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Abstract

The inherent difficulty of knowledge specification and the lack of trained specialists are some of the key

obstacles on the way to making intelligent systems based on the knowledge representation and reasoning

(KRR) paradigm commonplace. Knowledge and query authoring using natural language, especially con-

trolled natural language (CNL), is one of the promising approaches that could enable domain experts, who

are not trained logicians, to both create formal knowledge and query it. In previous work, we introduced

the KALM system (Knowledge Authoring Logic Machine) that supports knowledge authoring (and sim-

ple querying) with very high accuracy that at present is unachievable via machine learning approaches.

The present paper expands on the question answering aspect of KALM and introduces KALM-QA (KALM

for Question Answering) that is capable of answering much more complex English questions. We show

that KALM-QA achieves 100% accuracy on an extensive suite of movie-related questions, called MetaQA,

which contains almost 29,000 test questions and over 260,000 training questions. We contrast this with a

published machine learning approach, which falls far short of this high mark.
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1 Introduction

Much of the world knowledge can be described by logical facts and rules, and processed by intel-

ligent knowledge representation and reasoning (KRR) systems. Alas, eliciting knowledge from

human experts and codifying it in logic is often too big an undertaking, and the learning curve

for domain experts is too steep. One would hope that such knowledge could be extracted from

text, but this goal is still out of reach. Despite the advances in text understanding and information

extraction (e.g., (Mausam et al. 2012; Angeli et al. 2015; Gomez 2008)) this technology is still

far from delivering the accuracy needed for KRR, which is very sensitive to errors.

Meanwhile, controlled natural languages (CNL) (Kuhn 2014) were proposed as a possible so-

lution to the aforesaid learning curve problem in the belief that a natural language (NL) could be

more accessible to domain experts. The idea was that CNL sentences would be usable as knowl-

edge because, as subsets of NLs with restricted grammars and interpretation rules, their meaning

can be captured in logic precisely. Some of the better-known CNLs include Attempto Controlled

English (ACE) (Fuchs et al. 2008), Processable English (PENG) (Schwitter 2010), and SBVR

(Object-Management-Group 2017). CNL’s restrictive grammars could, at times, be problematic,

but this is not a show-stopper for knowledge authoring, since the difference between knowledge

authoring and general knowledge acquisition is quite significant: whereas knowledge acquisi-

tion is about enabling machines to understand the NL that humans write, knowledge authoring is

about enabling humans to write in NL that machines could understand.
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A more serious obstacle for using CNLs in authoring is that, by design, CNLs do not assume

any kind of background knowledge. For example, in ACE, the sentences Zoe Saldana appears in

Avatar and Zoe Saldana is an actress of Avatar would have different logical representations and

a query like Avatar has which actresses will yield no answers. Background knowledge could be

written as CNL sentences in the form of bridge rules, but it is naive to expect that domain experts

would know how to do it, and the amount of such background knowledge is prohibitive. One of

the main goals of knowledge authoring, which we started to address in our previous work on the

knowledge authoring logic machine (KALM) (Gao et al. 2018b; Gao et al. 2018a), was to make

this process scalable and feasible while still relying on CNLs.

The previous incarnations of KALM supported knowledge authoring and simple question an-

swering with very high accuracy compared to the state-of-the-art machine learning approaches,

such as SEMAFOR (Das et al. 2014), SLING (Ringgaard et al. 2017), and Stanford CoreNLP

(Manning et al. 2014). KALM achieves this effect with the help of a sophisticated semantic

layer on top of ACE, which includes a formal, FrameNet-inspired (Johnson et al. 2002) lin-

guistic ontology, FrameOnt, that formalizes FrameNet’s frames, plus the linguistic knowledge

graph BabelNet (Navigli and Ponzetto 2012). These linguistic resources are relied on by an

incrementally-learnable semantic parser that maps semantically equivalent CNL sentences into

the same FrameOnt frames and gives them unique logical representation (ULR).

Contributions. The main contribution of this paper is introduction of KALM-QA, an extension

of KALM that supports multi-hop question answering compared to just 1-hop queries in (Gao

et al. 2018a). A multi-hop question is one whose answering involves joining (in the database

sense) multiple relations, some of which could be self-joins. Thus, answering a 3-hop query

requires joining three relations, as in “Who wrote films that share actors with the film Anastasia”

and “Who are the screenwriters that the actors in their movies also appear in the movie The

Backwoods.” We use the MetaQA dataset (Zhang et al. 2018a) that contains close to 29,000

multi-hop test queries and show that KALM-QA achieves the accuracy of 100% compared to the

much lower accuracy of a machine learning approach (Zhang et al. 2018b).

Second, we give a detailed description of the KALM-QA frame-semantic parser, which is gen-

erated incrementally by structure learning. These details did not appear in previous publications.

Finally, we note that MetaQA sentences use more general syntax than what ACE accepts. (Gao

et al. 2019, Appendix A) describes harnessing the power of the Stanford Parser (Manning et al.

2014) for paraphrasing MetaQA sentences (over 260,000 in total) to make them conform to ACE.

For the remainder of this paper, Sections 2 and 3 give the background on KALM and the

MetaQA dataset. Section 4 describes KALM’s frame-semantic parser in detail and Section 5

explains how KALM-QA translates MetaQA multi-hop questions into logic. Section 6 presents

experimental results, Section 7 discusses related works, and Section 8 concludes the paper. (Gao

et al. 2019, Appendix A) describes the use of the Stanford Parser for paraphrasing MetaQA

sentences to conform to the ACE grammar. (Gao et al. 2019, Appendix B) argues that KALM’s

approach to mediating between semantically equivalent sentences is much more scalable than

the more traditional approach of specifying the equivalences via background bridge rules used in

CNLs, as in Attempto or SBVR.

2 The KALM system

KALM is a semantic framework that aims to be a practically scalable solution for knowledge au-

thoring. KALM users author knowledge using CNL sentences (ACE, to be specific) and KALM
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Fig. 1. The KALM Architecture

ensures that semantically equivalent sentences have the same logical representation. This is

achieved with the help of linguistic and other information resources, which provide the necessary

background knowledge in a scalable fashion. The architecture of KALM is shown in Figure 1.

Not shown in the figure is the new paraphrase step, which extends the syntax of Attempto1

and lets KALM parse more complex MetaQA questions. This aspect is discussed in (Gao et al.

2019, Appendix A).

Syntactic parsing. KALM uses Attempto Parsing Engine (APE)2 as the top level parser. APE

extracts the syntactical information from sentences, including the part of speech of each word

and the grammatical relations between pairs of words. This extracted information is represented

by a list of stylized first-order terms known as a discourse representation structure, or DRS.3

Example 1. The sentence “a director directs a film” has the following DRS

object(A,director,countable,na,eq,1)-1/2

object(B,film,countable,na,eq,1)-1/5

predicate(C,direct,A,B)-1/3

Logically, this should be understood as a list of terms and the capitalized symbols as variables.

The notation like -1/2 says that the term refers to the second word in the first sentence. The

object-term denotes an entity corresponding to a noun word and the predicate-term denotes

an event/action corresponding to a verb. The variables A and B denote the director- and film-

entities, and the variable C denotes the directs-event. When the same variable appears more than

once, it serves as a cross-reference, as usual in logic. In a predicate-term, the 3rd and 4th

arguments represent the subject and object of the corresponding event, respectively. Arguments

4-6 in an object-term can be ignored for this paper. Thus, the above example shows that the

directs-event has the director-entity as a subject and the film-entity as an object.

Frame-based parsing. Frame-based parsing takes DRS structures and performs linguistic anal-

ysis trying to identify possible meanings of the corresponding sentences—an idea inspired by

FrameNet (Johnson et al. 2002). A frame (Fillmore and Baker 2001) represents one or more

related semantic relationships among entities, where each entity plays a particular role. While

FrameNet is only an informal methodology where each frame is described textually, KALM has

a formal ontology, FrameOnt, which captures FrameNet’s frames formally, as logic formulas,

and adds more frames as needed.

Example 2. The following Movie frame describes films and their attributes, including actors,

directors, release years, and so on. It is encoded by the following Prolog fact:

fp(’Movie’,[role(’FilmNm’,[’bn:00034471n’],[]),

role(’Id’,[’bn:00045822n’],[’Integer’]),

1 http://attempto.ifi.uzh.ch/site/docs/syntax_report.html
2 https://github.com/Attempto/APE
3 http://attempto.ifi.uzh.ch/site/pubs/papers/drs_report_66.pdf
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role(’Actor’,[’bn:00001176n’],[]),

role(’Release Year’,[’bn:00078738n’],[’Year’]),

role(’Director’,[’bn:00027368n ’],[]),

role(’Writer’,[’bn:00034485n’],[]),

role(’Genre’,[’bn:00037744n’],[])]).

Much of this is self-explanatory except, possibly, the symbols of the form bn:xxxxxxxxy.

These are BabelNet synsets (Navigli and Ponzetto 2012), which are similar to and derived from

WordNet’s synsets. Synsets are used because words typically have many meanings and the same

meaning may be shared by many words. Thus, relying on words instead of synsets is likely to

make information ambiguous and lead to wrong query answers. KALM is unique in the world

of knowledge acquisition in its use of synsets. In addition, type constraints may be imposed on

some roles. For instance, the Release Year role has the type constraint Year, which insists that

the role-filler word for this role must be a valid year value.

A frame may represent several related relations, which KALM captures via logical valence

patterns (lvps). An lvp consists of a lexical unit and a set of grammatical patterns, each asso-

ciated with a frame role. A lexical unit is a word that could possibly “trigger” a frame relation

and thus indicate that the frame is possibly applicable to the sentence. A grammatical pattern

represents a grammatical relation between the lexical unit and a frame role. An lvp is applicable

to a sentence if (1) the sentence contains the lexical unit and (2) the role-fillers for each frame

role can be extracted based on the respective grammatical patterns.

Example 3. The following lvp says that the verb direct is a lexical unit of the frame Movie.

lvp(direct,v,’Movie’, [pattern(’Director’,’verb->subject’,required),

pattern(’FilmNm’,’verb->object’,required)]).

The fillers for the roles Director and FilmNm can be extracted by following the grammat-

ical patterns ’verb->subject’ and ’verb->object’, respectively. Each grammatical pat-

tern acts as an independent extraction rule that works on the DRS structure. For instance, the

extraction rule ’verb->subject’ (resp., ’verb->object’) extracts the term that represents

the subject (resp., object) of the term that describes the lexical unit direct. In the context

of the DRS structure from Example 1, the term corresponding to the lexical unit direct is

predicate(C,direct,A,B). Applying the above lvp to that DRS extracts a “movie director”

relation where the word director fills the role Director and film fills the role FilmNm.

We call the extracted relation a candidate parse. Details on the construction of grammatical

patterns and lvps will be discussed in Section 4 .

Role-filler Disambiguation. Frame parsing produces candidate parses by identifying the lvps

(i.e., semantic relationships) that a CNL sentence represents. Alas, most of the triggered lvps

might not make sense in a particular situation. For instance, the sentence “a director directs a

film” triggers at least these two frames: making a film and directing a corporation. In the first

frame, “film” is a filler for the role FilmNm and in the second it fills the role Corporation. The

reason we know that this sentence is related to making a film and not to directing a corporation

is because a film is not a corporation. Making such decisions is the job of role-filler disambigua-

tion, which is described in detail in (Gao et al. 2018b) and relies on sophisticated algorithms over

the BabelNet knowledge graph (Navigli and Ponzetto 2012). Role-filler disambiguation also de-

termines the right synset for each role-filler. For instance, it will determine that the meaning of
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“film” in our sentence is movie (bn:00034471n) and not photographic film (bn:00034472n).

The result of disambiguation consists of disambiguated parses.

Example 4. For another example, consider the sentences (1) who makes a film and (2) who

makes a cake. Both sentences share the same grammatical structure: make is the main verb of the

sentence, who is the subject of the make-event, film and cake are the objects of the make-event for

the first and second sentences, respectively. The first sentence implies the Movie frame while the

second implies the Cooking frame. However, since both sentences share the same grammatical

structure, the lvp used to trigger the Cooking frame for the second sentence also applies to the

first. This yields a wrong candidate parse for sentence (1) as an instance of the Cooking frame,

with who as Cook and film as Food. Since film and Food are semantically unrelated, role-filler

disambiguation will give a very low score to the second parse and it will get pruned away.

In the present paper, role-filler disambiguation is much simpler than in (Gao et al. 2018b).

First, the main terms in the MetaQA data set are used unambiguously. Second, it includes an

ontology that disambiguates role-filler words with respect to the roles uniquely. As a result, we

do not need to use BabelNet here and role-filler disambiguation here reduces to simply checking

class membership for the different entities.

Constructing logical forms. This step maps the actual instances of semantic relations extracted

via lvps to their corresponding representations, called unique logical representations (ULR) for

assertions of facts and unique logical representation for queries (ULRQ) for questions (Gao et al.

2018b; Gao et al. 2018a). In this work, construction of ULRQ is much more complicated because

multi-hop questions result in disambiguated parses consisting of multiple lvps, which may even

come from different frames. In (Gao et al. 2018a), on the other hand, we considered only 1-hop

queries, which correspond to single lvp disambiguated parses. Details of multi-hop translation to

ULRQ appear in Section 5.

3 The MetaQA Dataset and Multi-Hop Questions

The MetaQA dataset (Zhang et al. 2018a) consists of a movie ontology derived from the Wiki-

Movies Dataset (Miller et al. 2016) and three sets of question-answer pairs written in natural

language: 1-hop, 2-hop, and 3-hop queries. In this paper, we focus on the last two as a more

interesting challenge. The movie ontology contains information on films and their attributes in-

cluding actors, directors, writers, genres, release years, and so on. MetaQA provides enough

information to differentiate between films that happen to have the same name, but not namesake

actors, writers, or directors. Each film instance is represented by a contiguous chunk of triples

with the first argument in a triple being the film name, the second one of the film’s attributes

(e.g., directed by, has genre, has imdb rating, in language, release year, starred actors, writ-

ten by), and the third argument being the attribute value. We assign a unique Id to each film

instance and represent each triple as a fact of the form movie(AttrName1=AttrVal1,...).

For example, the MetaQA triple Kismet|directed by|William Dieterle is represented as

movie(’FilmNm’=’Kismet’,’Id’=72, ’Director’=’William Dieterle’), where 72 is

the film Id.

Example 5. The sentence “Who appears in a Steven Spielberg directed film” gets parsed into a

conjunction of these two frame relations: (1) movie(’FilmNm’=Title,’Id’=ID,’Director’

=’Steven Spielberg’) and (2) movie(’FilmNm’=Title,’Id’=ID,’Actor’=Y). To con-



6 Tiantian Gao, Paul Fodor, Michael Kifer

struct the query to answer the above question we form a conjunction (a database join) of the two

expressions. The result will be returned as a set of bindings for the variable Y.

Structure of MetaQA. The training set of MetaQA has 118,980 2-hop and 114,196 3-hop ques-

tions labeled with the expected query answers. The testing set has 14,872 2-hop and 14,274 3-hop

questions—also labeled with expected answers. The movie ontology itself contains information

about 17,341 distinct movies including their directors, writers, actors, and other properties, as

described earlier.

Problems with MetaQA. As it turned out, a large fraction of both training and testing queries in

MetaQA are mislabeled, i.e., the answers provided are wrong. In the training set, 13,522 out of

118,980 2-hop queries, or 11.36%, are definitely mislabeled, but we suspect this number is as

high as 25,487 (21.42%). For 3-hop queries, the situation is even worse: 36,645 questions out of

114,196 (32.09%) are labeled with wrong answers, but this number is likely as high as 64,089

(56.12%). In the testing set, the situation is similar: 3,178 2-hop queries out of 14,872 (21.37%)

are mislabeled and for 3-hop queries this number is 8,062 out of 14,274 (56.48%).

Most of the labeling errors are due to the fact that MetaQA’s designers (Zhang et al. 2018b)

failed to take into account that the movie ontology has many movies with the same title. As a

result, queries like “Who co-acted (or co-directed) with X in a movie” are likely to have wrong

answers if X acted in movie M1, Y acted in M2, and M1 and M2 happen to have exactly the same

title. There are, for example, three movies named “Jane Eyre,” which trigger this kind of errors.

The existence of such errors is easily checked automatically with KALM and this is where the

aforesaid counts of certain errors in the training set (13,522 and 36,645) come from.

In the testing set, the same problem accounts for the bulk of the wrong expected answers:

1,707 and 4,705. The remaining errors are due to more subtle reasons such as confusion between

a certain number being a movie title vs. it being a movie release year (e.g., the movies “1941”,

“2010”), failure to recognize that, say, Thomas Mann is a writer and not a director of “Death

in Venice” (which causes the question “What are the release years of the movies directed by

Thomas Mann?” to mistakenly return 1971), or the failure to realize that someone could be both

a writer and an actor in the same movie (thus causing the answer “Bob Peterson” to be missing

in MetaQA’s answer for the query “Who are the actors in the films written by Bob Peterson?”).

For these latter, more subtle, issues we checked manually about 50% of the suspected errors (736

of 1,471 2-hop and 1628 of 3,357 3-hop) for the testing set and verified that KALM provides

correct answers while MetaQA does not. The number of suspected errors in the training set is

too large to be checked manually, so we checked only a few dozen to confirm our hypothesis.

The large number of errors in the original MetaQA puts in question the accuracy of the results

reported in (Zhang et al. 2018b) to which we return in Section 6. A corrected version of MetaQA

data set can be found in reference (Gao 2019).

4 Constructing a KALM Semantic Parser via Structural Learning

This section shows how KALM’s frame-semantic parser is constructed by incremental structure-

learning. First, we show how grammatical patterns for role-filler extraction are learned from

training sentences and then how lvps are generated based on annotated training sentences.
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4.1 Learning Grammatical Patterns for Role-filler Extraction

Example 3 of Section 2 illustrates how a grammatical pattern like verb->subject is used to

extract the subject of the direct-event. Technically, it is done by these Prolog extraction rules:

extraction_rule(’verb->subject’,DRS,LexicUnitTerm,RoleFillerTerm):-

get_subject_from_verb(DRS,LexicUnitTerm,RoleFillerTerm).

get_subject_from_verb(DRS,VerbTerm,SubjectTerm):-

get_arg3_from_verb_term(VerbTerm,Arg3),

SubjectTerm = object(Arg3,_,_,_,_,_),

member(SubjectTerm,DRS).

The first argument in extraction rule/4 is a string representing the grammatical pattern.

Given the DRS for a sentence and the lexical unit term as the input, the extraction rule outputs

the extracted role-filler term by calling a utility predicate get subject from verb/3 that: (1)

extracts argument 3, Arg3, from of the verb term VerbTerm (the verb term here describes the

lexical unit and Arg3 is the subject of that verb); and (2) finds an object-term in DRS whose first

argument, Arg1 (that represents the object-term), matches Arg3 (the subject of the predicate-

term). If the DRS argument is as in Example 1 and the lvp is as in Example 3, the lexical unit

term in question would be predicate(C,direct,A,B), the subject-term would be A and the

matching object-term would be object(A,director,countable,na,eq,1).

Grammatical patterns and the corresponding extraction rules are learned through annotated

training sentences. An annotated sentence is a CNL sentence with lexical information attached

to it, which includes the frame name, the lexical unit, and frame roles. Conceptually an annotated

sentence looks like this: [Movie]a directorDirector directslexical unit a filmFilm. Later, in Example 8,

we will see the actual structure used to represent annotated sentences.

The structure-learning process starts with ACE parsing the raw CNL sentence found in a pro-

vided annotated training sentence, which yields a DRS. Then, for each pair of terms (lexical-

unit,role-filler) in that DRS structure, KALM produces and saves the corresponding extraction

rule, like the one at the start of this subsection. (Recall that the aforesaid lexical unit and the

role fillers are marked in the training sentence explicitly.) Creation of extraction rules has three

parts: (1) construction of the library of utility rules, which is done in advance; (2) reachability

reasoning in DRS; and (3) construction of the actual extraction rules.

Utility predicates and rules. These rules form the core library of the KALM parser; they are

used for commonly occurring manipulations with DRS structures and do not depend on the

application domain. Each utility predicate is defined by a single utility rule, which handles a

concrete navigation scenario among terms that share variables within the same DRS.

Example 6. A prepositional word is represented by the term modifier pp(A,Lexem,B) where

the first argument, A, denotes the verb being modified, the second argument represents the propo-

sitional word and its lexical information, and the third argument denotes the object in the prepo-

sitional phrase. Due to the linguistic purpose of a modifier pp term, it can be reached via two

DRS terms: via the shared variable A in a term like predicate(A,Verb,SubjRef,ObjRef),

and via the shared variable B in a term like object(B,Noun,Class,Unit,Op,Count). These

two cases lead to two utility rules. The first takes the first argument Arg1 from a predicate-

term and then finds a PrepositionalTerm (of the form modifier pp(A,Lexem,B)) in DRS

whose first argument matches Arg1.

get_preposition_from_verb(DRS,VerbTerm,PrepositionalTerm):-
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get_arg1_from_verb_term(VerbTerm,Arg1),

PrepositionalTerm = modifier_pp(Arg1,_,_),

member(PrepositionalTerm,DRS).

The second rule takes the third argument Arg3 from PrepositionalTerm and finds an object-

term in DRS whose first argument matches Arg3.

get_dependent_from_preposition(DRS,PrepositionalTerm,DependentTerm):-

get_arg3_from_prepositional_term(PrepositionalTerm,Arg3),

DependentTerm = object(Arg3,_,_,_,_,_),

member(DependentTerm,DRS).

Each utility rule is associated with a unique grammatical pattern (written as a string) via the predi-

cate utility grammatical pattern(UtilityPredicate,GrammaticalPattern). For in-

stance, the above utility predicates are associated with the grammatical patterns verb->pp and

pp->dep, respectively. This is the source of the grammatical patterns that we saw earlier in

extraction rule/4. We will come back to this at the end of this subsection.

Reachability reasoning in DRS. To see how one term in a DRS is connected to another via a

sequence of intermediate variables and terms, we reduce this problem to a graph reachability by

embedding the DRS in a graph structure:

1. For each term in DRS, create a node in the graph.

2. For any pair of nodes n1, n2 that represent the DRS subterms p1, p2 that share a variable,

create a directed labeled edge n1 −→ n2 and back. The label of the edge n1 −→ n2 is the

position of the shared variable in p1 and the edge n2 −→ n1 is labeled with the position of

that variable in p2.

Let ni be the node for the term that represents a lexical unit and n j be the node for a role-filler

term. Then, the problem of constructing the extraction rule for the role-filler reduces to finding

the shortest path from ni to n j. The above graph is well-defined, if no term in a DRS has repeated

variables, which is always the case for sentences that have no co-occurrences of the same entities

or anaphoras (e.g., “Fido eats Fido” or “Fido eats himself ” would violate this restriction). This

restriction ensures that any pair of terms in DRS shares at most one variable. It is needed only for

training sentences and in practice is easily achievable via a trivial paraphrase, since the training

set is under the control of the knowledge engineer. Once learning is done, testing sentences can

have anaphoras and entity co-occurrences with no restrictions.

Example 7. The annotated sentence [Movie]an actorActor appearslexical unit in a filmFilm has the

following DRS:

object(A,actor,countable,na,eq,1)-1/2

object(B,film,countable,na,eq,1)-1/6

predicate(C,appear,A)-1/3

modifier_pp(C,in,B)-1/4

Let n1, n2, n3, and n4 denote each of the terms in DRS, respectively. The DRS is represented

by the graph shown in Figure 2. Learning the grammatical pattern that connects the lexical unit

appear to film reduces to finding the shortest path from n3 to n2, i.e., n3
1
−→ n4

3
−→ n2.

Construction of extraction rules. Extraction rules are generated based on the shortest path from
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n1  n3 n4 n2
1

3

1

1

3

1

actor appear in film 

Fig. 2. The DRS embedding for the sentence an actor appears in a film.

a lexical unit node to a role-filler node. As is shown in Figure 2, two adjacent nodes plus one

of their connected edges uniquely defines a scenario where one term is connected to the other

via a common variable in DRS. Thus, the body of the extraction rule is formed as a join of the

corresponding utility predicates for every pair of adjacent edges in the path. For instance, for the

path n3
1
−→ n4

3
−→ n2 in Example 7, KALM generates the following extraction rule:

extraction_rule(’verb->pp,pp->dep’,DRS,LexicUnitTerm,RoleFillerTerm):-

get_preposition_from_verb(DRS,LexicUnitTerm,PrepositionTerm),

get_dependent_from_preposition(DRS,PrepositionTerm,RoleFillerTerm).

The grammatical pattern in the first argument is a concatenation of the grammatical patterns as-

sociated with the two utility predicates in the body of the extraction rule, which were introduced

right after the end of Example 6.

4.2 Learning Lvps for Frame-semantic Parsing

Lvps are learned from annotated training sentences. An annotated sentence is a term that includes

the original CNL sentence, the name of a semantic frame that matches the sentence, the word

index of the lexical unit, and the word indices of each role-filler word and the respective frame

role. An annotated sentence is represented by a Prolog fact. Note: the same English sentence may

carry several different bits of information and thus may match several different frames. In this

case, there might be several annotated sentences for the same CNL sentence.

Example 8. Consider the annotated training sentence: annotation(’An actor appears in

a film’,’Movie’,3,[[’Actor’,2],[’FilmNm’,6]]). It relates to the Movie frame with

the word appears serving as the lexical unit. The words actor and film fill the roles Actor and

Film, and the numbers are word indices in the sentence.

KALM feeds annotated sentences to the learn lvp rule, which generates extraction rules for

each frame role in the annotation and then forms an lvp. At a high level, the learn lvp rule

looks as shown below:

learn_lvp(annotation(Sentence,FrameName,LexicUnitIdx,RoleFillerIdxes)) :-

ace_to_drs(Sentence,DRS), %% invoke Attempto parser

grammatic_patterns(DRS,LexicUnitIdx,RoleFillerIdxes,GrammaticPatterns),

construct_lvp(DRS,LexicUnitIdx,FrameName,GrammaticPatterns).

In the rule body, the predicate ace to drs calls the ACE parser to produce the DRS of the input

sentence. Using the DRS and the word indices of the lexical unit and each of the role-filler words,

the predicate grammatic patterns generates the grammatical patterns and the corresponding

extraction rules for each frame role. The grammatical patterns are passed to the next subgoal in

a variable, while the extraction rules are saved in KALM parser’s library. Finally, the predicate

construct lvp takes the lexical unit, the frame name, and grammatical patterns constructs the
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requisite lvp and asserts it in the database. For instance, the annotated sentence of Example 8

will yield the following lvp:

lvp(appear,v,’Movie’, [pattern(’Actor’,’verb->subject’,required),

pattern(’Film’,’verb->pp,pp->dep’,required)]).

A similarly annotated sentence “a director directs a film” yields an lvp that we met in Example 3.

Once the necessary lvps are learned, KALM uses the following query to parse new (annotation-

free) sentences; it finds the lvps that match the sentence and outputs a set of candidate parses:

?- parse_sentence(Sentence,CandidateParseList).

The parse sentence rule can be described, at a high level, as follows:

parse_sentence(Sentence,CandidateFrameList) :-

ace_to_drs(Sentence,DRS),

get_candidate_lexical_units_from_drs(DRS,CandidateLexicUnitList),

get_lvps(CandidateLexicUnitList,LvpList),

apply_lvps_to_drs(DRS,LvpList,CandidateFrameList).

The first step yields a DRS, as before. Then, get candidate lexical units from drs/2

finds all candidate lexical units in the DRS that can possibly trigger a frame. Each such candidate

is represented by a tuple that includes a lexeme and a part-of-speech. Third, get lvps/2 finds all

lvps whose lexical unit matches a candidate lexical units in CandidateLexicUnitList. Finally,

apply lvps to drs/3 applies each lvp in LvpList to the DRS to see which ones succeed.

Section 4.1 explained how grammatical patterns are associated with rules for extracting role-

filler words. The predicate apply lvps to drs/3 takes each lvp in LvpList and applies the

extraction rules matching each pattern-term in the lvp to find candidate frames that fit the input

Sentence. An lvp may fail because its grammatical pattern is such that an associated extraction

rule fails to extract the expected filler word or the extracted words have the wrong type or fail

other constraints. The successful lvps will yield frame relation instances, i.e., candidate parses.

5 Capturing the Meaning of Multi-Hop Questions in Logic

This section shows how candidate parses of multi-hop questions are translated into logical queries.

Definition 1. A candidate parse is a tuple of the form ( f rame name, lexical unit,{( f rame rolei,

role f illeri,grammatic patterni)}) (1 ≤ i ≤ n) where the first element is a frame name, the

second is the word index of the lexical unit used to extract the frame relation, and the third

element is a set of tuples, each consisting of three elements: a frame role, the word index of the

role-filler word and the grammatical pattern used to extract the role-filler.

English sentences for multi-hop questions typically result in multiple candidate parses that

form complex inter-relationships. These relationships must be taken into account in order to

translate these sets of candidate parses into correct logic queries.

Definition 2. Let f = (name, lu,{(r1,w1, p1),(r2,w2, p2), . . . ,(rm,wm, pm)}) and f ′ = (name′,

lu′,{(r′1,w
′
1, p′1),(r

′
2,w

′
2, p′2), . . . ,(r

′
n,w

′
n, p′n)}) be two candidate parses where m≤ n. We say that

f ′ subsumes f if name = name′ and {(r1,w1), . . . ,(rm,wm)} ⊆ {(r′1,w
′
1), . . . ,(r

′
n,w

′
n)}.

Subsumed parses represent the relationships implied by subsuming parses and can be ignored.
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Definition 3. Let f = (name, lu,{(r1,w1, p1),(r2,w2, p2), . . . ,(rm,wm, pm)}) and f ′ = (name′,

lu′,{(r′1,w
′
1, p′1),(r

′
2,w

′
2, p′2), . . . ,(r

′
n,w

′
n, p′n)}) be two candidate parses. We say that f and f ′ are

alternatives if: (1) lu = lu′ and {(w1, p1),(w2, p2), . . . ,(wm, pm)} ⊆ {(w1, p1),(w2, p2), . . . ,

(wn, pn)} or vice versa; and (2) f , f ′ do not subsume each other.

This implies that either name 6= name′ or some of the extracted words fill different roles in the two

parses. Thus, the two parses represent different frame relations among the extracted words.

Definition 4. A set of candidate parses F = { f1, f2, . . ., fn} is a set of pairwise alternatives if for

any i and j, where i 6= j, fi and f j are alternatives. F is a maximal set of pairwise alternatives

if there is no F ′ such that F ′ is pairwise alternative and F ⊂ F ′.

Let F = { f1, f2, . . ., fn} be a set of candidate parses for a CNL sentence C. The unique logical

representation for queries (ULRQ) for C is obtained via the following steps:

1. Prune invalid candidate parses from F via role-filler disambiguation. Let the result be F ′.

2. Delete all fi ∈ F ′ that is subsumed by some f j ∈ F ′ (i 6= j), yielding F ′′.

3. Let F be {F1, . . ., Fk}, where each Fi ⊆ F ′′ (1 ≤ i ≤ k) is a maximal set of pairwise alter-

natives. Use the mapping φ , described below, to map F to an ULRQ.

Conceptually, F represents a multi-hop question (if k > 1), where each Fi is a single hop repre-

sented by a union of base relations. This is reflected in the definition of the mapping φ below:

φ( f ) = the relation associated with f if f is a single candidate parse

φ({ f1, . . ., fk}) = φ( f1)∨ . . .∨φ( fk) if { f1, ..., fk} is a set of pairwise alternatives

φ({F1, . . ., Fm}) = φ(F1)∧ . . .∧φ(Fm) if each Fi is a maximal set of pairwise alternatives

If f is a single candidate parse, φ maps it to a ULRQ as described in (Gao et al. 2018a)—a

relation uniquely associated with f ’s lvp with arguments filled in by the extracted words (such

as movie(’FilmNm’=’M’,’ID’= ,director=D)). A set of pairwise alternatives is treated by

φ as a single hop and is mapped to a union of relations. A set of sets of pairwise alternatives

is mapped by φ into a database join of the queries that correspond to the constituent hops. To

illustrate, we give two examples of translation of multi-hop questions to ULRQ.

Example 9. Consider the sentence “Who wrote a film that shares a director with Titanic?”. This

sentence has four candidate parses:

f1: (Movie,2,[(FilmNm,4,’verb->subject’), (Writer,2,’verb->object’)])

f2: (Movie,6 [(FilmNm,4,’verb->subject’),(Director,8,’verb->object’)])

f3: (Movie,6,[(FilmNm,10,’verb->pp,pp->dep’),(Director,8,’verb->object’)])

f4: (Distinct,6,[(Item1,4,’verb->subject’),(Item2,10,’verb->pp,pp->dep’)])

with the maximum pairwise alternative sets F1 = { f1}, F2 = { f2}, F3 = { f3}, and F4 = { f4},

yielding the following query:

?- movie(’FilmNm’=Title1,’Id’=ID1,’Writer’=V2),

movie(’FilmNm’=Title1,’Id’=ID1,’Director’=V3),

movie(’FilmNm’=’Titanic’,’Id’=ID2,’Director’=V3),

distinct(’Item1’=ID1,’Item2’=ID2).

where capitalized symbols are variables. Here distinct is a domain-independent built-in frame

that indicates that the entities involved are distinct. It is triggered by the lexical units such as

...shared...with..., ...different...from..., and the like.
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Example 10. The question “Who is an actor of Pascal Laugier?” has these two candidate parses:

f1: (Coop,4,[(Actor,1,’object->verb,verb->subject’),

(Director,7,’lobject->rel,rel->robject’)])

f2: (Coop,4,[(Actor,1,’object->verb,verb->subject’),

(Writer,7,’lobject->rel,rel->robject’)])

The frame Coop here represents the concept of cooperation such as writers co-writing a movie,

actors co-acting or playing in a movie directed by somebody, etc. Since this is a composite con-

cept, it must be defined via a background rule, which is done using the same CNL. For example,

the background rule for the concept expressed by the first candidate parse is “If an actor plays in

a film that is directed by a director and the actor is different from the director then the actor is

an actor of the director” and KALM would translate this into the following Prolog rule:

coop(’Actor’=V1,’Director’=V2):-

movie(’FilmNm’=Title1,’Id’=ID1,’Actor’=V1),

movie(’FilmNm’=Title1,’Id’=ID1,’Director’=V2),

distinct(’Item1’=V1,’Item2’=V2).

Since Pascal Langier is both a writer and a director in the MetaQA ontology, the two parses are

alternatives to each other, which correctly captures the intent that the query should return those

actors who play in movies that are either directed or written by Pascal Laugier. This sentence

has just one maximum pairwise alternative set, F1 = { f1, f2} and the corresponding query is

?- coop(’Actor’=V1,’Writer’=’Pascal Laugier’);

coop(’Actor’=V1,’Director’=’Pascal Laugier’).

6 Experiments

In this section, we first describe the evaluation of KALM-QA on the MetaQA dataset (Zhang

et al. 2018a) and then show how we verified that queries generated by KALM-QA are 100%

correct.

6.1 Evaluation of KALM-QA on the MetaQA Dataset

We now discuss our experiments using the extensive MetaQA Vanilla dataset (Zhang et al. 2018a)

of 2- and 3-hop questions about movies, described in Section 3, and compare our results with the

machine learning approach reported in (Zhang et al. 2018b).

Settings. Prior to the start of our experiments, KALM had only 50 frames with 217 lvps hav-

ing nothing to do with movies. Therefore, we expanded the semantic background knowledge

with two frames, Movie and Coop(eration) (the latter to capture aspects like co-acting and co-

directing). In addition, we trained the KALM-QA semantic parser to recognize all of the 234,176

2- and 3-hop training questions in MetaQA. This was done by selecting a small number of such

questions, training the parser on them (as in Section 4), checking if there are still sentences that

KALM-QA cannot parse, selecting a few of those, train again, and so on. Overall, it took a few

rounds and required 88 sentences to generate 88 lvps that enabled KALM-QA to parse all of the

training and testing sentences in MetaQA (which is almost 300,000).
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Results. KALM-QA achieved 100% accuracy for both 2-hop and 3-hop questions—see Section

6.2. This compares very favorably with the advanced machine learning approach that introduced

MetaQA, VRN (Zhang et al. 2018b), which reports the accuracy of 89.9% for the 2-hop dataset

and 62.5% for the 3-hop dataset. However, as detailed in Section 3, these results are based on

mislabeled data with high rate of incorrect query answers, so it is possible that the real accuracy

of this approach is lower (it should be clear that KALM-QA only uses the ontology and the

questions from MetaQA, but not the mislabeled answers).

Discussion. The accuracy of 100% achieved by KALM-QA may seem surprising not only com-

pared to machine learning approaches but also in light of our previous work, which reported the

accuracy of only about 95% (Gao et al. 2018b; Gao et al. 2018a). The explanation lies in the fact

that the 5% error rate in out prior work was exclusively due to the noise and imprecision present

in BabelNet (Navigli and Ponzetto 2012)—the background ontology used there. In contrast, the

present work uses the provided WikiMovies ontology (Miller et al. 2016), which is precise and

has no known errors (not to be confused with the errors in MetaQA query answers).

6.2 Correctness of KALM-QA Query Results

This subsection shows how we verified the correctness of the results produced by KALM-QA

for such a large number of MetaQA queries—queries that required joining two or three rela-

tions. This was done by verifying that the actual Prolog queries produced by KALM-QA are

semantically correct and exactly match their corresponding English sentences.

Since the number of such queries is large (close to 30,000), we had to devise a method that

exploits the symmetries present in MetaQA queries. The method consists of three distinct phases:

1. Identifying all the query templates that exist in KALM-QA translations (which are Prolog

rules) of MetaQA queries (which are English sentences).

It turned out that there are only 44 unique 2-hop query patterns and 59 unique 3-hop

patterns.

2. Verifying that all MetaQA English questions that correspond to the same KALM-QA tem-

plate differ only in the constant values used (like the named entities ‘Steven Spielberg’,

‘Bright Star’ or years like 1980).

This means that these questions must be translated to logical queries that are instances of

the same KALM-QA template.

3. For each KALM-QA query template T , let MQA(T ) be the set of all MetaQA questions

that get translated into an instance of T . All that is needed now is to manually select one

representative q(T ) ∈ MQA(T ) for each T and verify that its KALM-QA translation in

Prolog is semantically correct. The number of such checks is a few hundreds and was

accomplished manually within a few hours.

Why hundreds and not just 44+59=103? Truth to be told, some templates had two to four

different, semantically equivalent English forms in MQA(T ), so each of these forms had

to be checked separately. For instance, the sentences which films share the same actor of

[Bright Star] and what are the films that have the same actor of [Friday the 13th] are

semantically equivalent and thus have the same corresponding logical template.

Additional details of the above steps are as follows.

Step 1: A query like



14 Tiantian Gao, Paul Fodor, Michael Kifer

q(W2):-movie(’FilmNm’=W2,’Id’=I2,’Actor’=W6),

movie(’FilmNm’=’Bright Star’,’Id’=I8,’Actor’=W6),

I2 \= I8.

gets standardized into a template like

q(A):-movie(’FilmNm’=A,’Id’=B,’Actor’=C),

movie(’FilmNm’=xxxx,’Id’=D,’Actor’=C),

B \= D.

where the variables are standardized and the query-specific constants are replaced with fixed

constants. For example, ’Bright Star’ got replaced with xxxx. The resulting templates are

then sorted lexicographically, which yielded the aforementioned number of templates.

Step 2: MetaQA English sentences are then textually grouped according to their corresponding

KALM-QA templates. Each group is then scanned to verify that all sentences there differ only in

query-specific constant values. This check is visual and rather tedious, but because the difference

between the different sentences in each group is trivial, the check takes only a fraction of a second

per line and took a few hours.

Step 3: As mentioned, this required a manual check of a few hundred MetaQA sentences with

respect to their corresponding KALM-QA translations.

While KALM-QA yields 100% correct answers, we found that MetaQA misreports a very

large percentage of query answers, as discussed in Section 3. Most of this mislabeling is because

MetaQA’s designers failed to take into account that the movie ontology has many distinct movies

with the same title, but there were also more subtle reasons. An annotated report on all these

errors appears in https://github.com/tiantiangao7/kalm-qa. It should be noted that ex-

planations for most of the errors in MetaQA were generated by an automated Prolog script.

7 Related Work

We have already discussed the work on VRN (Zhang et al. 2018b), which used machine learning

to answer multi-hop questions provided by MetaQA. Other machine learning approaches to query

answering include the QA system of (Bordes et al. 2014) and KV-MemNN (Miller et al. 2016).

In (Zhang et al. 2018b), it is reported than these two systems have much lower accuracy and thus,

presumably, than KALM-QA.

Non-machine-learning works include the systems that are designed with a multi-stage pipeline

that translates NL questions into queries that use SPARQL, SQL, or Prolog to then query the

actual databases. In these systems, translation is typically driven by some kind of ontology. Rep-

resentative systems include ATHENA (Saha et al. 2016), PowerAqua (López et al. 2012), and

NaLIR (Li and Jagadish 2014). Compared to these works, KALM encompasses both knowledge

authoring and question answering. For the latter aspect, it would be interesting to compare the

performance of KALM with ATHENA and the others, and it is also interesting to know how

these systems would perform on the MetaQA dataset.

The most obvious relation to KALM is, of course, Attempto itself (Fuchs et al. 2008) and

SBVR (Object-Management-Group 2017), as they can also be used to query the Movie ontol-

ogy. However, since bare Attempto and SBVR include no background linguistic knowledge, that

knowledge would have to be supplied via background rules, e.g., if an actor appears in a film

then the actor is an actor of the film. It is not hard to estimate (see (Gao et al. 2019, Appendix B))
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that to capture the semantics expressed by the 88 lvps that KALM-QA had to learn for MetaQA

(Section 6), Attempto and SBVR would require 974 background rules, hand-written in CNL

(plus the rules for complex concepts like cooperation, as in KALM-QA). A fruitful way to see

the relationship between KALM-QA and Attempto (and, to an extent, SBVR) is to view the for-

mer as the necessary semantic layer over the latter, which can make the combination into a viable

knowledge authoring and question answering technology.

SNOWY (Gomez et al. 1994), in development from mid 1980s to 2008, is related to KALM-

QA in that it does limited mediation between semantically equivalent sentences with the help

of an ontology, but likely still requires many bridge rules to fully capture semantic equivalence.

Unfortunately, this system is no longer available and seems to have been abandoned, so a more

detailed comparison is hard to do.

8 Conclusion

This paper introduced KALM-QA, an extension of KALM that can answer complex multi-hop

CNL questions with very high accuracy. Contrary to the prevailing trend, KALM-QA is based

on logic programming rather than machine learning. Using MetaQA, a large collection of 2-

and 3-hop questions against a large movie ontology, we demonstrated that KALM-QA achieves

superior accuracy compared to machine learning approaches. In fact, the error rate for the most

accurate machine learning approach in our comparison turned out to be much higher than what

was reported in (Zhang et al. 2018b) because the end-to-end learning used in that work corrupted

the expected query answers and the system learned wrong answers for a very large subset of

the questions (north of 50% for 3-hop queries). For future work, we plan to extend KALM with

support for rule authoring and common sense and temporal reasoning.
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