior. To approximate posteriors, the main idea is to
minimize the Kullback—Leibler (KL) divergence between the
parameterized posterior distribution and the true posterior of
the LPV model parameters. Monte Carlo sampling is employed
to avoid calculating expectation analytically. Sampling also
enables non-Gaussian priors. Moreover, reparameterization
trick [14] is used for backpropagation to work.

The main contribution of this letter lies in tailoring BNN
to the uncertainty quantification of the ANN-based LPV-SS
model identification. Remainder of this letter is organized
as follows: Section II introduces the problem formulation
and variational inference. Combining variational reference and
ANN in the context of LPV-SS model identification, i.e., BNN
is explained in Section III. Section IV presents model identi-
fication results using experimental data. Concluding remarks
are finally provided in Section V.

[I. PROBLEM FORMULATION
We consider a discrete-time, state-space LPV model with
innovation-type noise as follows:
Xk+1 = A(PR)xk + B(p)ug + K(pr)ex,
Yk = Cpr)xk + D(piui + ek,

(D
2

where pr € P C R, u, € R™, x; € R™, ¢, € R, and y; €
R™ denote the scheduling variables, inputs, states, stochastic
white noise process, and outputs of the system at time instant
k, respectively, and A, B, C, D, and K are smooth matrix
functions of pi. In [5], each of the functions was represented
by a fully-connected ANN. By substituting e; from (2) into (1),
we obtain

Xpa1 = Ak + Bour + Koy, 3)

vk = C(pr)xk + D(pr)uy + ey, @4

where A(pr) = A(pr) + K(pr)C(pr) and B(py) = B(px) +
K(pr)D(pi). Instead of estimating a deterministic set of matrix
functions as in [5], all weights in the ANNs are mutually inde-
pendent random variables such that matrix functions are also
random variables. BNN is employed to estimate posteriors for
the weights. The posteriors of the matrix functions can then be
estimated using Monte Carlo method. Therefore, the problem
of LPV-SS model identification with uncertainty quantification
is to estimate states (if they are unknown) and posteriors of
A(py), B(py), C(ﬁk), D(py) and K (py) given the measurements

D = {uk, yk» pk}k:Dl-l

A. Variational Inference

Variational inference is a machine learning technique to
approximate difficult-to-compute probability density functions
by finding a member from a family of densities that is closest
to the target in the sense of KL divergence [15]. Using Bayes’
formula, we have

p(Dlw)p(w)
p(D)

where w denotes all the parameters of a model. However,
p(w|D) is hard to calculate analytically especially when the
probability graph is complex such as an ANN with the weights
being random variables. To circumvent this, variational infer-
ence computes

6" = argmin KL(q(w: 6) [p(+[D))

pw|D) = o p(Dw)p(w),

)
= argmin KL(g(w; 0)llp(W)) — Eqqr:6) [log p(DIw)]

= arg Ilgn (Eq(w;e) [log g(w; 0)] — Equ:0)[logp(w)]

— Eqow:0) [logp(DIW)]), (6)

where g(w; 0) is a family of distributions parameterized by 6,
p(w|D) is the true posterior, and p(w) is the prior. The cost
function (5), known as the evidence lower bound (ELBO) [15],
provides a trade-off between believing priors and fitting data
(the second term).

B. LPV-SS Model Identification Using ANN

In [5], we proposed State Integrated Matrix Function
Estimation (SIME), an integrated ANN model, to estimate
states and explore structural dependency of matrix functions
simultaneously. SIME solves the following problem:

N-1 N-1
. (1 ~(2 A
min (y Y WY - DB+ 3 15—l
k=d+1 k=d+1
N—-1
s D Ik — et l3) @)
k=d+1
~(1 A2
st 301 = fo. R +fo, o+ for Oy (8)
~(2 - A2 —
i =@, i =fo.GL). ©)
A ~(2 A (1
Sk =foe PR, Piet = focreniL,. (10)

I'We use identical notations for random variables and samples, which can
be inferred from the context.
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_ T —dT T
z = [p{" al™ U pl ul] represents the past and current

. . o — T
information at time instant k, where p¢ := [p{f 4 szl]

denotes the past scheduling trajectory, and ﬁz and y;f are
defined similarly. Furthermore, x® is an estimator inspired by

T

d
Xp = (Hz:\(pk—i))xk—d +Rz(k)ﬁf + V[‘f(k)iz,

i=1

X4 o

as derived in [2] while x(1) is by the recurrent equation of
states. Based on [2, Lemma 3.1], d > n,. A larger value of
d indicates using more information but also increases com-
putational cost. In experiments, d is determined using cross
validation. Finally, fp;, i = A, B, K , C, D, x are represented by
fully-connected ANNSs to approximate true matrix functions
and states.

The outcome of SIME is a point estimate of matrix func-
tions, i.e., a set of w, from the perspective of parameter esti-
mation. Minimizing mean squared error (MSE) is equivalent
to maximizing the likelihood of data by viewing p(y|p, z, u; w)
as a Gaussian distribution. Moreover, maximum likelihood
estimation can be seen as a special case of the maximum
a posteriori (MAP) estimation that assumes a uniform prior
distribution of the parameters. Furthermore, by using ¢, regu-
larization with respect to w, we can obtain a MAP estimation
of w with a Gaussian prior, which can be seen from

max log p(w|D) = max(log p(D|w) + log p(w))
w w

= max(logp(Dpw) + wl3).

This letter aims to estimate p(w|D) instead of one set of w*
that minimizes the expected loss.

I1l. BAYESIAN NEURAL NETWORK (BNN)

In this section, we first introduce the necessary tools
that enable ANNs to do variational inference by backprop-
agation, which results in a DenseVariational layer [13], a
key component of BNN. Then, we discuss how to com-
bine DenseVariational layer with SIME for LPV-SS model
identification.

A. Variational Inference in ANNs

First, we consider the forward-pass and backward-pass in
an ANN training iteration separately. For the forward pass,
cost function (6) is evaluated. As g(w; 6) cannot be expressed
in closed form and integral operation is prohibitive in ANN,
we estimate (6) by

N
}V > [togatw;6) — tog p(w®) ~ log p@IW ™| (1)

i=1

where {w }f.vz , are i.i.d. samples drawn from the parameter-
ized posterior g(w; 6). For the backward pass, gradients of (6)
are required for optimization. However, when computing the
gradient of the first term in (6)

V6 Eqouity [l0g g(w: 6)] = / Ve log q(w; 0) Ve g(w; 0)dw

w

+ Equo)[Vo logq(w; 6)],  (12)

the first term in (12) is not an expectation, which impedes the
estimation of the gradients using Monte Carlo methods and
hence the backpropagation of a training iteration. To tackle
this problem, a reparameterization trick is employed. In par-
ticular, a sample € is drawn from a known distribution and
then transformed by a deterministic function #(6, €) for which
a gradient can be computed. The known distribution and trans-
form function determine g(w; #). For example, if € ~ A (0, I)
and t = u+o0 () € where () denotes element-wise multiplica-
tion, then g(w; u, o) is Gaussian. This reparameterization trick
provides an unbiased gradient estimation of (6) with respect to
0, as shown by [13, Proposition 1]. Additionally, the variance
of yx can be decomposed as

N
1 . .
var(y) ~ 0% + = 3 5% w) e (x; w)

i=1
(1 i A\ 1%
- = &k(x;w%) (— 9k(x;w<”>>, (13)
Ni:l Ni:l

where x denotes all the inputs to the neural networks and
| N
S(xe wh) —
P wh) = Ech(Pk)
=

X (vaA Pr—15 W) - o, (z-1) + [y (Pk—l)uk—1>

in the context of LPV-SS model identification using BNN
and SIME.? The third term in (11), named the negative log-
likelihood loss, can be used to quantify aleatoric uncertainty
o in (13). For example, when aleatoric uncertainty is assumed
to be white noise, then p(D|w?) ~ AN (iq, oaz), where 1,
and aaz can be learned from data. Moreover, heteroscedastic
aleatoric uncertainty can be expressed using a parameterized
function of inputs to represent o, [8]. However, simultaneously
quantifying epistemic uncertainty and aleatoric uncertainty
can increase the difficulty of inference and cause over-fitting
problem. Decomposition of uncertainties is required [16],
which is beyond the scope of this letter and will be examined
in a future work.

Another advantage of using Monte Carlo method is that we
can use arbitrary priors with/without tractable marginal distri-
butions. In Bayesian methods, priors encode the information
known before any evidence is presented and provide a means
for stabilizing inferences in complex, high-dimensional prob-
lems [17]. More importantly, priors can affect the parameter-
ized posterior and thus the predictive posterior [18] by the
KL divergence loss (6). On prior selection, there are many
schools of thoughts, such as informative, weakly informative
and noninformative priors. Providing a prior for each weight
to constitute a meaningful prior of the represented function
by ANNSs is intractable. Using a trainable prior is possible but
criticized for employing data twice. Instead, the scale mixture
of two Gaussian densities

pw) =[N0, 07) + 1 = 1IN (w10, 05),  (14)
j

2We use subscript DV to distinguish BNNs composed of DenseVariational
layers from ANNs composed of Dense layers.
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DenseVariational Layer SIME
input le'l E @ bias

Wy + 0y @ eff,) =uw?] P = Up + 0p @ eg)') inputs  bias inputs  bias
L " . fp,(p) fov,(p)
Reparameterization | sampling sampling
N, 1) N(©O, 1)
Fig. 1. Schematic diagram of DenseVariational layer, where uw, ow,

up and op are trainable parameters while Dense layers only have w
and b. Note that w() and b{) can be seen as samples from posterior
distributions. All parameters are initialized according to priors.

was proposed in [13] to avoid the need for prior parameter
optimization based upon training data. This prior can represent
both a heavy tail by a large o1 and concentration by a small o7.

Combining the components described above, a
DenseVariational layer is composed of priors p(w)),
parameterized ~ posteriors  p(wj; 6) and  estimated

]Eq(wj;e)[log qwj; 0) — logp(wj)] which are added to
the cost function of the ANNs (see Figure 1). Here, we use
t = 4o (e as the transform function to parameterize pos-
teriors and attribute the expressiveness of the parameterized
posterior of fpy. to the compositions of wj. Compared with
a Dense layer (1.e., a fully-connected layer), two more sets
of parameters (u, o) are required along with weights w and
biases b if we use fixed priors. For implementation of the
DenseVariational layer, interested reader is referred to [19],
in which the authors provide Bayesian layers, a module for
neural network uncertainty, to expedite the experimentation
with neural network uncertainty.

To predict outputs using the trained BNN, samples are
drawn from the posteriors of weights and used to compute the
output value of the network, which is equivalent to predicting
outputs using neural networks drawn from the selected hypo-
thetical ensemble. Statistics such as the mean and standard
deviation can be computed using the predictions. The num-
ber of samples is determined to guarantee a stable estimation.
Monte Carlo methods enable Bayesian inference for ANNs but
also pose challenges to the broad application of BNNs, such
as the high computational cost and convergence failure [20].
In the next subsection, we will tackle these challenges in the
context of LPV-SS model identification problem.

B. BNN in LPV-SS Model Identification

In this section, we discuss techniques that facilitate the train-
ing of BNNs for quantifying uncertainty in LPV-SS model
identification.

This letter aims to quantify uncertainties specifically in
matrix functions. If a single DenseVariational layer with a lin-
ear activation function is used to represent a matrix function
(e.g., fDVA ), then, the model degrades to be a Gaussian Process
and fpy; |D follows Gaussian distribution as w;|D are indepen-
dently distributed and follow Gaussian distribution. However,
if we use multiple DenseVariational layers with non-linear
activation functions, the explicit analytical form of g(fpv; D)
is intractable while Monte Carlo sampling can be used to
estimate the variance of fov, |D and thus the variance of y.

1) Trade-Off Between Bias and Variance: As variational
inference is done layer-wise, it is straightforward to replace

inputs  bias
Jp,(p)i = B,C,x

inputs  bias
So,(p).i = B,C,x

Fig. 2. Schematic diagram of the proposed transfer learning approach.

all fp, with fpy,. However, such replacement significantly
increases model complexity and thus the probability of arriv-
ing at bad local minima. Instead, a more reasonable approach
is to only replace fp, with fpy;. From the perspective of LPV

modeling, uncertainty in A(py) has a larger impact on the
system description than other matrix functions especially when
states xj are unknown and estimated from inputs/outputs data.
Moreover, SIME in [5] uses the consensus of two estimators of
one state to facilitate the state and matrix function estimation.
Using DenseVariational layers for both estimators can cause
instability of training and even failure of convergence.

2) Transfer Learning by Fine-Tuning: Generally, Bayesian
models cannot achieve an accuracy as high as that of a deter-
ministic model given a dataset. A question arises here that
how to quantify uncertainty of the deterministic model. As
SIME and BNN can share the same ANN structures, one can
transfer parameters (Wg;p» bs;,p) of @ trained SIME to the
corresponding BNN, fix those parameters in fpy, and train the
parameters related to variance evaluation (i.e., oy, and o) and
other parameters (see Figure 2). In particular, when initializ-
ing the BNN, we replace the randomly initialized pi,,, and 1p,
by WSe» P5pe)- Moreover, when training the BNN, we can
choose to fix or fine-tune w,, and wup while o, and o} are
always trainable for capturing uncertainty. This transfer learn-
ing technique, named fine-tuning, can accelerate the training
process by providing a good initialization and achieve better
accuracy compared to training from the scratch. In addition,
all the parameters can be fine-tuned after parameter transfer.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, we use data collected from a high fidelity
simulation model of a reactivity controlled compression igni-
tion (RCCI) engine to validate our proposed method.

Data Generation: The data consists of measurements of
the control inputs, scheduling variable, and measurement out-
puts which are as follows: U = [SOI FQ]T, p=PR, Y =
[CAS0 IMEP]Y, where SOI is start of injection; FQ is fuel
quantity; PR is premixed ratio of dual fuel; CA5O0 is the engine
combustion phasing; IMEP is indicated mean effective pres-
sure of the engine. The states of the model are assumed to
be not available for measurement. Figure 3 shows the signals
used to generate an input/output dataset. Additionally, a nor-
mally distributed measurement noise is added to the outputs
to maintain SNR = 20 db. The noisy dataset contains 926
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(b) Outputs from the engine.

Fig. 3. Input/output dataset used for LPV-SS model learning of RCCI
engine. The blue line in (b) shows the true outputs and red dashed line
shows the noisy outputs.

operating points and is split into a training set and a testing
set with a splitting ratio of 65%/35%.

Technical Details of BNN: For all the DenseVariational lay-
ers we used in the experiments, the hyperparameters in the
priors (14) are set as & = 0.5, 0'12 = 1.5 and 022 = 0.1 for
simplicity, although each layer can have respective hyperpa-
rameter settings. We used a BNN with three DenseVariational
layers to represent fDVA. For f;, i = f?, C, K, x, as discussed in
Section III-B1, ANNs with Dense layers are adopted and the
number of Dense layers are considered to be 3, 4, 3, and 5,
respectively. Moreover, all the layers use Exponential Linear
Units (ELU) as activation function except for the last layer
of each neural network.> Additionally, we implemented the
model with all the matrix functions represented by BNN for
comparison. var(D|w) is assumed to be 1.

For model optimization, we use Adam optimizer in
Keras [21]. The learning rate of Adam is set to be 0.0001 and
decay to be 1le — 6. All the other parameters of Adam are set
as default. We trained the complete model for 3, 000 epochs
with batch size of 1. Larger batch size can be used but may
slightly lower performance for regression, as the samples in
one batch can have different scheduling variables. Using cross-
validation, the weights of three loss functions were determined
tobe 0.1, 1 and 1. Additionally, the experiments are conducted
on a computer with a 3.6 GHz CPU and 8 GB RAM.

Results and Discussion: First, we consider using the fol-
lowing model

A(1 ~(2

x](y:l = fpv, (Pk)xl({ '+ fop () Uk,
A ~(2 A (1
e = foc PR et = foe PraDi. (15

to fit data. The idea is to further reduce model complexity by
removing fp, in (8). The results are shown in Figure 4. The

3We refer to SIME proposed in [5] to design the model.
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Fig. 4. The area between the two dashed red lines is within 2 esti-
mated standard deviations of estimated mean (the blue line), which is
about 95% confidence interval. It is noted that BFRga50 = 86.65%
and BFR;yep = 95.90% using the estimated mean as predictions for
outputs.
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Fig. 5. BFRjyep and average of 6 ep (in KPa).

Best Fit Ratio (BFR) is calculated according to

lve — 5@ 2
llyx — yll2

where y denotes the mean value. Only 3.4% (11 out of 324) of
outputs in the testing set are outside 26¢as0 of §CA50’ which
shows the proposed method has a very good generalization
performance. For IMEP, as BFRyygp is pretty high, émep
is close to zero and of little significance for control design
purposes. Figure 5 shows that the average of estimated stan-
dard deviation decreases and the BFR of IMEP increases as
the epoch increases, which shows that optimizing the BNN
can lead to a better model with higher confidence. Estimating
statistics of fpy, is similar to estimating the outputs using
sampling, as fpy; is the output of a BNN.

Moreover, we tested a few varieties of Model (15) and
the results are summarized in Table [. Model-o replaces
fp;»i=B, C in (15) with fpy,, i = B, C while Model-g adds
fpx to Model (15). Model-y further transferred and fine-tuned
the parameters from the solution to Problem (7) to Model-S.
As Monte Carlo sampling is adopted to estimate mean and
variance, BFR and & can vary slightly with each run of eval-
uation process which samples 500 times. For each model, we
run evaluation for 10 times and use the average of 10 evalua-
tion results as the final performance measure of the identified
model. Comparing the results of Model-« and Model (15)
shows that using BNNs to represent all matrix functions
resulted in a worse nominal model with larger variance,
which confirms our discussion in Section III-B1. Additionally,
Model-a costs 14 times more training time than Model (15).
Moreover, Model-8 considers innovation-type noise but shows
no advantage over Model (15), which indicates that complex-
ity is not necessarily positively correlated with performance.

BFR(0) = 100% - m]?X(l — ,O), (16)

Authorized licensed use limited to: University of Georgia. Downloaded on August 29,2020 at 04:48:04 UTC from IEEE Xplore. Restrictions apply.



IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 2, APRIL 2021

724
T 0.0 = 154
-03 T e 02592 10 t ______
-0.4 === —01{ TN 00 R | —
T -0.3 = | = 0.25
== 125 ===
0.25 —0.4 == W— 0.00 l?‘Q
0.00 L-\-"-‘—‘-‘ -0579 1.00 ~0.25 {7 ===
0.3 0.2 —= 1.25 = 0.75 Ir
021 \se_ 0s 4777 nooFET -1.00 It—_::
01 { 33 -0. '/ i 0.75 4i . -1.25 "’"'-'---
2,00} 0.00 F"}: 00527 0.00 %
______ . —~~-a.
ysy N -0.10 !L/,- -0.25 %
=== - -~
P o= —0.054 == ———=
0 25 0 25 0 25 0 25

scheduling variables PR

Fig. 6. Estimated mean and 95% confidence interval of fpy,. (p) using
transfer learning without tuning .. The (i, j)-th subplot shows function
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TABLE |
RESULTS OF MODEL VARIETIES
Model (15) Model-a Model-3 Model-vy
BFRc 50 86.65% 76.27% 79.17% 87.46%
Avg. of 6cas50 0.4011 0.5283 0.5347 0.3735
BFR; v EP 95.90% 93.80% 92.07% 97.38%
Avg. of 61 EP 0.7078 2.6994 0.5236 0.7888

However, by using transfer learning approach discussed in
Section III-B2, Model-y shows a significant enhancement over
Model-g and beats Model (15) by a narrow margin. Figure 6
shows the estimated mean and 95% confidence interval of
fov;(p) using transfer learning without tuning w of all the

weights. The estimated mean ]_‘DVA is almost identical to the
result in [5], which shows that Monte Carlo sampling with
500 samples is sufficient to estimate the mean of fpy,.

In addition, on the noisy dataset, deterministic SIME model
achieves 70.05% BFR for CA50 and 96.32% for IMEP using
the reported hyperparameters in [5]. This result, compared
with Model (15), shows that BNNs are better at handling noise.
The BFR of CAS50 can be increased to 83.83% and IMEP to
97.33% by fine-tuning the pre-trained model on the dataset
shown in Figure 3 while Model-y gives similar accuracy with
uncertainty quantification.

V. CONCLUDING REMARKS

In this letter, a BNN approach was proposed to quan-
tify uncertainties in identified LPV-SS models only using
inputs/outputs data. Specifically, a DenseVariational layer was
introduced to do the variational inference layer-wise. Each
weight of this layer was considered to be a random variable
with a scale mixture Gaussian densities as the prior and a
parameterized Gaussian density as the posterior. By minimiz-
ing the KL divergence between parameterized posteriors and
the true posteriors, and the MSE between the predicted outputs
and the true outputs, the proposed method was shown to pro-
vide a robust nominal model with uncertainty quantification.
Experiments on a high-fidelity RCCI engine model validated
the effectiveness of the proposed method. In particular, the

identified LPV-SS model of the engine could achieve a com-
parative BFR against deterministic SIME model on the data
without noise while it was shown to be more robust to noise
at different SNRs.
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