

a provably correct formulation of class models.

Our implementation of FOML features seamless integration

of multiple modeling services that simultaneously support mul-

tiple models and provides reasoning, meta-reasoning, validation,

testing, and evolution services.

This paper is organized as follows: Section 2 provides back-

ground on class and object modeling, together with a formal set-

theoretic definition, Section 3 formally introduces the PathLP

language. The FOML layer is described in Section 4, and the

FOML tool is described in Section 5. Section 6 describes related

work and Section 7 concludes the paper.

2. Background on UML Class and Object Mod-

els

Class models and object models provide static views of problem

domains. They describe system structure in terms of classes,

associations, and constraints. These models are the essence of

the Unified Modeling Language (UML) (OMG 2017), a widely

accepted standard for modeling software systems. UML con-

sists of a variety of visual modeling diagrams, each describing

a different aspect of software. Class Diagrams, the backbone

of UML, are used to visualize class models; object diagrams

visualize object models.

A class diagram consists of basic elements, descriptors, and

constraints. The basic elements are classes and associations; the

descriptors are class and association attributes, along with asso-

ciation properties; the constraints are restrictions imposed on

these elements. The constraints include constrained elements—

association classes and aggregation/composition properties,

together with constraints on these elements: (1) multiplicity

(or cardinality) constraints on properties and attributes, with or

without qualifiers; (2) class hierarchy constraints; (3) general-

ization set constraints; and (4) inter association constraints.

Figure 1 shows a class diagram for modeling computer man-

ufacturing software. It has the classes Hardware, Software,

GPU, Computer, OS, CompAppl, ComputingAPI and

GPUAPI, where, GPUAPI is an association class. The as-

sociations are hardwSoftw, partParent, gUnitCom,

compOs, osCompAppl, alte- rnative, compApplApi,

gpuApi and CompApplGApi. Each association has a pair

of properties that are inverses of each other (also termed

roles, association-ends), and each property has a multiplicity

constraint. The class diagram also includes class hierarchy

(generalization/specialization) constraints, a generalization

set constraint, and two subsetting inter-property constraints.

The diagram states (among other things) that instances of

Computer must be related (via the association compOS) to

one or more instances of class OS, which also happen to be

instances of Software. Furthermore, OS instances must be

disjoint from the instances of CompAppl. The association class

GPUAPI is related to the gpuApi association (linking GPU and

ComputingAPI), meaning that there is a 1:1 correspondence

between instances of GPUAPI and links of gpuApi. This

constraint is shown in the figure using a dashed line. The upper

right corner of the diagram shows a generalization set with a

disjoint constraint that comprises the classes Software, OS,

and CompAppl. The subsetting constraint between the os and

the softw properties (and also between compG and part) states

that os is a subproperty of softw, i.e., links of os are also links

of softw.

The visual notation of class diagrams is said to be the con-

crete syntax of class models. The abstract syntax of class dia-

grams formally defines the semantically meaningful syntactical

categories, and their inter-relationships. The semantics of class

models is defined via the abstract syntax. We illustrate the

abstract syntax and its semantics using the above example.

Object models describe data for class models, which includes

objects, their content, and inter-relationships; they are visual-

ized via object diagrams. An object model of a class model is

assumed to be a legal instance, i.e., to satisfy the class diagram

constraints. Based on this assumption, the object model can

avoid explicit specification of derived information. Figure 2

presents an object diagram for a legal instance of the class model

in Figure 1. Object memberships that are implied by class hi-

erarchy (like ThinkPad being an object of Hardware) or links

that are implied by subsetting (like Linux being a softw of

ThinkPad), are not shown.

Class models can be extended with constraints, that are used

to express intended relationships between objects in legal in-

stance models of a class model. In UML, the standard constraint

language is OCL (Object Management Group (OMG) 2012;

Warmer and Kleppe 2003). It enables specification of invari-

ants, queries, and pre/post conditions on operations. It is not a

standalone language: its expressions are associated with UML

diagrams.

For example, the class model in Figure 1 can be extended

with the following constraint, written in OCL:

An application that runs with a GPUAPI with some GPU card must run on

an operating system that runs on a Computer with that GPU unit:

Context CompAppl

inv: not self.applApi.apiGUnit->

intersection(self.applOs.osComp.compG)->isEmpty()

In Section 4.1 we present this same constraint for the FOML

encoding of Figure 1. In (Balaban et al. 2016), we compare

class and object modeling using OCL, Alloy (Jackson 2002b)

or FOML.

2.1. Class Models – Abstract Syntax

Class and instance models are defined over a global, sorted,

infinite vocabulary V = 〈O, C,P ,A,Attr,Dt〉 of object (O),

class (C), property4 (P), association (A), attribute (Attr) and

datatype (Dt) symbols; all these sets are disjoint.5 For compact-

ness, we omit elements like aggregation/composition, qualifiers

and most inter-association/property constraints. For a full for-

malization of UML class models see (Balaban and Maraee

2017).

A class model over a vocabulary V =
〈O, C,P ,A,Attr,Dt〉 is a tuple CM = 〈CCM,

PCM,ACM,AttrCM,DtCM, Mappings, Constraints〉,

4 A property denotes a multi-valued function between classes. It corresponds

to UML 2.5 binary-association end, with the descriptors isUnique=true, isOr-

dered=false.
5 In multilevel modeling O and C can intersect (Balaban et al. 2018).

2 Mira Balaban et al.

props(hardwSo f tw) = {hardw, so f tw},

assoc(so f tw) = assoc(hardw) = hardwSo f tw, and

classes(hardwSo f tw) = {Hardware, So f tware}.

Compact visual notation for associations: It is often con-

venient to use a compact notation that shows associations

along with their properties, classes, and multiplicities. We

write a(C1

p1 p2

m1..M1 m2..M2

C2) or a(C1

p1 p2
C2), if multi-

plicities are irrelevant) to denote an association a such that

props(a) = {p1, p2}, target(pi) = Ci, min(pi) = mi

and max(pi) = Mi. For instance, the compact notation

for association hardwSoftw in the schema of Figure 1, is

hardwSoftw(Hardware
hardw softw

0.. ∗ 1..∗
Software).

– Association class mappings:

1. AC ⊆ CCM is the subset of classes in C that function

as association classes.

2. assocac : AC → ACM is an injective function that

maps association class symbols to association sym-

bols. For example, In Figure 1,

assocac(CompCompatibility) = compatibility.

– Attribute mappings:

1. att : CCM → AttCM is a multivalued assignment of

attribute symbols to classes.

2. For every class C ∈ CCM, there is a partial mapping,

dtC : att(C) → DtCM that assigns datatypes to the

attributes of C. Note that multiple classes can have

the same attribute.

In Figure 1, att(Hardware) = {tested} and

dtHardware(tested) = String.

Constraints:

The class model constraints presented here are prop-

erty and attribute multiplicities, class hierarchy, and

property subsetting. We omit aggregation/composition,

generalization-sets, and the inter-association/property

constraints redefinition, union, association-hierarchy,

association-class hierarchy and xor.

– Multiplicity constraints – for properties and at-

tributes:

1. min : PCM → N ∪ {0} and max : PCM → N ∪
{∗} assign minimum and maximum multiplicities

to property symbols so that min(p) ≤ max(p) (∗
denotes positive infinity).

2. For every class C ∈ CCM, there are partial mappings,

minC : att(C) → N ∪ {0}, and maxC : att(C) →
N ∪ {∗}, as above.

– Class hierarchy: is an acyclic binary relation on class

symbols in CCM: C2 ≺ C1, means that C2 is a subclass of

C1. The relation ≺+ is a transitive closure of ≺ and C2 �∗

C1 stands for C2 = C1 or C2 ≺+ C1. In Figure 1, class

Computer is a subclass of Hardware, i.e., Computer ≺
Hardware.

– Property subsetting (subproperties): is an acyclic binary

relation ≺ on property symbols:6 p1 ≺ p2 says that p1

6 ≺ is overloaded for subproperties and subclasses.

subsets (is a subproperty of) p2. As for classes, ≺+ is the

transitive closure of ≺ and p1 �∗ p2 stands for p1 = p2

or p1 ≺+ p2.

The relation p1 ≺ p2 satisfies these conditions:

(i) source(p1) ≺∗ source(p2), (ii) target(p1) ≺∗

target(p2), and (iii) max(p1) ≤ max(p2).
7 In Figure 1,

sysSo f t ≺ so f tw means that if a System object s and

a Hardware object h are linked by the sysSoft relation,

then they are also linked by the softw relation.

2.2. Object Models (Instances) – Set-theoretic Seman-

tics for Class Models

The standard set-theoretic semantics of class models associates

such models with instances I, which consist of a semantic do-

main and a denotation mapping “· I” that assigns meaning to

syntactic elements. Given a class model, class symbols are

mapped to sets of objects in the domain, property symbols are

mapped to multi-valued functions over these sets, and associ-

ation symbols are mapped to relationships between these sets.

The sets denoted by class and association symbols are called

extensions. Attribute symbols are mapped to higher-order func-

tions from class symbols to other functions from class exten-

sions to data-type domains. For a symbol x, ·(x), its denotation

in I, is shortened into xI .

Given a class model CM = 〈CCM,PCM,ACM,AttrCM,

DtCM, Mappings, Constraints〉. The formal specification for

a restricted class model presented in this paper is defined as

follows:8

Symbol denotations:

1. Classes: For c ∈ CCM, the extension of c in I, denoted cI ,

is a set of elements in the semantic domain. The elements

of class extensions are called objects.

2. Properties: For p ∈ PCM, its denotation is a multivalued

function

pI : source(p)I → target(p)I
such that (p−1)I =

(pI)−1.

3. Associations: For a ∈ ACM, aI is a binary relationship

over the extensions of the classes of a. If props(a) =
{p, p−1} (enforced by the syntactic mappings), then the

association denotes all object pairs that are related by its

properties: aI = {e ∈ source(p)I
, pI(e)}. Elements of

association extensions are called links.

4. Datatypes: Each data-type symbol T is associated with a

known domain of values, denoted domain(T).

5. Attributes: The denotation of an attribute is a higher-order

function that maps a class symbol to a function from the

class extension to the domain of the data-type of the at-

tribute. That is, for attr ∈ AttrCM, attrI is a partial func-

tion on CCM, such that for class C ∈ CCM, where attribute

7 Note that since the meaning of ≺ is subset of links, there is no restriction on

minimum multiplicity.
8 A full specification appears online in (Balaban and Maraee 2017).

4 Mira Balaban et al.

attr ∈ att(C), attrI(C) : CI → domain(dtC(attr)) is a

multi-valued function.

Constraints:

1. Multiplicity constraints on properties and attributes:

(a) Properties: For a property p, for every e ∈

source(p)I
, min(p) ≤ |pI(e)| ≤ max(p). The

upper bound is ignored if max(p) = ∗.

(b) Attributes: For a class C and attribute attr ∈
att(C), for every object e ∈ CI , minC(attr) ≤
|attrI(C)(e)| ≤ maxC(attr). The upper bound is

ignored if maxC(attr) = ∗.

2. Association classes: The association class constraint iden-

tifies the objects in the extension CI of an association class

C with the links in the extension of its associated asso-

ciation assocac(C). That is, there exists a 1:1 and onto

semantic mapping pairsC : CI → (assocac(C))
I
, that

maps every object in CI to a single link in the relation

(assocac(C))I .

3. Class-hierarchy constraints: A constraint C1 ≺ C2

denotes a subset relation between the class extension:

C1
I ⊆ C2

I .

4. Subsetting constraint: For p1, p2 ∈ P , p1 ≺ p2 states

that p1 is a sub-mapping of p2, i.e., for e ∈ source(p1)
I ,

p1
I(e) ⊆ p2

I(e).
The semantics of subsetting requires the syntactic restric-

tions that for p1 ≺ p2, the source and target classes of p1

are descendant subclasses of the source and target classes

of p2, respectively, and the maximum multiplicity of p1

can only restrict that of p2. Moreover, in (Maraee and

Balaban 2012) we show that the subsetting constraint is

symmetric with respect to the inverse properties. That is,

if p1 ≺ p2 then also p−1
1

≺ p−1
2 .

Class model instances and semantic relationships: For a

class model CM, its instances are denoted CMI .

Objects and links: An object of CMI is an element in the do-

main of I that belongs to the extension of some class. A link of

CMI is a pair of objects o1, o2 of CMI , such that for some prop-

erty p, o2 ∈ pI(o1). Links are visualized as a(o1
p1 p2

o2),

i.e., as labeled inverse edges between nodes o1, o2, where

props(a) = {p1, p2}, and o1 ∈ pI1(o2), o2 ∈ pI2(o1).

Instances: An instance I of a class model CM is empty if all its

class extensions are empty; it is non-empty if all of its classes

have non-empty extensions:9 it is finite if all class extensions

are finite; and it is infinite if some class extension is infinite.

An instance I of a class model might or might not satisfy the

constraints in the class model CM. If I satisfies all constraints

in CM, denoted I |= CM, I is a legal instance of CM. I is

9 Finer distinctions between instances with at least one class with non-empty

extension exist, but they do not affect finite satisfiability and its complexity in

UML class models (Balaban and Maraee 2013; Artale et al. 2010)

a partial instance if it can be completed into a legal instance

by addition of objects and links to class and association exten-

sions. A class model is satisfiable if it has a legal instance,

and is finitely satisfiable if it has a finite, non-empty legal in-

stance (Berardi et al. 2005; Balaban and Maraee 2013). In

software modeling we are interested in finitely satisfiable class

models.

Compact instance representation: Instances of a class model

can be represented as collections of their object memberships

with their attributes, and of their links. This is the standard

representation in object diagrams, as shown in Figure 2. How-

ever, object memberships and links that are implied by the class

model semantics do not need to be specified. When some or

all of the implied information is omitted in an instance, we call

it a compact instance specification. For example, in Figure 2,

the membership of ThinkPad in Hardware, which is implied

from the class hierarchy constraint Computer ≺ Hardware in

Figure 1, is not specified. Likewise, the subsetting constraint

os ≺ softw (os subsets softw), in Figure 1, implies the

missing link HardwSoftw(ThinkPad
hardw softw

Linux). On

the other hand, the convention of object diagrams is that object

memberships are always explicitly specified, although they are

implied from the definition of associations in which objects are

involved.

Herbrand instances: A Herbrand instance10 of a class model

CM over a global vocabulary V = 〈O, C,P ,A,Attr,Dt〉
is an instance of CM over the domain O. Herbrand in-

stances can be written using a set notation, that explicitly

lists objects and links, i.e., {Ci = {oi
1, . . . , oi

ni
}Ci∈CCM

, ai =

{a(oi1
p1 p2

ui1), . . . , a(oini
p1 p2

uini)}ai∈ACM
}. This writ-

ing saves explicit specification of property mappings and of

empty extensions. The importance of Herbrand instances is in

providing a convenient textual syntax for representing object

diagrams.

Example 1. A compact specification of the legal Herbrand
instance H of the class model in Figure 1, that corresponds to
the object diagram in Figure 2:

H = {OS = {Linux, Windows},

CompAppl = {Foxit, Acrobat, cuDNN},

Computer = {ThinkPad},

GPU = {Nvidia},

ComputingAPI = {CUDA},

GPUAPI = {NvidiaCUDA},

category(Foxit) = ”pdf”,

category(Acrobat) = ”pdf”,

category(cuDNN) = ”NN”

10 By analogy with Herbrand interpretations in classical logic.

Logic-based Software Modeling with FOML 5

osCompAppl = {osCompAppl(Linux
applOs osAppl

Foxit),

osCompAppl(Windows
applOs osAppl

Acrobat),

osCompAppl(Linux
applOs osAppl

cuDNN)},

compOs = {compOs(ThinkPad
osComp os

Linux),

compOs(ThinkPad
osComp os

Windows)},

gUnitComp = {gUnitCompl(ThinkPad
compG gUnitl

Nvidia)},

gpuApi = {gpuApi(Nvidia
apiGUnit gApi

CUDA)},

compApplGApi =

{compApplGApi(cuDNN
gApiAppl applGApi

NvidiaCUDA)},

compApplApi = {

{compApplApi(cuDNN
apiAppl applGApi

CUDA)}}

Besides objects and links, a legal instance of the class model in

Figure 1 must specify the mapping pairsGPUAPI between objects

of the association class GPUAPI and links of the association

gpuApi. In the object model of Figure 2 this mapping is:

pairsGPUAPI(NvidiaCUDA) =

gpuApi(Nvidia
apiGUnit gApi

CUDA) �

Finite instances I of CM over arbitrary semantic domains

can be translated into corresponding Herbrand instances IH ,

using a 1 : 1 mapping IH of the objects of CMI to object

symbols from the vocabulary O. For a given I, IH is obtained

by replacing every object e in a class extension CI by its symbol

translation IH(e). The legal status of I with respect to CM can

be checked by checking the legal status of IH:

Claim 1. For a finite instance I of CM and a corresponding

Herbrand instance IH , I is legal for CM if and only if IH is

legal.

Proof. By building a correspondence between IH and I, as in

first-order logic.

Semantic relationships: A class model constraint can be ex-

plicitly specified in the class model specification, or implied

(derived) from other constraints. For example, transitivity of

class hierarchy implies class hierarchy between a super class

and all of its descendants; unspecified multiplicity constraints

can derive from combinations of class hierarchy and property

subsetting (Balaban and Maraee 2019); disjoint constraints can

propagate from declared GS constraints (Balaban and Maraee

2013).

For a constraint γ, and an instance I, I |= γ stands for "γ

holds in I". If γ holds in every legal instance of a class model

CM, we say that γ is entailed from CM, denoted CM |= γ.

Clearly, all declared constraints are entailed from a class model.

A class model CM2 is entailed by a class model CM1, denoted

CM1 |= CM2, if every legal instance of CM1 is a legal instance

of CM2. Class models are equivalent, denoted CM1 ≡ CM2,

if they have the same set of legal instances.

Object-oriented characteristics of class modeling: The seman-

tics of class model constraints satisfies the essential characteris-

tics of object-oriented modeling:

1. Transitivity of class hierarchy: If C1 ≺ C2 and C2 ≺ C3,

then C1 ≺ C3.

2. Supertype inheritance for properties and attributes: For

p ∈ PCM, if target(p) = D and D ≺∗ SuperD then in

every legal instance I of the class model, pI has also type

SuperD, i.e., for e ∈ source(p)I , pI(e) ∈ SuperDI .

The same holds for attributes of classes.

3. Property and attribute inheritance for subtypes: For p ∈
PCM, if source(p) = C and SubC ≺∗ C then in every

legal instance I of the class model, pI is also defined on

objects of SubC, i.e., for e ∈ SubCI , pI(e) ∈ target(p)I .

The same holds for attributes of classes.

4. Polymorphic object typing, due to class hierarchy: An

object is multiply typed by all of its class ancestors. That

is, in a legal instance I, e ∈ CI and C ≺∗ SuperC imply

e ∈ SuperCI . The same holds for attributes of classes.

5. Object well typing: A property (or attribute) is defined on

all and only objects of its source class, and its values are

objects (values) of its target class (type).

The five object-oriented characteristics of class modeling are

used in Section 4 for showing the correctness of FOML encod-

ing of class models and their instances.

3. PathLP – The Underlying Logic of FOML

This section describes the PathLP programming language (Bal-

aban and Kifer 2011; Khitron et al. 2011a,b), an elegant logic

programming language of guarded path expressions, inspired

by F-logic (Kifer et al. 1995b). PathLP has three distinctive

features that make it a particularly powerful tool for object

modeling: (1) polymorphism of language expressions and of

class hierarchies; (2) multilevel object modeling; (3) executable

model instantiation.

3.1. Syntax of PathLP

PathLP is a Logic Programming language, whose main feature

is a construct called path expression. This construct describes

object-attribute access, in the style of object-oriented paradigms.

Following this intuition we use a node-edge metaphor in the

presentation of PathLP. PathLP’s path expressions generalize

similar expressions in traditional imperative object-oriented

languages. They extend a similar notion in XSQL (Kifer

et al. 1992), an F-logic (Kifer et al. 1995b) based language

designed for querying object-oriented databases, in the direc-

tion of the more general path expressions in the F-logic systems

like FLORID and FLORA-2 (Frohn et al. 1998; Kifer 2007).

PathLP expressions also have certain similarities with XPath

(Deutsch et al. 1999).

3.1.1. Terms A PathLP term is a constant, a variable, or a

composite term.

6 Mira Balaban et al.

A constant symbol denotes an element in the domain of

discourse, like a node, an edge, or a class in an object model.

For example, Person, child, John, or teach. Constants are

also known as 0-ary functor symbols, i.e., they take no ar-

guments. The language of PathLP also has n-ary functors (or

function symbols), n > 0, which take n arguments. They

are used to define composite terms, as defined below.

A variable symbol is prefixed with a question mark "?",

e.g., ?accountNumber, ?aPerson. Variables get instantiated

with concrete constants from a database in the course of query

evaluation (cf. the FROM-variables in SQL). Sometimes the

name of a variable is immaterial in which case we write just

"?" and let the compiler invent a unique name.

A composite term specifies a tree-

shaped data structure, like mother_of(John),

semester(term(Spring),year(2020)), or course(Math,

1, 235, Mira). These terms are formally defined in

Section 3.1.5.

3.1.2. Object and Type Path expressions The main

PathLP construct is a Path expression. Using the graph (node-

edge) metaphor, path expressions represent queries over graphs.

There are two kinds of path expressions: Object and Type. The

building blocks of path expressions are terms, guards, cardinali-

ties, and two operators: “.” and “!”. Intuitively, the “.” operator

provides navigation along value paths, while the operator “!”

yields a type of an edge, rather than its value.

Object Path Expression: An object path expression is a ba-

sic formula in PathLP that selects a set of paths in an object-

attribute graph. The general form of such an expression is

root.link1[grd1].link2[grd2].linkn[grdn];

where root, linki are terms that denote semantic entities,

and grdi is a comma-separated list of such terms. The intuitive

meaning is that link1 applied at root evaluates to a set that

contains all the terms in grd1, link2 applied at the result con-

tains all the term listed in grd2, etc. For example,

John.teach[graphics,algorithms];

if stated as a fact, says that both graphics and algorithms

belong to the set of courses that John teaches. If stated as a

query, the above asks if it is true that John teaches both of those

courses. The target set and its size can be constrained by type

path expression that are described below.

The general form of object path expressions allows for suc-

cessive application of the "." operator, both in the base and in

the guard parts. For example,

John.teach[Mary.study, Jack.TA, ?h]

is a query that asks whether John teaches courses that Mary

studies, and also the courses in which Jack is a teaching assis-

tant. It will also bind the variable ?h to the courses taught by

John. The expression

John.study.teacher.age[?age],

asks for the age of the teacher of the course that John studies.

The expression

a.b[?c].d.e[?f]

asks for the middle and end nodes of paths going from node a

through edges b, d, e.

An expression a.b (without a guard) denotes the set of end-

nodes of edges b that start in a. The addition of a guard selects

the end-nodes that are denoted by the guard. A path expression

without a guard at the end can appear in a guard of another

path expression, but it cannot be used as a fact or a query. An

expression with a guard can be used as a fact or a query, but not

in a guard of another expression. An edge, node, or a guard in

a path expression can be a variable. Intermediate (non-guard)

terms that denote edges may or may not have guards. The first

term cannot have a guard since it does not denote an edge.

Type path expression: This kind of path expression is

intended to enforce types and size of node attribute values.

They can also be used to query the type system. Type path

expressions are similar to object path expressions except that

they use “!" instead of “.": term!term1[guard1]! ...

!termn[guardn];. For example,

Lecturer!teach[Course];

says (if stated as a fact) that if a lecturer (an object in class

Lecturer) teaches something then that something must be

an object in class Course. When posed as a query, the above

asks if it is true that the type of the property teach in class

Lecturer is declared to be Course. The syntax of type path

expressions is similar to that of object path expressions with the

same restrictions. A type path expression can have an optional

guard, middle edges and internal guards. For example,

Lecturer!teach[?course]!teaching_assistant[?TA]

binds ?course and ?TA to the types declared for the properties

teach and teaching_assistant in the appropriate classes.

Type path expressions introduce a new feature of a multiplic-

ity constraint. A multiplicity constraint includes two natural

numbers in non-decreasing order, and the last can also be *

(infinity):

term!term[guard]{multiplicity}

For example,

Lecturer!teach[Course]{3..4}

states that every lecturer must teach at least 3 and at most 4

courses. A multiplicity constraint is optional, and its absence

means unconstrained multiplicity.

3.1.3. Membership and Subtyping The PathLP language

provides two special predicates, ":" and "::", to account for

the class membership and subtyping relations, respectively. For

example,

beatles:popgroup;

popgroup::musicgroup;

musicgroup::artgroup;

artgroup::artmaker;

artmaker:somethingmaker;

somethingmaker::somethingdoer;

The semantics of "::" and ":" have the transitivity of subtyping

and transitivity of membership over subtyping properties, so

that the above implies:

beatles:musicgroup, musicgroup:artmaker, and

popgroup::artgroup

PathLP is partially typed in the sense that not all typing

information must be explicitly specified. The language is

Logic-based Software Modeling with FOML 7

polymorphic since a language construct might belong to

multiple types.

3.1.4. Rules, Facts, and Queries The sentences of

PathLP are the facts, rules, and queries, as usual in Logic Pro-

gramming languages.

A fact asserts an unconditioned snippet of knowledge. For

example, these facts

a.b[c];

d:e;

assert that there is an edge labeled b from node a to node c and

that object d is included in type e. Some more examples:

John.teach[chemistry];

John.teach[algebra];

is the same as the single fact using multiple guards:

John.teach[chemistry,algebra];

It says that there are two edges labeled teach; one connecting

John to chemistry and another to algebra.

A rule specifies conditional knowledge. For example,

?c.e[f]:-?c:?d, ?d.e[f]

means that if an object ?c is a member of a type ?d that has an

attribute e whose value is f, then ?c also has attribute e with

value f.

The head of a rule (the part left of :-) is an atomic formula

and the body (the part right of :-) is a comma-separated

sequence of atomic formulas, which is interpreted as a conjunc-

tion of those formulas. These atomic formulas can be including

path expressions, membership, and subtyping assertions. The

precise syntax of the rules is given in Section 3.1.5. Another

example:

John.study[?course] :-

Jack.study[?course], not Jorge.study[?course];

This states that John takes all courses that Jack takes except

from those that Jorge takes also.

A query is a statement that starts with the symbol “?-” fol-

lowed by a body—a conjunction of atomic formulas, which thus

has the same syntax as a rule body. For example,

?- ?x:?c, ?c:d

asks a given set of facts and rules whether there is an instantia-

tion for the variables ?x and ?c such that ?x belongs to ?c, and

?c belongs to d. The results are returned as a set of tuples—each

providing a requested instantiation. Another example:

?- ?person.study[chemistry, graphics];

The answer to this query is the set of all people (instantiations

for ?person) that study either chemistry or graphics.

Constraints are used to enforce semantic correctness in a

domain and to reject illegal states. Constraints are formulated

as formulas that characterize states that violate the intended

semantics of a knowledge base. In PathLP, constraint check-

ing is done on demand rather than in real time, but this is an

implementation decision, not a semantic one. Constraints are

distinguished by a special symbol “!-” followed by a body of

the constraint. The latter has the same structure as the bodies of

rules and queries. For example:

!- ?.b[?c], ?.d[?c]

specifies that an object ?c cannot be the value of both attributes

b and d of some objects; or using the graph view, a node ?c

cannot be the target of both edges b and d.

Constraints are checked by presenting them as queries to a

knowledge base of facts and rules. Since they specify forbidden

situations, a constraint-query is expected to fail. Success of a

constraint query means that the illegal situation is detected in the

given knowledge base, and each answer to the query provides a

witness for the violation. A more complex example:

!- ?person.study(?year1)[?course],

?person.teach(?year2)[?course],

?year2 < ?year1;

states that a person cannot teach a course before she studied it.

3.1.5. Formal syntax The alphabet of the PathLP language

includes countably many constant symbols, (e.g., Foo_123) and

variables (designated with the “?” prefix, e.g., ?x), plus the

auxiliary symbols “!”, “:”, “::”, “[”, “]”, “(”, “)”, “:-”, “>”, “=”,

and so on.

A term is defined recursively as either a variable, a constant,

or an expression of the form c(t1, ..., tn), where c is a constant

and t1, ..., tn, n ≥ 0, are terms. The latter kind of a term is

called a composite term.

Path expressions: The following BNF productions define path

expressions where the meta-symbols Var, Term, NonNegInt

denote variables, terms, and non-negative integers, respectively.

GuardedPE := GuardedObjPE | GuardedTypePE

UnguardedPE := UnguardedObjPE | UnguardedTypePE

GuardedObjPE := UnguardedObjPE ’[’ Guard ’]’

UnguardedObjPE := UnguardedExpr ’.’ (Expr ’.’)* UnguardedExpr

GuardedTypePE :=

UnguardedTypePE ’[’ Guard ’]’ [’{’ Multiplicity ’}’]

UnguardedTypePE := UnguardedExpr ’!’ (Expr ’!’)* UnguardedExpr

Guard := Guard (’,’ Guard)* | UnguardedExpr | UnguardedPE

Expr := GuardedExpr | UnguardedExpr

GuardedExpr := UnguardedExpr ’[’ Guard ’]’

UnguardedExpr := Term

Multiplicity := (NonNegativeInteger) ’..’ (NaturalNumber|’*’)

Query formulas in PathLP are used as bodies of PathLP in-

ference rules, queries, and constraints. They are defined as

follows:

QueryFormula := ElementaryFormula

| ’(’ QueryFormula ’)’ | ’not’ QueryFormula

| (QueryFormula (’and’ | ’,’ | ’or’) QueryFormula)

ElementaryFormula :=

Membership | Subtype | GuardedPE | Comparison

Membership := Term ’:’ Term

Subtype := Term ’::’ Term

Comparison := Term Op Term

Op := ’=’ | ’!=’ | ’>’ | ’<’ | ’>=’ | ’=<’

Rules, queries, and constraints: Finally, we define PathLP

rules, facts, constraints, and queries via the following BNF:

Query := ’?-’ QueryFormula ’;’

Constraint := ’!-’ QueryFormula ’;’

Fact := Consequent ’;’

Rule := Consequent ’:-’ QueryFormula ’;’

8 Mira Balaban et al.

A Consequent is an ElementaryFormula that can oc-

cur as a fact or rule head consequence. These are

ElementaryFormulas that satisfy the following restric-

tions:

– They are not comparisons.

– Path expressions can have only one connective “.” or “!”

and only terms as guards (no path expressions in guards).

That is, only the following forms are allowed as rule

heads or facts: Term:Term, Term::Term, Term.Term[Term],

Term!Term[Term], or

Term!Term[Term]{Multiplicity}.

3.2. Semantics

Universes. The universe U of PathLP includes a domain

of entities D, over which various structures are defined: value

graphs, type graphs, membership, inclusion relations, and mul-

tiplicity constraints.

The domain is uniform, and does not differentiate en-

tities by their roles: Node, edge, or type. The same

entity can play different roles depending on the syn-

tactic context. For example, for an application deal-

ing with university courses, D can include such entities

as Graphics, Algorithms, study, student, examine,

teacher, John, Bradly, course, teach, and so on. In

the above, some entities are intended as attributes of other enti-

ties, and some might be types. For example, study can be an at-

tribute of the student John, i.e., John might study Algorithms,

and teacher can be the type of all individual teachers. At the

same time, teacher can also be an attribute of courses, denot-

ing the teachers of a given course. In sum, D is a set of entities

that might play different roles in a variety of contexts. It is

structured by the relations and functions that are defined on it,

as described below.

A universe U includes a number of relations over its domain

D: a binary relation ∈D, a partial order ≺D plus two ternary

relations Rval , Rtype. The relation ∈D stands for membership,

and the partial order ≺D is a weak version of subtyping. That

is, a∈Db means that a is a member of b, when b plays the role

of a type, and a≺Db means that a is a subtype of b. In the

university-courses domain, we can have

Graphics ∈D cs_course ≺D course,

course ∈D interactive_teaching_tool ∈D

educational_ f ramework.

Note that this flexible structuring of membership and subtyping

allows for multi-level domains, where types can be members of

types in more abstract levels (Atkinson and Kühne 2001, 2008;

Henderson-Sellers 2012).

As partial order, the subtype relation is transitive. In addition,

the membership and subtype relations satisfy the transitivity of

membership over subtyping constraint:

For any n, n′, where n ∈D n′, if n′ ≺D n′′ then n ∈D n′′.

That is, the set of members of n′ is a subset of the set of members

of n′′. Thus, the relations ∈D and ≺D form a multi-level,

intensional typed domain.

The ternary relation Rval represents the links that connect

entities to properties and attributes, so one can view Rval as a

directed graph over D. Rval(n, e, v) means that the attribute e

of the object n has the value v. For a given node n and edge e,

there can be multiple such triples, i.e., the value graph allows

multiple edges with the same label for a node. For example, in

the university-courses domain, Rval(John, study, Algorithms)
means that the value of the attribute study of John includes

Algorithms.

The ternary relation Rtype specifies the types of entity

attributes. Rtype(n, e, v) means that for every entity n’

∈D n, the values of the attribute e of n′ are members of the

type v. That is, for every n′ ∈D n, Rval(n, e, v′) implies

v′ ∈D v. For example, in the university-courses domain, if

John ∈D student, and Rtype(student, study, cs_course) then

Algorithms ∈D cs_course.

Closure properties of Rtype with respect to the subtype rela-

tion:

– Upward-closure: If attribute e of n has type t, then every

supertype t′ of t is also a type of e on n. That is, If

(n, e, t) ∈ Rtype and t ≺D t′ then also (n, e, t′) ∈ Rtype.

– Inheritance: If attribute e of n has type t then it has type t
for every subtype n′ of n, i.e., e is inherited. In other words,

If n′ ≺D n and (n, e, t) ∈ Rtype then (n′, e, t) ∈ Rtype.

The typing of an entity-attribute can be strengthened to in-

clude attribute size, i.e., the cardinality of attribute values. This

is achieved with partial functions Dmin : D × D −→ Integer
and Dmax : D × D −→ (Integer ∪ {∗}), which provide con-

straints on the size of attribute values. Given a pair of entities n
and e, these functions are either both defined or both undefined

and they satisfy the constraint 0 ≤ Dmin(n, e) ≤ Dmax(n, e)
(where i < ∗ for any integer i). The size restrictions are

imposed by the requirement of well-typing for universes, as

described below.

Well-typed universes. So far, Rval and Rtype have not been

related to each other. There can be triplets (n, e, v) ∈ Rval

for which no type restriction exists, i.e., there may be no n′

such that n ∈D n′ and (n′, e, v) /∈ Rtype. The well-typing

constraint, which was first introduced in (Kifer et al. 1995b),

characterizes universes in which all attribute values are typed.

Well typing has two aspects: typing restriction on attribute

values and multiplicity restrictions.

A universe U is well-typed if

– Full typing: For every value-triple (n, e, v) ∈ Rval , there

is a type-triple (n′, e, t) ∈ Rtype, such that n ∈D n′ is

satisfied.

– Type inheritance: For every value and type triples

(n, e, v) ∈ Rval , (n′, e, t) ∈ Rtype, if n ∈D n′ then

v ∈D t.
– Multiplicity restriction: For every n′ and e for which

Dmin(n
′, e), Dmax(n′, e) are both defined, and for ev-

ery n ∈D n′, the number of edges going out of e is

at least Dmin(n
′, e) and at most Dmax(n′, e). That is,

Dmin(n
′, e) ≤ |{v | Rval(n, e, v)}| ≤ Dmax(n′, e).

Logic-based Software Modeling with FOML 9

If the first restriction above is omitted, the universe U is said to

be partially well-typed.

For example, in the university-courses domain,

Dmin(student, study) = 2 and Dmax(student, study) = 6,

means that a student can study between 2 to 6 courses a

semester.

In addition, there is a mapping FD : D −→ (×∞
n=1D −→

D) that associates every entity in D with a variadic function

on D. This is used to interpret the functors in the language of

PathLP as functions over D. Variadic functions are used here be-

cause functors with variable numbers of arguments is a common

feature in Logic Programming languages, and it was found ben-

eficial in PathLP as well. For example, in the university-courses

domain, the entity study might be associated with a variadic

function that maps Spring2020 to the attribute “courses of

semester Spring 2020” of students, so there might be a triple

like this: Rval(John, FD(study)(Spring2020), Algorithms).
In terms of the directed graph view of the PathLP domain of

discourse, we interpret FD(study)(Spring2020) as an element

of D, and in the last example, as an attribute of John.

Summary: A universe U is a tuple {D,∈D,≺D

, Rval , Rtype, Dmin, Dmax, FD}. The membership and

subtyping relations partially simulate the properties of the

membership and subset relations of set theory. They represent

intensional but not extensional set relations. This means

that PathLP sets that have exactly the same members are not

necessarily the same sets, which is common in object-oriented

languages. Likewise, if all members of type t are also members

of t′ then it still is not guaranteed that t ≺D t′.

Interpretations

A PathLP interpretation, I , is a triple of the form 〈U, IC, IV〉,
where U = {D,∈D,≺D, Rval , Rtype, Dmin, Dmax, FD} is a

well-typed universe, as described earlier in this section, IC

is a mapping for constant symbols in PathLP, i.e., IC :

Constant −→ D, and IV is a variable assignment for vari-

able symbols of PathLP, i.e., IV : Var −→ D.

The meaning of PathLP constructs:

Given an interpretation I , we define the notion of satisfaction

by interpretation for PathLP query formulas, facts, rules, and

constraints. We first define the denotation mapping associated

with I . The purpose of that mapping is to interpret path expres-

sions as subsets of the domain of I . It is common to use the

same symbol I both for the interpretation and for its associated

denotation mapping, since the context disambiguates the uses.

The definitions of the denotation mapping and of satisfaction of

formulas by interpretation are inductive on the structure of the

formulas and are mutually dependent.

Denotation of path expressions:

– Constant: If c is a constant then I(c) = {IC(c)}.

– Variable: If ?x is variable then I(?x) = {IV(?x)}.

– Unguarded expression: If τ is a composite term c(t1, ..., tn)
(an unguarded expression) with zero or more arguments

then:

I(τ) = {IFD
(IC(c))(t

′
1, ..., t′n)}, where t′i ∈ I(ti), for

i = 1, ..., n.

The above three cases form the basis for the inductive definition

of I(τ), where τ is a path expression. The inductive part of the

definition now follows.

– Object path expression:

- Unguarded object path expression: if τ has the form

objpathexp . expr, where objpathexp is an object

path expression and expr is a term then:

I(τ) = {v | ∃n ∈ I(objpathexp), ∃e ∈ I(expr),

where (n, e, v) ∈ Rval}.

That is, obj . expr1 . expr2. exprn denotes the

set of nodes reachable from node I(obj) by a path

labeled I(expr1), I(expr2), . . . , I(exprn).
Note that I(τ) can be empty.

- Guarded object path expression: if τ is

ungobjpathexp[grd], where ungobjpathexp is

an unguarded object path expression and grd is a

guard of the form ungpathexp1, ..., ungpathexpn

then:

I(τ) = I(ungobjpathexp)∩I(grd, ungobjpathexp)

where

I(grd, ungobjpathexp) =

i f for each i = 1, ..., n,

I(ungobjpathexp) ∩ I(ungpathexpi) 6= ∅

then I(ungpathexp1) ∪ . . . ∪ I(ungpathexpn)

else ∅

This definition ensures that obj.pathexp[val1, val2]
holds if and only if obj.pathexp[val1] and

obj.pathexp[val2] both hold.

– Type path expression:

- Unguarded type path expression: If τ is

tpathexp ! expr, where tpathexp is a type path ex-

pression and expr is an expression, then:

I(τ) = {v | ∃n ∈ I(tpathexp), ∃e ∈ I(expr),

such that (n, e, v) ∈ Rtype}.

- Guarded type path expression: Similar to guarded

object path expressions, but with a multiplicity

constraint (the default is {0..∗}):

If τ is ungtpathexp[grd]{lo..hi}, where ungt-

pathexp is an unguarded type path expression, expr
is an expression, and grd is a guard of the form grd1,

..., grdn, then:

I(τ) = I(ungtpathexp) ∩ I(grd, ungtpathexp)

10 Mira Balaban et al.

where

I(grd, ungtpathexp) =

i f for each i = 1, ..., n,

I(ungtpathexp) ∩ I(grdi) 6= ∅,

cardmin(ungtpathexp) ≥ lo, and

cardmax(ungtpathexp) ≤ hi

then I(grd1) ∪ . . . ∪ I(grdn)

else ∅

Here cardmin and cardmax are defined as follows

(where ungtpathexp = tpexp!expr):

cardmin(tpexp!expr) =

min{Dmin(n, e) | n ∈ I(tpexp), e ∈ I(expr)}

cardmax(tpexp!expr) =

max{Dmax(n, e) | n ∈ I(tpexp), e ∈ I(expr)}

Satisfaction by interpretations:

We now define the logical satisfaction relation I |= φ be-

tween PathLP interpretations I and formulas φ recursively as

follows:

1. Elementary formulas:

– Membership: I |= t : s, where t, s are terms, if and

only if I(t) ∈D I(s).
– Subtyping: I |= t :: s, where t, s are terms, if and

only if I(t) ≺D I(s).
– Guarded path expression with or without a multiplic-

ity constraint: I |= p, where p is a guarded path

expression, if and only if I(p) is non-empty.

– Comparison formulas: I |= (t = s), where t, s
are terms, if and only if I(t) = I(s). Likewise,

I |= t < s, if and only if I(t) < I(s) (assuming

I(t), I(s) evaluate to numbers). The definition of

satisfaction for the remaining comparisons is similar.

2. Query formulas:

– And: I |= t and s if and only if I |= t and

I |= s.

– Or: I |= t or s if and only if ei-

ther I |= t or I |= s.

– Not: I |= not t if and only if it is not the case

that I |= t.

3. Rules and facts: I |= (t : − s) if and only if either I |= t
or I 6|= s. This also covers the case of satisfaction for

PathLP facts, since we can view any fact t as a rule of the

form t : − true.

4. Constraints: I |= (!− query f ormula) iff I 6|=
query f ormula.

A PathLP interpretation that satisfies the facts, rules, and con-

straints of a PathLP specification is a legal interpretation (or

a “model” in the logic terminology) of that specification. As

usual in logic programming, we focus on canonical legal inter-

pretations. Without negation (not) and constraints, there is a

unique least interpretation (Lloyd 1987), which is taken as the

canonical interpretation. With negation (but ignoring the con-

straints), canonical interpretations are defined as three-valued

well-founded interpretations (Van Gelder et al. 1991), which

generalizes the concept of a least interpretation. Any PathLP

specification (leaving aside the constraints) has a unique well-

founded interpretation. We will not define such interpretations

here because this is quite involved and is not needed for un-

derstanding the rest of the paper. If a canonical interpretation

satisfies the constraints of a PathLP interpretation then it is also

a legal canonical interpretation. Note that even though a canoni-

cal interpretation always exists and is unique, it may not satisfy

the constraints and thus no legal canonical interpretation may

exists.

A PathLP specification is satisfiable if it has a canonical

legal interpretation. An answer to a query ?- queryformula is

the set of all instantiations of variables in queryformula, such

that it is satisfied in the canonical legal interpretation.

Without negation, PathLP reduces to classical logic analo-

gously to the reduction of F-logic to classical logic (Kifer et al.

1995b), and it is semi-decidable. With negation, it reduces to

logic programs with the well-founded semantics (Van Gelder

et al. 1991) and can be implemented on top of a tabling deduc-

tive engine, like XSB (Swift and Warren 2011), similarly to the

Flora-2 implementation of F-logic (Kifer 2007; Yang and Kifer

2003). Without function symbols, PathLP is decidable and has

polynomial data complexity, even with negation.

Object-oriented characteristics of PathLP: The semantics of

PathLP satisfies the essential characteristics of object-oriented

modeling (note the analogy with the object-oriented characteri-

zation of class modeling, at the end of Section 2.2):

1. transitivity of subtyping:

?Sub ::?C : − ?Sub ::?MidC, ?MidC ::?C;

2. inheritance of supertypes by properties and attributes:

?C!?prop[?SuperT] : − ?C!?prop[?T], ?T ::?SuperT;

3. property/attribute inheritance by subtypes:

?SubC!?prop[?T] : − ?C!?prop[?T], ?SubC ::?C;

4. type membership through subtyping:

?obj :?C : − ?obj :?MidC, ?MidC ::?C;

5. the well-typing constraints from Section 3.2:

!− ?obj.?prop[?val], not (?C!?p[?T], ?obj :?C);
!− ?C!?prop[?Type], ?obj :?C, ?obj.?prop[?val],

not ?val :?Type;

4. FOML – A Language for Class and Object

Modeling

FOML is a conceptual layer on top of PathLP that is intended

to support object modeling. It is built to directly represent

Logic-based Software Modeling with FOML 11

class and object models, and to support metamodeling. It can

represent multilevel and domain specific modeling (Balaban

et al. 2018) and can also support multiple conceptual models.

This section describes the FOML language, its capabilities as a

modeling language, and proves the correctness of its class and

object modeling.

FOML (Khitron et al. 2017) naturally supports model-level

activities, such as constraints and inference rules, extending

explicit class modeling with UML diagrams, dynamic compo-

sitional modeling (intensional and transformational), reason-

ing about models (e.g., on-the-fly querying), model testing,

meta-reasoning, which is used for analysis of models, and meta-

modeling which can be used for Domain Specific Modeling.

Meta-modeling in FOML relies on the uniform status of types

and instances in PathLP, and it is being used for multilevel mod-

eling. As an executable modeling language, FOML can express

and reason about multiple crosscutting multilevel dimensions.

As a modeling language, FOML can support both model and

metalevel modeling. At the model level, FOML can account

for modeling diagrams, reasoning extensions, constraints, and

query-answering. At the meta-level, FOML can be used for

model analysis, for reasoning about model properties, and for

checking structure and inter-relationships of models.

4.1. Model Level Modeling with FOML

FOML provides a textual encoding for class and object models,

using PathLP statements, mainly type and object path expres-

sions, and subtyping and membership facts.

Class model encoding in FOML: A class model consists of

declarations of classes, their attributes, properties and associa-

tions, plus optional class-model constraints. PathLP type path

expressions are used to specify classes with their properties and

attributes, and the associated multiplicities. PathLP subtyping

is used for class hierarchy constraints. All other class model

constraints, and declaration of associations and their properties

are specified using PathLP object path expressions, together

with FOML reserved keywords, which are marked with the "$"

prefix. The FOML account for the additional constraints is

formulated within PathLP. Section 4.2.2 defines the three class

model constraints in Figure 1: generalization-set, association

class and subsetting.

As a reasoning system, FOML can infer derived status of el-

ements. Therefore, derived elements are not explicitly declared

in the encoding. In particular, inverse properties can be inferred

from association declaration, default multiplicities ({0..∗}) and

default types (Any) can be inferred and omitted, class hierarchy

can be inferred from GS (generalization-set) constraints, and

multiplicity can be inferred from subsetting constraints. The

FOML encoding of the class model in Figure 1 is shown in List-

ing 1. In the meta modeling section below, we show how FOML

accounts for the intended meaning of the builtin constraints.

1 GPU:: Hardware;

2 Computer :: Hardware;

3 % generalization set constraint

4 Software.$GS(OS,CompAppl)[disjoint];

5 ComputingAPI :: CompAppl;

6

7 Hardware!tested(date)[String];

8 Hardware!part[Hardware];

9 partParent.$props[part ,parent];

10 Hardware!softw[Software]{1..∗};

11 hardwSoftw.$props[hardw ,softw];

12

13 GPU!gComp[Computer]{1..∗};

14 gUnitComp.$props[gComp , compG];

15 % subsetting constraint

16 compG.$subsets[part];

17 GPU!gApi[ComputingAPI]{1..∗};

18 gpuApi.$props[gApi , apiGunit];

19 % subsetting constraint

20 gApi.$subsets[softw];

21

22 Computer!os[OS]{1..∗};

23 compOs.$props[os,osComp];

24 % subsetting constraint

25 os.$subsets[softw];

26

27 CompAppl!applOs[OS]{1..∗};

28 osCompAppl.$props[osAppl ,appplComp];

29 CompAppl!alt1[CompAppl];

30 alternative.$props[alt1 ,alt2];

31 CompAppl!category[String];

32

33 CompAppl!applApi[ComputingAPI]{1..∗};

34 compApplApi.$props[apiAppl ,applApi];

35

36 % association class constraint

37 gpuApi.$assocClass[GPUAPI];

38 GPU!gpuAppl[CompAppl]{1..∗};

39 compApplGApi.$props[gApiAppl ,applGApi];

Listing 1 Example of FOML encoding of the class model of

Figure 2

Object model encoding in FOML: An object model (in-

stance) for a class model CM consists of object memberships

of classes of CM, their attribute values, and their links. In

Herbrand instances, the objects are symbols from O. FOML

encodes finite Herbrand object models, using: (1) PathLP mem-

bership facts for object membership encodings, and (2) PathLP

object path expressions for link encodings. Like the compact

representation of object models, the FOML encoding is com-

pact, i.e., relying on the inference capabilities of FOML, it

avoids declaration of derived object memberships and links. For

example, inverse links are not declared, object memberships

are declared only if they are not part of any link. Moreover,

object memberships and links are inferred from class model

constraints like class hierarchy and subsetting, and also based

on user inference rules that are associated with the class model.

A compact FOML encoding of the object model from Fig-

ure 2 is shown in Listing 2. The object-level mapping of an

association class constraint, enables the direct path between

the NvidiaCUDA object of the association class GPUAPI and its

associated objects CUDA, Nvidia.

1 ThinkPad.os[Linux ,Windows];

2 ThinkPad.compG[Nvidia];

3

4 Linux.osAppl[Foxit];

5 Windows.osAppl[Acrobat];

6

7 Acrobat.category ["pdf"];

8 Acrobat.alternative[Foxit];

9

10 NvidiaCUDA:GPUAPI;

12 Mira Balaban et al.

11 NvidiaCUDA.gApi[CUDA];

12 NvidiaCUDA.apiGUnit[Nvidia];

13

14 cuDNN.applGApi[NvidiaCUDA];

15 cuDNN.applOs[Linux];

16 cuDNN.category ["NN"];

Listing 2 Example of FOML encoding of the object model of

Figure 2

This compact encoding leaves out multiple derived object mem-

berships and links. For example, the link Nvidia.gApi[CUDA]

is implied from the $assocClass mapping of NvidiaCUDA

to the link (Nvidia,CUDA) of association gpuApi, and as-

sociation class rule (4) in Section 4.2.2 (page 15). The link

ThinkPad.softw[Linux] is implied from the subsetting

constraint on os. Class memberships of objects derive from

property specification in the class model, and from class hier-

archies. The link cuDNN.applApi[CUDA] is implied from user

inference rule (2) on page 14. The "pdf" category of Foxit

is also omitted, since it is implied from user inference rules

about the alternative property and the category attribute

of CompAppl objects, on page 14.

Correctness of FOML modeling of class and object mod-

els: We show that for basic class models, that include only

classes, properties, and multiplicity and class hierarchy con-

straints, the FOML encoding preserves the legal status of an

instance. Extension to include attributes can be similarly proved.

Extension for additional class model constraints depend on their

FOML axiomatization (see Section 4.2.2) and is beyond the

scope of this paper.

Definition 1 (FOML encoding for basic class models and Her-

brand instances). The FOML encodings of a class model CM
and of a finite Herbrand instance H, are denoted CMFOML and

HFOML, respectively.

Let CM be a basic class model and H be its valid Herbrand

instance.

– Construction of CMFOML:

- If CM includes an association a(C
q p

n..N m..M
D)

then CMFOML includes type path expressions

C!p[D]{m..M}, D!q[C]{n..N}, and the rules

?o.p[?u] : −?u.q[?o];
?o.q[?u] : −?u.p[?o];

- If CM includes a class hierarchy constraint C ≺ D,

then CMFOML includes the subtyping fact C :: D,

– Construction of HFOML:

- for any object symbol o such that o ∈ CH , HFOML

includes the membership fact o : C.

- if a link a(o
p q

u) is in H then HFOML in-

cludes the object path expression facts: o.q[u] and

u.p[o].

As an application of Logic Programming, the semantics of

FOML is determined with respect to the canonical interpreta-

tion of HFOML ∪CMFOML. In general, the definition of canon-

ical interpretation is quite involved (FOML uses Herbrand well-

founded interpretations (Van Gelder et al. 1991)), but for basic

class models the canonical interpretation is simply the least Her-

brand interpretation that satisfies HFOML ∪ CMFOML (Lloyd

1987). A canonical interpretation always exists, is unique, and

has a number of convenient properties.

We say that HFOML is a valid FOML instance for CMFOML

if HFOML ∪CMFOML has a well-typed (see Section 3.2) canon-

ical interpretation. Note that even though a canonical interpre-

tation always exists, a well-typed canonical interpretation may

not. The following claim states that the encoding of basic class

models is correct with respect to finite instances.

Claim 2 (Correctness of FOML encoding for basic class mod-

els).

Let CM be a basic class model and H be a finite Herbrand

instance of CM. Then HFOML is a valid FOML instance of

CMFOML if and only if H |= CM.

Proof. (Sketch) CMFOML and HFOML are constructed by the

rules shown in Definition 1. This construction guarantees the

following:

1. property typing, their multiplicity constraints and class

hierarchy constraints stand in 1:1 correspondence with

type path expressions and subtyping facts in CMFOML

2. object memberships and links in H stand in 1:1 correspon-

dence with object path expressions and membership facts

in HFOML.

Based on the construction of the FOML encoding, and the

common object-oriented characteristics of legal PathLP inter-

pretations (listed at the end of Section 3) and of class modeling,

it can be shown that H satisfies the constraints in CM if and

only if HFOML ∪ CMFOML has a well typed canonical inter-

pretation.

An important aspect of FOML involves querying and in-

ference. Since the semantics of FOML is defined through

the canonical interpretation of HFOML ∪ CMFOML, query an-

swering reduces to the evaluation of queries in that canonical

interpretation. It can also be shown that for a variable-free

FOML query γ, if it holds in the canonical interpretation of

HFOML ∪ CMFOML then γ holds in H.

4.1.1. Querying, constraining and extending class mod-

els. A modeler can query a given object model of a class

model and can extend a declared class model using inference

rules written in PathLP under FOML conventions. Such rules

can infer new data elements for an object model, like new links

between objects, infer missing attribute values, or derive class

memberships. The rules can also define new intensional ele-

ments, i.e., model elements that are constructed based on explic-

itly declared ones.

Query-answering. Find GPU units and their computers:

?- ?gpu.gComp[?c], ?c:Computer;

Answer:

?gpu = Nvidia,

?c = ThinkPad.

Logic-based Software Modeling with FOML 13

Find all Software objects that have a related hardware:

?- ?soft.hardw[?hard];

Answers:

?soft=Linux, %% Answer 1

?hard=ThinkPad;

?soft=Windows, %% Answer 2

?hard=ThinkPad;

?soft=CUDA, %% Answer 3

?hard=Nvidia.

The first query is answered, based on the inverse property and

property declaration in the class model specification. The sec-

ond query is answered based on the semantics of the subsetting

constraint.

Constraining Class Models: Class models can be constrained,

similarly to the way they are constrained using OCL. Class

model constraints in FOML describe forbidden states (following

PathLP). Constraints are checked offline, in a separate correct-

ness testing, and not during regular runs.

An application that runs with a GPUAPI with some GPU card must run on

an operating system that runs on a Computer with that GPU unit:

!- ?appl.applGApi[?gApi], ?gApi.apiGUnit[?Gpu],

not (?appl.applOs[?Os], ?Os.osComp[?C], ?C.compG[?Gpu]);

The corresponding OCL constraint was shown in Section 2, just

before the start of subsection 2.1.

A computer must have at least one operating system on which a "pdf"

application runs:

!- ?c.os[?os], not (?os.osAppl[?appl],

not ?appl.category["pdf"]);

An equivalent OCL constraint:

Context Computer

inv: self.os.osAppl.category->includes("pdf")

A object cannot be simultaneously an API and an operating system:

!- ?o:OS, ?o:ComputingAPI;

An equivalent OCL constraint:

Context OS

inv: OS.allInstances()->intersection

(ComputingAPI.allInstances())-> isEmpty()

Intensional extension of object models:

Computer applications with a common category are alternative to each other:

?appl1.alternative[?appl2] :-

?appl1.category = ?appl2.category;

Alternative computer applications have a common category:

?appl1.category[cat] :-

?appl1.alternative[?appl2],?appl1.category[?cat];

The alternative association is symmetric:

?appl1.alternative[?appl2] :- ?appl2.alternative[?appl1];

If an application runs on an operating system that runs on some computer,

then the application is a software on that computer:

?C.softw[?Appl]:- ?C.os[?OS], ?OS.osAppl[?Appl]; (1)

If a computer application runs using a pair of GPU and Computing API

element (the applGApi property), then it implements that API (the

applApi property):

?appl.applApi[?compAPI] :- (2)

?appl.applGApi.gApi[?compAPI];

The latter rule implies the missing link,

cuDNN.applApi[CUDA] in the object model of Exam-

ple 2. Without that, the instance is illegal, as the multiplicity

constraint of property applApi is not satisfied for object

cuDNN.

User rules that add derived (new) intensional properties or

attributes:

If an application runs on an operating system that runs on a computer,

then the application can be installed on that computer:

?appl.install[?C] :- (3)

?appl.applOs[?Os], ?os.osComp[?C];

API objects that are linked to GPU objects can be classified as

graphics APIs:

?api.graphics[true] :- ?api.apiGUnit[?];

?api.graphics[false] :- not ?api.apiGUnit[?];

4.2. Metalevel Modeling with FOML

The FOML meta-modeling capability enables specification of

intensional structures of model elements, definitions of model-

ing meta-constraints, analysis of class and object models, and

supporting general software engineering activities like testing

and syntactic correctness validation. Below, we shortly describe

the meta-modeling capabilities. The actual FOML system is

described in Section 5.

4.2.1. Higher-order Intensional Elements of Models

FOML enables specification of new inductive, parameterized,

intensional model elements, constructed on top of declared

properties, associations and classes. The most useful ones are

intensional parameterized properties, which are described using

graph-inspired terminology of edges, paths, and cycles in model

diagrams. FOML provides a library of higher-order constructors

for such elements. We describe some such structures below, in

order to provide a taste of this powerful capability.

Property composition: objects ?o and ?v are related via the

intensional property compose(?p1,?p2) if there is a "property

path" ?p1.?p2 from ?o to ?v:

?o.compose(?p1,?mid,?p2)[?v] :-

?o.?p1[?mid].?p2[?v];

For example, rules (1) and (3) above can be rewritten more

succinctly as follows:

?C.softw[?Appl]:- ?C.compose(os,osAppl)[?Appl]; (1’)

?appl.install[?C] :- ?appl.compose(applOs,osComp)[?C]; (3’)

Transitive closure: The parameterized property closure(?p)

describes the transitive closure of the reflexive property ?p:

?o.closure(?p)[?v] :- ?o.?p[?v];

?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v];

The transitive closure can be used to identify circularity of

reflexive properties, i.e., characterizing a circular path of ?p

related objects:

?p.circular[true] :- ?o.closure(?p)[?o];

14 Mira Balaban et al.

For example, in the class model in Figure 1, association

partParent between Hardware objects can be constrained to

be non-circular:

!- ?closure(part).circular[true]; % a forbidden state

A modeler can extend that class model with a new intensional

association that computes the parts of a Hardware object:

?o.hardware_parts[?partslist] :-

set(?part,

(?o:Hardware, ?o.closure(part)[?part]),

?partlist);

Here, set is an aggregate operator, which collects

all ?parts that satisfy the condition (?o:Hardware,

?o.closure(part)[?part]), and returns the list of these

?parts.

The metamodel of class models, which FOML uses for check-

ing correctness of a user model (see Section 5), uses closure and

circular to specify that class hierarchies are not circular. The

metamodel includes the following constraint:

!- ?closure($subclass).circular[true]; % a forbidden state

Property composition and circularity can be extended to

inductively defined property paths and cycles:

Paths parameterized property: ?o and ?v are connected via

a chain of properties

?o.path([?p])[?v] :- ?o.?p[?v];

?o.path([?p|?chain])[?v] :- ?o.?p.path(?chain)[?v];

For example, a query for finding all objects accessible from

ThinkPad in the object model in Figure 2:

?- ThinkPad.path(?path)[?o];

On the metalevel, a class model can be queried for property

paths between classes. For example, Figure 1 can be queried

for property paths that end in class Computer:

?- ?Class.path(?path)[Computer];

or for property cycles:

?- ?Class.path(?path)[?Class];

Moreover, class models can be restricted not to have property

cycles:

!- ?Class.path(?path)[?Class];

4.2.2. Defining Meta-Constraints

FOML supports UML constraints using meta-classes, whose

semantics is built into PathLP. We show here the encoding of

the three constraints included in the class model of Figure 1:

Generalization set, association class, and subsetting.

Generalization-set constraint: A generalization set constraint

has the form

C.$GS(C1, . . . , Cn)[kind];
where n > 1 and kind can be disjoint, complete,

overlapping, incomplete or some subset of these. The

semantics is subtyping Ci :: C, for i = 1, . . . , n, plus the kind
relation between any Ci, Cj, where i, j = 1, . . . , n.

?sub::?super :-

?super.$GS(?cls_lst)[?],?cls_lst._member[?sub];

?sub1.$disjoint[?sub2l] :-

?super.$GS(?cls_lst)[disjoint],

?cls_lst._member[?sub1],?cls_lst._member[?sub2],

?sub1 != ?sub2;

!- ?C.$disjoint[?D], ?o:?C,?o:?D;

Association class: An association class constraint has the form

a.$assocClass[C];

where a is an association and C its association class. The se-

mantics requires a bijective mapping between objects of the

association class and links of the association. The mapping is

encoded by direct navigation from an association class object to

the objects of its associated link:

In the class model: gpuApi.$assocClass[GPUAPI];

In the object model: NvidiaCUDA:GPUAPI;

NvidiaCUDA.gApi[CUDA];

NvidiaCUDA.apiGUnit[Nvidia];

The bijective restriction on association class mappings are ex-

pressed using these PathLP constraints:

A link of an association has a single corresponding object in its associa-

tion class:

!- ?a.$assocClass[?AC], ?a.$props[?p1,?p2], ?o1.?p1[?o2],

not (?ac:?AC, ?ac.?p1[?o1], ?ac.?p2[?o2]);

!- ?a.$assocClass[?AC], ?a.$props[?p1,?p2], ?o1.?p1[?o2],

?ac:?AC, ?ac.?p1[?o1], ?ac.?p2[?o2],

?ac’:?AC, ?ac’.?p1[?o1], ?ac’.?p2[?o2],

?ac != ?ac’;

An association class object has a single corresponding link in the associa-

tion of that class:

!- ?a.$assocClass[?AC], ?a.$props[?p1,?p2], ?ac:?AC,

not (?ac.?p1[?o1], ?ac.?p2[?o2]);

!- ?a.$assocClass[?AC], ?a.$props[?p1,?p2], ?ac:?AC,

?ac.?p1[?o1], ?ac.?p2[?o2],

?ac.?p1[?o1’], ?ac.?p2[?o2’],

(?o1 != ?o1’ or ?o2 != ?o2’);

In addition, an association class object implies the relevant

associated link:

?o1.?p2[?o2] :- (4)

?a.$assocClass[?AC], ?a.$props[?p1,?p2], ?ac:?AC

?ac.?p1[?o1], ?ac.?p2[?o2];

The last rule accounts for the “missing” link

Nvidia.gApi[Nvidia] in the FOML encoding of Fig-

ure 2, in Listing 2.

Subsetting: A subsetting constraint has the form

p.$subsets[q];

where p, q are properties. The semantics means property subtyp-

ing, i.e., links of p are also links of q. The semantics is encoded

in FOML by the rule:

?o1.?q[?o2] :- ?o1.?p[?o2], ?p.$subsets[?q];

Using this rule, the object model encoding in Listing 2 infers

the necessary link ThinkPad.softw[linux].

Logic-based Software Modeling with FOML 15

4.2.3. Analysis of Models

FOML metamodeling base includes metaclasses like

$Class, $Attribute, $Association, $Property, and

accounts for their inter-relationships, dependencies, and con-

straints. Using these facilities, FOML can analyze and control

class and object models. Here are some examples of model

querying:

Find all properties whose minimum multiplicity is 1:

?- ?prop:$Property,

?SrcClass!?prop[?TrgClass]{1 .. ?};

Find pairs of properties of the same association:

?- ?assoc.$props[?prop1,?prop2];

Find reflexive properties:

?- ?Class!?prop[?Class];

Find classes that are accessible from class Computer:

?- Computer.path(?proplst)[?target];

Meta-facilities can be used to introduce a fine characterization

of properties:

?p.kind[injective] :-

?p:$Property,inverse(?p).min[0],inverse(?p).max[1];

?p.kind[surjective] :-

?p:$Property,inverse(?p).min[1],inverse(?p).max[*];

?p.kind[bijective] :-

?p.kind[injective],?p.kind[surjective];

?o2.?p[?o1] :- ?p.symmetric[true],?o1.?p[?o2];

Other software engineering activities that analyze and test

models, are described in the next section.

5. The FOML Tool

The FOML querying and verification tool (Khitron et al. 2017)

is implemented in PathLP and also uses PathLP to specify class

and object models as well as to query them. For example, both

class model constraints like association class or property subset-

ting, and metamodel constraints, and model verification queries

are expressed in PathLP. A modeling activity, like instance

checking, which is largely based on the concept of well-typed

instances from Section 3, is implemented as a set of PathLP

constraints.

The underlying language of the PathLP subsystem of the

FOML tool consists of the “pure” part, as described in Sec-

tion 3, and for practical reasons it is augmented with support

for arithmetic, aggregate functions (e.g., sum, count), I/O, and

other useful builtins. It is also supported by various libraries for

traversing graphs of linked objects and types, some written in

PathLP and some in Prolog. The examples in Section 4.2.1 rely

on these libraries.

The interface of the FOML tool provides several contexts,

each tailored to a different software modeling activity that an

end user might be engaged in.

1. Meta-reasoning and analysis of class and object mod-

els:

– Class models: In this context, a user can load and

then query the content of a class model. Analy-

sis queries in this context are demonstrated in Sec-

tions 4.2.1 and 4.2.3. The meta-analysis of class mod-

els relies on an internal PathLP library that captures

the inter-relationships and constraints, as described

in Section 2.1. This library accounts also for implied

elements and default values that are not explicitly

declared, like missing association or property names.

For example, if in Listing 1, in Section 4.1, the as-

sociation name partParent is omitted, the FOML

tool complements it as $assoc(part,parent), or

if property gComp is not specified, the tool adds it

as $inverse(compG). Moreover, the tool adds miss-

ing default specifications, like 0..* multiplicity con-

straints or Any as the value type of an attribute.

Meta-analysis of class models provides also metric

information like size (e.g., number of classes), struc-

ture (e.g., property cycles in the model), and class-

hierarchy structure (e.g., multiple inheritance).

– Object models: This context supports similar anal-

ysis of an object model. That is, a user can load an

object model for an already loaded class model, and

query its content and structure. As we have already

seen in querying the object model in Listing 2, in

Section 4.1, the encoding does not declare implicit

information. The meta-analysis context knows to

infer implied data like implied links and object mem-

berships.

2. Querying class and object models: In this context, a user

can load an object model for an already loaded class model,

and query inferred information. Querying and inferences

in this context is demonstrated in Section 4.1.1.

3. Verification and validation of class models: In this con-

text, a user can load an object model for an already loaded

class model, and check whether the object model is a legal

instance of the class model, i.e., satisfies all class model

constraints. This context is for testing and validation. Neg-

ative tests, i.e., tests to find illegal instances, can be used

to find constraint violations.

4. Syntactic correctness: This context enables checking the

syntactic correctness of class and object models, i.e., check-

ing whether a user model satisfies the constraints of its

metamodel. To apply this context a user first loads the tex-

tual representation of a class model or of an object model

for a syntactically correct class model.

– Class models: A syntactically correct class model is

a legal instance of the metamodel of class models, de-

noted MMCM. To check this correctness the FOML

tool creates a representation of the class model as an

instance of MMCM. This object model representa-

tion is created as a PathLP model transformation from

a class model to the concrete syntax of object mod-

els. Once this object model of MMCM is created, it

is validated in the above verification and validation

context.

– Object models: In this context, simple meta rules

like requirements that an object model includes only

objects and links of classes and properties of the

class model are checked. Similarly, object attributes

16 Mira Balaban et al.

should refer to appropriate class attributes. Yet, the

syntactic check must rely on the meta-reasoning con-

text, for inference of implied data that is not explicitly

declared, as we have seen in Listing 2, in Section 4.1

.

The FOML tool can simultaneously support multiple class

and object models. Each context can switch between models

at will. This unique feature allows one to reason about several

models simultaneously. For example, class models for different

viewpoints of a domain can be queried for common classes, or

agreement (or lack of) of common attribute types of common

classes. This feature enables support in multilevel modeling.

Indeed, there is in-progress project that aims to develop a multi-

level modeling component for the FOML tool, along the lines

of (Balaban et al. 2018).

Below, we present a sample session with the FOML tool.

To help focus on the important, we remove some inessential

chatter from the session. In this sample session, we assume

that the class model of Listing 1 is in the file computer.cls

and the object model of Listing 2 is in the file computer.obj.

Commands entered by the user are shown in boldface, while

mono-font is reserved for the chatter coming from the tool. The

regular roman font is used for our in-line clarifications. For

easier understanding, we use a menu-driven interface, which

provides high-level functions of FOML, like loading and verifi-

cation. To ask queries, we escape to the “expert” mode, which

is essentially the PathLP command line mode. An experienced

user can conduct the entire dialog via the expert mode.

cmd> pathlp ## start PathLP in OS command window

PathLP > ?- foml; %% start FOML

1 - load class model

2 - load class and object models

3 - check class model syntax

4 - check object model syntax

5 - check legality of instance

6 - list folder

7 - switch to FOML expert mode

8 - exit PathLP

foml > 1 %% choose option 1

Class model file name: computer.cls

the current model is ’computer.cls’

foml> 7 %% let’s ask some class model queries

PathLP computer.cls > ?- Computer!?prop[?type];

?prop = os %% answers

?type = OS

?prop = softw

?type = Software

?prop = part

?type = Hardware

?prop = tested(date)

?type = String

PathLP {computer.cls} > ?- foml; %% back to FOML menu inter-

face

foml> 2 %% now choose option 2

Class model file name: computer.cls

Object model file name: computer.obj

the current model is ’computer.obj’

foml> 5 %% let’s check legality

Checking object model ’computer.obj’

All constraints are satisfied.

foml> 7 %% let’s ask some object queries

PathLP {computer.obj} > ?- ThinkPad.os[?X];

?X = Linux %% answers

?X = Windows

PathLP {computer.obj} > ?- halt; %% going home now

cmd> ## back to OS command window

6. Related Work

Development and study of software modeling frameworks and

tools has been the focus of intensive research over the last

decade. On the practical level, many frameworks, environments

and tools have been developed and used, with the goals rang-

ing from education, to academic research, to experimental and

commercial tools. In industrial-strength software, we find pro-

fessional modeling tools like EMF (Steinberg et al. 2008; EMF

2017) with its Papyrus modeling environment (IBM 2020a),

RSA (IBM 2020b), Magicdraw (Magic 2020), and the Epsilon

family of model management languages (Kolovos et al. 2008;

Epsilon 2017). These systems support activities like model

specification, investigation using model metrics, transformation

and code generation.

Theoretical study of software models concentrate on for-

mal aspects of their properties and management procedures.

The need for semantics of class models has led to multiple ap-

proaches concerning desirable interpretations and extensions,

including (1) translational approaches, mainly to logic (Berardi

et al. 2005); (2) graph-based approaches (Kleppe and Rensink

2008), and direct set-based approaches (Calvanese et al. 1998;

Balaban and Maraee 2013). The main theoretical questions

concerning correctness of class models focus on issues of their

consistency (Satoh et al. 2006), finite satisfility (Calvanese 1996;

Balaban and Maraee 2013; Feinerer and Salzer 2013) and sim-

plification (Feinerer et al. 2011; Taupe et al. 2016; Balaban and

Maraee 2019).

While deciding correctness problems of UML class models

is hard (EXPTIME-complete (Berardi et al. 2005; Lutz et al.

2005; Artale et al. 2010)), it is nevertheless decidable. With the

addition of OCL, all problems turn undecidable (yet EXPTIME-

complete for the UML/OCL-lite fragment (Queralt et al. 2012)).

UML/OCL applications usually rely on off-the-shelf solvers

and theorem provers for validating and checking correctness of

models. Most applications use bounded inference, i.e., size of

model instances is restricted in advance.

UMLtoCSP (Cabot et al. 2007, 2014) translates UML/OCL

models into Constraint Satisfaction Problems (CSP) for check-

ing correctness properties, including consistency, bounded finite

Logic-based Software Modeling with FOML 17

satisfiability, independence of invariants and instance comple-

tion. Alloy (Jackson 2002a, 2006), a relational-logic modeling

language that is built on top of a SAT solver, is frequently used

for verification of small models via instance generation and

completion. Such applications rely on translation of UML/OCL

specifications into Alloy (Anastasakis et al. 2010; Maoz et al.

2011). HOL-OCL (Brucker and Wolff 2008) is a theorem prov-

ing environment that supports interactive proofs of consistency,

instance validation and query answering for UML/OCL models.

USE is a modeling environment that supports validation and

verification of UML/OCL models (Gogolla et al. 2005, 2009;

Kuhlmann et al. 2011). USE is also popular as an education

system for teaching software modeling. Another popular educa-

tional system is Umple (Forward et al. 2012), which supports

model-based code generation.

Logic programming-based approaches use logic rule-based

encodings of class models for supporting inference and answer

querying. In (Cali et al. 2012), Datalog± (Calì et al. 2012) is

used for characterizing Lean UCD, a set of class models with

a restricted subset of OCL constraints, for which conjunctive

query answering of instances is tractable (measured in the size

of instances). In (Malgouyres and Motet 2006), a syntax verifi-

cation approach for UML models is described, which encodes

UML metamodels in Constraint Logic Programming. Similar,

but more general, verification is part of FOML (the syntactic

correctness reasoning context, see Section 5). F-logic (Kifer

et al. 1995a), which lies at the origin of FOML, is used in (Igam-

berdiev et al. 2014, 2016; Neumayr et al. 2016) as a basis for

multilevel modeling of software.

The FOML approach is quite different from those mentioned

above. It is based on PathLP, which offers a simple, intuitive

object-oriented syntax. It has a number of advantages and dis-

advantages with respect to SAT-based tools, like Alloy, which

support OCL. The main disadvantage of FOML is that SAT-

based tools can complete partial instances to full instances that

satisfy all constraints. In contrast, FOML can only check if

constraints are satisfied in a particular instance and therefore

combining FOML with SAT-based tools is highly desirable.

On the other hand, the strong points of FOML include support

for meta-modeling, patterns, recursion, model querying, anal-

ysis, and testing. The model analysis and the testing features

of FOML are made possible due to FOML being a Turing-

complete executable logic language. Other logic programming

based approaches to software modeling, like Datalog± (Calì

et al. 2012), tend to sacrifice expressivity and functionality for

gains in decidability and guarantees on efficiency.

7. Conclusion and Future Work

We have presented FOML, an expressive logic-based executable

modeling language and tool (Khitron et al. 2017), that could ben-

efit intelligent software modeling systems. FOML is designed

as a conceptual layer on top of the PathLP path expression lan-

guage. PathLP already has a functioning implementation, and

most of FOML has been implemented and is usable for experi-

mentation as well. Moreover, support for multilevel modeling

is also on the way.

The FOML tool offers a unique combination of contexts for

software modeling activities, including support for model level

querying and inference, meta-level analysis, validation (testing),

and syntactic correctness checking. It is unique in its ability

to simultaneously handle multiple models, which opens up the

possibility to support activities like model merging, comparison,

and dealing with model inter-relationships.

A planned future development of the FOML tool involves

extending the underlying PathLP language in the direction of

HiLog and Transaction Logic (Chen et al. 1993; Bonner and

Kifer 1998, 1994). Such extensions can add further flexibility to

the PathLP language, and would enable support for behavioral

models. In addition, we plan on adding a visual UI to the tool,

preferably, via integration with an existing visual open source

application for UML models.

We furthermore plan on extending the FOML tool by integrat-

ing it with other modeling software to complement the existing

capabilities. One such possible tool is FiniteSatUSE (BGU

Modeling Group 2018), which detects, identifies and provides

advice for finite satisfiability problems in class models, and also

performs optimization of multiplicity constraints (Balaban and

Maraee 2019).

A different promising direction involves integration with

software modeling tools like USE (Gogolla et al. 2005) or

Umple (Forward et al. 2012), which also complement the func-

tionality of FOML. USE is now integrated with SAT solvers that

can determine satisfiability of a UML/OCL class model and sup-

port instance creation and completion (Kuhlmann et al. 2011).

Umple adds the capability of code generation, and FOML can

be integrated as a reasoning system, on top.

Acknowledgments

We would like to thank Azzam Maraee for helpful discussions.

This work is supported in part by the BSF Grant 2017742 and

NSF Grant 1814457.

References

Anastasakis, K., Bordbar, B., Georg, G., and Ray, I. (2010). On

Challenges of Model Transformation from UML to Alloy.

Software and Systems Modeling, 9(1):69–86.

Artale, A., Calvanese, D., and Ibánez-Garcıa, A. (2010). Full

satisfiability of UML class diagrams. In Proc. of the 29th Int.

Conf. on Conceptual Modeling (ER 2010).

Atkinson, C. and Kühne, T. (2001). The essence of multilevel

metamodeling. In UML, pages 19–33. Springer.

Atkinson, C. and Kühne, T. (2008). Reducing accidental com-

plexity in domain models. Software & Systems Modeling,

7(3):345–359.

Balaban, M., Bennett, P., Doan, K. H., Georg, G., Gogolla, M.,

Khitron, I., and Kifer, M. (2016). A Comparison of Textual

Modeling Languages: OCL, Alloy, FOML. In 16th Interna-

tional Workshop on OCL and Textual Modeling, Models.

Balaban, M., Khitron, I., Kifer, M., and Maraee, A. (2018).

Formal executable theory of multilevel modeling. In CAISE.

Balaban, M. and Kifer, M. (2011). Logic-Based Model-Level

Software Development with F-OML. In MoDELS 2011.

18 Mira Balaban et al.

Balaban, M. and Maraee, A. (2013). Finite Satisfiability of UML

Class Diagrams with Constrained Class Hierarchy. ACM

TOSEM, 22(3):24:1–24:42.

Balaban, M. and Maraee, A. (2017). UML Class Diagram:

Abstract syntax and Semantics. https://goo.gl/UJzsjb.

Balaban, M. and Maraee, A. (2019). Removing redundant

multiplicity constraints in UML class models. Software &

Systems Modeling, 18:2717–2751.

Berardi, D., Calvanese, D., and Giacomo, D. (2005). Reasoning

on UML class diagrams. Artificial Intelligence, 168:70–118.

BGU Modeling Group (2018). FiniteSatUSE – A Class Model

Correctness Tool. https://goo.gl/svXQwj.

Bonner, A. and Kifer, M. (1994). An Overview of Transaction

Logic. Theoretical Computer Science, 133:205–265.

Bonner, A. and Kifer, M. (1998). A logic for programming

database transactions. In Chomicki, J. and Saake, G., editors,

Logics for Databases and Information Systems, pages 117–

166. Kluwer Academic Publishers.

Brucker, A. and Wolff, B. (2008). HOL-OCL: A Formal Proof

Environment for UML/OCL. In Fundamental approaches to

software engineering, volume 4961 of LNCS, pages 97–100.

Springer-Verlag.

Cabot, J., Claris, R., and Riera, D. (2007). Umltocsp: a tool for

the formal verification of UML OCL models using constraint

programming. In ASE 07, The twenty-second IEEE-ACM

international conference on Automated software engineering,

pages 547–548, New York, NY, USA.

Cabot, J., Clariso, J., and Riera, D. (2014). On the Verification of

UML/OCL Class Diagrams Using Constraint Programming .

Journal of Systems and Software, 93(0):1 – 23.

Calì, A., Gottlob, G., and Lukasiewicz, T. (2012). A general

datalog-based framework for tractable query answering over

ontologies. Web Semantics: Science, Services and Agents on

the World Wide Web, 14:57–83.

Cali, A., Gottlob, G., Orsi, G., and Pieris, A. (2012). Querying

UML Class Diagrams. In Foundations of Software Science

and Computational Structures, number 7213 in LNCS, pages

1–25. Springer Berlin Heidelberg.

Calvanese, D. (1996). Finite model reasoning in description

logics. In The 5th Int. Conf. on the Principles of Knowledge

Representation and Reasoning (KR-96).

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and

Rosati, R. (1998). Description logic framework for infor-

mation integration. In 6th Intl. Conf. on the Principles of

Knowledge Representation and Reasoning (KR’98), pages

2–13.

Chen, W., Kifer, M., and Warren, D. (1993). HiLog: A founda-

tion for higher-order logic programming. Journal of Logic

Programming, 15(3):187–230.

Deutsch, A., Sui, L., and Vianu, V. (1999). Xml path language

(xpath) version 1.0. w3c recommendation, the world wide

web consortium. In Journal of Computer and System Sciences

(JCSS) 2007; 73(3):442–474.

EMF (2017). Eclipse modeling framework (emf). https://www.

eclipse.org/modeling/emf.

Epsilon (2017). Epsilon. https://www.eclipse.org/epsilon/.

Feinerer, I. and Salzer, G. (2013). Numeric Semantics of Class

Diagrams with Multiplicity and Uniqueness Constraints. Soft-

ware and Systems Modeling (SoSyM).

Feinerer, I., Salzer, G., and Sisel, T. (2011). Reducing Multi-

plicities in Class Diagrams. In Model Driven Engineering

Languages and Systems, pages 379–393.

Forward, A., Badreddin, O., Lethbridge, T. C., and Solano, J.

(2012). Model-driven rapid prototyping with umple. Soft-

ware: Practice and Experience, 42(7):781–797.

France, R. and Rumpe, B. (2007). Model-Driven Development

of Complex Software: A Research Roadmap. In International

Conference on Software Engineering, pages 37–54.

France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A. (2006).

Model-Driven Development Using UML 2.0: Promises and

Pitfalls. Computer, 39:59–66.

Frankel, D. (2003). Model Driven Architecture: Applying MDA

to Enterprise Computing. Wiley-India.

Frohn, J., Himmeröder, R., Lausen, G., May, W., and Schlep-

phorst, C. (1998). Managing semistructured data with

FLORID: A deductive object-oriented perspective. Infor-

mation Systems, 23(8):589–613.

Gogolla, M., Kuhlmann, M., and Hamann, L. (2009). Consis-

tency, Independence and Consequences in UML and OCL

Models. In Proceedings of the 3rd International Conference

on Tests and Proofs, LNCS, pages 90–104. Springer-Verlag.

Gogolla , M., Bohling, J., and Richters, M. (2005). Validating

UML and OCL models in USE by automatic snapshot gener-

ation. Journal on Software and System Modeling, 4:386–398.

Henderson-Sellers, B. (2012). On the mathematics of mod-

elling, metamodelling, ontologies and modelling languages.

Springer Science & Business Media.

IBM (2020a). Eclipse papyrus. https://www.eclipse.org/

papyrus/.

IBM (2020b). Ibm rational software architect de-

signer. https://www.ibm.com/developerworks/downloads/r/

architect/index.html.

Igamberdiev, M., Grossmann, G., Selway, M., and Stumptner,

M. (2016). An integrated multi-level modeling approach for

industrial-scale data interoperability. Software & Systems

Modeling, pages 1–26.

Igamberdiev, M., Grossmann, G., and Stumptner, M. (2014).

An Implementation of Multi-Level Modelling in F-Logic. In

1st International Workshop on Multi-Level Modeling (Multi

2014), pages 33–42.

Jackson, D. (2002a). Alloy: A Lightweight Object Modelling

Notation. ACM Transactions on Software Engineering and

Methodology (TOSEM), 11(2):256–290.

Jackson, D. (2002b). Alloy: A new technology for software

modelling. In TACAS ’02.

Jackson, D. (2006). Software Abstractions: Logic, Language

and Analysis. The MIT Press.

Kern, H. and Kuhne, S. (2007). Model interchange between

aris and eclipse emf. In 7th OOPSLA Workshop on Domain-

Specific Modeling at OOPSLA, volume 2007.

Khitron, I., Balaban, M., and Kifer, M. (2017). The FOML Site.

https://goo.gl/AgxmMc.

Khitron, I., Kifer, M., and Balaban, M. (2011a). An Overview

of PathLP: A Logic Programming Language of Path Expres-

Logic-based Software Modeling with FOML 19

sions. In IBM Programming Languages and Development

Environments Seminar, Haifa, Israel.

Khitron, I., Kifer, M., and Balaban, M. (2011b). PathLP: A

Path-oriented Logic Programming Language. The PathLP

Web Site. http://pathlp.sourceforge.net.

Kifer, M. (2007). FLORA-2: An object-oriented

knowledge base language. The FLORA-2 Web Site.

http://flora.sourceforge.net.

Kifer, M., G., L., and Wu, J. (1995a). Logical foundations of

object-oriented and frame-based languages. Journal of the

ACM, 42(4):741–843.

Kifer, M., Kim, W., and Sagiv, Y. (1992). Querying object-

oriented databases. In ACM SIGMOD Conf. on Management

of Data, pages 393–402, NY. ACM.

Kifer, M., Lausen, G., and Wu, J. (1995b). Logical foundations

of object-oriented and frame-based languages. Journal of

ACM, 42:741–843.

Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Explained:

The Model Driven Architecture(TM): Practice and Promise.

Addison-Wesley Professional.

Kleppe , A. and Rensink, A. (2008). On a graph-based se-

mantics for UML class and object diagrams. In Ermel, C.,

Lara, J. D., and Heckel, R., editors, Graph Transformation

and Visual Modeling Techniques, volume 10 of Electronic

Communications of the EASST. EASST.

Kolovos, D., Paige, R., and Polack, F. (2008). The epsilon

transformation language. In In International Conference on

Model Transformation.

Kuhlmann, M., Hamann, L., and Gogolla, M. (2011). Extensive

Validation of OCL Models by Integrating SAT Solving into

USE. In TOOLS EUROPE 2011, volume 6705, pages 290–

306. Springer.

Lloyd, J. (1987). Foundations of Logic Programming (Second

Edition). Springer-Verlag.

Lutz, C., Sattler, U., and Tendera, L. (2005). The complexity of

finite model reasoning in description logics. Information and

Computation, 199:132–171.

Magic, N. (2020). Magicdraw. https://www.nomagic.com/.

Malgouyres, H. and Motet, G. (2006). A uml model consistency

verification approach based on meta-modeling formalization.

In Proc. ACM Symp. on Applied Computing, pages 1804–

1809.

Maoz, S., Ringert, J., and Rumpe, B. (2011). CD2Alloy: Class

Diagrams Analysis Using Alloy Revisited. In Whittle, J.,

Clark, T., and Kühne, T., editors, Model Driven Engineering

Languages and Systems, volume 6981 of LNCS, pages 592–

607. Springer-Verlag.

Maraee, A. and Balaban, M. (2012). Inter-association Con-

straints in UML2: Comparative Analysis, Usage Recommen-

dations, and Modeling Guidelines. In MoDELS 2012.

Neumayr, B., Schuetz, C. G., Jeusfeld, M. A., and Schrefl, M.

(2016). Dual deep modeling: MLM with dual potencies and

its formalization in F-Logic. SoSyM, pages 1–36.

Object Management Group (OMG) (2012). Object Constraint

Language (OCL). Specification Version 2.3.1, OMG.

OMG (2017). UML 2.5.1. http://www.omg.org/spec/UML/2.5.

1/PDF.

Queralt, A., Artale, A., Calvanese, D., and Teniente, E. (2012).

OCL-Lite: Finite Reasoning on UML/OCL Conceptual

Schemas. Data & Knowledge Engineering, 73:1 – 22.

Satoh, K., Kaneiwa, K., and Uno, T. (2006). Contradiction

finding and minimal recovery for UML class diagrams. In The

21st IEEE Intl. Conf. on Automated Software Engineering,

pages 277–280.

Schmidt, D. (2006). Model-driven engineering. IEEE computer,

39(2):25–31.

Sendall, S. and Kozaczynski, W. (2003). Model transformation:

the heart and soul of model-driven software development.

Software, IEEE, 20(5):42 – 45.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.

(2008). EMF: eclipse modeling framework. Pearson Educa-

tion.

Swift, T. and Warren, D. (2011). Xsb: Extending the power of

prolog using tabling. Theory and Practice of Logic Program-

ming.

Taupe, R., Falkner, A., and Schenner, G. (2016). Deriving

tighter component cardinality bounds for product configu-

ration. In 18th International Configuration Workshop, (8

pages).

Van Gelder, A., Ross, K., and Schlipf, J. (1991). The well-

founded semantics for general logic programs. Journal of

ACM, 38(3):620–650.

Warmer, J. and Kleppe, A. (2003). The Object Constraint

Language: Getting Your Models Ready for MDA. Addison-

Wesley Publishing Co., Inc.

Yang, G. and Kifer, M. (2003). Inheritance in rule-based frame

systems: Semantics and inference. Journal on Data Seman-

tics, 2800:69–97.

About the authors

Mira Balaban is a Professor Emerita in the Computer Science

Department at Ben Gurion University, Israel. She is also a grad-

uate of music performance from the Rubin Academy of Music

in Tel-Aviv. Her research interests include software modeling,

with emphasis on correctness, optimization, languages and infer-

ence of models, programming languages, and Computer Music.

Contact her at mira@cs.bg.ac.il.

Igal Khitron is a Ph.D. candidate in the Department of Computer

Science at the Ben Gurion University in Israel. Contact him at

khitron@cs.bg.ac.il.

Michael Kifer is a Professor with the Department of Computer

Science, Stony Brook University, USA. His work spans the

areas of knowledge representation and reasoning (KRR), logic

programming, Web information systems, and databases. He

published four text books and numerous articles in these areas

as well as co-invented F-logic, HiLog, Annotated Logic, and

Transaction Logic. In 1999 and 2002, Kifer was a recipient

of the prestigious ACM-SIGMOD "Test of Time" awards for

his works on F-logic and object-oriented database languages

and in 2013 he received a 20-year "Test of Time" award from

the Association for Logic Programming (ALP) for his work

20 Mira Balaban et al.

on Transaction Logic. Kifer is also a recipient of Chancellor’s

Award for Excellence in Scholarship. To contact the author,

visit http://www.cs.stonybrook.edu/~kifer.

Logic-based Software Modeling with FOML 21

