An Optimal Iterative Placement Algorithm for PIR
from Heterogeneous Storage-Constrained Databases

Nicholas Woolsey, Rong-Rong Chen, and Mingyue Ji
Department of Electrical and Computer Engineering, University of Utah
Salt Lake City, UT, USA
Email: {nicholas.woolsey @utah.edu, rchen@ece.utah.edu, mingyue.ji@utah.edu}

Abstract—We propose a capacity-achieving scheme for private
information retrieval (PIR) from databases (DBs) with heteroge-
neous storage constraints. In the PIR setting, a user queries a set
of DBs to privately download a message, where privacy implies
that no one DB can infer which message the user desires. Our
PIR scheme uses an uncoded storage placement and we derive
sufficient conditions to meet capacity in this design architecture.
We translate the storage placement design to a “filling problem”
where messages are partitioned into sub-messages and stored
at subsets of DBs. We prove a set of necessary and sufficient
conditions for the existence of the filling problem solution and
design an iterative algorithm to find a filling problem solution.
Our proposed algorithm requires at most a number of iterations
equal to the number of DBs. Furthermore, we significantly reduce
the number of sub-messages compared to the state-of-the-art PIR
scheme, as our proposed PIR scheme requires that each message
is split into a polynomial number of sub-messages with respect
to the number of DBs.

I. INTRODUCTION

The private information retrieval (PIR) problem originally
introduced by Chor er al. [1], [2] has been recently studied
under an information theoretic point of view [3]. In the PIR
problem, a user privately downloads one of K messages from
a set of N non-colluding databases (DBs). Moreover, privacy
implies that no DB can infer which of the K messages the
user is downloading. To achieve privacy the user generates
strategic queries to the databases such that sub-messages from
all K messages are requested. To gauge the performance
of the PIR scheme, the rate, R, is defined as the ratio of
desired bits (size of each message), L, to the total number
of downloaded bits, D. In the traditional setting of full
storage PIR (FS-PIR), each DB has access to all K mes-
sages and the capacity, or maximum achievable rate, of PIR
is (1 + % + % I ﬁ)fl [3]. Multiple achievable
schemes have been developed which achieve FS-PIR capacity
by exploiting downloaded undesired sub-messages for coding
opportunities [3]-[5].

More recently, the problem of homogeneous storage con-
strained PIR (SC-PIR) was proposed such that each DB
can only store pKL symbols where % < p <1 [6]
The capacity of homogeneous SC-PIR was shown to be
(1+%+t%+-~-+t,%1)_1 where t = pN and t is an
integer [7], [8]. Different from FS-PIR, there is an additional

This work was partially funded by National Science Foundation grants
CCF-1817154 and SpecEES-1824558.

design aspect to SC-PIR such that the contents storage place-
ment must be strategically designed. For example, the original
homogeneous SC-PIR scheme met capacity [6] by using the
storage placement scheme of the coded caching problem [9].
In addition, two other storage placement designs for SC-PIR
which meet capacity were proposed in [10]. Ultimately, a
set of sufficient conditions to achieve homogeneous SC-PIR
capacity were derived in [10]. The conditions are: 1) a capacity
achieving FS-PIR scheme should be used for query generation
and 2) sub-message sets should always be stored at ¢ DBs (or
[t] and [t] DBs for non-integer t).

The SC-PIR problem was further generalized in [11] to
study the case where DBs have varying storage requirements.
In this setting, the storage capacity of the N databases are
defined by a vector p € RY, where RY denotes the set
of non-negative real-valued vectors in N-dimensional space,
such that DB,, can only store up to u[n]|K L symbols where
0 < u[n] < 1. Interestingly, using an information
theoretic proof, the authors showed that the capacity of
heterogeneous SC-PIR is the same as homogeneous SC-PIR
where ¢t = 25:1 p[n]. Furthermore, the authors translated
the storage placement problem into a linear program (LP).
A relaxed version of the LP demonstrated that to achieve
capacity, sub-message sets should be stored at ¢ DBs (or |¢]
and [t] DBs for non-integer ¢). This is similar to the conditions
of [10] for the homogeneous case. The authors of [11] also
showed the existence of a solution to the LP for general V.
However, the LP requires an exponential number of variables
with respect to N and an explicit solution was only derived
for N = 3 DBs.

In this paper, we aim to find a solution to the heterogeneous
SC-PIR storage placement problem for general N such that
capacity can be achieved. To do this, we show that the storage
placement problem can be translated to a filling problem (FP).
Then, we approach the FP by proposing an iterative algorithm
which places a sub-message set at ¢ DBs in each iteration
when ¢ is an integer. More specifically are contributions are:

1) We expand on our results in [10] to demonstrate a

fundamental connection between the placement problem
of heterogeneous SC-PIR and a filling problem (FP).

2) We derive a set of necessary and sufficient conditions

that guarantees the existence of a FP solution and show
that the heterogeneous SC-PIR problem inherently meets
this condition.

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 06:56:53 UTC from IEEE Xplore. Restrictions apply.

uin]

1.04 | | | I I I I I
I I I I I I I I
0.9 1 1 1 1 1 1 | |
1 I I I I I I 1 9 |
08 I I I I I I [|
0.7+ | I I I I I [
I I I I I 5 |
0.6 1 1 1 1 1 P! My)
ost I I I I 1 175 |
I I I I 1 i | |
0.44 1 1 1 1 _— M 1 9 |
I I I I [I | |
0.3+ 1 1 1 — 1 1
I 1 i i o9 1 | 1 og, |

02+ M
i i R I T T
01— 9, 1 3 I L% a0 | I
My] | 1 M] Ms | 1 M 1 Mo
DB, DB, DB, DB, DB, DB, DB, DBy

Fig. 1.

f |«[f]| o8, | DB, | DB, | DB, | DB; | DB; | DB, | DBy | t' | €
1 01]01]02|02[025 03|04 |065(09|30]| 0
- —
2 02| 0 |02|02|025(03|04]|055[08|27| 0
$ %

3 |02 0 |02|025/03|04|035]06|21]|0
- - -

4 |02 0 |025(03|02[035/04/|15| 0
3

5 | 0.1 025/ 03| 0 |015]02 09| 0

— .

6 |0.05 015 0.2 00502 | 06| 1
- —

7 |0.15 0.15|0.15 0 |015[045| 3
— -

- - 0] o 1o o -

A solution to the filling problem using Algorithm 1 when ¢ = 3 and p = [0.1, 0.2, 0.2, 0.25, 0.3, 0.4, 0.65, 0.9]. (left) A bar

graph depicting the storage requirements of the DBs and the storage placement solution. (right) A table representing the remaining storage
of the DBs for each iteration. The red arrows highlight which DBs are assigned a sub-message subset in each iteration.

3) We propose an iterative storage placement algorithm
which solves the heterogeneous SC-PIR placement prob-
lem for general NV and integer ¢.

4) We demonstrate that the proposed algorithm converges
within NV iterations. Therefore, the storage placement
design for heterogeneous SC-PIR requires at most N
sub-messages per message.

Notation Convention: We use |-| to represent the cardinal-
ity of a set or the length of a vector. Also [n] :=[1,2,...,n]
and [ny : no] = [n1,n1 + 1,...,n2]. A bold symbol such as
a indicates a vector and a[i] denotes the i-th element of a.

II. PROBLEM FORMULATION

There are K independent messages, W1, ..., Wk, each of
size L symbols. The messages are collectively stored among
N non-colluding DBs, labeled as DB1, ..., DBy. The storage
capacity of the DBs is defined by a vector pu €]R_IX where,
for all n € [N], DB,, has the storage capacity of u[n|KL
symbols, where 0 < p[n] < 1. Furthermore, for all n € [N],
define Z,, as the storage contents of DB,,. Also, we define
t = 25:1 w[n] as the number of times each symbol of the
messages is stored among the DBs. To design an achievable
PIR scheme we assume ¢t > 1 so that each symbol of the
messages can be stored at at least one DB. A user makes a
request Wj, and sends a query Q% }, which is independent of
the messages, to each DB n € [IN] which then sends an answer

Al such that
H(AM|Z,,Q¥) =0, Vk e [K]. (1)

Furthermore, given the answers from all the databases, the user
must be able to recover the requested message. Therefore,

AR QUL Qi) = . @)

The user generates queries in a manner to ensure privacy
such that no DB can infer which message the user desires, i.e.,

I(kaQ'[rfLAgc]lea

H(Wi|aM

Wk, Zh,.. Zn)=0. (3

Let D be the total number of downloaded bits. Given u, we
say that a pair (D, L) is achievable if there exists a SC-PIR
scheme with rate R = L/D that satisfies (1)-(3). The SC-PIR
capacity is defined as

C*(p) = max{R : (D, L) is achievable}. 4)

III. AN EXAMPLE

In this section, we provide a motivating example to demon-
strate how an iterative storage placement scheme can achieve
the heterogeneous SC-PIR capacity. Let N = 8 and define the
storage requirements of the DBs as

p=1[0.1, 02, 0.2, 025 0.3, 04, 0.65 0.9]. (5

For example, by this notation, DB¢ has a storage capacity of
14—0[(L symbols. By summing the elements of p, we obtain
t=3.

To define the storage placement, the K messages are divided
into F disjoint sub-message sets, M1, ..., Mp, such that each
sub-message set contains a sub-message of equal size from
each of the K messages. Then, each sub-message set, My, is
stored at some subset of DBs Ny C [N]. We show in Section
IV-B that capacity can be achieved if each sub-message set,
M, is stored at exactly ¢ = 3 DBs. This translates to a “filling
problem” (FP) where our goal is to iteratively fill the storage
of the DBs such that each iteration fills some available storage
in exactly 3 DBs.

We propose an iterative scheme where each iteration aims
to fill the DB with the least remaining storage. In the first
iteration, we define a sub-message set, M7, which contains
ull]lL = %L arbitrary symbols from each of the K messages
and assign M to the DB subset N7 = {1,7,8}. Notice
that M contains p[1]K L symbols and there is no remaining
available storage at DB after this iteration. After this iteration,
the question arises whether or not this iteration yields a
valid placement (for future iterations). Later in Section V we
define a set of necessary and sufficient conditions to determine
whether a particular iteration is valid.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 06:56:53 UTC from IEEE Xplore. Restrictions apply.

Next, we aim to fill the storage contents of DBs and let
M contain %L arbitrarily unpicked symbols (i.e., symbols
are not in M) from each of the K messages. Then, M is
stored at the DB subset AV, = {2,7,8}. In general, the idea to
determine N7 is to choose the DB with the smallest remaining
storage and the ¢ — 1 DBs with the most remaining storage.
This process is continued until the 5th iteration, where filling
DB (which has the smallest remaining storage) would cause
for an invalid filling solution. In Section VI, we discuss how
to handle this by partially filling the DB with the smallest
remaining storage.

The final results of the storage placement by our newly
proposed algorithm are shown in Fig. 1. In total, there are F' =
7 sub-message sets, each of which contains a sub-message
from each of the K messages, and is stored at exactly 3 DBs.
A vector @ € Ap defines the fraction of the library that is
stored (or filled) in each iteration. For example, a[1] = 0.1
and a[2] = 0.2 correspond to the first two iterations described
above. All of the values of ¢ are shown in the table of Fig.
1. The corresponding DBs that store a sub-message subset in
a particular iteration are highlighted by the red arrows in the
table of Fig. 1.

Given that a user desires to privately download Wy for some
0 € [K], the user will privately download the sub-message of
Wy stored at DBs of Ay using one of the capacity achieving
FS-PIR in [3]-[5] for all f € [F)]. The rate of each download
and the overall rate is equal to the rate of a capacity-achieving
FS-PIR scheme that is privately downloading from ¢ = 3 DBs.
In this case, the rate is R = (1+ % + t% + -+ tx%)_l
which is the heterogeneous SC-PIR capacity as shown in [11].

Fig. 1 contains two additional parameters, ¢ and e, which
are discussed in greater detail later in this paper. Moreover, ¢/
is the sum of the cumulative normalized remaining storage of
all DBs and e is the number of DBs with remaining storage
equal to t/# symbols. These parameters are significant
when deriving necessary and sufficient conditions for a valid
placement and proving the convergence rate of our proposed
placement algorithm.

IV. TRANSLATING HETEROGENEOUS SC-PIR TO A
FILLING PROBLEM

In this section, we translate the heterogeneous PIR place-
ment problem into a simpler filling problem. To do this we
adopt the SC-PIR design architecture from our previous work
[10] and adapt it to allow for the more general heterogeneous
SC-PIR case, similar to [11]. Then, we expand our results
from [10] to demonstrate the sufficient conditions to achieve
capacity for heterogeneous SC-PIR. Ultimately, we derive the
same conditions as in [11], but using a different approach. This
section motivates the rest of this paper which aims to find a
solution to the heterogeneous SC-PIR placement problem by
solving an equivalent filling problem.

A. Design Architecture

Placement: Define a vector o« € Ay, where F' € Z1 and
alf],Vf € [F] is rational number such that «[f]L € Z*.

For all k € [K], we divide message W, into F' disjoint sub-
messages Wy, = {Wy1,..., Wy r} such that for all f € [F],
Wi, r| = a[f]L symbols. For all f € [F], let

M2) Wiy, (6)
kE[K]
and Ny C [N] be a non-empty subset of DBs which have the
sub-messages in M ¢ locally available to them. The storage
contents of database n € [N] is

ZnZ{MfoE[F],RENf}, @)

where we have the requirement that for all n € [N],

> afl <ulnl. ®)
{f:Fe[Fl,neNy}

Delivery: Given that a user requests file Wy for some
0 € [K], we do the following. For all f € [F], using a FS-
PIR scheme, the user generates a query to privately download
Wy, s from the DBs in N, . In other words, a SC-PIR scheme
can be found by applying a FS-PIR scheme to each set of
databases Ay. Changing the choice of the FS-PIR scheme or

the definitions of Ay will result in new SC-PIR schemes.

B. Sufficient Conditions to Achieve Heterogeneous SC-PIR
Capacity

In our previous work, we outlined a set of sufficient
conditions to achieve capacity for homogeneous SC-PIR [10].
Surprisingly, as the capacity of the more general heterogeneous
SC-PIR is the same as homogeneous SC-PIR [11], the suffi-
cient conditions of [10] directly apply to the heterogeneous
case. In short, there are two conditions given in [10]. The
first states that capacity achieving FS-PIR schemes are used
to generate queries to the DBs. The second condition relates
to the storage placement and states that

o if t € ZT, then |[Ny| =t for all f € [F]

o otherwise,

S oalfl=[t] -t)
F:Nfl=t]
and
alf] =t — [t]. (10)
FiNyI=[t]

For example, if ¢ is an integer and the sufficient conditions
are met, using Theorem 1 of [10], the resulting heterogeneous
SC-PIR rate is

_ ([afl] a2 -1 _
" (RFs<t> T) RFS(?m

where Rps(t) is the capacity of FS-PIR when downloading
from ¢t DBs and was shown to be the capacity of heterogeneous
SC-PIR in [11]. Alternatively, if ¢ is not an integer and the
sufficient conditions are met, using Theorem 1 of [10], it can
be shown that the heterogeneous SC-PIR rate! is

N
fi= (RFs(fﬂ) * RFs<LtJ>>

ISee Theorem 4 in [10] for more details.

. ofF]
Rpg (t)

(12)

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 06:56:53 UTC from IEEE Xplore. Restrictions apply.

which is the heterogeneous SC-PIR capacity as shown in [11].

The first condition states that any of the previously designed
FS-PIR schemes [3]-[5] can be directly applied to privately
download the F' desired sub-messages. The second condition
boils down to a filling problem as explained next.

C. The Filling Problem

The (m, 7)-Filling Problem (FP) is defined as follows:
Given a vector m € Rf, find a 7-fill. Define a basis B,
containing the set of all {0, 1}-vectors of length N, each of
which consists of exactly 7 1s. Finding a 7-fill is equivalent
to finding an «p € R4 for all b € B such that

Zabb =m.

beB

For the heterogeneous SC-PIR problem, when ¢ € Z* the
capacity achieving placement solution is equivalent to the
(e, t)-FP. Throughout the rest of this paper, we focus on
finding a solution to the (u,t)-FP.2

13)

V. EXISTENCE OF THE (m, 7)-FP SOLUTION

In this section, we aim to find a set of necessary and
sufficient conditions such that a solution to the (m,7)-FP
exists. Given any m € Rf and 7 € Z7T, the existence
of a (m,7)-FP solution is not guaranteed. For example, if
m = [0.3,0.3,0.7] and 7 = 2, then a (m, 7)-FP solution does
not exist since m[1] +m[2] < m[3]. This is because that after
some previous sub-message placement, it is impossible to fill
the remaining storage of two DBs at a time and completely fill
DBs. The following theorem states the necessary and sufficient
conditions for a (m, 7)-FP solution to exist.

Theorem 1: Given m € RY and 7 € Z* an (m,)-FP
solution exists if and only if

N .
mn] < M (14)
T
for all n € [N].
Proof: Theorem 1 is proved in [12]. |

This result and the proof of Theorem 1 have two important
implications for heterogeneous SC-PIR. First, for any given
u, if t is an integer then

it L]
t
for all n € [N]. Clearly a (g, t)-FP solution exists and there-
fore a heterogeneous SC-PIR scheme exists which can achieve
capacity.® Second, while it is not clear how to determine the
storage placement for a given p, Theorem 1 suggests that there
is an iterative process which can define the storage placement.
In other words, if a sub-message set is assigned to a set of ¢
DBs, then we can precisely determine if the remaining storage
among all DBs allows a FP solution. In this way, an iterative

uln] <1= (15)

2In [12], we expand our results for non-integer ¢.

3The existence of a solution for a capacity achieving storage placement
for heterogenous SC-PIR was also shown in the proof of Lemma 5 of
[11]. However, the proof assumes non-integer ¢ and uses different methods
according to our understanding.

scheme can be defined that is guaranteed to converge to a final
storage placement solution.

VI. ITERATIVE STORAGE PLACEMENT DESIGN

Motivated by Theorem 1, we develop an iterative storage
placement scheme where in each iteration a sub-message of
each of the K messages is stored in a set of ¢ DBs. We
design an iterative algorithm such that each iteration aims to
fill the storage of the DB with the smallest remaining, non-
zero storage to make the remaining FP simpler. To do this, we
store a sub-message set at a set of ¢ DBs including the DB with
the smallest remaining, non-zero storage and the ¢ — 1 DBs
with the largest remaining storage. The scheme is rigorously
outlined in Algorithm 1 and summarized as follows.

Let N’ be the number of DBs with non-zero remaining
storage and m € Rf track the remaining storage of each
DB normalized by K L. For ease of notation and WLOG we
assume m[1] < m[2] < ... < m[N] for any given iteration.*

If N >t + 1, do the following. Let the DB subset, N, of
size t include the DB with the smallest remaining, non-zero
storage and the ¢ — 1 DBs with the largest remaining storage.
In other words,

N = {N-N+1,N—-t+2,...,N} (16)
where m[N — N’ +1] is the storage remaining at the DB with
the smallest remaining, non-zero storage. A sub-message set is
defined to be stored at the DBs of N. Ideally, the number of
symbols in the sub-message set is size m[N — N’ 4+ 1]KL
symbols, however, it is possible that such a sub-message
assignment prevents a FP solution for the remaining storage
among the DBs (i.e., violate (14)). Therefore, assign

a:min(l:—m[N—t—!—l],m[N—N’-l—l}) (17

where ¢ = ZnN:1 m[n]. Following the method presented in
Section IV-A, define a sub-message set, M, containing a/X' L
symbols which have not been stored in a previous iteration
and store M at the DBs of /. Then, adjust m accordingly
to reflect the remaining storage at each DB.

There is only one exception to this process which is the case
where there are only N’ = t DBs with non-zero remaining
storage. In this case, all the of remaining storage of these ¢ DBs
are equal which can be shown using Theorem 1. Furthermore,
let « = m[N — N’ + 1] and a sub-message set of size «K L
symbols is stored at these ¢ DBs.

Note that, Algorithm 1 only operates when N’ > ¢, because
it is impossible for N’ < ¢ since to have a valid FP solution,
there must be at least ¢ DBs with non-zero remaining storage.
Also, Algorithm 1 can only operate when ¢ is an integer. In
[12] we demonstrate how Algorithm 1 can be applied to the
case where ¢ is not an integer.

4For correctness, in Algorithm 1, m is not assumed to be in increasing
order and the indices corresponding to the order are used as necessary.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 06:56:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Heterogeneous SC-PIR Storage Placement
Input: @, t, L and Wy, ..., Wk

I m<—pn

2 F+0

3: while m > 0 do

4: F+ F+1

5.t SN mn]

6: £ + indices of non-zero elements of m from smallest
to largest

7: N’ < number of non-zero elements in m

8: Ng + {l[1], ([N —t+2],...,([N']}

9 if N >t+1 then

10: ap ¢ min (%’ — mlfN" -t +1]], mm]])

11: else

12: ap < ml[1]]

13: end if

14: for n € N do

15: m[n] < m[n] — ap

16: end for

17: end while
18: for k=1,..., K do

19: Partition W, into F disjoint sub-messages:
Wia,...,Wirp of size aL,...,apL symbols
respectively

20: for f=1,...,F do

21 Store Wy, s at the DBs of Ny

22: end for

23: end for

A. Correctness

In the following, we demonstrate that each iteration fills

a non-zero, positive amount of storage. WLOG we assume

m[l] < m[2] < ... < m[N]. Furthermore, assuming that

m[N —N'+1] > 0 and a (m, #)-FP solution exists such that
iz mli]

m[N—t+1] < = = t?/, then observing (17), we can

see that @ > 0. Moreover, o = 0 if and only if

/ N .
m[N —t+1] = %,:: Z;zzijﬂlﬂ

and in this case we find for all n € [N —t 4 1 : N] that

Zi\i; mli] =m[N —t+1] <m[n] < Zf\i; m[z]
and m[n] = m[N — t + 1]. This means that N’ = ¢ and each
of the t DBs has the same amount of remaining storage. In
this case, « = m[N —t + 1] since N’ =+t.

Next, we demonstrate that after an iteration the remaining
storage among the DBs is such that a FP solution exists. Let

(18)

19)

m =m-—a-0,...,0,1,0,...,0,1,...,1 (20)
—— —

N—N'’ N’'—t t—1

represent the remaining storage after a particular iteration.
Note that, the elements of m/ are not necessarily in order.
After an iteration, the largest remaining storage at any node is

either m'[N] = m[N]—a or m/[N —t+1] =m[N —t+1].
Assuming a (m, t)-FP solution exist, then

N) N
m/[N] = m[N] — a < M —a= M 1)
Also, by (17), o < Z=m _ N — ¢ 4 1] and
m'[N — ¢t + 1] = m[N —¢+ 1], then
N . N
m'[N —t+1] < inm[z] —a= Lzltm 0 o

Furthermore, o < m[N —N'+1] < m[n] and m/[n] > m[n|—
a>0foralln € [N—N'+41: NJ. Finally m’[vzj :Im[n] =0
foralln € [1: N—N']. Since 0 < m'[n] < M for all
n € [N], by using Theorem 1, a (m/, t)-FP solution exists.

VII. CONVERGENCE

Since in each iteration we fill a positive amount of remain-
ing storage without violating the existence conditions for a
FP solution, Algorithm 1 converges to a final solution where
all DBs are completely filled. The question remains as to
how many iterations are required for convergence. Moreover,
the number of iterations is equal to the number of sub-
messages per message, F', required for the storage placement.
Surprisingly, we find that at most N iterations are required
to fill all the DBs. The result is summarized in the following
theorem.

Theorem 2: Algorithm 1 requires at most N iterations to
completely fill the DBs.

Proof: Throughout this proof, let m € RY be the
remaining storage of each DB at a given iteration normalized
by KL and WLOG m[1] < m[2] < ... < m[N]. Define t' as
the cumulative remaining normalized storage among the DBs

>

n=N-N’+1

t = (23)

m[n]

where N’ is the number of DBs with non-zero remaining
storage. We observe the iterations of Algorithm 1 and label
the outcome of each iteration as either a complete fill (CF) or
partial fill (PF) defined below.

Definition 1: A complete fill (CF) refers to an iteration where
the remaining storage at the DB with the smallest remaining
non-zero storage is completely filled.

Definition 2: A partial fill (PF) refers to an iteration where
the remaining storage at the DB with the smallest remaining
non-zero storage is not completely filled.

To obtain an upper bound on the number of iterations to
fill the DBs, we count the maximum number of possible PFs
and CFs. Let e count the number of DBs with remaining

normalized storage equal to ’% such that

=353 (= 4)

where 1 (-) is the indicator function. The following lemma
discusses the sufficient condition which guarantees a CF for a
given iteration.

(24)

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 06:56:53 UTC from IEEE Xplore. Restrictions apply.

Lemma 1: If a given iteration satisfies e = ¢ — 1 and
N’ > t+1, then this iteration must be a CF, and N’ will be
reduced by at least 1 after that iteration.

Proof: Given that e = ¢ — 1 and by (23), we obtain

/

m[N—N’+1]+---+m[N—t+1]+(t—1)%:t’. 25)

Therefore,
t/
m[N—N’+1]+m[N—t+1]S? (26)
and "
m[N—N’—i—l]g?—m[N—t—kl]. 27

By (17), during this iteration, oK' L symbols are stored at
DBy_n/41 where @ = m[N — N’ + 1]. This completes the
proof of Lemma 1. []

Lemma 2: If a given iteration satisfies e < ¢t — 1 and
N’ > t 41, then e will not decrease after that iteration.
Moreover, if the iteration is a PF then e will be increased by
at least 1 after that iteration.

Proof: We prove Lemma 2 as follows. The e DBs with
normalized remaining storage equal to tt—/ are included in the
set of ¢ — 1 DBs with the largest remaining storage since
m[n] < %/ for all n € [N]. Therefore, after an iteration, the
normalized remaining storage of these e DBs are reduced by
« and their normalized remaining storage becomes % - a.
Furthermore, let ¢ be the sum of normalized storage after

this iteration. Moreover,

=t —ta (28)

’

and ttl = % — «. Hence, whether the iteration is a PF or CF,
e is not decreasing from one iteration to the next.

Next, consider the case where the iteration is a PF, then
by (17), we obtain m[N — N’ + 1] > £ — m[N — ¢ + 1].
Therefore, « = £ — m[N — t + 1]. Furthermore, by (28),

n t

= = m[N —t + 1]. As the normalized remaining storage at

DBy _¢+1 remains m[N —t + 1] = ttl and this DB is not
included in the e DBs with %, normalized remaining storage,’
e is increased by at least 1 after this iteration. This completes
the proof of Lemma 2. []

By Lemmas 1 and 2, we can conclude that at most ¢ —1 PFs
and NV —t CFs are possible during the execution of Algorithm
1 as N’ is decreased from N to ¢t. Then when N’ = ¢, there
are t DBs with equal remaining storage and the special case
of Algorithm 1 fills the remaining storage of these DBs. As
a result, at most (t — 1) + (N —t) + 1 = N iterations of
Algorithm 1 are necessary to fill the storage of the DBs. ®

This result demonstrates that Algorithm 1 requires at most
N iterations to complete. As each iteration defines one sub-
message per message, the number of sub-messages per mes-
sage resulting from Algorithm 1 is at most N. This leads to
the following corollary.

SThis is because that if this DB is included the e DBs with % normalized
remaining storage, then e > ¢.

Corollary 1: Given a set of storage requirements f € Ri_]
such that pu[n] < 1 for all n € [N], ¢t € Z* and t > 1,
there exists heterogeneous SC-PIR scheme with at most NNy
sub-messages per message such that capacity can be achieved,
where Ny is the required number of sub-messages for the FS-
PIR delivery scheme. O

The total number of sub-messages is the product of the
number of sub-messages necessary for the storage and delivery
phases. By using the recent result of [4] for delivery, the total
number of sub-messages per message is N x (N — 1) < N2

VIII. CONCLUSION

In this work, we studied the problem of storage placement
for heterogeneous SC-PIR such that the capacity can be
achieved. We demonstrated how the storage placement prob-
lem is equivalent to a filling problem. Moreover, we provided
necessary and sufficient conditions such that a solution to
the filling problem exists. These results not only proved that
the general storage problem for heterogeneous SC-PIR has
a solution, but also the existence of a simple iterative storage
placement algorithm such that the conditions are met after each
iteration. In addition, when ¢ is an integer, we also showed that
the proposed iterative algorithm converges within V iterations.
This means that the required number of sub-messages per
message is upper bounded by N for storage placement.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on. IEEE, 1995, pp. 41-50.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965-981, 1998.

[3] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075-
4088, 2017.

[4] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” arXiv
preprint arXiv:1808.07536, 2018.

[5] H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 12, no. 12, pp. 2920-2932, 2017.

[6] R. Tandon, M. Abdul-Wahid, F. Almoualem, and D. Kumar, “PIR from
storage constrained databases-coded caching meets PIR,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1-7.

[7] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus, “The capacity
of private information retrieval from decentralized uncoded caching
databases,” arXiv preprint arXiv:1811.11160, 2018.

[8] M. A. Attia, D. Kumar, and R. Tandon, “The capacity of private
information retrieval from uncoded storage constrained databases,” arXiv
preprint arXiv:1805.04104, 2018.

[91 M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856—

2867, 2014.

N. Woolsey, R. Chen, and M. Ji, “A new design of private infor-

mation retrieval for storage constrained databases,” arXiv preprint

arXiv:1901.07490, 2019.

Y.-P. Wei S. Ulukus K. Banawan, B. Arasli, “The capacity of private

information retrieval from heterogeneous uncoded caching databases,”

arXiv preprint arXiv:1901.09512, 2019.

N. Woolsey, R. Chen, and M. Ji, “An optimal iterative placement

algorithm for pir from heterogeneous storage-constrained databases,”

arXiv preprint arXiv:1904.02131, 2019.

[10]

(11]

[12]

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 06:56:53 UTC from IEEE Xplore. Restrictions apply.

