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We study the notion of algebraic tangent cones at singularities of reflexive sheaves.
These correspond to extensions of reflexive sheaves across a negative divisor. We
show the existence of optimal extensions in a constructive manner, and we prove the
uniqueness in a suitable sense. The results here are an algebro-geometric counterpart

of our previous study on singularities of Hermitian—Yang-Mills connections.

1 Introduction

The goal of this paper is to study a complex-algebraic object that comes out of our study
of singularities of Hermitian-Yang—Mills connections [1, 2]. The discussion here will be
purely complex-algebraic, and the connection with the previous results will be given by
Conjecture 1.7. Let B ¢ C" be the unit ball, and let £ be a reflexive analytic coherent
sheaf over B. Let B be the blow-up of B at 0. We will use the following notation:

7 :B\{0} > CP* ! and n’: C"\ {0} - CP""! are the natural projection maps;
¥ :B\ {0} - Band ¢ : C"\ {0} — C" are the natural inclusion maps;

e p:B— Band¢:B— CP" ! are the natural projection maps;
D := p~1(0) is the exceptional divisor, and ¢ : D — B is the natural inclusion

map.
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2 X.Chen and S. Sun

Definition 1.1.
e An extension of & at 0 is a reflexive sheaf £ over B such that le\D is
isomorphic to (p*E)lf),\D. Define A to be the set of isomorphism classes of
all extensions of £ at 0;
e An algebraic tangent cone of £ at 0 is a torsion-free sheaf £ over D such that
é = *£ for some € € A.

To justify the terminology “algebraic tangent cone”, we notice that y/z*&
defines a torsion-free sheaf on C" with a natural C* equivariant action. It would be more
natural to call w;n’*ﬁ the algebraic tangent cone, but we have chosen to call € itself an
algebraic tangent cone just for the convenience of our presentation. In Conjecture 1.7
below we shall also make a connection with analytic tangent cones of Hermitian—Yang-
Mills connections.

We remark that A is easily seen to be nonempty for one can simply take (p*&)**
as an extension of £ at 0. Since the divisor line bundle [D] is trivial on B\ D, we know that
if £ is an extension, then £ ® [DI®* is also an extension for all k € Z. In particular, ifé is
an algebraic tangent cone, so is é‘@@(k) for all k € Z. It is easy to see that ¢/ 7 (ﬁ@ O(k))

is isomorphic to Y n"*E.

Definition 1.2. Two extensions £, and &, of £ at 0 are equivalent if £, is isomorphic to
&, ® [DI®* for some k € Z.

Since D is of codimension 1 in B, in general A consists of more than one element.
For example, as we shall show in Proposition 2.6 given any extension &, then a saturated
subsheaf of £ determines a Hecke transform of & (see Definition 2.3), which in general
may be different from £. Our goal is to define and find an optimal extension in the
following sense.

Given any Ee A welet0C g Cc--E,C é be the Harder-Narasimhan filtration
of £ (with respect to the obvious polarization O(1) — CP"!). Denote by u, the slope of
Ex/Ek—1, which is strictly decreasing in k. We define a function ¢ : A — Q. by setting

D) = Uy — -

Then é is semistable if and only if ®¢E) = 0. In general ®(€) measures the deviation
of the algebraic tangent cone & from being semistable. The naive goal is to find an
extension so that the algebraic tangent cone is semistable. However, by Theorem 1.4
below, it is easy to see this cannot be achieved in general. Instead we make the following

definition.
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Algebraic Tangent Cones of Reflexive Sheaves 3

Definition 1.3. We say an extension £ is

e optimal if o) €1[0,1) and
e semistable if ®(€) = 0.

For any torsion-free sheaf F on CP"~! we denote by Gr(F) the graded torsion-
free sheaf associated to the Harder-Narasimhan filtration of F and by GrfVS(F) the
graded torsion-free sheaf associated to a Harder-Narasimhan-Seshadri filtration of F.

The main result we shall prove is

Theorem 1.4. Given a reflexive coherent sheaf £ on B, the following holds:

(Il. An optimal extension always exists. More precisely, given any & € A, there
are finitely many Hecke transforms that transform £ into an optimal one;
(I1). Suppose &, € A and &, € A satisfy that (£;) + ®(£,) < 1, then £, and &, are
equivalent. In particular, if there is one semistable extension, then it is the
unique optimal extension up to equivalence;
(III). Suppose fl and f:'z € A are both optimal extensions, then there is a k € Z
such that él and 52 ® [DI®* differ by a Hecke transform of special type (see

Definition 3.4). In particular,
Yl (Gr€)) = Yl (Gr2));

(IV). Suppose € is homogeneous, that is, £ =~ ¢, 7*E for some reflexive sheaf £ on

CP"™!, then there exists an optimal extension £ e A with
E=Gr©),

where Gr(£) denotes the graded sheaf determined by the partial Harder—

Narasimhan filtration of £ (see Section 3.3). In particular,
Y™ (Gré)) = yLn"* (Gr(E)).

Remark 1.5. It is very crucial that the normal bundle of D is negative in our case but

it is not crucial that D is CP"*1,

Remark 1.6. The above result also yields some tree-like structure on .4, which does not
seem obvious to see without using the notion of optimal extensions. Also, notice A itself
may contain continuous moduli. For example, in the case when n = 2 and £ is the trivial

rank 2 sheaf on C?, any extension & with c (ﬁ) € {0, —1} restricts to O(k;) & O(—k,) on
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4 X. Chen and S. Sun

CP! for some ky, k, € Z. . By [4], under the restriction k, = k, > 1, there is a generically

2k, — 3-dimensional moduli of isomorphism classes of extensions.

We give here a simple example illustrating the above statements, and we refer to
Section 4 for more examples. Let F be the locally free sheaf given by O 7CP" forn > 2,

and let £ = ¢, 7*F. Then él = ¢*& is an extension of £ and the corresponding algebraic

tangent cone is él = F. Since @(él) = ”TH, we know 5A1 is not optimal. Applying the
Hecke transform to ffl along the subsheaf 7CP" (which is fairly trivial in this case),
we get a new extension (‘fz with éz = TCP" @ O(1). Since d)(fz) = % € [0, 1), éz is also
an optimal extension. Moreover, by (II) above, there is no semistable extension of £.
Also, the strict uniqueness of optimal extensions up to equivalence is not true in this
example, since one can easily find another optimal extension é’s with £3 =TCP"® O(2),

and <I>(<§3) = ”T_l € [0, 1). This shows that (II) is sharp. However, it is clear that
Yl (Gr(€,)) = ¥im"* (Gr(€y) =&,

which is compatible with (IV) above.

One of the reasons that we consider the associated graded sheaf in the above
result is to connect with the analytic tangent cones for admissible Hermitian—-Yang—
Mills connections considered in [1, 2]. We briefly recall the definition. For more details,
we refer the reader to [7]. Now we endow the base B with the standard flat Kahler
metric. Let A be an admissible Hermitian—-Yang-Mills connection on &, that is, there
exists a Hermitian metric h on £ outside Sing(£) so that the Chern connection A given

by h satisfies the following:
“F, = 0,/3 |F,1? < o0.

For any sequence of positive numbers {A;}; with A; — 0, we can get a sequence of
rescalings of the base, which we denote by A; : B,-1 — B,z — A;z. Here B, -1 denotes
the ball centered at the origin with radius Ai_l in (LC” Then one can get a séquence of
admissible Hermitian-Yang-Mills connections {A; := A;A}. Over any compact subset
K c C", this sequence has a uniform bound of the L? norm of the curvature, which is
guaranteed by Price’s monotonicity formula. By passing to a subsequence, there exists
a sequence of gauges g; so that {g;.A;}; converge to A, outside a complex subvariety
¥ c C". Furthermore, X is C* invariant and can be decomposed as %" = ¥, USing(4))

where ¥, has pure codimension 2, which is called the blow-up locus, and Sing(A4.))

denotes the set of essential singularities of A_ . We write ¥, = U,X; as a union of
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Algebraic Tangent Cones of Reflexive Sheaves 5

irreducible components. By passing to a further subsequence if necessary, one can
assume Tr(FAji A FAji) = Tr(Fp AFy )+ 872 . Tian shows that u = >k mE" %y, where
Y, means the integration over the regular part of X, and mj" is called the analytic
multiplicity of 1 along ¥,. We denote £ the reflexive sheaf defined by A . In summary,
given any sequence of such rescalings, one can get a set of limiting data (£, A, %", u),
which we call an analytic tangent cone of (£,4) at 0. A priori, the tangent cone might
depend on the given sequence of rescalings. Combining the above algebraic geometric

picture with the results we got in [1, 2], we would like to make the following conjecture.

Conjecture 1.7. Let A be an admissible Hermitian—-Yang-Mills connection on (£, B)
and € be any chosen optimal extension of £ at 0. Then there is a unique analytic tangent
cone (€, Ay, T, v) on C" of (£, 4A) at 0. Moreover,

o &= Yla*((GrANS(£))**) and A, is gauge equivalent to the Hermitian-Yang-
Mills cone given by Gri¥S(£) (see [1] for the definition of Hermitian-Yang—
Mills cone);

o X\ {0} = 7'"!(Sing(GrN5(£)));

e m{" = h%A,Tl|,) where A is a generic transverse of 7 (%) in CP"~! and

T = (GriNS€))* /GrINS (€).

Remark 1.8. By Theorem 1.4 (III), Gr¥S(£) is independent of the choice of an optimal
extension up to tensoring with O(k). Namely, we already have uniqueness in the

algebraic-geometric side.

Combining Theorem 1.4 and the main results in [1, 2], we have proved the above
conjecture in the case when £ is homogeneous with an isolated singularity at 0, that is,
when € ~ v, 7*E for some locally free sheaf £ on CP"~!. When £ admits an algebraic
tangent cone £ that is a stable vector bundle (and then it must be the unique optimal
extension up to equivalence by Theorem 1.4), we also know that £, =~ w;n’*ﬁ, see [1,

Theorem 1.3]. Conjecture 1.7 improves and generalizes the conjectures in [1, 2].

2 Hecke Transform of Reflexives Sheaves
2.1 The case of sub-bundles

Let M be a complex manifold and D be a smooth hypersurface in M. Let E be a
holomorphic vector bundle on M and denote E := E|,. Let F be a sub-bundle of E. Let Q
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6 X.Chen and S. Sun

denote the quotient bundle E/F and p : E — Q the natural projection map. Then we have

the following short exact sequence of vector bundles on D:

s

0O-F—>E->Q—0. (2.1)

We will describe below a construction, called the Hecke transform along F, that yields
another vector bundle E’ on M, which is isomorphic to E on M \ D, such that the

restriction E' := E’|}, fits into an extension of the form
0>Q®N,—>E 5> F—0, (2.2)

where Nj, is the normal bundle of D in M. In the next section we shall reinterpret it in
terms of more complex-analytic language, which makes the construction more natural
and generalizes to the case of coherent sheaves.

To start the construction, we choose an open cover {U,} of a neighborhood U of

D, such that E|; admits a trivialization given by holomorphic sections e, - -, €, .
and such that if we denote e, := e,ly, where V, := U, N D, then e,;, -+ €,
give a holomorphic trivialization of F|y , and p(e,s1), -+, p(€,,) give a holomorphic

trivialization of Q| . We may also assume that the divisor line bundle [D] has a local
trivialization ¢, on each U,. Choose a defining section s of [D] so that we can write
s =s,t, over each U, with s, vanishing on D with exactly order one.

On the intersection U,z := U, N Uy, we can write the transition function of E as

® _ faﬂ galB
aff — h .
of qaﬂ

Denote V4 := U,g ND. Then the fact that F is a sub-bundle of E implies that h4|y,, =0,
and gwﬂlvw3 defines the extension class in Ext!(Q,F) corresponding to the short exact
sequence (2.1).

Now define a new holomorphic basis of E|; \p, by setting e(’w. = e, forj < sand

e .=s,e, :forj> s+ 1. Then with respect to the new basis, the new transition matrix

/
B a~a,]

becomes

P, — |: faﬁ gaﬁsa i|
O(ﬂ - -1 -1
haﬂs/3 depSaSp

Now the entries of this matrix extend to be well-defined holomorphic functions

across V,;. Hence, it defines a holomorphic vector bundle on M, which is our desired
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Algebraic Tangent Cones of Reflexive Sheaves 7

E’. Moreover, since SaSEI is the transition function of the line bundle [D], by adjunction
formula, we see that by restricting to D, the right bottom component of CDfxﬁ gives the
transition matrix for Q ® N];l. It is also clear that the whole matrix restricting to D is
now a lower triangular matrix, so it is obvious that the exact sequence (2.2) holds.

One can check by definition that there is a well-defined vector bundle isomor-
phism from E’ to E on M \ D, since by construction locally a holomorphic section of E’ is
a holomorphic section of E such that when restricting to D it belongs to F. One can also
check that the isomorphism class of E’ does not depend on the choices made. It is also

clear from the construction in the next subsection.

Remark 2.1. When dimM = 1, D = {x}, F is a subspace of E|,. In this case the
above construction is usually referred to as the “elementary modification” or “Hecke

modification” in the literature, and this justifies our choice of terminology.

2.2 General case

Now we move on to the general case of coherent sheaves, using a more complex-
algebraic language (which is kindly pointed out to us by Richard Thomas). We again
suppose M is a smooth complex manifold and D is a smooth hypersurface. Let:: D — M
be the natural inclusion map, and £ be a reflexive sheaf on M. By [1, Lemma 3.24], we
know that £ := (*£ is a torsion-free coherent sheaf on D.

Let F be a subsheaf of £ and Q be the quotient sheaf. Denote p : £ — ,(Q) to be
the map given by the composition of the natural surjective map £ — :,£€ with the natural

map (€ — (,Q.
Lemma 2.2. pis a surjective sheaf homomorphism.

Proof. It suffices to show the map (.£ — (,Q is surjective. By definition we have the

following exact sequence:
0->F—-E—-9Q—0.

Since ¢ : D — M is obviously Stein, namely, the pre-image of a Stein open set is Stein,

the higher direct image R'(:,F) vanishes for i > 1. In particular, the following is exact:

0>, F—>E&—1,(Q — 0.
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8 X.Chen and S. Sun

Definition 2.3. We define the Hecke transform &’ of £ along F to be the kernel of the
map p.

By definition, £’ lies in the following short exact sequence:

05&—>E-1,9-0. (2.3)

In particular £’ is a subsheaf of £, which is isomorphic to £ over M \ D. In particular, it
must be torsion-free. It is easy to check by definition that when £ is locally free over M

and Q is locally free over D, this agrees with the construction in the previous subsection.
Lemma 2.4. ¢&’is reflexive if F is saturated in £ or equivalently Q is torsion-free.
Proof. By Equation (2.3), we have the following exact sequence:
0— (/& = 1,0.
Since Z, - 1,Q = 0, we have Z, - (£/)**/£’) = 0. Then we have
EN/E =, (EN/ED
and the following exact sequence:
0— *((ENY*/E) > 1,9 = Q.
Since £’ is torsion-free and locally free outside D, Supp((£/)**/£’) has codimension 1 in
D, which implies (*((£')**/£’) is a torsion sheaf. Since Q is torsion-free, by the exact

sequence above, we have (*((£')**/£’) = 0, which implies (£/)**/&£’ = 0. This finishes the
proof. |

In our later applications we will always assume F is saturated in £. The

following proposition is a generalization of (2.2).

Lemma 2.5. There exists the following exact sequence:

0I5 E5E > F—>O. (2.4)
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Algebraic Tangent Cones of Reflexive Sheaves 9

Proof. By definition £’ is exactly the pre-image of ¢, F under the natural map £ — (..
So we have a natural surjective map £ — (,F. The kernel of this map agrees with the

kernel of the map £ — ,£, which is exactly Zj, - £. This finishes the proof. |
Denote £ = (*&'.
Proposition 2.6. There exists the following exact sequence:
05 QN;—>E > F—0,
where N, ~ I,,/Z3 is the locally free sheaf associated to the co-normal bundle of D.
Proof. Applying * to (2.4) we get the exact sequence
FTpy &)L s L F=F 0. (2.5)

It suffices to prove Ker(y) = Q ® N};. By definition, ¢ comes from the map Z,, - £ — &’
by tensoring with Oy, so the kernel is given by 7, - 5’/1'127 - €. Since T, is locally free, we

have the following exact sequence:
057251y & -5 Iy, F — 0.
This implies that as O;;-modules, we have
Ip-E)I5 € =T ®1L,F =1 (FQNp).
It is direct to check that the inclusion of Ker(y) in (*(Z, - £) is given by the natural map
LE@Np = E®Np

under the natural identification *(Z, - £) = £ ® },. Hence, we see the image of y is given
by

EQNY/(E®Np) =2 N i

Now we will discuss some interesting properties of the Hecke transform. Let £”
be the Hecke transform of £’ along Q ® V3.
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10 X. Chen and S. Sun

Lemma 2.7. The Hecke transform is an involution up to twisting by [D] in the sense
that £” = £(—I[D)).

Proof. By definition and Proposition 2.6, £” fits into the following exact sequence:
05E&" >& >, (£/(QRNY) =, F—0,

and the map & — (, F agrees with the map in (2.4). By Lemma 2.5, £” is isomorphic
toZ,-E. |

More generally, we can take a subsheaf of Q ® A}, that has the form (£, /F) @ N},
where £, C (*£ is a saturated subsheaf with F c £,. Let £/ be the Hecke transform of
& along (£,/F) ® N}, and & be the Hecke transform of £ along £,. Then the following

involution property holds.
Proposition 2.8. &/ ~ 7, -&].

Proof. We have the following commutative diagram:

0 & &g w(E/((E1/F) @ Np)) —— 0
00— & =Tp-& & L(E QBN —— 0

where the 1st row is by definition and the 2nd row is by Lemma 2.7. This implies the

following exact sequence:
0— (Ip-&)/& = &'/&] = 1, (E'/((E1/F) ® Np)) — 1,(£'/(Q®Np) — 0.
As a result, we have
Ip - 6)/E] = 1, (QONp)/1,(E1/E®Np) = 1, (E/E;) ® Np),
which implies the following exact sequence:

0 & 5 Ip-E—> 1, (E/E, ®NG) — 0.
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Algebraic Tangent Cones of Reflexive Sheaves 11

By definition, we also have
0-& > E&E—- (/&) =0
Since 7, is locally free, we have
0->Ip- & > Ip-E—- 1, (E/ENRIY=1,(E/E; QNS — 0.

This finishes the proof. |

3 Proof of the Main Theorem
3.1 Proof of (I)

We begin with a simple observation.

Lemma 3.1. The image of the map ® : A — Q. is discrete. In particular, a minimizer

of ® always exists.

Proof. By definition,

= fD Cl (gi/gi—l) U Cl (O(l))n_z

-1
l rank(&;/€;_;) e (rank(&)!) ' Z.

This implies for any extension g, CD(c‘f) € (rank(&)! )_IZzo- |
Now let £ € A. Let 0 C EcCc- &y = £ be the Harder—Narasimhan filtration of

£.1In the following, for each k < m we always denote by &¥ to be the Hecke transform of

é along £, and denote ﬁ = *&k. Given any sheaf F over CP"*~!, we also denote
E() = FE@03).

Lemma 3.2. () < max{pug,q — tp, PE) = 1, gy — g + 1,1ty — g} for any k.

Proof. By Corollary 2.6, we have the following exact sequence:

0 /(1) > EF s & > 0. (3.1)
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12 X. Chen and S. Sun

LetOcé& c---&, = E¥ be the Harder-Narasimhan filtration of £%. Denote the slope of
&:/&;_, by u). By Equation (3.1), £} fits into the following exact sequence:

056, »& —-G,-0,

where G, is a subsheaf (£/§k)(1) and G, is a subsheaf of £;. Since £, /&, is the maximal
destabilizing subsheaf of é/ék, we have

u(Gy) < gy + 1.

Similarly

u(G,) < py.
Then one has
/

puy <max{up,; + 1,0} (3.2)

By taking the dual of Equation (3.1), one has the following exact sequence:
0 & - €9 - E/E" ().
Similarly (£),,/€,,_,)* fits into the following exact sequence:
00— ﬂl — (élm//é,m’—l)* — ﬂz — 0,

where 7, is a subsheaf of £} and %, is a subsheaf of (£/§k)*(—l). Similar to the above,
we have
n(Hy) < —pg
and
w(Hy) < —phy — L.
Then one has
— Wy < max{—puy, —fh, — 1}. (3.3)

Combining Equations (3.2) and (3.3), we get

MY = Moy S 0@X{ gy = My Iy = M = Lo gy — i+ 1oy = i)

This finishes the proof. u
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Algebraic Tangent Cones of Reflexive Sheaves 13

Now we prove Theorem 1.4 (I). Since A is nonempty, we can fix an element Ee A

If o) > 1, we apply Lemma 3.2 to & with k=1 and get
(E") < max{uy — fy,, PE) = 1,1y —py +1} < &) — 1.

If Y > 1, we repeat the same process for EL. After finitely many steps, we

can get & € Awith 0 < ®(£’) < 1. The following is also clear from Lemma 3.2.
Corollary 3.3. Suppose £ € A is optimal, then £F is also optimal for all k.

Definition 3.4. We say two optimal extensions £ and &’ differ by a Hecke transform of

special type if & is isomorphic EX for some k.

3.2 Proof of (II) and (III)

3.2.1 Meromorphic extension of sections
The goal in this subsection is to prove the following proposition that will be needed
in our discussion later. Let s;, € HO(B, D)) be a defining section of D and let & be any

reflexive sheaf over B.

Proposition 3.5. Given any s € H° (]§ \D, é), there exists a k such that s® 51’3 extends to

a holomorphic section of £(k[D]) over B. In other words, s is a meromorphic section of £.

Remark 3.6. It is a key assumption here that [D] is an exceptional divisor, since
otherwise the statement is false. For example, if we consider D = {0} c A, where
A = {|z| < 1} C C, and consider the trivial sheaf O, then we have holomorphic functions
on A\ {0} with an essential singularity at O that cannot extend to be meromorphic

functions on A.

Proof. of the case n =2. In this case D = CP!, and £ is locally free. Denote Bt =
p‘l(Bt), where B, denotes the ball of radius t € (0,1) centered at 0.
It suffices to construct the following exact sequence over f?% for k € Z large

enough:
0— R— O™ — £*(—kID]) - 0.

Indeed, given this exact sequence, by taking the double dual, we have

0 — E(k[D) —» O™ — R* - 0.

0202 1snBny 62 Uo 188nb AQ 2900€Z2S/9/ZAuUl/UuIW/S60 L 0 1 /10P/8|91e-80UBApE/UIWI/WOoo dnoolwepese//:sdiy Wol) papeojumod



14 X. Chen and S. Sun

Then s ® Sllglfh € HO(E% \ D, £(kID])) can be viewed as a section in HO(E% \ D,0™). By
3

Hartog's theorem for holomorphic functions, we know HO(]AB% \ D,O™) = HO(E%,(’)’“).
Then s ® s§|§1 € HO(IA?%,(’)”I). By continuity, we have s ® s]’f)lél € Ho(}}%,é(le])).
2 2

Now we fix a Kahler metric & on B. In order to construct the exact sequence
above, it is equivalent to constructing a set of global generators for £*(—k[D]) over B 1
for k large. This can done by the standard Hérmander technique, see, for example, [4,
Theorem 5.1]. Indeed, we know E% is weakly pseudo-convex, and since [D]|, = O(—1) is
negative, one can easily construct a Hermitian metric A on £*(—k[D]) for k large, such
that

V=1F;, > Ckd ® 1d.

Now the conclusion follows from standard L? solution to the d-problem, using singular
weight. |

Proof. of the general case. Suppose n > 3 and ¢ is a reflexive sheaf defined by B. Let
S = ¢>(Sing(£’)) N E_% and S = o 1SN E%. By replacing E% with B, which does not affect
the argument, we can assume S is a closed subset in CP"*~! of Hausdorff of codimension
at least 4 and so is S in B. Furthermore, Sing(é) cS.

By [6, Proposition 4], it suffices to prove that for any z € CP*~ 1\ S, Sly-1z) is @
meromorphic section of S|¢,71(Z). Indeed, given this, by [6, Proposition 4], we know s is
a meromorphic section of élé\g that is holomorphic outside D. Then for some k, s ® sﬁ
is a holomorphic section of 5(k[D])|f3\§. Since S has Hausdorff of codimension at least 4,
s® s]'f) further extends to be a section in HO(B, c‘f(k[D])) (see [5, Lemma 3]). Now we show
Sly-1(z is @ meromorphic section of é‘|¢_1(z) for any z € CP" ! \ S. Since S has Hausdorff
of codimension at least 4 in CP"~!, we can choose a complex line CP! ¢ CP"~! that
does not intersect S but contains z. Let B2 = ¢~ 1(CPY). Then éléz is locally free. By the

case n = 2 proved above, sz, is a meromorphic section of £ over B?. In particular,

\(DNB2)
Sly-1(z) is @ meromorphic section of £|,-1,. This finishes the proof. |

3.2.2 Uniqueness
We will prove (II) and (III) in this section. Suppose € and & are two optimal extensions
of £ at 0. We denote & = *€ and & = *&'. Let

|®n>

Océlc...f_jm:
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Algebraic Tangent Cones of Reflexive Sheaves 15

and

Al

océ&c---&,=¢E

be the Harder—Narasimhan filtrations of é and ﬁ/, respectively. If we denote u; :=

w(&;/€;_y) and w == u(&;/E;_,), then by assumption we have
Py — My < 1,0} =y <1,

and there exists a natural isomorphism p : <€A’|E\D - SA’|§\D. By Proposition 3.5, p is a
meromorphic section of £* ® £’. Suppose det p has a pole of order k € Z along D. If we
write k = d - rank(€) + ky with 0 < k; < rank(£), then by replacing & with £(d[D]) and p
by p® sgd we may assume 0 < k < rank(¢).

Denote

BZL*,O, B_l =L*,O_1.

1

Then p and p~" can be viewed as two nontrivial holomorphic sections

pi€=Ely, pt i€ - A=y,

for some [, 16 € Z, . Let k be the smallest integer such that £|§k+1 # 0. Then P descends
to be a nontrivial holomorphic map p : 1€ P & (—Iy) that restricts to be nonzero on
Ers1/Ex- Since & (1) is the maximal destabilizing subsheaf of i’/(—lo), we have ) —[ >

Mgy~ Similarly p, — I > M} for some j. Then we have
2> ph = Wty — g 2 o+,

which implies exactly one of the following hold:

(@. ly=0;
(b). lO = 1.

Suppose first (a) holds, then by assumption, p can be extended to be a holomorphic
section across D and thus det(p) is also a holomorphic section of det(£*) ® det(€) over
B. However, by assumption we know det(p) has a pole of order ky > 0. Then we must have
ky = 0, that is, det(p)|p # 0, which implies det(p)(z) # 0 for any z € f?\ Sing(é) U Sing(ff’).
In particular, p is an isomorphism away from complex codimension 2 and hence must be
an isomorphism. Notice this already finishes the proof of Part (II) of Theorem 1.4 since

under the assumption of (II) we know (a) must hold.
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16 X. Chen and S. Sun

Now suppose (b) holds, that is, [ = 1 and [ 0. By assumption, p can be

viewed as a holomorphic map p : & - &(ID]) with p: é - él(—l) being nonzero and

1. & 5 € being nonzero. Then p~! is a sheaf

p~1: & — £ is a holomorphic map with o
monomorphism since &’ is reflexive and ker(p~!) is supported on D. In the following, we
do not distinguish between & and the image o~ 1) in €. Let D = Sing(é) U Sing(c‘:") U
Sing(£/Ey).

To finish the proof of (ITI), it suffices to prove
Claim 3.7. (é/é’)@w, ~ L*(ﬁ/gk)@w,.
Indeed, given Claim 3.7, we have the following exact sequence outside D’:
0585 E—- /&)~ 0.

By definition, we have & = £k outside D’ , where £k denotes the Hecke transform of &

along &;. Since & and &F are both reflexive, they must be isomorphic.

Proof. of Claim 3.7. First we prove that £/& = 1,1*(£/€'). To see this it suffices to show
that for any local section s of £, z,s € €. Here z,, denotes the local defining function for
D after choosing a local coordinate. Indeed, by assumption, z, o(s) is a local holomorphic
section. We also know that p~1(z,p(s)) = z,s, which implies Z,€ c p~(£’). As a result,
LHENEN = EJE.

So it suffices to prove t*(é/f’) = ﬁ/ﬁk on D\ D'. Since all these sheaves are locally
free away from D’ this boils down to showing B_l &) = ExonD\D.

We first show Im(ﬁ‘l) C & If not, there exists a nontrivial map
-1 5/ 5
pE > E/E,

which implies M} < g4y for some j. Meanwhile, by assumption, p descends to be a

nontrivial map as p : é/ék - él(—l), which implies 4} — 1 > ;. Then we have
My = Moy = Y — 1) 2 1,

which is a contradiction. Now we prove that Im(g_l(z)) = &l, for z e D\ D'. It suffices

to prove

rank(ﬁ(z)) + rank(ﬁ_l(z)) > rank(&)
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Algebraic Tangent Cones of Reflexive Sheaves 17

forz e D\ D'. Now we fix z € D\ D’ and choose local coordinates (z;, - - - z,,) so that z,, is
the local defining function for D. After choosing a local trivialization for both £ and &’

near z, we can view p and p~! as a matrix. By doing Taylor expansion, we can assume
-1
o =Ag+Az, +---

and

Z,p =By +Byz,+-,

where A; and B; are matrices of holomorphic functions independent of z,. Since p~! o

(z,p) = z,1d, by comparing the coefficients in front of z,, we get
AB, +A,By=1d,

which implies
rank(4,) + rank(B,) > rank(A,B,) + rank(4,B,)
> rank(A4,B; + A,By)
= rank(&).

By definition, we have
rank(p(2)) + rank(ﬁ_l(z)) = rank(4,) + rank(B,) > rank(&).
This then finishes the proof. |

3.3 Proof of (IV)

Now we assume & is homogeneous, that is, £ ~ y,7*€ for reflexive £ over CP"~!. Let
0=¢&,cCc &, - C &, =& be the Harder-Narasimhan filtration of £ and denote u; =
(& /Ex_1). Note ¢*E € A. Let j, = 0 and define

Jep1 i=max{s > jp 1 puy — pg — [y — w1l <l,s<mj

inductively for k > 1. Let [ be the largest integer so that j; is defined. Then we define the

partial Harder-Narasimhan filtration as

0=§j0C§h C§j2 C"'éjlzé‘
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18 X. Chen and S. Sun

Let ng = |u; — ,uJ-kHJ for0 < k <1—1 and define
Gr©) = &, (§;,/€;_,) (1)
Then to prove (IV), it suffices to show

Proposition 3.8. There exists an optimal extension & e A sothat £ = Gr(&).

Proof. It suffices to prove the following by induction on k with 1 < k < [ — 1. (The
reason to write inductions in this way will be justified by the proof naturally.)
(@), there exists £F € A with &~ @1, /8 i) & (E/E;)(ny);
(b);, there exists the following sheaf inclusions for 1 < i < k that are compatible
with the splittings in (a):
- ¢*§j1 c &k
— Let f{‘ := ¥, then we can define éilil = é{c/qﬁ*((éji/ﬁji_l)(ni_l)) forl<i<
k — 1 inductively and ¢*((£;,,, /&;) () C gk fori=1,---k—1;
— EK1*((E 1Ej) (g _))) = ¢ (E/E;) ().
For k = 1, we let £1'! be the Hecke transform of ¢*£ along &;,- By Proposition 2.6, we

have the following exact sequence:
0 (/6,1 —E" > € >0

By definition, there exists a natural sheaf inclusion ¢>*§j1 c &1, which restricts to
be a map from g, to él'l that splits the exact sequence above, that is, ﬁl'l =& 0
(E/€;) ). Indeed, we know that P*E;, lies in the kernel of the surjective map ¢*& —
1,(£/€;,) and thus we have a natural sheaf inclusion ¢*&; C EL! by definition. (This
is the key difference in the homogeneous case from the general case where we have a
natural inclusion ¢*(&;) C £12) The restriction map splitting the exact sequence above

is tautological. Moreover, by definition, we have
0 EVVg* ;) = ¢7(E/E),) = L(E/E;) = O,
which implies 5111/¢*(§j1) = ¢*(E/E)(~ID) = ¢*(£/E;(1)). (This is another key

difference in the homogeneous case from the general case. That is the quotient sheaf

31'2/¢*§j1 is still homogeneous, that is, it is pulled back from the projective space.) If
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n; > 1, let £12 be the Hecke transform of £1'1 along £; . Similarly, we have
0 (E/6,)2 - E* 5 €& >0

and by definition, we have a sheaf inclusion P*E; C &2, which restricts to be a map
. . 51,2 c el
that splits the exact sequence above, that is, £ = (£/€;)(2) & &;,. By definition, we

also have the following exact sequence:
0 EV%)p*E; — ¢*((E/€;,) (1) - 1, ((£/€,)() - 0,

which implies 51'2/¢*§j1 = " ((E/E;))(2)). Then one can keep doing Hecke transform for

£12 along &;, if necessary and get El.= £l ¢ A satisfying

@, £ =&, ®E/E)m);
(b); there exists a sheaf inclusion ¢*§jl c &', which is compatible with the
splitting above and (‘:’l/qb*(ﬁjl) = ¢*(E/E), (ny)).
Namely, after we do Hecke transform along &;, ¢*¢; will always be a saturated
subsheaf of the new sheaf, which will give a splitting on the central fiber. And the
natural quotient sheaf is still homogeneous. In the case of sub-bundles, one can use the
bundle construction in Section 2.1 to achieve the above result in one step.

To make the argument more clear, we will explain how to do k = 2 briefly.
(Details can be found in the induction for the general case.) Given (a); and (b);, we
can keep doing Hecke transform along P*E; ®P*(E},/E; (ny)) to get a new sheaf £2. And
we have two sheaf inclusions ¢*&;, C &2 and ¢*(Ej,/E;,(n)) C 5’2/¢*§]~1, which restricts

to be maps that split the central fiber as we want. Furthermore, we have

(E2/97(£1,)) /9" (E,/E), (n)) = ¢ (£/E€;,(ny)),

where n, is equal to the number of Hecke transforms along ¢*§j1 @ ¢*(§j2 /§j1 (ny)) to £,

Now we do the induction in general. Suppose we have proved (a);, (b);, we want
to build the statements (a),,; and (b)y, ;. First let £k+11 to be the Hecke transform of
&k along eai.‘:l(éji/ﬁji_l)(ni_l) &) (éjk+1/§jk)(nk)' By Proposition 2.6 we have the following

exact sequence:

~k+1,1
0— (§/§1k+1)(nk +1)—>¢& " - GB{F:l (éji/(c—:jifl)(ni—l) ® (éfkﬂ/éjk)(nk) - 0.
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20 X. Chen and S. Sun

Then (b), holds by replacing £ with £¥t11 except the last one, which needs to be
changed. More precisely, there exists the following sheaf inclusions for 1 < i < k, which
are compatible with the splittings in (a):
o oE;, L
o ifwelet ék“ := Ek+11 and define é:’i’fjll = ék“/(j) (/€ Nm_p) forl <i<
k — 1 inductively, then ¢*(( J+1/ Ei)ny) C Etlfori=1,.. . k—1;

i+1
o (E,, /E)m) C LT and
gllccilll/‘/’ ((Ejer1/€) (M) = ¢ (E/E;,,, (g + 1)),

Indeed, by definition we have
— EHU S ER (@ (65,185, ) is) ® (€., /€;,) () — 0.

Combining this with that &k satisfies property (a); and (b);, we can easily get the sheaf
inclusions with required properties above. Now we have

ENN — @kl (g5 /8, i) @ (E/€, ) (g + 1.

Indeed, the sheaf inclusion ¢*E; C EK+L1 restricts to be a map that gives a splitting
k1 _ g @ L*é§+1. For L*(‘féﬂ_l, the sheaf inclusion given by ¢*((£;,/£;,)(ny)) C fé‘“
gives a splitting (*£5H1 = (€;,/€;,)(ny) & *E5+1. Then one can keep doing this and finally
get a splitting of ﬁkﬂ'l as claimed above.

Now one can repeat the process with £¥*11 to get £¥t12 by doing Hecke
transform along @1 1(5 /E Ei M) & ( Jk+1/ J-k)(nk) again if necessary and finally get
ERtl .= Ehtlngg satisfying properties (a);,; and (b);, ;. This finishes the proof. |

Remark 3.9. When the Harder-Narasimhan filtration of £ has length equal to 2,
that is,

0:§0C§1 C§2:§r

the same argument shows that there exists an optimal extension Esothat £ = & 1 D
(€5/€1)(k) for some integer k with u; — 1 < u, — k < pu,. In general, one should not
expect to get an optimal extension of which the restriction splits as a direct sum of

semistable torsion free sheaves by Theorem 1.4 (III) and Corollary 3.3.
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4 Examples

In this section, we apply Theorem 1.4 to study some interesting examples.
Example 1. Consider £ — CP? given by the following exact sequence:
05035 01)a01)d0O@B3)— £ 0,

where o = (zl,zz,z’?f). Consider £ = ¢, n*E. Then we have (see [3, Section 5])

e ifk=1,¢ is stable;

o ifk=2,¢ is semistable;

e ifk > 3, £ is unstable. The Harder-Narasimhan filtration of £ (which is the
same as the Harder-Narasimhan-Seshadri filtration in this case) is given by
0cé& céy=Ewhere&) =0(k) and £,/ = Tj.0.1;(2).

By Theorem 1.4, when k < 2, there exists a unique optimal extension given by ¢*£ (up to
equivalence). When k > 3, by Remark 3.9, there exists an optimal extension £ of which
the restriction is given by O(2) @ 7|y ¢ 1(2). Then again by Theorem 1.4, £ is the unique
one up to equivalence since O(2) @ Zjg o ;(2) is semistable. These are compatible with

our study of analytic tangent cones in [1, 2].

The next is an example where there are two optimal extensions, for which one
of them has a locally free algebraic tangent cone while the other has an essential point

singularity.
Example 2. Consider a vector bundle £ — CP? given by the following:
05050102 - £ 0, (4.1)

where o = (zl,zz,zs,zi). Let £ := ¢y, v*E. Then £:= ¢*& is an optimal extension of £ at 0
with ®(€) = % The Harder-Narasimhan filtration ofé isgivenby £, £ O0@2)and &, =&

Furthermore, £,/£, fits into the following exact sequence:
05 0% 01 = £,/8, — 0,

where ¢’ = (z;,2,,23). In particular, £,/€, is a stable reflexive sheaf with an essential
point singularity at [0,0,0, 1]. Let &' be the Hecke transform of & along £,;, which is

. . . 5l . A1
again an optimal extension. By Remark 3.9, £ = &; @ (£,/£;)(1). In particular, £! is an
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22 X.Chen and S. Sun

optimal extension of which the restriction splits as a direct sum of stables sheaves that

has an essential point singularity.
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