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We study the notion of algebraic tangent cones at singularities of reflexive sheaves.

These correspond to extensions of reflexive sheaves across a negative divisor. We

show the existence of optimal extensions in a constructive manner, and we prove the

uniqueness in a suitable sense. The results here are an algebro-geometric counterpart

of our previous study on singularities of Hermitian–Yang–Mills connections.

1 Introduction

The goal of this paper is to study a complex-algebraic object that comes out of our study

of singularities of Hermitian–Yang–Mills connections [1, 2]. The discussion here will be

purely complex-algebraic, and the connection with the previous results will be given by

Conjecture 1.7. Let B ⊂ C
n be the unit ball, and let E be a reflexive analytic coherent

sheaf over B. Let B̂ be the blow-up of B at 0. We will use the following notation:

• π : B\{0} → CP
n−1 and π ′ : Cn \{0} → CP

n−1 are the natural projection maps;

• ψ : B \ {0} → B and ψ ′ : Cn \ {0} → C
n are the natural inclusion maps;

• p : B̂ → B and φ : B̂ → CP
n−1 are the natural projection maps;

• D := p−1(0) is the exceptional divisor, and ι : D → B̂ is the natural inclusion

map.
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2 X. Chen and S. Sun

Definition 1.1.

• An extension of E at 0 is a reflexive sheaf Ê over B̂ such that Ê |B̂\D is

isomorphic to (p∗E)|B̂\D. Define A to be the set of isomorphism classes of

all extensions of E at 0;

• An algebraic tangent cone of E at 0 is a torsion-free sheaf Ê over D such that

Ê = ι∗Ê for some Ê ∈ A.

To justify the terminology “algebraic tangent cone”, we notice that ψ ′∗π ′∗Ê
defines a torsion-free sheaf on C

n with a natural C∗ equivariant action. It would be more

natural to call ψ ′∗π ′∗Ê the algebraic tangent cone, but we have chosen to call Ê itself an

algebraic tangent cone just for the convenience of our presentation. In Conjecture 1.7

below we shall also make a connection with analytic tangent cones of Hermitian–Yang–

Mills connections.

We remark that A is easily seen to be nonempty for one can simply take (p∗E)∗∗

as an extension of E at 0. Since the divisor line bundle [D] is trivial on B̂\D, we know that

if Ê is an extension, then Ê ⊗ [D]⊗k is also an extension for all k ∈ Z. In particular, if Ê is

an algebraic tangent cone, so is Ê⊗O(k) for all k ∈ Z. It is easy to see that ψ ′∗π ′∗(Ê⊗O(k))

is isomorphic to ψ ′∗π ′∗Ê .

Definition 1.2. Two extensions Ê1 and Ê2 of E at 0 are equivalent if Ê1 is isomorphic to

Ê2 ⊗ [D]⊗k for some k ∈ Z.

Since D is of codimension 1 in B̂, in general A consists of more than one element.

For example, as we shall show in Proposition 2.6 given any extension Ê , then a saturated

subsheaf of Ê determines a Hecke transform of Ê (see Definition 2.3), which in general

may be different from Ê . Our goal is to define and find an optimal extension in the

following sense.

Given any Ê ∈ A, we let 0 ⊂ E1 ⊂ · · · Em ⊂ Ê be the Harder–Narasimhan filtration

of Ê (with respect to the obvious polarization O(1) → CP
n−1). Denote by μk the slope of

Ek/Ek−1, which is strictly decreasing in k. We define a function � : A → Q≥0 by setting

�(Ê) = μ1 − μm.

Then Ê is semistable if and only if �(Ê) = 0. In general �(Ê) measures the deviation

of the algebraic tangent cone Ê from being semistable. The naive goal is to find an

extension so that the algebraic tangent cone is semistable. However, by Theorem 1.4

below, it is easy to see this cannot be achieved in general. Instead we make the following

definition.
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Algebraic Tangent Cones of Reflexive Sheaves 3

Definition 1.3. We say an extension Ê is

• optimal if �(Ê) ∈ [0, 1) and

• semistable if �(Ê) = 0.

For any torsion-free sheaf F on CP
n−1 we denote by Gr(F) the graded torsion-

free sheaf associated to the Harder–Narasimhan filtration of F and by GrHNS(F) the

graded torsion-free sheaf associated to a Harder–Narasimhan–Seshadri filtration of F .

The main result we shall prove is

Theorem 1.4. Given a reflexive coherent sheaf E on B, the following holds:

(I). An optimal extension always exists. More precisely, given any Ê ∈ A, there

are finitely many Hecke transforms that transform Ê into an optimal one;

(II). Suppose Ê1 ∈ A and Ê2 ∈ A satisfy that �(Ê1) + �(Ê2) < 1, then Ê1 and Ê2 are

equivalent. In particular, if there is one semistable extension, then it is the

unique optimal extension up to equivalence;

(III). Suppose Ê1 and Ê2 ∈ A are both optimal extensions, then there is a k ∈ Z

such that Ê1 and Ê2 ⊗ [D]⊗k differ by a Hecke transform of special type (see

Definition 3.4). In particular,

ψ ′∗π ′∗(Gr(Ê1)) 	 ψ ′∗π ′∗(Gr(Ê2));

(IV). Suppose E is homogeneous, that is, E 	 ψ∗π∗E for some reflexive sheaf E on

CP
n−1, then there exists an optimal extension Ê ∈ A with

Ê ∼= ˜Gr(E),

where ˜Gr(E) denotes the graded sheaf determined by the partial Harder–

Narasimhan filtration of E (see Section 3.3). In particular,

ψ ′∗π ′∗(Gr(Ê)) 	 ψ ′∗π ′∗(Gr(E)).

Remark 1.5. It is very crucial that the normal bundle of D is negative in our case but

it is not crucial that D is CP
n−1.

Remark 1.6. The above result also yields some tree-like structure onA, which does not

seem obvious to see without using the notion of optimal extensions. Also, notice A itself

may contain continuous moduli. For example, in the case when n = 2 and E is the trivial

rank 2 sheaf on C
2, any extension Ê with c1(Ê) ∈ {0,−1} restricts to O(k1) ⊕ O(−k2) on
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4 X. Chen and S. Sun

CP
1 for some k1, k2 ∈ Z≥0. By [4], under the restriction k1 = k2 > 1, there is a generically

2k1 − 3-dimensional moduli of isomorphism classes of extensions.

We give here a simple example illustrating the above statements, and we refer to

Section 4 for more examples. Let F be the locally free sheaf given by O⊕T CP
n for n ≥ 2,

and let E = ψ∗π∗F . Then Ê1 := φ∗E is an extension of E and the corresponding algebraic

tangent cone is Ê1 = F . Since �(Ê1) = n+1
n , we know Ê1 is not optimal. Applying the

Hecke transform to Ê1 along the subsheaf T CP
n (which is fairly trivial in this case),

we get a new extension Ê2 with Ê2 = T CP
n ⊕ O(1). Since �(Ê2) = 1

n ∈ [0, 1), Ê2 is also

an optimal extension. Moreover, by (II) above, there is no semistable extension of E .
Also, the strict uniqueness of optimal extensions up to equivalence is not true in this

example, since one can easily find another optimal extension Ê3 with Ê3 = T CP
n ⊕O(2),

and �(Ê3) = n−1
n ∈ [0, 1). This shows that (II) is sharp. However, it is clear that

ψ ′∗π ′∗(Gr(Ê2)) 	 ψ ′∗π ′∗(Gr(Ê3)) 	 E ,

which is compatible with (IV) above.

One of the reasons that we consider the associated graded sheaf in the above

result is to connect with the analytic tangent cones for admissible Hermitian–Yang–

Mills connections considered in [1, 2]. We briefly recall the definition. For more details,

we refer the reader to [7]. Now we endow the base B with the standard flat Kähler

metric. Let A be an admissible Hermitian–Yang–Mills connection on E , that is, there

exists a Hermitian metric h on E outside Sing(E) so that the Chern connection A given

by h satisfies the following:

d∗
AFA = 0,

∫

B
|FA|2 < ∞.

For any sequence of positive numbers {λi}i with λi → 0, we can get a sequence of

rescalings of the base, which we denote by λi : B
λ−1
i

→ B, z → λiz. Here B
λ−1
i

denotes

the ball centered at the origin with radius λ−1
i in C

n. Then one can get a sequence of

admissible Hermitian–Yang–Mills connections {Ai := λ∗
i A}. Over any compact subset

K ⊂ C
n, this sequence has a uniform bound of the L2 norm of the curvature, which is

guaranteed by Price’s monotonicity formula. By passing to a subsequence, there exists

a sequence of gauges gi so that {gi.Aji}i converge to A∞ outside a complex subvariety

� ⊂ C
n. Furthermore, � is C

∗ invariant and can be decomposed as �an = �b ∪ Sing(A∞)

where �b has pure codimension 2, which is called the blow-up locus, and Sing(A∞)

denotes the set of essential singularities of A∞. We write �b = ∪k�k as a union of
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Algebraic Tangent Cones of Reflexive Sheaves 5

irreducible components. By passing to a further subsequence if necessary, one can

assume Tr(FAji
∧ FAji

) → Tr(FA∞ ∧ FA∞) + 8π2μ. Tian shows that μ = ∑

k m
an
k �k, where

�k means the integration over the regular part of �k, and man
k is called the analytic

multiplicity of μ along �k. We denote E∞ the reflexive sheaf defined by A∞. In summary,

given any sequence of such rescalings, one can get a set of limiting data (E∞,A∞,�an,μ),

which we call an analytic tangent cone of (E ,A) at 0. A priori, the tangent cone might

depend on the given sequence of rescalings. Combining the above algebraic geometric

picture with the results we got in [1, 2], we would like to make the following conjecture.

Conjecture 1.7. Let A be an admissible Hermitian–Yang–Mills connection on (E ,B)

and Ê be any chosen optimal extension of E at 0. Then there is a unique analytic tangent

cone (E∞,A∞,�an, ν) on C
n of (E ,A) at 0. Moreover,

• E∞ 	 ψ ′∗π ′∗((GrHNS(Ê))∗∗) and A∞ is gauge equivalent to the Hermitian–Yang–

Mills cone given by GrHNS(Ê) (see [1] for the definition of Hermitian–Yang–

Mills cone);

• �an \ {0} = π ′−1(Sing(GrHNS(Ê)));

• man
k = h0(
, T |
) where 
 is a generic transverse of π(�k) in CP

n−1 and

T = (GrHNS(Ê))∗∗/GrHNS(Ê).

Remark 1.8. By Theorem 1.4 (III), GrHNS(Ê) is independent of the choice of an optimal

extension up to tensoring with O(k). Namely, we already have uniqueness in the

algebraic-geometric side.

Combining Theorem 1.4 and the main results in [1, 2], we have proved the above

conjecture in the case when E is homogeneous with an isolated singularity at 0, that is,

when E 	 ψ∗π∗E for some locally free sheaf E on CP
n−1. When E admits an algebraic

tangent cone Ê that is a stable vector bundle (and then it must be the unique optimal

extension up to equivalence by Theorem 1.4), we also know that E∞ 	 ψ ′∗π ′∗Ê , see [1,

Theorem 1.3]. Conjecture 1.7 improves and generalizes the conjectures in [1, 2].

2 Hecke Transform of Reflexives Sheaves

2.1 The case of sub-bundles

Let M be a complex manifold and D be a smooth hypersurface in M. Let E be a

holomorphic vector bundle on M and denote E := E|D. Let F be a sub-bundle of E. Let Q
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6 X. Chen and S. Sun

denote the quotient bundle E/F and p : E → Q the natural projection map. Then we have

the following short exact sequence of vector bundles on D:

0 → F → E
p−→ Q → 0. (2.1)

We will describe below a construction, called the Hecke transform along F, that yields

another vector bundle E′ on M, which is isomorphic to E on M \ D, such that the

restriction E′ := E′|D fits into an extension of the form

0 → Q ⊗ ND → E′ → F → 0, (2.2)

where ND is the normal bundle of D in M. In the next section we shall reinterpret it in

terms of more complex-analytic language, which makes the construction more natural

and generalizes to the case of coherent sheaves.

To start the construction, we choose an open cover {Uα} of a neighborhood U of

D, such that E|Uα
admits a trivialization given by holomorphic sections eα,1, · · · , eα,r,

and such that if we denote ejα := eα|Vα
where Vα := Uα ∩ D, then eα,1, · · · , eα,s

give a holomorphic trivialization of F|Vα
, and p(eα,s+1), · · · ,p(eα,r) give a holomorphic

trivialization of Q|Vα
. We may also assume that the divisor line bundle [D] has a local

trivialization tα on each Uα. Choose a defining section s of [D] so that we can write

s = sαtα over each Uα with sα vanishing on D with exactly order one.

On the intersection Uαβ := Uα ∩ Uβ , we can write the transition function of E as

�αβ =
[

fαβ gαβ

hαβ qαβ

]

.

Denote Vαβ := Uαβ ∩D. Then the fact that F is a sub-bundle of E implies that hαβ |Vαβ
= 0,

and gαβ |Vαβ
defines the extension class in Ext1(Q, F) corresponding to the short exact

sequence (2.1).

Now define a new holomorphic basis of E|Uα\D by setting e′
α,j = eα,j for j ≤ s and

e′
α,j = sαeα,j for j ≥ s + 1. Then with respect to the new basis, the new transition matrix

becomes

�′
αβ =

[

fαβ gαβsα

hαβs
−1
β qαβsαs

−1
β

]

.

Now the entries of this matrix extend to be well-defined holomorphic functions

across Vαβ . Hence, it defines a holomorphic vector bundle on M, which is our desired
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Algebraic Tangent Cones of Reflexive Sheaves 7

E′. Moreover, since sαs
−1
β is the transition function of the line bundle [D], by adjunction

formula, we see that by restricting to D, the right bottom component of �′
αβ gives the

transition matrix for Q ⊗ N−1
D . It is also clear that the whole matrix restricting to D is

now a lower triangular matrix, so it is obvious that the exact sequence (2.2) holds.

One can check by definition that there is a well-defined vector bundle isomor-

phism from E′ to E on M \D, since by construction locally a holomorphic section of E′ is
a holomorphic section of E such that when restricting to D it belongs to F. One can also

check that the isomorphism class of E′ does not depend on the choices made. It is also

clear from the construction in the next subsection.

Remark 2.1. When dimM = 1, D = {x}, F is a subspace of E|x. In this case the

above construction is usually referred to as the “elementary modification” or “Hecke

modification” in the literature, and this justifies our choice of terminology.

2.2 General case

Now we move on to the general case of coherent sheaves, using a more complex-

algebraic language (which is kindly pointed out to us by Richard Thomas). We again

suppose M is a smooth complex manifold and D is a smooth hypersurface. Let ι : D → M

be the natural inclusion map, and E be a reflexive sheaf on M. By [1, Lemma 3.24], we

know that E := ι∗E is a torsion-free coherent sheaf on D.

Let F be a subsheaf of E and Q be the quotient sheaf. Denote p : E → ι∗(Q) to be

the map given by the composition of the natural surjective map E → ι∗E with the natural

map ι∗E → ι∗Q.

Lemma 2.2. p is a surjective sheaf homomorphism.

Proof. It suffices to show the map ι∗E → ι∗Q is surjective. By definition we have the

following exact sequence:

0 → F → E → Q → 0.

Since ι : D ↪→ M is obviously Stein, namely, the pre-image of a Stein open set is Stein,

the higher direct image Ri(ι∗F) vanishes for i ≥ 1. In particular, the following is exact:

0 → ι∗F → ι∗E → ι∗(Q) → 0.

�
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8 X. Chen and S. Sun

Definition 2.3. We define the Hecke transform E ′ of E along F to be the kernel of the

map p.

By definition, E ′ lies in the following short exact sequence:

0 → E ′ → E → ι∗Q → 0. (2.3)

In particular E ′ is a subsheaf of E , which is isomorphic to E over M \ D. In particular, it

must be torsion-free. It is easy to check by definition that when E is locally free over M

andQ is locally free over D, this agrees with the construction in the previous subsection.

Lemma 2.4. E ′ is reflexive if F is saturated in E or equivalently Q is torsion-free.

Proof. By Equation (2.3), we have the following exact sequence:

0 → (E ′)∗∗/E ′ → ι∗Q.

Since ID · ι∗Q = 0, we have ID · ((E ′)∗∗/E ′) = 0. Then we have

(E ′)∗∗/E ′ = ι∗ι∗((E ′)∗∗/E ′)

and the following exact sequence:

0 → ι∗((E ′)∗∗/E ′) → ι∗ι∗Q = Q.

Since E ′ is torsion-free and locally free outside D, Supp((E ′)∗∗/E ′) has codimension 1 in

D, which implies ι∗((E ′)∗∗/E ′) is a torsion sheaf. Since Q is torsion-free, by the exact

sequence above, we have ι∗((E ′)∗∗/E ′) = 0, which implies (E ′)∗∗/E ′ = 0. This finishes the

proof. �

In our later applications we will always assume F is saturated in E . The

following proposition is a generalization of (2.2).

Lemma 2.5. There exists the following exact sequence:

0 → ID · E → E ′ → ι∗F → 0. (2.4)
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Algebraic Tangent Cones of Reflexive Sheaves 9

Proof. By definition E ′ is exactly the pre-image of ι∗F under the natural map E → ι∗E .
So we have a natural surjective map E ′ → ι∗F . The kernel of this map agrees with the

kernel of the map E → ι∗E , which is exactly ID · E . This finishes the proof. �

Denote E ′ = ι∗E ′.

Proposition 2.6. There exists the following exact sequence:

0 → Q ⊗ N ∗
D → E ′ → F → 0,

where N ∗
D 	 ID/I2

D is the locally free sheaf associated to the co-normal bundle of D.

Proof. Applying ι∗ to (2.4) we get the exact sequence

ι∗(ID · E)
ψ−→ E ′ → ι∗ι∗F = F → 0. (2.5)

It suffices to prove Ker(ψ) = Q ⊗ N ∗
D. By definition, ψ comes from the map ID · E → E ′

by tensoring with OD, so the kernel is given by ID · E ′/I2
D · E . Since ID is locally free, we

have the following exact sequence:

0 → I2
D · E → ID · E ′ → ID ⊗ ι∗F → 0.

This implies that as OM-modules, we have

ID · E ′/I2
D · E = ID ⊗ ι∗F = ι∗(F ⊗ N ∗

D).

It is direct to check that the inclusion of Ker(ψ) in ι∗(ID · E) is given by the natural map

ι∗F ⊗ N ∗
D → E ⊗ N ∗

D

under the natural identification ι∗(ID ·E) = E⊗N ∗
D. Hence, we see the image of ψ is given

by

(E ⊗ N ∗
D)/(F ⊗ N ∗

D) = Q ⊗ N ∗
D. �

Now we will discuss some interesting properties of the Hecke transform. Let E ′′

be the Hecke transform of E ′ along Q ⊗ N ∗
D.
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10 X. Chen and S. Sun

Lemma 2.7. The Hecke transform is an involution up to twisting by [D] in the sense

that E ′′ ∼= E(−[D]).

Proof. By definition and Proposition 2.6, E ′′ fits into the following exact sequence:

0 → E ′′ → E ′ → ι∗(E ′/(Q ⊗ N ∗
D)) = ι∗F → 0,

and the map E ′ → ι∗F agrees with the map in (2.4). By Lemma 2.5, E ′′ is isomorphic

to ID · E . �

More generally, we can take a subsheaf of Q⊗N ∗
D that has the form (E1/F)⊗N ∗

D,

where E1 ⊂ ι∗E is a saturated subsheaf with F ⊂ E1. Let E ′′
1 be the Hecke transform of

E ′ along (E1/F) ⊗ N ∗
D and E ′

1 be the Hecke transform of E along E1. Then the following

involution property holds.

Proposition 2.8. E ′′
1 	 ID · E ′

1.

Proof. We have the following commutative diagram:

where the 1st row is by definition and the 2nd row is by Lemma 2.7. This implies the

following exact sequence:

0 → (ID · E)/E ′′
1 → E ′/E ′′

1 = ι∗(E ′/((E1/F) ⊗ N ∗
D)) → ι∗(E ′/(Q ⊗ N ∗

D) → 0.

As a result, we have

(ID · E)/E ′′
1 = ι∗(Q ⊗ N ∗

D)/ι∗(E1/F ⊗ N ∗
D) = ι∗((E/E1) ⊗ N ∗

D),

which implies the following exact sequence:

0 → E ′′
1 → ID · E → ι∗(E/E1 ⊗ N ∗

D) → 0.
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Algebraic Tangent Cones of Reflexive Sheaves 11

By definition, we also have

0 → E1 → E → ι∗(E/E1) → 0.

Since ID is locally free, we have

0 → ID · E1 → ID · E → ι∗(E/E1) ⊗ ID = ι∗(E/E1 ⊗ N ∗
D) → 0.

This finishes the proof. �

3 Proof of the Main Theorem

3.1 Proof of (I)

We begin with a simple observation.

Lemma 3.1. The image of the map � : A → Q≥0 is discrete. In particular, a minimizer

of � always exists.

Proof. By definition,

μi =
∫

D c1(Ei/Ei−1) ∪ c1(O(1))n−2

rank(Ei/Ei−1)
∈ (rank(E)! )−1

Z.

This implies for any extension Ê , �(Ê) ∈ (rank(E)! )−1
Z≥0. �

Now let Ê ∈ A. Let 0 ⊂ E1 ⊂ · · · Em = Ê be the Harder–Narasimhan filtration of

Ê . In the following, for each k < m we always denote by Êk to be the Hecke transform of

Ê along Ek and denote Êk = ι∗Êk. Given any sheaf F over CPn−1, we also denote

F( j) := F ⊗ O( j).

Lemma 3.2. �(Êk) ≤ max{μk+1 − μm,�(Ê) − 1,μk+1 − μk + 1,μ1 − μk} for any k.

Proof. By Corollary 2.6, we have the following exact sequence:

0 → (Ê/Ek)(1) → Êk → Ek → 0. (3.1)
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12 X. Chen and S. Sun

Let 0 ⊂ E ′
1 ⊂ · · · E ′

m′ = Êk be the Harder–Narasimhan filtration of Êk. Denote the slope of

E ′
i/E ′

i−1 by μ′
i. By Equation (3.1), E ′

1 fits into the following exact sequence:

0 → G1 → E ′
1 → G2 → 0,

where G1 is a subsheaf (Ê/Ek)(1) and G2 is a subsheaf of Ek. Since Ek+1/Ek is the maximal

destabilizing subsheaf of Ê/Ek, we have

μ(G1) ≤ μk+1 + 1.

Similarly

μ(G2) ≤ μ1.

Then one has

μ′
1 ≤ max{μk+1 + 1,μ1}. (3.2)

By taking the dual of Equation (3.1), one has the following exact sequence:

0 → E∗
k → (Êk

)∗ → (Ê/Ek)
∗(−1).

Similarly (E ′
m′/E ′

m′−1)
∗ fits into the following exact sequence:

0 → H1 → (E ′
m′/E ′

m′−1)
∗ → H2 → 0,

where H1 is a subsheaf of E∗
k and H2 is a subsheaf of (Ê/Ek)

∗(−1). Similar to the above,

we have

μ(H1) ≤ −μk

and

μ(H2) ≤ −μm − 1.

Then one has

− μ′
m′ ≤ max{−μk,−μm − 1}. (3.3)

Combining Equations (3.2) and (3.3), we get

μ′
1 − μ′

m′ ≤ max{μk+1 − μm,μ1 − μm − 1,μk+1 − μk + 1,μ1 − μk}.

This finishes the proof. �
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Algebraic Tangent Cones of Reflexive Sheaves 13

Now we prove Theorem 1.4 (I). Since A is nonempty, we can fix an element Ê ∈ A.

If �(Ê) ≥ 1, we apply Lemma 3.2 to Ê with k = 1 and get

�(Ê1) ≤ max{μ2 − μm,�(Ê) − 1,μ2 − μ1 + 1} ≤ �(Ê) − 1.

If �(Ê1) ≥ 1, we repeat the same process for Ê1. After finitely many steps, we

can get Ê ′ ∈ A with 0 ≤ �(Ê ′) < 1. The following is also clear from Lemma 3.2.

Corollary 3.3. Suppose Ê ∈ A is optimal, then Êk is also optimal for all k.

Definition 3.4. We say two optimal extensions Ê and Ê ′ differ by a Hecke transform of

special type if Ê ′ is isomorphic Êk for some k.

3.2 Proof of (II) and (III)

3.2.1 Meromorphic extension of sections

The goal in this subsection is to prove the following proposition that will be needed

in our discussion later. Let sD ∈ H0(B̂, [D]) be a defining section of D and let Ê be any

reflexive sheaf over B̂.

Proposition 3.5. Given any s ∈ H0(B̂ \D, Ê), there exists a k such that s⊗ skD extends to

a holomorphic section of Ê(k[D]) over B̂. In other words, s is a meromorphic section of Ê .

Remark 3.6. It is a key assumption here that [D] is an exceptional divisor, since

otherwise the statement is false. For example, if we consider D = {0} ⊂ 
, where


 = {|z| < 1} ⊂ C, and consider the trivial sheaf O, then we have holomorphic functions

on 
 \ {0} with an essential singularity at 0 that cannot extend to be meromorphic

functions on 
.

Proof. of the case n = 2. In this case D = CP
1, and Ê is locally free. Denote B̂t :=

p−1(Bt), where Bt denotes the ball of radius t ∈ (0, 1) centered at 0.

It suffices to construct the following exact sequence over B̂ 1
2
for k ∈ Z large

enough:

0 → R → On1 → Ê∗(−k[D]) → 0.

Indeed, given this exact sequence, by taking the double dual, we have

0 → Ê(k[D]) → On1 → R∗ → 0.
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14 X. Chen and S. Sun

Then s ⊗ skD|B̂ 1
2

∈ H0(B̂ 1
2

\ D, Ê(k[D])) can be viewed as a section in H0(B̂ 1
2

\ D,On1). By

Hartog’s theorem for holomorphic functions, we know H0(B̂ 1
2

\ D,On1) = H0(B̂ 1
2
,On1).

Then s ⊗ skD|B̂ 1
2

∈ H0(B̂ 1
2
,On1). By continuity, we have s ⊗ skD|B̂ 1

2

∈ H0(B̂ 1
2
, Ê(k[D])).

Now we fix a Kähler metric ω̂ on B̂. In order to construct the exact sequence

above, it is equivalent to constructing a set of global generators for Ê∗(−k[D]) over B̂ 1
2

for k large. This can done by the standard Hörmander technique, see, for example, [4,

Theorem 5.1]. Indeed, we know B̂ 1
2
is weakly pseudo-convex, and since [D]|D = O(−1) is

negative, one can easily construct a Hermitian metric h on Ê∗(−k[D]) for k large, such

that

√−1Fhk ≥ Ckω̂ ⊗ Id.

Now the conclusion follows from standard L2 solution to the ∂̄-problem, using singular

weight. �

Proof. of the general case. Suppose n ≥ 3 and Ê is a reflexive sheaf defined by B̂. Let

S = φ(Sing(Ê)) ∩ B̂ 3
4
and Ŝ = φ−1(S) ∩ B̂ 3

4
. By replacing B̂ 3

4
with B̂, which does not affect

the argument, we can assume S is a closed subset in CP
n−1 of Hausdorff of codimension

at least 4 and so is Ŝ in B̂. Furthermore, Sing(Ê) ⊂ Ŝ.

By [6, Proposition 4], it suffices to prove that for any z ∈ CP
n−1 \ S, s|φ−1(z) is a

meromorphic section of Ê |φ−1(z). Indeed, given this, by [6, Proposition 4], we know s is

a meromorphic section of Ê |B̂\Ŝ that is holomorphic outside D. Then for some k, s ⊗ skD
is a holomorphic section of Ê(k[D])|B̂\Ŝ. Since Ŝ has Hausdorff of codimension at least 4,

s ⊗ skD further extends to be a section in H0(B̂, Ê(k[D])) (see [5, Lemma 3]). Now we show

s|φ−1(z) is a meromorphic section of Ê |φ−1(z) for any z ∈ CP
n−1 \ S. Since S has Hausdorff

of codimension at least 4 in CP
n−1, we can choose a complex line CP

1 ⊂ CP
n−1 that

does not intersect S but contains z. Let B̂2 = φ−1(CP1). Then Ê |B̂2 is locally free. By the

case n = 2 proved above, s|B̂2\(D∩B̂2) is a meromorphic section of Ê over B̂2. In particular,

s|φ−1(z) is a meromorphic section of Ê |φ−1(z). This finishes the proof. �

3.2.2 Uniqueness

We will prove (II) and (III) in this section. Suppose Ê and Ê ′ are two optimal extensions

of E at 0. We denote Ê = ι∗Ê and Ê ′ = ι∗Ê ′. Let

0 ⊂ E1 ⊂ · · · Em = Ê
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Algebraic Tangent Cones of Reflexive Sheaves 15

and

0 ⊂ E ′
1 ⊂ · · · E ′

m′ = Ê ′

be the Harder–Narasimhan filtrations of Ê and Ê ′
, respectively. If we denote μi :=

μ(E i/E i−1) and μ′
i := μ(E ′

i/E ′
i−1), then by assumption we have

μ1 − μm < 1,μ′
1 − μ′

m < 1,

and there exists a natural isomorphism ρ : Ê |B̂\D → Ê ′|B̂\D. By Proposition 3.5, ρ is a

meromorphic section of Ê∗ ⊗ Ê ′. Suppose det ρ has a pole of order k ∈ Z along D. If we

write k = d · rank(E) + k0 with 0 ≤ k0 < rank(E), then by replacing Ê with Ê(d[D]) and ρ

by ρ ⊗ s⊗d
D we may assume 0 ≤ k < rank(E).

Denote

ρ = ι∗ρ, ρ−1 = ι∗ρ−1.

Then ρ and ρ−1 can be viewed as two nontrivial holomorphic sections

ρ : Ê → Ê ′
(−l0), ρ−1 : Ê ′ → Ê(−l′0),

for some l0, l
′
0 ∈ Z+. Let k be the smallest integer such that ρ|Ek+1

�= 0. Then ρ descends

to be a nontrivial holomorphic map ρ : Ê/Ek → Ê ′(−l0) that restricts to be nonzero on

Ek+1/Ek. Since E ′
1(−l0) is the maximal destabilizing subsheaf of Ê ′

(−l0), we have μ′
1−l0 ≥

μk+1. Similarly μ1 − l′0 ≥ μ′
j for some j. Then we have

2 > μ′
1 − μ′

j + μ1 − μk+1 ≥ l0 + l′0,

which implies exactly one of the following hold:

(a). l0 = 0;

(b). l0 = 1.

Suppose first (a) holds, then by assumption, ρ can be extended to be a holomorphic

section across D and thus det(ρ) is also a holomorphic section of det(Ê∗) ⊗ det(Ê ′) over
B̂. However, by assumption we know det(ρ) has a pole of order k0 ≥ 0. Then wemust have

k0 = 0, that is, det(ρ)|D �= 0, which implies det(ρ)(z) �= 0 for any z ∈ B̂\Sing(Ê)∪Sing(Ê ′).
In particular, ρ is an isomorphism away from complex codimension 2 and hence must be

an isomorphism. Notice this already finishes the proof of Part (II) of Theorem 1.4 since

under the assumption of (II) we know (a) must hold.
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16 X. Chen and S. Sun

Now suppose (b) holds, that is, l0 = 1 and l′0 = 0. By assumption, ρ can be

viewed as a holomorphic map ρ : Ê → Ê ′([D]) with ρ : Ê → Ê ′
(−1) being nonzero and

ρ−1 : Ê ′ → Ê is a holomorphic map with ρ−1 : Ê ′ → Ê being nonzero. Then ρ−1 is a sheaf

monomorphism since Ê ′ is reflexive and ker(ρ−1) is supported on D. In the following, we

do not distinguish between Ê ′ and the image ρ−1(Ê ′) in Ê . Let D′ = Sing(Ê) ∪ Sing(Ê ′) ∪
Sing(Ê/Ek).

To finish the proof of (III), it suffices to prove

Claim 3.7. (Ê/Ê ′)|B̂\D′ ∼= ι∗(Ê/Ek)|B̂\D′ .

Indeed, given Claim 3.7, we have the following exact sequence outside D′:

0 → Ê ′ → Ê → ι∗(Ê/Ek) → 0.

By definition, we have Ê ′ = Êk outside D′, where Êk denotes the Hecke transform of Ê
along Ek. Since Ê ′ and Êk are both reflexive, they must be isomorphic.

Proof. of Claim 3.7. First we prove that Ê/Ê ′ = ι∗ι∗(Ê/Ê ′). To see this it suffices to show

that for any local section s of Ê , zns ∈ Ê ′. Here zn denotes the local defining function for

D after choosing a local coordinate. Indeed, by assumption, znρ(s) is a local holomorphic

section. We also know that ρ−1(znρ(s)) = zns, which implies IDÊ ⊂ ρ−1(Ê ′). As a result,

ι∗ι∗(Ê/Ê ′) = Ê/Ê ′.
So it suffices to prove ι∗(Ê/Ê ′) = Ê/Ek on D\D′. Since all these sheaves are locally

free away from D′ this boils down to showing ρ−1(Ê ′) = Ek on D \ D′.
We first show Im(ρ−1) ⊂ Ek. If not, there exists a nontrivial map

ρ−1 : Ê ′ → Ê/Ek,

which implies μ′
j ≤ μk+1 for some j. Meanwhile, by assumption, ρ descends to be a

nontrivial map as ρ : Ê/Ek → Ê ′
(−1), which implies μ′

1 − 1 ≥ μk+1. Then we have

μ′
1 − μ′

m′ ≥ μ′
1 − μ′

j ≥ 1,

which is a contradiction. Now we prove that Im(ρ−1(z)) = Ek|z for z ∈ D \ D′. It suffices
to prove

rank(ρ(z)) + rank(ρ−1(z)) ≥ rank(E)
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Algebraic Tangent Cones of Reflexive Sheaves 17

for z ∈ D \ D′. Now we fix z ∈ D \ D′ and choose local coordinates (z1, · · · zn) so that zn is

the local defining function for D. After choosing a local trivialization for both Ê and Ê ′

near z, we can view ρ and ρ−1 as a matrix. By doing Taylor expansion, we can assume

ρ−1 = A0 + A1zn + · · ·

and

znρ = B0 + B1zn + · · · ,

where Ai and Bi are matrices of holomorphic functions independent of zn. Since ρ−1 ◦
(znρ) = znId, by comparing the coefficients in front of zn we get

A0B1 + A1B0 = Id,

which implies

rank(A0) + rank(B0) ≥ rank(A0B1) + rank(A1B0)

≥ rank(A0B1 + A1B0)

= rank(E).

By definition, we have

rank(ρ(z)) + rank(ρ−1(z)) = rank(A0) + rank(B0) ≥ rank(E).

This then finishes the proof. �

3.3 Proof of (IV)

Now we assume E is homogeneous, that is, E 	 ψ∗π∗E for reflexive E over CP
n−1. Let

0 = E0 ⊂ E1 · · · ⊂ Em = E be the Harder–Narasimhan filtration of E and denote μk =
μ(Ek/Ek−1). Note φ∗E ∈ A. Let j0 = 0 and define

jk+1 := max{s > jk : μ1 − μs − �μ1 − μjk+1� < 1, s ≤ m}

inductively for k ≥ 1. Let l be the largest integer so that jl is defined. Then we define the

partial Harder–Narasimhan filtration as

0 = E j0 ⊂ E j1 ⊂ E j2 ⊂ · · · E jl = E .
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18 X. Chen and S. Sun

Let nk = �μ1 − μjk+1� for 0 ≤ k ≤ l − 1 and define

˜Gr(E) := ⊕l
i=1

(

E ji/E ji−1

)

(ni−1).

Then to prove (IV), it suffices to show

Proposition 3.8. There exists an optimal extension Ê ∈ A so that Ê ∼= ˜Gr(E).

Proof. It suffices to prove the following by induction on k with 1 ≤ k ≤ l − 1. (The

reason to write inductions in this way will be justified by the proof naturally.)

(a)k there exists Êk ∈ A with Êk ∼= ⊕k
i=1(E ji/E ji−1

)(ni−1) ⊕ (E/E jk)(nk);

(b)k there exists the following sheaf inclusions for 1 ≤ i ≤ k that are compatible

with the splittings in (a)k:

– φ∗E j1 ⊂ Êk;

– Let Êk
1 := Êk, then we can define Êk

i+1 = Êk
i /φ∗((E ji/E ji−1

)(ni−1)) for 1 ≤ i ≤
k − 1 inductively and φ∗((E ji+1

/E ji)(ni)) ⊂ Êk
i+1 for i = 1, · · · k − 1;

– Êk
k /φ∗((E jk/E jk)(nk−1)) = φ∗((E/E jk)(nk)).

For k = 1, we let Ê1,1 be the Hecke transform of φ∗E along E j1 . By Proposition 2.6, we

have the following exact sequence:

0 → (

E/E j1

)

(1) → Ê1,1 → E j1 → 0.

By definition, there exists a natural sheaf inclusion φ∗E j1 ⊂ Ê1,1, which restricts to

be a map from E j1 to Ê1,1
that splits the exact sequence above, that is, Ê1,1 ∼= E j1 ⊕

(E/E j1)(1). Indeed, we know that φ∗E j1 lies in the kernel of the surjective map φ∗E →
ι∗(E/E j1) and thus we have a natural sheaf inclusion φ∗E j1 ⊂ Ê1,1 by definition. (This

is the key difference in the homogeneous case from the general case where we have a

natural inclusion φ∗(E j1) ⊂ Ê1,2.) The restriction map splitting the exact sequence above

is tautological. Moreover, by definition, we have

0 → Ê1,1/φ∗(E j1

) → φ∗(E/E j1

) → ι∗
(

E/E j1

) → 0,

which implies Ê1,1/φ∗(E j1) = φ∗(E/E j1)(−[D]) = φ∗(E/E j1(1)). (This is another key

difference in the homogeneous case from the general case. That is the quotient sheaf

Ê1,2/φ∗E j1 is still homogeneous, that is, it is pulled back from the projective space.) If
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Algebraic Tangent Cones of Reflexive Sheaves 19

n1 > 1, let Ê1,2 be the Hecke transform of Ê1,1 along E j1 . Similarly, we have

0 → (

E/E j1

)

(2) → Ê1,2 → E j1 → 0

and by definition, we have a sheaf inclusion φ∗E j1 ⊂ Ê1,2, which restricts to be a map

that splits the exact sequence above, that is, Ê1,2 ∼= (E/E j1)(2) ⊕ E j1 . By definition, we

also have the following exact sequence:

0 → Ê1,2/φ∗E j1 → φ∗((E/E j1

)

(1) → ι∗
((

E/E j1

)

(1)
) → 0,

which implies Ê1,2/φ∗E j1 = φ∗((E/E j1)(2)). Then one can keep doing Hecke transform for

Ê1,2 along E j1 if necessary and get Ê1 := Ê1,n1 ∈ A satisfying

(a)1 Ê1 ∼= E j1 ⊕ (E/E j1)(n1);

(b)1 there exists a sheaf inclusion φ∗E j1 ⊂ Ê1, which is compatible with the

splitting above and Ê1/φ∗(E j1) = φ∗(E/E j1(n1)).

Namely, after we do Hecke transform along E j1 , φ∗E j1 will always be a saturated

subsheaf of the new sheaf, which will give a splitting on the central fiber. And the

natural quotient sheaf is still homogeneous. In the case of sub-bundles, one can use the

bundle construction in Section 2.1 to achieve the above result in one step.

To make the argument more clear, we will explain how to do k = 2 briefly.

(Details can be found in the induction for the general case.) Given (a)1 and (b)1, we

can keep doing Hecke transform along φ∗E j1 ⊕ φ∗(E j2/E j1(n1)) to get a new sheaf Ê2. And

we have two sheaf inclusions φ∗E j1 ⊂ Ê2 and φ∗(E j2/Ej1(n1)) ⊂ Ê2/φ∗E j1 , which restricts

to be maps that split the central fiber as we want. Furthermore, we have

(

Ê2/φ∗(E j1

))

/φ∗(E j2/E j1(n1)
) = φ∗(E/E j2(n2)

)

,

where n2 is equal to the number of Hecke transforms along φ∗E j1 ⊕ φ∗(E j2/E j1(n1)) to Ê2.

Now we do the induction in general. Suppose we have proved (a)k, (b)k, we want

to build the statements (a)k+1 and (b)k+1. First let Êk+1,1 to be the Hecke transform of

Êk along ⊕k
i=1(E ji/E ji−1

)(ni−1) ⊕ (E jk+1
/E jk)(nk). By Proposition 2.6 we have the following

exact sequence:

0 → (

E/E jk+1

)

(nk + 1) → Êk+1,1 → ⊕k
i=1

(

E ji/E ji−1

)

(ni−1) ⊕ (

E jk+1
/E jk

)

(nk) → 0.
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20 X. Chen and S. Sun

Then (b)k holds by replacing Êk with Êk+1,1 except the last one, which needs to be

changed. More precisely, there exists the following sheaf inclusions for 1 ≤ i ≤ k, which

are compatible with the splittings in (a)k:

• φ∗E j1 ⊂ Êk+1,1;

• if we let Êk+1
1 := Êk+1,1 and define Êk+1

i+1 = Êk+1
i /φ∗((E ji/E ji−1

)(ni−1)) for 1 ≤ i ≤
k − 1 inductively, then φ∗((E ji+1

/E ji)(ni)) ⊂ Êk+1
i+1 for i = 1, · · · k − 1;

• φ∗((E jk+1
/E jk)(nk)) ⊂ Êk+1,1

k+1 and

Êk+1,1
k+1 /φ∗((E jk+1/E jk

)

(nk)
) = φ∗(E/E jk+1

(nk + 1)
)

.

Indeed, by definition we have

0 → Êk+1,1 → Êk → ι∗
( ⊕k

i=1

(

E ji/E ji−1

)

(ni−1) ⊕ (

E jk+1
/E jk

)

(nk)
) → 0.

Combining this with that Êk satisfies property (a)k and (b)k, we can easily get the sheaf

inclusions with required properties above. Now we have

Êk+1,1 = ⊕k+1
i=1

(

E ji/E ji−1

)

(ni−1) ⊕ (

E/E jk+1

)

(nk + 1).

Indeed, the sheaf inclusion φ∗E j1 ⊂ Êk+1,1 restricts to be a map that gives a splitting

Êk+1,1 = E j1 ⊕ ι∗Êk+1
2 . For ι∗Êk+1

2 , the sheaf inclusion given by φ∗((E j2/E j1)(n1)) ⊂ Êk+1
2

gives a splitting ι∗Êk+1
2 = (E j2/E j1)(n1)⊕ ι∗Êk+1

3 . Then one can keep doing this and finally

get a splitting of Êk+1,1
as claimed above.

Now one can repeat the process with Êk+1,1 to get Êk+1,2 by doing Hecke

transform along ⊕k
i=1(E ji/E ji−1

)(ni−1) ⊕ (E jk+1
/E jk)(nk) again if necessary and finally get

Êk+1 := Êk+1,nk+1 satisfying properties (a)k+1 and (b)k+1. This finishes the proof. �

Remark 3.9. When the Harder–Narasimhan filtration of E has length equal to 2,

that is,

0 = E0 ⊂ E1 ⊂ E2 = E ,

the same argument shows that there exists an optimal extension Ê so that Ê = E1 ⊕
(E2/E1)(k) for some integer k with μ1 − 1 < μ2 − k ≤ μ1. In general, one should not

expect to get an optimal extension of which the restriction splits as a direct sum of

semistable torsion free sheaves by Theorem 1.4 (III) and Corollary 3.3.
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4 Examples

In this section, we apply Theorem 1.4 to study some interesting examples.

Example 1. Consider E → CP
2 given by the following exact sequence:

0 → O σ−→ O(1) ⊕ O(1) ⊕ O(3) → E → 0,

where σ = (z1, z2, z
k
3). Consider E = ψ∗π∗E . Then we have (see [3, Section 5])

• if k = 1, E is stable;

• if k = 2, E is semistable;

• if k ≥ 3, E is unstable. The Harder–Narasimhan filtration of E (which is the

same as the Harder–Narasimhan–Seshadri filtration in this case) is given by

0 ⊂ E1 ⊂ E2 = E where E1
∼= O(k) and E2/E1

∼= I[0:0:1](2).

By Theorem 1.4, when k ≤ 2, there exists a unique optimal extension given by φ∗E (up to

equivalence). When k ≥ 3, by Remark 3.9, there exists an optimal extension Ê of which

the restriction is given by O(2) ⊕ I[0,0,1](2). Then again by Theorem 1.4, Ê is the unique

one up to equivalence since O(2) ⊕ I[0,0,1](2) is semistable. These are compatible with

our study of analytic tangent cones in [1, 2].

The next is an example where there are two optimal extensions, for which one

of them has a locally free algebraic tangent cone while the other has an essential point

singularity.

Example 2. Consider a vector bundle E → CP
3 given by the following:

0 → O σ−→ O(1)⊕3 ⊕ O(2) → E → 0, (4.1)

where σ = (z1, z2, z3, z
2
4). Let E := ψ∗π∗E . Then Ê := φ∗E is an optimal extension of E at 0

with �(Ê) = 1
2 . The Harder–Narasimhan filtration of Ê is given by E1

∼= O(2) and E2 = E .
Furthermore, E2/E1 fits into the following exact sequence:

0 → O σ ′−→ O(1)⊕3 → E2/E1 → 0,

where σ ′ = (z1, z2, z3). In particular, E2/E1 is a stable reflexive sheaf with an essential

point singularity at [0, 0, 0, 1]. Let Ê1 be the Hecke transform of Ê along E1, which is

again an optimal extension. By Remark 3.9, Ê1 = E1 ⊕ (E2/E1)(1). In particular, Ê1 is an
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optimal extension of which the restriction splits as a direct sum of stables sheaves that

has an essential point singularity.
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