
3616 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Fundamental Limits of Decentralized Data Shuffling

Kai Wan , Member, IEEE, Daniela Tuninetti , Senior Member, IEEE, Mingyue Ji , Member, IEEE,

Giuseppe Caire , Fellow, IEEE, and Pablo Piantanida , Senior Member, IEEE

Abstract— Data shuffling of training data among different
computing nodes (workers) has been identified as a core element
to improve the statistical performance of modern large-scale
machine learning algorithms. Data shuffling is often considered as
one of the most significant bottlenecks in such systems due to the
heavy communication load. Under a master-worker architecture
(where a master has access to the entire dataset and only
communication between the master and the workers is allowed)
coding has been recently proved to considerably reduce the
communication load. This work considers a different communica-
tion paradigm referred to as decentralized data shuffling, where
workers are allowed to communicate with one another via a
shared link. The decentralized data shuffling problem has two
phases: workers communicate with each other during the data
shuffling phase, and then workers update their stored content
during the storage phase. The main challenge is to derive novel
converse bounds and achievable schemes for decentralized data
shuffling by considering the asymmetry of the workers’ storages
(i.e., workers are constrained to store different files in their
storages based on the problem setting), in order to characterize
the fundamental limits of this problem. For the case of uncoded
storage (i.e., each worker directly stores a subset of bits of the
dataset), this paper proposes converse and achievable bounds
(based on distributed interference alignment and distributed
clique-covering strategies) that are within a factor of 3/2 of one
another. The proposed schemes are also exactly optimal under
the constraint of uncoded storage for either large storage size or
at most four workers in the system.

Manuscript received March 27, 2019; revised October 28, 2019; accepted
December 29, 2019. Date of publication January 13, 2020; date of current

version May 20, 2020. The work of Kai Wan and Giuseppe Caire was

supported in part by the European Research Council under the ERC Advanced

Grant 789190, CARENET. The work of Daniela Tuninetti was supported in
part by NSF under Grant 1527059 and Grant 1910309. The work of Mingyue

Ji was supported by NSF under Grant 1817154 and Grant 1824558. The

work of Pablo Piantanida was supported by the European Commission’s Marie
Sklodowska-Curie Actions (MSCA) through the Marie Sklodowska-Curie IF

under Grant H2020-MSCAIF-2017-EF-797805-STRUDEL. This article was

presented at the 56th Annual Allerton Conference (2018) on Communication,

Control, and Computing.
Kai Wan and Giuseppe Caire are with the Electrical Engineering and

Computer Science Department, Technische Universität Berlin, 10587 Berlin,

Germany (e-mail: kai.wan@tu-berlin.de; caire@tu-berlin.de).

Daniela Tuninetti is with the Electrical and Computer Engineering Depart-
ment, University of Illinois at Chicago, Chicago, IL 60607 USA (e-mail:

danielat@uic.edu).

Mingyue Ji is with the Electrical and Computer Engineering Depart-
ment, University of Utah, Salt Lake City, UT 84112 USA (e-mail:

mingyue.ji@utah.edu).

Pablo Piantanida is with the CentraleSupélec–French National Center for

Scientific Research (CNRS), Université Paris-Sud, 91192 Gif-sur-Yvette,
France, and also with the Montreal Institute for Learning Algorithms

(MILA), Université de Montréal, Montréal, QC H3T 1N8, Canada (e-mail:

pablo.piantanida@centralesupelec.fr).
Communicated by P. Sadeghi, Associate Editor for Coding Techniques.

Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2020.2966197

Index Terms— Decentralized data shuffling, uncoded storage,
distributed clique covering.

I. INTRODUCTION

RECENT years have witnessed the emergence of big data

and machine learning with wide applications in both

business and consumer worlds. To cope with such a large

size/dimension of data and the complexity of machine learning

algorithms, it is increasingly popular to use distributed com-

puting platforms such as Amazon Web Services Cloud, Google

Cloud, and Microsoft Azure services, where large-scale dis-

tributed machine learning algorithms can be implemented. The

approach of data shuffling has been identified as one of the

core elements to improve the statistical performance of modern

large-scale machine learning algorithms [1], [2]. In particular,

data shuffling consists of re-shuffling the training data among

all computing nodes (workers) once every few iterations,

according to some given learning algorithms. However, due

to the huge communication cost, data shuffling may become

one of the main system bottlenecks.

To tackle this communication bottleneck problem, under a

master-worker setup where the master has access to the entire

dataset, coded data shuffling has been recently proposed to

significantly reduce the communication load between master

and workers [3]. However, when the whole dataset is stored

across the workers, data shuffling can be implemented in a dis-

tributed fashion by allowing direct communication between the

workers.1 In this way, the communication bottleneck between

a master and the workers can be considerably alleviated.

This can be advantageous if the transmission capacity among

workers is much higher than that between the master and

workers, and the communication load between this two setups

are similar.

In this work, we consider such a decentralized data shuffling
framework, where workers, connected by the same communi-

cation bus (common shared link), are allowed to communi-

cate.2 Although a master node may be present for the initial

data distribution and/or for collecting the results of the training

1In practice, workers communicate with each other as described in [1].
2Notice that putting all nodes on the same bus (typical terminology in

Compute Science) is very common and practically relevant since this is
what happens for example with Ethernet, or with the Peripheral Component

Interconnect Express (PCI Express) bus inside a multi-core computer, where

all cores share a common bus for intercommunication. The access of such
bus is regulated by some collision avoidance protocol such as Carrier Sense

Multiple Access (CSMA) [4] or Token ring [5], such that once one node

talks at a time, and all other listen. Therefore, this architecture is relevant in

practice.

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3617

Fig. 1. The system models of the 3-worker centralized and decentralized
data shuffling problems in time slot t. The data units in At

k are assigned to

worker k, where k ∈ {1, 2, 3} at time t.

phase in a machine learning application, it is not involved in

the data shuffling process which is entirely managed by the

worker nodes in a distributed manner. In the following, we

will review the literature of coded data shuffling (which we

shall refer to as centralized data shuffling) and introduce the

decentralized data shuffling framework studied in this paper.

A. Centralized Data Shuffling

The coded data shuffling problem was originally proposed

in [3] in a master-worker centralized model as illustrated in

Fig. 1a. In this setup, a master, with the access to the whole

dataset containing N data units, is connected to K = N/q
workers, where q := N/K is a positive integer. Each shuffling

epoch is divided into data shuffling and storage update phases.

In the data shuffling phase, a subset of the data units is

assigned to each worker and each worker must recover these

data units from the broadcasted packets of the master and its

own stored content from the previous epoch. In the storage

update phase, each worker must store the newly assigned data

units and, in addition, some information about other data units

that can be retrieved from the storage content and master

transmission in the current epoch. Such additional information

should be strategically designed in order to help the coded

delivery of the required data units in the following epochs.

Each worker can store up to M data units in its local storage.

If each worker directly copies some bits of the data units in

its storage, the storage update phase is said to be uncoded.

On the other hand, if the workers store functions (e.g., linear

combinations) of the data objects’ bits, the storage update is

said to be coded. The goal is, for a given (M, N, q), to find

the best two-phase strategy that minimizes the communication

load during the data shuffling phase regardless of the shuffle.

The scheme proposed in [3] uses a random uncoded storage

(to fill users’ extra memories independently when M > q)

and a coded multicast transmission from the master to the

workers, and yields a gain of a factor of O(K) in terms of

communication load with respect to the naive scheme for

which the master simply broadcasts the missing, but required

data bits to the workers.

The centralized coded data shuffling scheme with coordi-

nated (i.e., deterministic) uncoded storage update phase was

originally proposed in [6], [7], in order to minimize the worst-

case communication load R among all the possible shuffles,

i.e., R is smallest possible such that any shuffle can be

realized. The proposed schemes in [6], [7] are optimal under

the constraint of uncoded storage for the cases where there is

no extra storage for each worker (i.e., M = q) or there are

less than or equal to three workers in the systems. Inspired by

the achievable and converse bounds for the single-bottleneck-

link caching problem in [8]–[10], the authors in [11] then

proposed a general coded data shuffling scheme, which was

shown to be order optimal to within a factor of 2 under

the constraint of uncoded storage. Also in [11], the authors

improved the performance of the general coded shuffling

scheme by introducing an aligned coded delivery, which was

shown to be optimal under the constraint of uncoded storage

for either M = q or M ≥ (K− 2)q.

Recently, inspired by the improved data shuffling scheme

in [11], the authors in [12] proposed a linear coding scheme

based on interference alignment, which achieves the opti-

mal worst-case communication load under the constraint of

uncoded storage for all system parameters. In addition, under

the constraint of uncoded storage, the proposed coded data

shuffling scheme in [12] was shown to be optimal for any

shuffles (not just for the worst-case shuffles) when q = 1.

B. Decentralized Data Shuffling

An important limitation of the centralized framework is the

assumption that workers can only receive packets from the

master. Since the entire dataset is stored in a decentralized

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3618 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

fashion across the workers at each epoch of the distributed

learning algorithm, the master may not be needed in the data

shuffling phase if workers can communicate with each other

(e.g., [1]). In addition, the communication among workers

can be much more efficient compared to the communication

from the master node to the workers [1], e.g., the connec-

tion between the master node and workers is via a single-

ported interface, where only one message can be passed for

a given time/frequency slot. In this paper, we propose the

decentralized data shuffling problem as illustrated in Fig. 1b,

where only communications among workers are allowed dur-

ing the shuffling phase. This means that in the data shuffling

phase, each worker broadcasts well designed coded packets

(i.e., representations of the data) based on its stored content

in the previous epoch. Workers take turn in transmitting,

and transmissions are received error-free by all other workers

through the common communication bus. The objective is to

design the data shuffling and storage update phases in order to

minimize the total communication load across all the workers

in the worst-case shuffling scenario.

Importance of Decentralized Data Shuffling in Practice:
In order to make the decentralized topology work in practice,

we need to firstly guarantee that all the data units are already

stored across the nodes so that the communication among

computing nodes is sufficient. This condition is automatically

satisfied from the definition of the decentralized data shuffling

problem. Although the decentralized coded data shuffling

incurs a larger load compared to its centralized counterpart,

in practice, we may prefer the decentralized coded shuffling

framework. This is due to the fact that the transmission

delay/latency of the data transmission in real distributed com-

puting system may depend on other system properties besides

the total communication load, and the decentralized topology

may achieve a better transmission delay/latency. This could be

due to that 1) the connection between the master node and the

worker clusters is normally via a single-ported interference,

where only one message can be transmitted per time/frequency

slot [1]; 2) computing nodes are normally connected (e.g., via

grid, or ring topologies) and the link bandwidth is generally

much faster, in addition, computing nodes can transmit in

parallel.

C. Relation to Device-to-Device (D2D) Caching and
Distributed Computing

The coded decentralized data shuffling problem considered

in this paper is related to the coded device-to-device (D2D)
caching problem [13] and the coded distributed computing
problem [14] – see also Remark 1 next.

The coded caching problem was originally proposed in [8]

for a shared-link broadcast model. The authors in [13]

extended the coded caching model to the case of D2D net-

works under the so-called protocol model. By choosing the

communication radius of the protocol model such that each

node can broadcast messages to all other nodes in the network,

the delivery phase of D2D coded caching is resemblant (as

far as the topology of communication between the nodes is

concerned) to the shuffling phase of our decentralized data

shuffling problem.

Recently, the scheme for coded D2D caching in [13]

has been extended to the coded distributed computing prob-

lem [14], which consists of two stages named Map and

Reduce. In the Map stage, workers compute a fraction of

intermediate computation values using local input data accord-

ing to the designed Map functions. In the Reduce stage,

according to the designed Reduce functions, workers exchange

among each other a set of well designed (coded) intermediate

computation values, in order to compute the final output

results. The coded distributed computing problem can be seen

as a coded D2D caching problem under the constraint of

uncoded and symmetric cache placement, where the symmetry

means that each worker uses the same cache function for each

file. A converse bound was proposed in [14] to show that the

proposed coded distributed computing scheme is optimal in

terms of communication load. This coded distributed com-

puting framework was extended to cases such as computing

only necessary intermediate values [15], [16], reducing file

partitions and number of output functions [16], [17], and con-

sidering random network topologies [18], random connection

graphs [19], [20], stragglers [21], storage cost [22], and het-

erogeneous computing power, function assignment and storage

space [23], [24].

Compared to coded D2D caching and coded distributed

computing, the decentralized data shuffling problem differs

as follows. On the one hand, an asymmetric constraint on the

stored contents for the workers is present (because each worker

must store all bits of each assigned data unit in the previous

epoch, which breaks the symmetry of the stored contents

across data units of the other settings). On the other hand, each

worker also needs to dynamically update its storage based on

the received packets and its own stored content in the previous

epoch. Therefore the decentralized data shuffling problem over

multiple data assignment epochs is indeed a dynamic system

where the evolution across the epochs of the node stored

content plays a key role, while in the other problems reviewed

above the cache content is static and determined at a single

initial placement setup phase.

D. Relation to Centralized, Distributed, and Embedded Index
Codings

In a distributed index coding problem [25], [26], there are

multiple senders connected to several receivers, where each

sender or receiver can access to a subset of messages in the

library. Each receiver demands one message and according

to the users’ demands and side informations, the senders

cooperatively broadcast packets to all users to satisfy the

users’ demands. The difference in a centralized index coding
problem [27] compared to the distributed one is that only one

sender exists and this sender can access the whole library.

Very recently, the authors in [28] considered a special case

of distributed index coding, referred to as embedded index
coding, where each node acts as both a sender and a receiver

in the system. It was shown in [28] that a linear code for

this embedded index coding problem can be obtained from a

linear index code for the centralized version of the problem

by doubling the communication load.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3619

The centralized and decentralized data shuffling phases

with uncoded storage are special cases of centralized and

embedded index coding problems, respectively. By using the

construction in [28] we could thus design a code for the

decentralized data shuffling problem by using the optimal

(linear) code for the centralized case [12]; this would give

a decentralized data shuffling scheme with a load twice that

of [12]. It will be clarified later (in Remark 2) that the proposed

decentralized data shuffling schemes are strictly better than the

those derived with the construction in [28]. This is so because

the construction in [28] is general, while our design is for the

specific topology considered.

E. Contributions

In this paper, we study the decentralized data shuffling prob-

lem, for which we propose converse and achievable bounds as

follows.

1) Novel converse bound under the constraint of uncoded
storage. Inspired by the induction method in [14, Thm.1]

for the distributed computing problem, we derive a

converse bound under the constraint of uncoded storage.

Different from the converse bound for the distributed

computing problem, in our proof we propose a novel

approach to account for the additional constraint on the

“asymmetric” stored content.

2) Scheme A: General scheme for any M. By extending the

general centralized data shuffling scheme from [11] to

our decentralized model, we propose a general decen-

tralized data shuffling scheme, where the analysis holds

for any system parameters.

3) Scheme B: Improved scheme for M ≥ (K − 2)q. It can

be seen later that Scheme A does not fully leverage

the workers’ stored content. With the storage update

phase inspired by the converse bound and also used in

the improved centralized data shuffling scheme in [11],

we propose a two-step scheme for decentralized data

shuffling to improve on Scheme A. In the first step we

generate multicast messages as in [8], and in the second

step we encode these multicast messages by a linear

code based on distributed interference alignment (see

Remark 3).

By comparing our proposed converse bound and Scheme

B, we prove that Scheme B is exactly optimal under

the constraint of uncoded storage for M ≥ (K − 2)q.

Based on this result, we can also characterize the exact

optimality under the constraint of uncoded storage when

the number of workers satisfies K ≤ 4.

4) Scheme C: Improved scheme for M = 2q. The deliv-

ery schemes proposed in [8], [11], [13] for coded

caching with a shared-link, D2D caching, and central-

ized data shuffling, all belong to the class of clique-
covering method from a graph theoretic viewpoint. By a

non-trivial extension from a distributed clique-covering
approach for the two-sender distributed index coding

problems [29] to our decentralized data shuffling prob-

lem for the case M = 2q, we propose a novel decen-

tralized data shuffling scheme. The resulting scheme

outperforms the previous two schemes for this specific

storage size.

5) Order optimality under the constraint of uncoded stor-
age. By combing the three proposed schemes and com-

paring with the proposed converse bound, we prove the

order optimality of the combined scheme within a factor

of 3/2 under the constraint of uncoded storage.

F. Paper Organization

The rest of the paper is organized as follows. The system

model and problem formulation for the decentralized data

shuffling problem are given in Section II. Results from decen-

tralized data shuffling related to our work are compiled in

Section III. Our main results are summarized in Section IV.

The proof of the proposed converse bound can be found

in Section V, while the analysis of the proposed achievable

schemes is in Section VI. Section VII concludes the paper. The

proofs of some auxiliary results can be found in the Appendix.

G. Notation Convention

We use the following notation convention. Calligraphic

symbols denote sets, bold symbols denote vectors, and sans-

serif symbols denote system parameters. We use |·| to represent

the cardinality of a set or the length of a vector; [a : b] :=
{a, a + 1, . . . , b} and [n] := {1, 2, . . . , n}; ⊕ represents bit-

wise XOR; N denotes the set of all positive integers.

II. SYSTEM MODEL

The (K, q, M) decentralized data shuffling problem illus-

trated in Fig. 1b is defined as follows. There are K ∈ N

workers, each of which is charged to process and store q ∈ N

data units from a dataset of N := Kq data units. Data units

are denoted as (F1, F2, . . . , FN) and each data unit is a binary

vector containing B i.i.d. bits. Each worker has a local storage

of MB bits, where q ≤ M ≤ Kq = N. The workers are

interconnected through a noiseless multicast network.

The computation process occurs over T time slots/epochs.

At the end of time slot t− 1, t ∈ [T], the content of the local

storage of worker k ∈ [K] is denoted by Zt−1
k ; the content of

all storages is denoted by Zt−1 := (Zt−1
1 , Zt−1

2 , . . . , Zt−1
K).

At the beginning of time slot t ∈ [T], the N data units are

partitioned into K disjoint batches, each containing q data

units. The data units indexed by At
k ⊆ [N] are assigned to

worker k ∈ [K] who must store them in its local storage by the

end of time slot t ∈ [T]. The dataset partition (i.e., data shuffle)

in time slot t ∈ [T] is denoted by At = (At
1,At

2, . . . ,At
K) and

must satisfy

|At
k| = q, ∀k ∈ [K], (1a)

At
k1
∩At

k2
= ∅, ∀(k1, k2) ∈ [K]2 : k1
= k2, (1b)

∪k∈[K] At
k = [N] (dataset partition). (1c)

If q = 1, we let At
k = {dt

k} for each k ∈ [K].
We denote the worker who must store data unit Fi at the

end of time slot t by ut
i, where

ut
i = k if and only if i ∈ At

k. (2)

The following two-phase scheme allows workers to store

the requested data units.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3620 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Initialization: We first focus on the initial time slot

t = 0, where a master node broadcasts to all the workers.

Given partition A0, worker k ∈ [K] must store all the data

units Fi where i ∈ A0
k; if there is excess storage, that is, if

M > q, worker k ∈ [K] can store in its local storage parts of

the data units indexed by [N] \ A0
k. The storage function for

worker k ∈ [K] in time slot t = 0 is denoted by ψ0
k, where

Z0
k := ψ0

k

(
A0, (Fi : i ∈ N)

)
(initial storage placement) :

(3a)

H
(
Z0

k

)
≤ MB, ∀k ∈ [K] (initial storage size constraint),

(3b)

H
((

Fi : i ∈ A0
k

)|Z0
k

)
=0 (initial storage content constraint).

(3c)

Notice that the storage initialization and the storage update

phase (which will be described later) are without knowledge

of later shuffles. In subsequent time slots t ∈ [T], the master

is not needed and the workers communicate with one another.

Data Shuffling Phase: Given global knowledge of the

stored content Zt−1 at all workers, and of the data shuffle

from At−1 to At (indicated as At−1 → At) worker k ∈ [K]
broadcasts a message Xt

k to all other workers, where Xt
k is

based only on the its local storage content Zt−1
k , that is,

H
(
Xt

k|Zt−1
k

)
= 0 (encoding). (4)

The collection of all sent messages is denoted by Xt :=
(Xt

1, X
t
2, . . . , X

t
K). Each worker k ∈ [K] must recover all data

units indexed by At
k from the sent messages Xt and its local

storage content Zt−1
k , that is,

H
((

Fi : i ∈ At
k

)|Zt−1
k , Xt

)
= 0 (decoding). (5)

The rate K-tuple (RA
t−1→At

1 , . . . ,RA
t−1→At

K) is said to be

feasible if there exist delivery functions φt
k : Xt

k = φt
k(Zt−1

k)
for all t ∈ [T] and k ∈ [K] satisfying the constraints (4)

and (5), and such that

H
(
Xt

k

)
≤ BRA

t−1→At

k (load). (6)

Storage Update Phase: After the data shuffling phase in

time slot t, we have the storage update phase in time slot

t ∈ [T]. Each worker k ∈ [K] must update its local storage

based on the sent messages Xt and its local stored content

Zt−1
k , that is,

H
(
Zt

k|Zt−1
k , Xt

)
= 0 (storage update), (7)

by placing in it all the recovered data units, that is,

H
((

Fi : i ∈ At
k

)|Zt
k

)
= 0, (stored content). (8)

Moreover, the local storage has limited size bounded by

H
(
Zt

k

)
≤ MB, ∀k ∈ [K], (storage size). (9)

A storage update for worker k ∈ [K] is said to be feasible

if there exist functions ψt
k : Zt

k = ψt
k(At

k, Zt−1
k , Xt) for all

t ∈ [T] and k ∈ [K] satisfying the constraints in (7), (8)

and (9).

Note: if for any k1, k2 ∈ [K] and t1, t2 ∈ [T] we have

Ψt1
k1
≡ Ψt2

k2
(i.e., Ψt1

k1
is equivalent to Ψt2

k2
), the storage phase

is called structural invariant.
Objective: The objective is to minimize the worst-case

total communication load, or just load for short in the follow-

ing, among all possible consecutive data shuffles, that is we

aim to characterized R� defined as

R� := lim
T→∞

min
ψt′

k ,φt′
k :

t′∈[T],k∈[K]

max
(A0,...,AT)

{
max
t∈[T]

∑
k∈[K]

RA
t−1→At

k :

the rate K-tuple and the storage are feasible

}
. (10)

The minimum load under the constraint of uncoded storage

is denoted by R�
u. In general, R�

u ≥ R�, because the set of

all general data shuffling schemes is a superset of all data

shuffling schemes with uncoded storage.

Remark 1 (Decentralized Data Shuffling vs D2D Caching):
The D2D caching problem studied in [13] differs from our

setting as follows:

1) in the decentralized data shuffling problem one has the

constraint on the stored content in (8) that imposes that

each worker stores the whole requested files, which is

not present in the D2D caching problem; and

2) in the D2D caching problem each worker fills its local

cache by accessing the whole library of files, while in

the decentralized data shuffling problem each worker

updates its local storage based on the received packets

in the current time slot and its stored content in the

previous time slot as in (7).

Because of these differences, achievable and converse bounds

for the decentralized data shuffling problem can not be

obtained by trivial renaming of variables in the D2D caching

problem. �

III. RELEVANT RESULTS FOR CENTRALIZED

DATA SHUFFLING

Data shuffling was originally proposed in [3] for the central-

ized scenario, where communications only exists between the

master and the workers, that is, the K decentralized encoding

conditions in (4) are replaced by H(Xt|F1, . . . , FN) = 0
where Xt is broadcasted by the master to all the workers.

We summarize next some key results from [11], which will

be used in the following sections. We shall use the subscripts

“u,cen,conv” and “u,cen,ach” for converse (conv) and achiev-

able (ach) bounds, respectively, for the centralized problem

(cen) with uncoded storage (u). We have

1) Converse for centralized data shuffling: For a (K, q, M)
centralized data shuffling system, the worst-case com-

munication load under the constraint of uncoded storage

is lower bounded by the lower convex envelope of the

following storage-load pairs [11, Thm.2](
M

q
= m,

R

q
=

K−m

m

)
u,cen,conv

, ∀m ∈ [K]. (11)

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3621

TABLE I

EXAMPLE OF FILE PARTITIONING AND STORAGE IN (14) AT THE END OF TIME SLOT t FOR THE DECENTRALIZED DATA

SHUFFLING PROBLEM WITH (K, q, M) = (3, 1, 7/3) AND At = (3, 1, 2) WHERE g = 2

2) Achievability for centralized data shuffling: In [11] it

was also shown that the lower convex envelope of the

following storage-load pairs is achievable with uncoded

storage [11, Thm.1](
M

q
=1 + g

K− 1
K

,
R

q
=

K− g

g + 1

)
u,cen,ach

, ∀g∈ [0 : K].

(12)

The achievable bound in (12) was shown to be within a

factor K
K−1 ≤ 2 of the converse bound in (11) under the

constraint of uncoded storage [11, Thm.3].

3) Optimality for centralized data shuffling: It was shown

in [12, Thm.4] that the converse bound in (11) can be

achieved by a scheme that uses linear network coding

and interference alignement/elimination. An optimality

result similar to [12, Thm.4] was shown in [11, Thm.4],

but only for m ∈ {1, K− 2, K− 1}; note that m = K is

trivial.

Although the scheme that achieves the load in (12) is not

optimal in general, we shall next describe its inner workings as

we will generalize it to the case of decentralized data shuffling.

Structural Invariant Data Partitioning and Storage: Fix

g ∈ [0 : K] and divide each data unit into
(
K
g

)
non-overlapping

and equal-length sub-blocks of length B/
(
K
g

)
bits. Let each

data unit be Fi = (Gi,W : W ⊆ [K] : |W| = g), ∀i ∈ [N].
The storage of worker k ∈ [K] at the end of time slot t is as

follows,3

Zt
k

=
(
(Gi,W : ∀W, ∀i∈At

k)︸ ︷︷ ︸
required data units

∪(Gi,W : k∈W , ∀i∈ [N]\ At
k)︸ ︷︷ ︸

other data units

)
(13)

=
(
(Gi,W : k
∈ W, ∀i∈At

k)︸ ︷︷ ︸
variable part of the storage

∪(Gi,W : k∈W, ∀i∈ [N])︸ ︷︷ ︸
fixed part of the storage

)
.

(14)

Worker k ∈ [K] stores all the
(
K
g

)
sub-blocks of the required q

data units indexed by At
k, and also

(
K−1
g−1

)
sub-blocks of each

data unit indexed by [N] \ At
k (see (13)), thus the required

storage space is

M = q + (N− q)

(
K−1
g−1

)
(
K
g

) =
(
1 + g

K− 1
K

)
q. (15)

3 Notice that here each sub-block Gi,W is stored by workers {ut
i} ∪ W .

In addition, later in our proofs of the converse bound and proposed achievable

schemes for decentralized data shuffling, the notation Fi,W denotes the sub-

block of Fi, which is stored by workers in W .

It can be seen (see (14) and also Table I) that the storage

of worker k ∈ [K] at time t ∈ [T] is partitioned in two parts:

(i) the “fixed part” contains all the sub-blocks of all data points

that have the index k in the second subscript; this part of the

storage will not be changed over time; and (ii) the “variable

part” contains all the sub-blocks of all required data points at

time t that do not have the index k in the second subscript;

this part of the storage will be updated over time.

Initialization (for the Achievable Bound in (12)): The

master directly transmits all data units. The storage is as in (14)

given A0.

Data Shuffling Phase of Time slot t ∈ [T] (for the
Achievable Bound in (12)): After the end of storage update

phase at time t − 1, the new assignment At is revealed. For

notation convenience, let

G′k,W =
(
Gi,W : i ∈ At

k \ At−1
k

)
, (16)

for all k ∈ [K] and all W ⊆ [K], where |W| = g and k /∈ W .

Note that in (16) we have |G′k,W | ≤ B q

(K
g)

, with equality

(i.e., worst-case scenario) if and only if At
k ∩ At−1

k = ∅.
To allow the workers to recover their missing sub-blocks, the

central server broadcasts Xt defined as

Xt = (W t
J : J ⊆ [K] : |J | = g + 1), (17)

where W t
J = ⊕k∈JG′k,J\{k}, (18)

where in the multicast message W t
J in (18) the sub-blocks

G′k,W involved in the sum are zero-padded to meet the length

of the longest one. Since worker k ∈ J requests G′k,J\{k}
and has stored all the remaining sub-blocks in W t

J defined

in (18), it can recover G′k,J\{k} from W t
J , and thus all its

missing sub-blocks from Xt.

Storage Update Phase of Time slot t ∈ [T] (for the
Achievable Bound in (12)): Worker k ∈ [K] evicts from the

(variable part of its) storage the sub-blocks (Gi,W : k
∈
W , ∀i ∈ At−1

k \ At
k) and replaces them with the sub-blocks

(Gi,W : k
∈ W , ∀i ∈ At
k \ At−1

k). This procedure maintains

the structural invariant storage structure of the storage in (14).

Performance Analysis (for the Achievable Bound in (12)):
The total worst-case communication load satisfies

R ≤ q

(
K

g+1

)
(
K
g

) = q
K− g

g + 1
, (19)

with equality (i.e., worst-case scenario) if and only if At
k ∩

At−1
k = ∅ for all k ∈ [K].

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3622 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

IV. MAIN RESULTS

In this section, we summarize our main results for the

decentralized data shuffling problem. We shall use the sub-

scripts “u,dec,conv” and “u,dec,ach” for converse (conv) and

achievable (ach) bounds, respectively, for the decentralized

problem (dec) with uncoded storage (u). We have:
1) Converse: We start with a converse bound for the

decentralized data shuffling problem under the constraint

of uncoded storage.

Theorem 1 (Converse): For a (K, q, M) decentralized

data shuffling system, the worst-case load under the

constraint of uncoded storage is lower bounded by the

lower convex envelope of the following storage-load

pairs(
M

q
= m,

R

q
=

K−m

m

K

K− 1

)
u,dec,conv

, ∀m ∈ [K].

(20)

Notice that the proposed converse bound is a piecewise

linear curve with the corner points in (20) and these

corner points are successively convex.

The proof of Theorem 1 can be found in Section V and

is inspired by the induction method proposed in [14,

Thm.1] for the distributed computing problem. However,

there are two main differences in our proof compared to

[14, Thm.1]: (i) we need to account for the additional

constraint on the stored content in (8), (ii) our storage

update phase is by problem definition in (8) asymmetric

across data units, while it is symmetric in the distributed

computing problem.

2) Achievability: We next extend the centralized data shuf-

fling scheme in Section III to our decentralized setting.

Theorem 2 (Scheme A): For a (K, q, M) decentralized

data shuffling system, the worst-case load under the

constraint of uncoded storage is upper bounded by the

lower convex envelope of the following storage-load

pairs(
M

q
= 1 + g

K− 1
K

,
R

q
=

K − g

g

)
u,dec,ach

, ∀g∈ [K−1].

(21)

and (smallest storage)

(
M

q
= 1,

R

q
= K

)
u,dec,ach

,

(22)

and (largest storage)

(
M

q
= K,

R

q
= 0

)
u,dec,ach

.

(23)

The proof is given in Section VI-A.

A limitation of Scheme A in Theorem 2 is that, in time

slot t ∈ [T] worker k ∈ [K] does not fully leverage

all its stored content. We overcome this limitation by

developing Scheme B described in Section VI-B.

Theorem 3 (Scheme B): For a (K, q, M) decentralized

data shuffling system, the worst-case load under the

constraint of uncoded storage for M ≥ (K−2)q is upper

bounded by the lower convex envelope of the following

storage-load pairs(
M

q
= m,

R

q
=

K−m

m

K

K− 1

)
u,dec,ach

,

∀m ∈ {K− 2, K− 1, K}. (24)

We note that Scheme B is neither a direct extension of

[11, Thm.4] nor of [12, Thm.4] from the centralized to

the decentralized setting. As it will become clear from

the details in Section VI-B, our scheme works with a

rather simple way to generate the multicast messages

transmitted by the workers, and it applies to any shuffle,

not just to the worst-case one. In Remark 4, we also

extend this scheme for the general storage size regime.

Scheme B in Theorem 3 uses a distributed clique-

covering method to generate multicast messages similar

to what is done for D2D caching [8], where distributed

clique cover is for the side information graph (more

details in Section V-A). Each multicast message corre-

sponds to one distributed clique and includes one linear

combination of all nodes in this clique. However, due

to the asymmetry of the decentralized data shuffling

problem (not present in D2D coded caching), the lengths

of most distributed cliques are small and thus the multi-

cast messages based on cliques and sent by a worker

in general include only a small number of messages

(i.e., small multicast gain). To overcome this limitation,

the key idea of Scheme C for M/q = 2 (described in

Section VI-C) is to augment some of the cliques and

send them in M/q = 2 linear combinations.

Theorem 4 (Scheme C): For a (K, q, M) decentralized

data shuffling system, the worst-case load under the

constraint of uncoded storage for M/q = 2 is upper

bounded by(
M

q
= 2,

R

q
=

2K(K− 2)
3(K− 1)

)
u,dec,ach

. (25)

It will be seen later that the proposed schemes only use

binary codes, and only XOR operations are needed for

the decoding procedure.

Finally, we combine the proposed three schemes (by

considering the one among Schemes A, B or C that

attains the lowest load for each storage size).

Corollary 1 (Combined Scheme): For a (K, q, M) decen-

tralized data shuffling system, the achieved storage-load

tradeoff of the combined scheme is the lower convex

envelope of the corner points is as follows:

• M = q. With Scheme A, the worst-case load is

qK−m
m

K
K−1 .

• M = 2q. With Scheme C, the worst-case load is

qK−m
m

K
K−1

4
3 .

• M =
(
1 + g K−1

K

)
q where g ∈ [2 : K − 3]. With

Scheme A, the worst-case load is qK−g
g .

• M = mq where m ∈ [K − 2 : K]. With Scheme B,

the worst-case load is qK−m
m

K
K−1 .

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3623

3) Optimality: By comparing our achievable and converse

bounds, we have the following exact optimality results.

Theorem 5 (Exact Optimality for M/q ≥ K − 2):
For a (K, q, M) decentralized data shuffling system, the

optimal worst-case load under the constraint of uncoded

storage for M/q ∈ [K−2, K] is given in Theorem 1 and

is attained by Scheme B in Theorem 3.

Note that the converse bound on the load for the

case M/q = 1 is trivially achieved by Scheme A in

Theorem 2.

From Theorem 5 we can immediately conclude the

following.

Corollary 2 (Exact Optimality for K ≤ 4): For a

(K, q, M) decentralized data shuffling system, the opti-

mal worst-case load under the constraint of uncoded

storage is given by Theorem 1 for K ≤ 4.

Finally, by combining the three proposed achievable

schemes, we have the following order optimality result

proved in Section VI-D.

Theorem 6 (Order Optimality for K > 4): For a

(K, q, M) decentralized data shuffling system under the

constraint of uncoded storage, for the cases not covered

by Theorem 5, the combined scheme in Corollary 1

achieves the converse bound in Theorem 1 within a

factor of 3/2. More precisely, when mq ≤ M ≤ (m +
1)q, the multiplicative gap between the achievable load

in Corollary 1 and the converse bound in Theorem 1 is

upper bounded by

• 4/3, if m = 1;

• 1− 1
K + 1

2 , if m = 2;

• 1− 1
K + 1

m−1 , if m ∈ [3 : K− 3];
• 1, if m ∈ {K− 2, K− 1}.

4) Finally, by directly comparing the minimum load

for the centralized data shuffling system (the master-

worker framework) in (12) with the load achieved by

the combined scheme in Corollary 1, we can quan-

tify the communication cost of peer-to-peer operations

(i.e., the multiplicative gap on the minimum worst-case

load under the constraint of uncoded storage between

decentralized and centralized data shufflings), which will

be proved in Section VI-D.

Corollary 3: For a (K, q, M) decentralized data shuffling

system under the constraint of uncoded storage, the

communication cost of peer-to-peer operations is no

more than a factor of 2. More precisely, when K ≤ 4,

this cost is K
K−1 ; when K ≥ 5 and mq ≤ M ≤ (m+1)q,

this cost is upper bounded by

• 4K
3(K−1) , if m = 1;

• 1 + K
2(K−1) , if m = 2;

• 1 + K
(m−1)(K−1) , if m ∈ [3 : K− 3];

• K
K−1 , if m ∈ {K− 2, K− 1}.

Remark 2 (Comparison to the Direct Extension From [28]):
As mentioned in Section I-D, the result in [28] guarantees that

from the optimal (linear) centralized data shuffling scheme

in [12] one can derive a linear scheme for the decentral-

ized setting with twice the number of transmissions (by the

construction given in [28, Proof of Theorem 4]), that is, the

following storage-load corner points can be achieved,(
M

q
= m,

R

q
= 2

K−m

m

)
, ∀m ∈ [K]. (26)

The multiplicative gap between the data shuffling scheme

in (26) and the proposed converse bound in Theorem 1, is
2(K−1)

K , which is close to 2 when K is large. Our proposed

combined scheme in Corollary 1 does better: for K ≤ 4,

it exactly matches the proposed converse bound in Theorem

1, while for K > 4 it is order optimal to within a factor

of 3/2.

In addition, the multiplicative gap
2(K−1)

K is independent

of the storage size M. It is shown in Theorem 6 that the

multiplicative gap between the combined scheme and the

converse decreases towards 1 when M increases.

Similar observation can be obtained for the communication

cost of peer-to-peer operations. With the data shuffling scheme

in (26), we can only prove this cost upper is bounded by 2,

which is independent of M and K. With the combined scheme,

it is shown in Corollary 3 that this cost decreases towards to

1 when M and K increase.

We conclude this section by providing some numerical

results. Fig. 2 plots our converse bound and the best convex

combination of the proposed achievable bounds on the worst-

case load under the constraint of uncoded storage for the

decentralized data shuffling systems with K = 4 (Fig. 2a)

and K = 8 (Fig. 2b) workers. For comparison, we also plot

the achieved load by the decentralized data shuffling scheme

in Remark 2, and the optimal load for the corresponding

centralized system in (11) under the constraint of uncoded

storage. For the case of K = 4 workers, Theorem 1 is

tight under the constraint of uncoded storage. For the case

of K = 8 workers, Scheme B meets our converse bound when

M/q ∈ [6, 8], and also trivially when M/q = 1.

V. PROOF OF THEOREM 1: CONVERSE BOUND UNDER

THE CONSTRAINT OF UNCODED STORAGE

We want to lower bound maxAt

∑
k∈[K] R

At−1→At

k for a

fixed t ∈ [T] and a fixed At−1. It can be also checked that

this lower bound is also a lower bound on the worst-case total

communication load in (10) among all t ∈ [T] and all possible

(A0, . . . ,AT). Recall that the excess storage is said to be

uncoded if each worker simply copies bits from the data units

in its local storage. When the storage update phase is uncoded,

we can divide each data unit into sub-blocks depending on the

set of workers who store them.

A. Sub-Block Division of the Data Shuffling Phase
Under Uncoded Storage

Because of the data shuffling constraint in (1), all the bits

of all data units are stored by at least one worker at the end of

any time slot. Recall that the worker who must store data unit

Fi at the end of time slot t is denoted by ut
i in (2). In the case

of excess storage, some bits of some files may be stored by

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3624 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Fig. 2. The storage-load tradeoff for the decentralized data shuffling problem.

multiple workers. We denote by Fi,W the sub-block of bits of

data unit Fi exclusively stored by workers in W where i ∈ [N]
and W ⊆ [K]. By definition, at the end of step t− 1, we have

that ut−1
i must be in W for all sub-blocks Fi,W of data unit

Fi; we also let Fi,W = ∅ for allW ⊆ [K] if ut−1
i
∈ W . Hence,

at the end of step t− 1, each data unit Fi can be written as

Fi = {Fi,W :W ⊆ [K], ut−1
i ∈ W}, (27)

and the storage content as

Zt−1
k = {Fi,W :W ⊆ [K], {ut−1

i , k} ⊆ W , i ∈ [N]}
= {Fi : i∈At−1

k }︸ ︷︷ ︸
required data units

∪{Fi,W : i
∈ At−1
k , {ut−1

i , k} ⊆ W}︸ ︷︷ ︸
other data units

.

(28)

We note that the sub-blocks Fi,W have different content at

different times (as the partition in (27) is a function of At−1

through (ut−1
1 , . . . , ut−1

N)); however, in order not to clutter the

notation, we will not explicitly denote the dependance of Fi,W
on time. Finally, please note that the definition of sub-block

Fi,W , as defined here for the converse bound, is not the same

as Gi,W defined in Section VI for the achievable scheme (see

Footnote 3).

B. Proof of Theorem 1

We are interested in deriving an information theoretic lower

bound on the worst-case communication load. We will first

obtain a number of lower bounds on the load for some

carefully chosen shuffles. Since the load of any shuffle is at

most as large as the worst-case shuffle, the obtained lower

bounds are valid lower bounds for the worst-case load as well.

We will then average the obtained lower bounds.

In particular, the shuffles are chosen as follows. Consider a

permutation of [K] denoted by d = (d1, . . . , dK) where dk
= k
for each k ∈ [K] and consider the shuffle

At
k = At−1

dk
, ∀k ∈ [K]. (29)

We define Xt
S as the messages sent by the workers in S

during time slot t, that is,

Xt
S :=

{
Xt

k : k ∈ S
}

. (30)

From Lemma 1 in the Appendix with S = [K], which is the

key novel contribution of our proof and that was inspired by

the induction argument in [14], we have

R�
u

B
≥ H

(
Xt

[K]

)
≥

K∑
m=1

∑
k∈[K]

∑
i∈At

k

∑
W⊆[K]\{k}: ut−1

i ∈W, |W|=m

|Fi,W |
m

.

(31)

To briefly illustrate the main ingredients on the derivation

of (31), we provide the following example.

Example 1 (K = N = 3): We focus on the decentralized

data shuffling problem with K = N = 3. Without loss of

generality, we assume

At−1
1 = {3}, At−1

2 = {1}, At−1
3 = {2}. (32)

Based on (At−1
1 ,At−1

2 ,At−1
3), we can divide each data unit

into sub-blocks as in (27). More precisely, we have

F1 = {F1,{2}, F1,{1,2}, F1,{2,3}, F1,{1,2,3}};
F2 = {F2,{3}, F2,{1,3}, F2,{2,3}, F2,{1,2,3}};
F3 = {F3,{1}, F3,{1,2}, F3,{1,3}, F3,{1,2,3}}.

At the end of time slot t−1, each worker k ∈ [3] stores Fi,W
if k ∈ W . Hence, we have

Zt−1
1 ={F1,{1,2}, F1,{1,2,3}, F2,{1,3}, F2,{1,2,3},

F3,{1}, F3,{1,2}, F3,{1,3}, F3,{1,2,3}};
Zt−1

2 ={F1,{2}, F1,{1,2}, F1,{2,3}, F1,{1,2,3}, F2,{2,3},
F2,{1,2,3}, F3,{1,2}, F3,{1,2,3}};

Zt−1
3 ={F1,{1,3}, F1,{1,2,3}, F2,{3}, F2,{1,3}, F2,{2,3},

F2,{1,2,3}, F3,{1,3}, F3,{1,2,3}}.
Now we consider a permutation of [3] denoted by d =

(d1, d2, d3) where dk
= k for each k ∈ [3] and assume the

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3625

considered permutation is (2, 3, 1). Based on d, from (29), we

consider the shuffle

At
1 = At−1

2 = {1}, At
2 = At−1

3 = {2}, At
3 = At−1

1 = {3}.
(33)

We first prove

H(Xt
[2]|Zt−1

3 , F3) ≥ |F1,{2}|. (34)

More precisely, by the decoding constraint in (5), we have

H(F1,{2}|Zt−1
1 , Xt

[3]) = 0, (35)

which implies

H(F1,{2}|Zt−1
1 , Xt

[3], Z
t−1
3 , F3) = 0. (36)

Since F1,{2} is not stored by workers 1 and 3, we have

|F1,{2}| ≤ H(F1,{2}, Xt
[2]|Zt−1

1 , Xt
3, Z

t−1
3 , F3) (37a)

= H(Xt
[2]|Zt−1

1 , Xt
3, Z

t−1
3 , F3)+

H(F1,{2}|Zt−1
1 , Xt

[3], Z
t−1
3 , F3) (37b)

= H(Xt
[2]|Zt−1

1 , Xt
3, Z

t−1
3 , F3) (37c)

≤ H(Xt
[2]|Xt

3, Z
t−1
3 , F3) (37d)

= H(Xt
[2]|Zt−1

3 , F3), (37e)

where (37c) comes from (36) and (37e) comes from the fact

that Xt
3 is a function of Zt−1

3 . Hence, we prove (34).

Similarly, we can also prove

H(Xt
{1,3}|Zt−1

2 , F2) ≥ |F3,{1}|. (38)

H(Xt
{2,3}|Zt−1

1 , F1) ≥ |F2,{3}|. (39)

In addition, we have

H(Xt
[3]) =

1
3

∑
k∈[3]

(
H(Xt

k) + H(Xt
[3]\{k}|Xt

k)
)

(40a)

≥ 1
3

⎛
⎝H(Xt

[3]) +
∑
k∈[3]

H(Xt
[3]\{k}|Xt

k)

⎞
⎠ , (40b)

and thus

2H(Xt
[3]) ≥

∑
k∈[3]

H(Xt
[3]\{k}|Xt

k) (40c)

≥
∑
k∈[3]

H(Xt
[3]\{k}|Zt−1

k) (40d)

=
∑
k∈[3]

H(Xt
[3]\{k}, Fk|Zt−1

k) (40e)

=
∑
k∈[3]

H(Fk|Zt−1
k) + H(Xt

[3]\{k}|Fk, Zt−1
k), (40f)

where (40d) comes from the fact that Xt
k is a function of Zt−1

k

and conditioning cannot increase entropy, and (40e) comes

from the decoding constraint for worker k in (5).

Let us focus on worker 1 and we have

H(F1|Zt−1
1) = |F1,{2}|+ |F1,{2,3}|. (41)

In addition, we have H(Xt
{2,3}|Zt−1

1 , F1) ≥ |F2,{3}|
from (39). Hence,

H(F1|Zt−1
1) + H(Xt

{2,3}|Zt−1
1 , F1)

≥ |F1,{2}|+ |F1,{2,3}|+ |F2,{3}|. (42)

Similarly, we have

H(F2|Zt−1
2) + H(Xt

{1,3}|Zt−1
2 , F2)

≥ |F2,{3}|+ |F2,{1,3}|+ |F3,{1}|; (43)

H(F3|Zt−1
3) + H(Xt

{1,2}|Zt−1
3 , F3)

≥ |F3,{1}|+ |F3,{1,2}|+ |F1,{2}|. (44)

By taking (42)-(44) to (40f), we have

H(Xt
[3]) ≥

1
2

∑
k∈[3]

H(Fk|Zt−1
k) + H(Xt

[3]\{k}|Fk, Zt−1
k)

(45a)

= |F1,{2}|+ |F2,{3}|+ |F3,{1}|+
|F1,{2,3}|

2
+
|F2,{1,3}|

2

+
|F3,{1,2}|

2
, (45b)

coinciding with (31). �
We now go back to the general proof of Theorem 1. We next

consider all the permutations d = (d1, . . . , dK) of [K] where

dk
= k for each k ∈ [K], and sum together the inequalities in

the form of (31). For an integer m ∈ [K], by the symmetry

of the problem, the sub-blocks Fi,W where i ∈ [N], ut−1
i ∈

W and |W| = m appear the same number of times in the

final sum. In addition, the total number of these sub-blocks in

general is N
(

K−1
m−1

)
and the total number of such sub-blocks in

each inequality in the form of (31) is N
(

K−2
m−1

)
. So we obtain

R�
u ≥

K∑
m=1

∑
i∈[N]

∑
W⊆[K]: ut−1

i ∈W, |W|=m

(
K−2
m−1

)
m
(

K−1
m−1

) |Fi,W | qK

NB

(46)

=
K∑

m=1

qK xm
1− (m− 1)/(K− 1)

m
(47)

=
K∑

m=1

q xm
K−m

m

K

K− 1
, (48)

where we defined xm as the total number of bits in the sub-

blocks stored by m workers at the end of time slot t − 1
normalized by the total number of bits NB, i.e.,

0 ≤ xm :=
∑
i∈[N]

∑
W⊆[K]: ut−1

i ∈W, |W|=m

|Fi,W |
NB

, (49)

which must satisfy∑
m∈[K]

xm = 1 (total size of all data units), (50)

∑
m∈[K]

m xm ≤ KM

N
=

M

q
(total storage size). (51)

We then use a method based on Fourier-Motzkin elimination

[30, Appendix D] for to bound R�
u from (47) under the

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3626 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

constraints in (50) and (51), as we did in [9] for coded caching

with uncoded cache placement. In particular, for each integer

p ∈ [K], we multiply (50) by
−N(2Kp−p2+K−p)

p(p+1) to obtain

−N(2Kp− p2 + K− p)
p(p + 1)

=
K∑

m=1

−N(2Kp− p2 + K− p)
p(p + 1)

xm,
(52)

and we multiply (51) by NK
(K−1)p(p+1) to have

NK

(K− 1)p(p + 1)
KM

N
≥

K∑
m=1

NK

(K− 1)p(p + 1)
mxm. (53)

We then add (52), (53), and (47) to obtain,

R�
u ≥

K∑
m=1

NK(p−m)(p + 1−m)
m(K − 1)p(p + 1)

xm− NK

(K − 1)p(p + 1)
KM

N

+
N(2Kp− p2 + K− p)

p(p + 1)
(54)

≥ − NK

(K− 1)p(p + 1)
KM

N
+

N(2Kp− p2 + K− p)
p(p + 1)

.

(55)

Hence, for each integer p ∈ [K], the bound in (55) becomes

a linear function in M. When M = qp, from (55) we have

R�
u ≥ N(K−p)

(K−1)p . When M = q(p + 1), from (55) we have R�
u ≥

N(K−p−1)
(K−1)(p+1) . In conclusion, we prove that R�

u is lower bounded

by the lower convex envelope (also referred to as “meme-

ory sharing”) of the points
(
M = qm, R = N(K−m)

(K−1)m

)
, where

m ∈ [K].
This concludes the proof of Theorem 1.

C. Discussion

We conclude this session the following remarks:

1) The corner points from the converse bound are of the

form

(
M/q = m, R/q =

K(K−2
m−1)

m(K−1
m−1)

)
, which may suggest

the following placement.

At the end of time slot t−1, each data unit is partitioned

into
(

K−1
m−1

)
equal-length sub-blocks of length B/

(
K−1
m−1

)
bits as Fi = (Fi,W : W ⊆ [K], |W| = m, ut−1

i ∈ W);
by definition Fi,W = ∅ if either ut−1

i /∈ W or |W|
= m.

Each worker k ∈ [K] stores all the sub-blocks Fi,W if

k ∈ W ; in other words, worker k ∈ [K] stores all the(
K−1
m−1

)
sub-blocks of the desired data units, and

(
K−2
m−2

)
sub-blocks of the remaining data units.

In the data shuffling phase of time slot t, worker k ∈ [K]
must decode the missing

(
K−1
m−1

)− (
K−2
m−2

)
=

(
K−2
m−1

)
sub-

blocks of data unit Fj for all j ∈ At
k\At−1

k . An inter-

pretation of the converse bound is that, in the worst case,

the total number of transmissions is equivalent to at least
qK
m

(
K−2
m−1

)
sub-blocks.

We will use this interpretation to design the storage

update phase our proposed Schemes B and C.

2) The converse bound is derived for the objective of

minimizing the “sum load”
∑

k∈[K] R
At−1→At

k , see (10).

The same derivation would give a converse bound for

the “largest individual load” maxk∈[K] R
At−1→At

k . In the

latter case, the corner points from converse bound are of

the form

(
M/q = m, R/q = (K−2

m−1)
m(K−1

m−1)

)
. This view point

may suggest that, in the worst case, all the individual

loads RA
t−1→At

k are the same, i.e., the burden of com-

municating missing data units is equally shared by all

the workers.

Our proof technique for Theorem 1 could also be

directly extended to derive a converse bound on the

average load (as opposed to the worst-case load) for all

the possible shuffles in the decentralized data shuffling

problem when N = K.

VI. ACHIEVABLE SCHEMES FOR DECENTRALIZED

DATA SHUFFLING

In this section, we propose three schemes for the decentral-

ized data shuffling problem, and analyze their performances.

A. Scheme A in Theorem 2

Scheme A extends the general centralized data shuffling

scheme in Section III to the distributed model. Scheme A

achieves the load in Theorem 2 for each storage size M =
(
1+

g K−1
K

)
q, where g ∈ [K − 1]; the whole storage-load tradeoff

piecewise curve is achieved by memory-sharing4 between

these points (given in (21)) and the (trivially achievable) points

in (22)-(23).

Structural Invariant Data Partitioning and Storage: This

is the same as the one in Section III for the centralized case.

Initialization: The master directly transmits all data units.

The storage is as in (14) given A0.

Data Shuffling Phase of Time Slot t ∈ [T]: The data shuf-

fling phase is inspired by the delivery in D2D caching [13].

Recall the definition of sub-block G′k,W in (16), where each

sub-block is known by |W| = g workers and needed by

worker k. Partition G′k,W into g non-overlapping and equal-

length pieces G′k,W = {G′k,W (j) : j ∈ W}. Worker j ∈ J
broadcasts

W t
j,J = ⊕

k∈J\{j}
G′k,J\{k}(j),

∀J ⊆ [K] where |J | = g + 1, (56)

in other words, one linear combination W t
J in (17) for the

centralized setting becomes g + 1 linear combinations W t
j,J

in (56) for the decentralized setting, but of size reduced by a

factor g. Evidently, each sub-block in W t
j,J is stored in the

storage of worker j at the end of time slot t− 1. In addition,

each worker k ∈ J \{j} knows G′k1,J\{k1}(j) where k1 ∈ J \
{k, j} such that it can recover its desired block G′k,J\{k}(j).

4 Memory-sharing is an achievability technique originally proposed by
Maddah-Ali and Niesen in [8] for coded caching systems, which is used

to extend achievability in between discrete memory points. More precisely,

focus one storage size M′ = αM1 + (1 − α)M2, where α ∈ [0, 1],
M1 =

�
1 + g K−1

K

�
q, M2 =

�
1 + (g + 1)K−1

K

�
q, and g ∈ [K − 1].

We can divide each data unit into two non-overlapping parts,with αB and
(1−α)B bits, respectively. The first and second parts of the N data units are

stored and transmitted based on the proposed data shuffling scheme for M1

and M2, respectively.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3627

Since |G′k,W | ≤ qB/
(
K
g

)
, the worst-case load is

R ≤ q
(g + 1)

(
K

g+1

)
g
(
K
g

) = q
K− g

g
=: RAch.A, (57)

as claimed in Theorem 2, where the subscript “Ach.A” in (57)

denotes the worst-case load achieved by Scheme A.

Storage Update Phase of Time Slot t ∈ [T]: The storage

update phase is the same as the general centralized data

shuffling scheme in Section III, and thus is not repeated here.

B. Scheme B in Theorem 3

During the data shuffling phase in time slot t of Scheme

A, we treat some sub-blocks known by g + 1 workers as if

they were only known by g workers (for example, if ut−1
i /∈

W , Gi,W is stored by workers {ut−1
i } ∪ W , but Scheme A

treats Gi,W as if it was only stored by workers in W), which

may be suboptimal as more multicasting opportunities may be

leveraged. In the following, we propose Scheme B to remedy

for this shortcoming for M = mq for m ∈ {K− 2, K− 1}.
Structural Invariant Data Partitioning and Storage: Data

units are partitions as inspired by the converse bound (see

discussion in Section V-C), which is as in the improved

centralized data shuffling scheme in [11]. Fix m ∈ [K].
Partition each data unit into

(
K−1
m−1

)
non-overlapping equal-

length sub-block of length B/
(

K−1
m−1

)
bits. Write Fi = (Fi,W :

W ⊆ [K], |W| = m, ut
i ∈ W), and set Fi,W = ∅ if either

ut
i /∈ W or |W|
= m. The storage of worker k ∈ [K] at the

end of time slot t is as follows,

Zt
k =

(
(Fi,W : i ∈ At

k, ∀W)︸ ︷︷ ︸
required data units

∪ (Fi,W : i
∈ At
k, k ∈ W)︸ ︷︷ ︸

other data units

)
,

(58)

that is, worker k ∈ [K] stores all the
(

K−1
m−1

)
sub-blocks of data

unit Fi if i ∈ At
k, and

(
K−2
m−2

)
sub-blocks of data unit Fj if

j /∈ At
k (the sub-blocks stored are such that k ∈ W), thus the

required storage space is

M = q + (N− q)

(
K−2
m−2

)(
K−1
m−1

) = q + (m− 1)
N− q

K− 1
= mq. (59)

In the following, we shall see that it is possible to maintain

the storage structure in (58) after the shuffling phase.

Initialization: The master directly transmits all data units.

The storage is as in (58) given A0.

Data Shuffling Phase of Time Slot t ∈ [T] for m = K−1:
Each data unit has been partitioned into

(
K−1
m−1

)
= K− 1 sub-

blocks and each sub-block is stored by m = K − 1 workers.

Similarly to Scheme A, define the set of sub-blocks needed

by worker k ∈ [K] at time slot t and not previously stored as

F ′k,[K]\{k}=
(
Fi,W : i ∈ At

k \ At−1
k ,W=[K] \ {k}

)
, ∀k ∈ [K].

(60)

Since F ′k,[K]\{k} (of length qB/(K − 1) bits in the worst

case) is desired by worker k and known by all the remaining

m = K − 1 workers, we partition F ′k,[K]\{k} into m = K − 1

pieces (of length qB/(K − 1)2 bits in the worst case), and

write F ′k,[K]\{k} =
(
F ′k,[K]\{k}(j) : j ∈ [K] \ {k}). Worker

j ∈ [K] broadcasts the single linear combination (of length

qB/(K− 1)2 bits in the worst case) given by

W t
j = ⊕

k �=j
F ′k,[K]\{k}(j). (61)

Therefore, the worst-case satisfies

R≤ K

(K− 1)2
q=

K−m

m

K

K− 1
q

∣∣∣∣
m=K−1

=: RAch.B|M=(K−1)q

(62)

which coincides with the converse bound.

Storage Upadte Phase of Time Slot t ∈ [T] for m =
K − 1: In time slot t − 1 > 0, we assume that the above

storage configuration of each worker k ∈ [K] can be done

with Zt−2
k and Xt−1

j where j ∈ [K] \ {k}. We will show

next that at the end of time slot t, we can re-create the same

configuration of storage, but with permuted data units. Thus

by the induction method, we prove the above storage update

phase is also structural invariant.

For each worker k ∈ [K] and each data unit Fi where

i ∈ At
k \ At−1

k , worker k stores the whole data unit Fi in its

storage. For each data unit Fi where i ∈ At−1
k \ At

k, instead

of storing the whole data unit Fi, worker k only stores the

bits of Fi which was stored at the end of time slot t − 1 by

worker ut
i. For other data units, worker k does not change the

stored bits. Hence, after the storage phase in time slot t, we

can re-create the same configuration of storage as the end of

time slot t− 1 but with permuted data units.

Data Shuffling Phase of Time Slot t ∈ [T] for m = K−2:
We partition the N data units into q groups as [N] = ∪

i∈[q]
Hi,

where each group contains K data units, and such that for

each group Hi, i ∈ [q], and each worker k ∈ [K] we have

|Hi ∩ At
k| = 1 and |Hi ∩ At−1

k | = 1. In other words, the

partition is such that, during the data shuffling phase of time

slot t, among all the K data units in each group, each worker

requests exactly one data unit and knows exactly one data

unit. Such a partition can always be found [12, Lemma 7].

The dependance of Hi on t is not specified so not to clutter

the notation. For group Hi, i ∈ [q], we define

U(Hi) := {k ∈ [K] : Hi ∩ At
k ⊆ At−1

k }, ∀i ∈ [q], (63)

as the set of workers in the group who already have stored the

needed data point (i.e., who do not need to shuffle). Since each

worker has to recover at most one data unit in each group, the

delivery in each group is as if q = 1. Hence, to simplify the

description, we focus on the case q = 1, in which case there

is only one group and thus we simplify the notation U(Hi)
to just U . We first use the following example to illustrate the

main idea.

Example 2: Consider the (K, q, M) = (5, 1, 3) decentralized

data shuffling problem, where m = M/q = 3. Let At−1 =
(5, 1, 2, 3, 4). During the storage update phase in time slot t−1,

we partition each data unit into 6 equal-length sub-blocks, each

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3628 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

of which has B/6 bits, as

F1 =(F1,{1,2,3}, F1,{1,2,4}, F1,{1,2,5}, F1,{2,3,4}, F1,{2,3,5},
F1,{2,4,5}}, (64a)

F2 =(F2,{1,2,3}, F2,{1,3,4}, F2,{1,3,5}, F2,{2,3,4}, F2,{2,3,5},
F2,{3,4,5}}, (64b)

F3 =(F3,{1,2,4}, F3,{1,3,4}, F3,{1,4,5}, F3,{2,3,4}, F3,{2,4,5},
F3,{3,4,5}}, (64c)

F4 =(F4,{1,2,5}, F4,{1,3,5}, F4,{1,4,5}, F4,{2,3,5}, F4,{2,4,5},
F4,{3,4,5}}, (64d)

F5 =(F5,{1,2,3}, F5,{1,2,4}, F5,{1,2,5}, F5,{1,3,4}, F5,{1,3,5},
F5,{1,4,5}}, (64e)

and each worker k stores Fi,W if k ∈ W .

In the following, we consider various shuffles in time slot t.
If one sub-block is stored by some worker in U , we let

this worker transmit it and the transmission is equivalent to

centralized data shuffling; otherwise, we will introduce the

proposed scheme B to transmit it.

We first consider At = (1, 2, 3, 4, 5). For each set J ⊆ [K]
of size |J | = m + 1 = K− 1 = 4, we generate

V t
J = ⊕

k∈J
Fdt

k
,J\{k}, (65)

where dt
k represents the demanded data unit of worker k in

time slot t if q = 1. The details are illustrated in Table II.

For example, when J = {1, 2, 3, 4}, we have V t
{1,2,3,4} =

F1,{2,3,4}+F2,{1,3,4}+F3,{1,2,4}+F4,{1,2,3} where F4,{1,2,3}
is empty and we replace F4,{1,2,3} by B/6 zero bits. Since

F1,{2,3,4}, F2,{1,3,4}, and F3,{1,2,4} are all stored by worker

4, V t
{1,2,3,4} can be transmitted by worker 4. Similarly, we

let worker 3 transmit V t
{1,2,3,5}, worker 2 transmit V t

{1,2,4,5},
worker 1 transmit V t

{1,3,4,5}, and worker 5 transmit V t
{2,3,4,5}.

It can be checked that each worker can recover its desired sub-

blocks and the achieved load is 5/6, which coincides with the

proposed converse bound.

Let us then focus on At = (5, 2, 3, 4, 1). For this shuffle,

At−1
1 = At

1 such that worker 1 needs not to decode anything

from what the other workers transmit. We divide all desired

sub-blocks into two sets, stored and not stored by worker 1 as

follows

S{1} = {F1,{1,2,3}, F1,{1,2,4}, F2,{1,3,4}, F2,{1,3,5}, F3,{1,2,4},
F3,{1,4,5}, F4,{1,2,5}, F4,{1,3,5}},

S∅ = {F1,{2,3,4}, F2,{3,4,5}, F3,{2,4,5}, F4,{2,3,5}}.
Since the sub-blocks in S{1} are all stored by worker 1,

we can treat worker 1 as a central server and the transmis-

sion of S{1} is equivalent to centralized data shuffling with

Keq = 4, Meq = 2 and qeq = 1, where Ueq = ∅. For this

centralized problem, the data shuffling schemes in [11], [12]

are optimal under the constraint of uncoded storage. Alter-

natively, we can also use the following simplified scheme.

By generating V t
{1,2,3,4} as in (65), and it can be seen that

V t
{1,2,3,4} is known by workers 1 and 4. Similarly, V t

{1,2,3,5}
is known by workers 1 and 3, V t

{1,2,4,5} is known by workers

1 and 2, and V t
{1,3,4,5} is known by workers 1 and 5.

TABLE II

MULTICAST MESSAGES FOR EXAMPLE 2. EMPTY

SUB-BLOCKS ARE COLORED IN MAGENTA

Hence, we can let worker 1 transmit V t
{1,2,3,4} ⊕ V t

{1,2,3,5},
V t
{1,2,3,4} ⊕ V t

{1,2,4,5}, and V t
{1,2,3,4} ⊕ V t

{1,3,4,5}. Hence,

each worker can recover V t
{1,2,3,4}, V t

{1,2,3,5}, V t
{1,2,4,5}, and

V t
{1,3,4,5}. We then consider the transmission for S∅ =
{F1,{2,3,4}, F2,{3,4,5}, F3,{2,4,5}, F4,{2,3,5}}, which is equiva-

lent to decentralized data shuffling with Keq = 4, Meq = 3
and qeq = 1, where Ueq = ∅ defined in (63). Hence, we

can use the proposed Scheme B for m = K − 1. More

precisely, we split each sub-block in V t
{2,3,4,5} into 3 non-

overlapping and equal-length sub-pieces, e.g., F2,{3,4,5} =
{F2,{3,4,5}(3), F2,{3,4,5}(4), F2,{3,4,5}(5)}. We then let

worker 2 transmit F3,{2,4,5}(2)⊕F4,{2,3,5}(2)⊕F1,{2,3,4}(2);
worker 3 transmit F2,{3,4,5}(3)⊕F4,{2,3,5}(3)⊕F1,{2,3,4}(3);
worker 4 transmit F2,{3,4,5}(4)⊕F3,{2,4,5}(4)⊕F1,{2,3,4}(4);
worker 5 transmit F2,{3,4,5}(5)⊕F3,{2,4,5}(5)⊕F4,{2,3,5}(5).

In conclusion, the total load for At = (5, 2, 3, 4, 1) is
3
6 + 2

9 = 13
18 .

Finally, we consider At = {5, 1, 3, 4, 2}. For this shuffle,

At−1
1 = At

1 and At−1
2 = At

2 such that workers 1 and 2
need not to decode anything from other workers. We divide

all desired sub-blocks into three sets

S{1,2} = {F2,{1,2,3}, F3,{1,2,4}, F4,{1,2,5}},

stored by workers 1 and 2,

S{1} = {F2,{1,3,4}, F3,{1,4,5}, F4,{1,3,5}},

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3629

stored by worker 1 and not by worker 2, and

S{2} = {F2,{2,3,4}, F3,{2,4,5}, F4,{2,3,5}}
stored by worker 2 and not by worker 1.

The transmission for S{1,2} is equivalent to a centralized

data shuffling with Keq = 3, Meq = 1 and qeq = 1. We use

the following simplified scheme to let worker 1 transmit

V t
{1,2,3,4}⊕V t

{1,2,3,5} and V t
{1,2,3,4}⊕V t

{1,2,4,5} such that each

worker can recover V t
{1,2,3,4}, V t

{1,2,3,5}, and V t
{1,2,4,5} (as

illustrated in Table II, V t
{1,2,3,4} = F3,{1,2,4}, V t

{1,2,3,5} =
F2,{1,2,3}, and V t

{1,2,4,5} = F4,{1,2,5}). Similarly, for S{1},
we let worker 1 transmit V t

{1,3,4,5}. For S{2}, we let worker

2 transmit V t
{2,3,4,5}. In conclusion the total load for At =

{5, 1, 3, 4, 2} is 2
6 + 1

6 + 1
6 = 2

3 . �
Now we are ready to introduce Scheme B for m = K − 2

as a generalization of Example 2. Recall that, from our earlier

discussion, we can consider without loss of generality q = 1,

and that U represents the set of workers who need not to

recover anything from others. We divide all desired sub-blocks

by all workers into non-overlapping sets

SK :={Fdk,W :k ∈ [K] \ U ,|W|=m + 1,W ∩ U = K,k /∈ W},
(66)

where K ⊆ U . We then encode the sub-blocks in each set in

SK in (66) as follows:

• For each K ⊆ U where K
= ∅, the transmission for SK
is equivalent to a centralized data shuffling problem with

Keq = K − |U|, qeq = 1 and Meq = m − |K|, where

Ueq = ∅. It can be seen that Keq −Meq ≤ 2. Hence, we

can use the optimal centralized data shuffling schemes

in [11], [12].

Alternatively, we propose the following simplified

scheme. For each set J ⊆ [K] of size |J | = m + 1 =
K − 1, where J ∩ U = K, we generate V t

J as in (65).

Each sub-block in SK appears in one V t
J , where J ⊆ [K],

|J | = K − 1 and J ∩ U = K. It can be seen that for

each worker j ∈ [K] \ U , among all V t
J where J ⊆ [K],

|J | = K − 1 and J ∩ U = K, worker j knows one of

them (which is V t
[K]\{ut−1

dt
j

}). We denote all sets J ⊆ [K]

where |J | = K− 1 and J ∩ U = K, by J1(K), J2(K),
…, J(K−|U|

K−1−|K|)
(K). For SK, we choose one worker in K

to transmit V t
J1(K)⊕V t

J2(K), …, V t
J1(K)⊕V t

J(K−|U|
K−1−|K|)

(K),

such that each worker in K\U can recover all V t
J where

J ⊆ [K], |J | = K− 1 and J ∩ U = K.

• For K = ∅, the transmission for SK is equivalent to

decentralized data shuffling with Keq = K− |U|, qeq = 1
and Meq = m = K − 2, where Ueq = ∅. Hence, in this

case U ≤ 2.

If |U| = 2, we have Meq = Keq and thus we do not

transmit anything for S∅.

If |U| = 1, we have Meq = Keq − 1 and thus we can use

Scheme B for m = K− 1 to transmit S∅.

Finally, we consider |U| = ∅. For each set J ⊆ [K] where

|J | = m+1 = K−1, among all the workers in J , there is

exactly one worker in J where ut−1
dt

k
/∈ J (this worker is

assumed to be k and we have ut−1
dt

k
= [K]\J with a slight

abuse of notation). We then let worker k transmit V t
J .

In conclusion, by comparing the loads for different cases, the

worst-cases are when At−1
k ∩ At

k = ∅ for each k ∈ [K] and

the worst-case load achieved by Scheme B is

qK/

(
K − 1
K − 2

)
= q

K−m

m

K

K− 1

∣∣∣∣
m=K−1

=: RAch.B|M=(K−2)q ,

(67)

which coincides with the converse bound.

Storage Update Phase of Time Slot t ∈ [T] for m = K−2:
The storage update phase for m = K − 2 is the same as the

one of scheme B for m = K− 1.

Remark 3 (Scheme B Realizes Distributed Interference
Alignment): In Example 2, from At−1 = (5, 1, 2, 3, 4) to

At = (1, 2, 3, 4, 5), by the first column of Table II, we see

that each worker desires K − 2 = 3 of the sub-blocks that

need to be shuffled. Since each worker cannot benefit from

its own transmission, we see that the best possible scheme

would have each worker recover its K − 2 = 3 desired sub-

blocks from the K− 1 = 4 “useful transmissions,” that is, the

unwanted sub-blocks should “align” in a single transmission,

e.g., for worker 1, all of its unwanted sub-blocks are aligned

in V t
{2,3,4,5}. From the above we see that this is exactly what

happens for each worker when K − 2 = m. How to realize

distributed interference alignment seems to be a key question

in decentralized data shuffling. �

Remark 4 (Extension of Scheme B to Other Storage Sizes):
We can extend Scheme B to any storage size by the following

three steps:

• We partition the N data units into q groups, where each

group contains K data units, and such that during the

data shuffling phase each worker requests exactly one

data unit and knows exactly one data unit among all the

K data units in each group.

• For each group Hi, we partition all desired sub-blocks

by all workers into sets depending on which workers

in U(Hi) know them. Each set is denoted by SK(Hi),
which is known by workers in K ⊆ U(Hi), and is defined

similarly to (66).

• For each set SK(Hi),
– if K
= ∅, the transmission is equivalent to centralized

data shuffling with Keq = K− |U(Hi)|, qeq = 1 and

Meq = M− |K|. We can use the optimal centralized

data shuffling scheme in [12];

– if K = ∅, for each set J ⊆ ([K] \ U(Hi)), where

|J | = m + 1, we generate the multicast messages

V t
J as defined in (65).

If there exists some empty sub-block in V t
J , we let

the worker who demands this sub-block transmit V t
J .

Otherwise, V t
J is transmitted as Scheme B for

m = K− 1.

Unfortunately, a general closed-form expression for the load

in this general case is not available as it heavily depends on

the shuffle.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3630 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Note: in Example 3 next we show the transmission for

K = ∅, can be further improved by random linear

combinations. �
Example 3: Consider the (K, q, M) = (5, 1, 2) decentralized

data shuffling problem, where m = M/q = 2. From the

outer bound we have R�
u ≥ 15/8; if each sub-block is of

size 1/
(

K−1
m−1

)
= 1/4, the outer bound suggests that we need

to transmit at least 15/2 = 7.5 sub-blocks in total.

Let At−1 = (5, 1, 2, 3, 4). During the storage update phase

in time slot t − 1, we partition each data unit into 4 equal-

length sub-blocks, each of which has B/4 bits, as

F1 = (F1,{1,2}, F1,{2,3}, F1,{2,4}, F1,{2,5}}, (68a)

F2 = (F2,{1,3}, F2,{2,3}, F2,{3,4}, F2,{3,5}}, (68b)

F3 = (F3,{1,4}, F3,{2,4}, F3,{3,4}, F3,{4,5}}, (68c)

F4 = (F4,{1,5}, F4,{2,5}, F4,{3,5}, F4,{4,5}}, (68d)

F5 = (F5,{1,2}, F5,{1,3}, F5,{1,4}, F5,{1,5}}, (68e)

and each worker k stores Fi,W if k ∈ W .

Let At = (1, 2, 3, 4, 5). During the data shuffling phase in

time slot t, each worker must recover 3 sub-blocks of the

desired data unit which it does not store, e.g., worker 1 must

recover (F1,{2,3}, F1,{2,4}, F1,{2,5}), worker 2 must recover

(F2,{1,3}, F2,{3,4}, F2,{3,5}), etc.

For each set J ⊆ [K] where |J | = m+1 = 3, we generate

V t
J = ⊕

k∈J
Fk,J\{k} as in (65). More precisely, we have

V t
{1,2,3} = F1,{2,3} ⊕ F2,{1,3}, (can be sent by worker 3),

(69a)

V t
{1,2,4} = F1,{2,4}, (69b)

V t
{1,2,5} = F1,{2,5} ⊕ F5,{1,2}, (can be sent by worker 2),

(69c)

V t
{1,3,4} = F3,{1,4}, (69d)

V t
{1,3,5} = F5,{1,3}, (69e)

V t
{1,4,5} = F4,{1,5} ⊕ F5,{1,4}, (can be sent by worker 1),

(69f)

V t
{2,3,4} = F2,{3,4} ⊕ F3,{2,4}, (can be sent by worker 4),

(69g)

V t
{2,3,5} = F2,{3,5}, (69h)

V t
{2,4,5} = F4,{2,5}, (69i)

V t
{3,4,5} = F3,{4,5} ⊕ F4,{3,5}, (can be sent by worker 5).

(69j)

We deliver these multicast messages with a two-phase

scheme, as follows.

• Phase 1. It can be seen that the multicast messages like

V t
{1,2,3} in (69) (which is known by worker 3 only) can be

sent by one specific worker. Similarly, we can let workers

2, 1, 4 and 5 broadcast V t
{1,2,5}, V t

{1,4,5}, V t
{2,3,4} and

V t
{3,4,5}, respectively.

• Phase 2. After the above Phase 1, the remaining messages

are known by two workers. For example, V t
{1,2,4} =

F1,{2,4} is known by workers 2 and 4; we can let worker

2 transmit V t
{1,2,4}. If we do so as Scheme B, since each

multicast message in (69) has B/4 bits and there are 10
multicast messages in (69), the total load is 10/4.

In this example Phase 2 of Scheme B can be improved as

follows. The problem with the above strategy (i.e., assign

each multicast message to a worker) is that we have

not leveraged the fact that, after Phase 1, there are still

five sub-blocks to be delivered (one demanded per wor-

ker, namely F1,{2,4}, F2,{3,5}, F3,{1,4}, F4,{2,5}, F5,{1,3}),

each of which is known by two workers. Therefore, we

can form random linear combinations so that each worker

can recover all three of the unstored sub-blocks. In other

words, if a worker receivers from each of the remaining

K − 1 = 4 workers 3/4 × “size of a sub-block” linear

equations then it solved for the three missing sub-blocks,

that is, each worker broadcasts 3B
16 random linear combi-

nations of all bits of the two sub-blocks he stores among

F1,{2,4}, F2,{3,5}, F3,{1,4}, F4,{2,5}, F5,{1,3}. It can be

checked that for worker 1, the received 3B/4 random

linear combinations from other workers are linearly inde-

pendent known F1,{2,4} and F5,{1,3} as B → ∞, such

that it can recover all these five sub-blocks. By the

symmetry, each other worker can also recover these five

sub-blocks.

In conclusion, the total load with this two-phase is

5(1 + 3/4) × 1/4 = 35
16 < 10/4, which is achieved by

Scheme B. By comparison, the load of Scheme A is 27
8 and

the converse bound under the constraint of uncoded storage in

Theorem 1 is 15
8 .

As a final remark, note that the five sub-blocks in Phase

2 is symmetric, i.e., the number of sub-blocks stored by

each worker is the same and the one known by each worker

is also the same. In general case, this symmetry may not

hold (thus the conditional linearly independent of the received

random linear combinations by each worker may not hold),

and the generalization of this scheme is part of ongoing

work. �
Remark 5 (Limitation of Scheme B for Small Storage

Size): The data shuffling phase with uncoded storage can

be represented by a directed graph, where each sub-block

demanded by some worker is represented by a node in the

graph. A directed edge exists from node a to node b in the

graph if the worker demanding the data represented by node b
has the data represented by node a in its storage. By generating

a directed graph for the data shuffling phase as described in

Section II, we can see that each multicast message in (65) is

the sum of the sub-blocks contained in a clique, where a clique

is a set of nodes where each two of them are connected in two

directions. The sub-blocks in each multicast message in (65)

also form a distributed clique, where a distributed clique is a

clique whose nodes are all known by some worker.

Consider the case where K = N is much larger than M =
m = 2 (i.e., small storage size regime). Consider a “cyclic

shuffle” of the form At−1
1 = {K} and At−1

k = {k − 1} for

k ∈ [2 : K], to At
k = {k} for k ∈ [K]. Each data unit is split

into
(

K−1
m−1

)
= K − 1 sub-blocks and each worker needs to

recover
(

K−2
m−1

)
= K− 2 sub-blocks.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3631

If during the data shuffling phase in time slot t we generate

the multicast messages as above, only 2 of the K−2 demanded

sub-blocks are in a distributed clique of size m = 2. More

precisely, let us focus on worker 1 who needs to recover F1.

Notice that each sub-block of F1 is stored by worker 2, and

each of its demanded sub-blocks F1,{2,j} where j ∈ [K] \
{1, 2}, is in the multicast message

V t
{1,2,j} = F1,{2,j} ⊕ F2,{1,j} ⊕ Fj,{1,2}. (70)

When j = 3, it can be seen that F3,{1,2} is empty because all

sub-blocks of F3 are stored by worker 4, and thus V t
{1,2,3} =

F1,{2,3}⊕F2,{1,3} could be transmitted by worker 3. However,

when j = 4, both sub-blocks F2,{1,4} and F4,{1,2} are empty,

and thus V t
{1,2,4} = F1,{2,4}. Similarly, among all the K − 2

demanded sub-blocks by worker 1, only F1,{2,3} and F1,{2,K}
are in cliques including two sub-blocks, while the remaining

K− 4 ones are in cliques including only one sub-block.

If the delivery strategy is to assign each multicast message,

or distributed clique, to a worker, we see that most of the

distributed cliques have a multicast coding gain of 1 (where

the multicast coding gain is the gain on the transmitted load

compared to uncoded/direct transmission, e.g., if we transmit

one sub-block in a distributed clique of length 2, the multicast

coding gain to transmit this sub-block is 2). Hence, Scheme

B is generally inefficient for m ∈ [2 : K−3]. In this paper we

mainly use Scheme B for m ∈ {K− 2, K− 1, K} for which it

is optimal under the constraint of uncoded storage. �

C. Scheme C in Theorem 4

To overcome the limitation of Scheme B described in

Remark 5, in the following we propose Scheme C for M/q =
m = 2 based on an unconventional distributed clique-covering
strategy for the two-sender distributed index coding problems

proposed in [29].

The storage update phase of Scheme C is the same as

Scheme B, which is structural invariant, and thus we only

describe the transition from time slot t − 1 to time slot t.
The main idea is not to use the conventional distributed

clique-covering method which transmits distributed cliques

(e.g, the multicast messages in Scheme B), because most of the

distributed cliques only contain one sub-block, and most sub-

blocks are not in any distributed clique including more than

one sub-blocks, as explained in Remark 5. Instead, we propose

a novel decentralized data shuffling scheme to increase the

efficiency (coded multicasting gain) of the transmissions. The

main idea is that we search for cliques with length m = 2;

if this clique is not a distributed clique, we add one node to

the clique and transmit the three nodes by two binary sums,

such that each node can be recovered by the corresponding

user; if this clique is a distributed clique we proceed as in

Scheme B.

Before introducing the details of Scheme C, we first

recall the unconventional clique-covering method for the

two-sender distributed index coding problems proposed in

[29, Theorem 8, Case 33].

Proposition 1 (Unconventional Distributed Clique-covering
in [29]): In a distributed index coding problem with two

Fig. 3. Directed graph of the two-sender (k1 and k2) distributed index
problem in Proposition 1. A direct edge from node a to node b, means

that receiver u(b) demanding message b stores message a demanded by

receiver u(a).

senders (assumed to be k1 and k2), as illustrated Fig. 3,

there are three messages a (demanded by receiver u(a)),
b (demanded by receiver u(b)), and c (demanded by receiver

u(c)), where u(a) stores b, u(b) stores a, and u(c) stores a.

Sender k1 stores a and c, and sender k2 stores b and c. We can

let worker k1 transmit a⊕c and worker k2 transmit b⊕c, such

that workers u(a), u(b) and u(c) can recover node a, b and c,

respectively.

Indeed, receiver u(a) knows b such that it can recover c,

and then recover a. Similarly receiver u(b) can recover b. User

u(c) knows a, such that it can recover c from a⊕ c.

In the decentralized data shuffling problem, each data unit

is divided into sub-blocks depending on which subset of

workers stored them before the data shuffling phase; each

sub-block desired by a worker is an independent message in

the corresponding distributed index coding problem; thus the

data shuffling phase is a K-sender distributed index coding

problem that contains a number of messages that in general is

doubly exponential in the number of workers in the original

decentralized data shuffling problem. Hence, it is non-trivial to

use Proposition 1 in the decentralized data shuffling problem.

We then illustrate the main idea of Scheme C by means of

an example.

Example 4: We consider the same example as Remark 4,

where K = 5, q = 1 and M = 2. Let At−1
1 = {5} and

At−1
k = {k − 1} for k ∈ [2 : 5], and At

k = {k} for k ∈ [5].
The data units are split as in (68).

In the data shuffling phase of time slot t, the distributed

clique-covering method in Scheme B has many sub-blocks

which are not in any distributed clique including more than

one sub-block (e.g., F1,{2,4}), as explained in Remark 5.

Moreover, the sub-blocks F1,{2,3} and F3,{1,4} are in a clique

in the graph, but none of the workers can transmit F1,{2,3} ⊕
F3,{1,4}, and thus it is not a distributed clique. However, if

we add F1,{2,4} to the group, and transmit the two sums

F1,{2,3} ⊕ F1,{2,4} (by worker 2) and F3,{1,4} ⊕ F1,{2,4}
(by worker 4), we see that worker 1 (who knows F3,{1,4})
can recover F1,{2,4} from the second sum, and then recover

F1,{2,3} from the first sum. Similarly, worker 3 (who knows

F1,{2,3}) can recover F1,{2,4} from the first sum, and then

recover F3,{1,4} from the second sum. It can be seen that

F1,{2,3},1 is message a, F3,{1,4},1 is message b, and F1,{2,4},1
is message c in Proposition 1, while u(a) and u(c) are both

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3632 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

TABLE III

TRANSMISSION OF SCHEME C FOR EXAMPLE 4

worker 1, u(b) is worker 3. In addition, workers 2 and 4 serve

as senders k1 and k2.

Similarly, the sub-blocks F1,{2,4} and F4,{1,5} are in a

clique in the graph, but none of the workers can transmit

F1,{2,4} ⊕F4,{1,5}. However, if we add F1,{2,5} to the group,

and transmit F1,{2,4} ⊕ F1,{2,5} (by worker 2) and F1,{2,5} ⊕
F4,{1,5} (by worker 5), then worker 1 (who knows F4,{1,5})

can recover F1,{2,5} from the second sum, and then recover

F1,{2,4} from the first sum; also, worker 4 (who knows

F1,{2,4}) can recover F1,{2,5} from the first sum, and then

recover F4,{1,5} from the second sum.

In general, we have the following data shuffling scheme

in time slot t. Recall that ut−1
i denotes the worker who

should recover Fi at the end of time slot t − 1. We partition

each sub-block into 3 equal-length sub-pieces as Fi,W =
(Fi,W,1, Fi,W,2, Fi,W,3) (recall |W| = m = 2 and ut−1

i ∈ W).

In general, we consider a pair (a, b), where a ∈ [5] and

b ∈ [5] \ {a, ut−1
a }, i.e., a is a worker with the request Fa

in time slot t, while b is another worker which is not the one

who requests Fa in time slot t− 1. We have two cases:

1) If a
= ut−1
b , we find the group of sub-blocks

Fa,{ut−1
a ,b}, Fa,{ut−1

a ,ut−1
b
}, and Fb,{a,ut−1

b
}. We pick

one of untransmitted sub-pieces for each of these

three sub-blocks. Assume the picked sub-pieces are n1,

n2, and n3, respectively. We let worker ut−1
a trans-

mit Fa,{ut−1
a ,b},n1

⊕ Fa,{ut−1
a ,ut−1

b
},n2

, and let worker

ut−1
b transmit Fa,{ut−1

a ,ut−1
b
},n2

⊕ Fb,{a,ut−1
b
},n3

. It can

be seen that worker a can recover Fa,{ut−1
a ,b},n1

and Fa,{ut−1
a ,ut−1

b },n2
while worker b can recover

Fb,{a,ut−1
b },n3

.

2) If a = ut−1
b , we assume c = ut−1

a and d = ut−1
c (e.g, if

a = 1 and b = 5, we have c = ut−1
1 = 2 and d =

ut−1
c = 3), i.e., worker a requests Fa in time slot t,

worker c requests Fa in time slot t− 1 and requests Fc

in time slot t, worker d requests Fc in time slot t − 1
and requests Fd in time slot t. We find the group of

sub-blocks Fa,{c,b}, Fa,{c,d}, and Fc,{a,d}. Notice that

Fa,{c,d} and Fc,{a,d} form a distributed clique. We pick

one of untransmitted sub-pieces for each of these three

sub-blocks (assumed to be n1, n2, and n3, respectively).

We let worker c transmit Fa,{c,b},n1 , and let worker d
transmit Fa,{c,d},n2 ⊕ Fc,{a,d},n3 . It can be seen that

worker a can recover Fa,{c,b},n1 and Fa,{c,d},n2 while

worker c can recover Fc,{a,d},n3 .

By this construction, see also Table III, each sub-block appears

in three groups such that each of its sub-pieces is transmitted.

We use two binary sums to encode each group containing 3
sub-pieces, such that the coding gain of this scheme is 2/3.

The achieved worst-case load is 5/2, while the achieved loads

by Schemes A and B are 27
8 and 10

4 , respectively.

The introduced scheme in this example has the same load

as Scheme B. However, in general when M = 2q, the coding

gain of the new scheme is 2/3, and this is independent of K.

For the other schemes, the coding gain of Scheme B is close

to 1 if K is large, and the same holds for Scheme A (as it will

be shown in Section VI-D). Therefore, Scheme C is preferable

to the other schemes when M = 2q and K is large. �
We are now ready to generalize the scheme in Example 4

to the case M/q = m = 2.

Structural Invariant Data Partitioning and Storage: This

is the same as in Scheme B (described in Section VI-B),

i.e., each sub-block of Fi, i ∈ [N], is stored by worker ut
i and

by another worker in [K]\ {ut
i}. The length of each sub-block

is B

(K−1
m−1)

= B
K−1 .

Data Shuffling Phase of Time Slot t ∈ [T]: As in

Scheme B, we partition the N data units into q equal-length

groups such that, during the data shuffling phase of time

slot t, among all the K data units in each group, each worker

requests exactly one data unit and knows exactly one data unit.

To simplify the description, as in Scheme B, we focus on one

group and remove the Hi in the notation. In addition, we can

restrict attention to U = ∅, because if U
= ∅ we can divide

all desired sub-blocks by all workers into sets as we did in

Scheme B. For each set which is known by some worker in U ,

the transmission for this set is equivalent to centralized data

shuffling. Thus we only need to consider the set which is not

known by any worker in U , and the transmission for this set is

equivalent to decentralized data shuffling with Keq = K− |U|,

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3633

qeq = 1 and Meq = m. Hence, for the simplicity, we only

consider U = ∅ for Scheme C.

We define a set of pair of workers as

Y :=
{
(a, b) : a ∈ [K], b ∈ (

[K] \ {ut−1
dt

a
, a})}. (71)

For each vector (a, b) ∈ Y , we divide Fdt
a,{b,ut−1

dt
a
} into 3

non-overlapping and equal-length sub-pieces, Fdt
a,{b,ut−1

dt
a
},1,

Fdt
a,{b,ut−1

dt
a
},2 and Fdt

a,{b,ut−1
dt

a
},3. For each vector (a, b) ∈ Y ,

we consider two cases:

• Case ut−1
dt

b

= a: For each one of Fdt

a,{ut−1
dt

a
,b},

Fdt
b,{ut−1

dt
b

,a}, and Fdt
a,{ut−1

dt
a

,ut−1
dt

b

}, we select one of

its non-transmitted sub-pieces and assume they are

Fdt
a,{ut−1

dt
a

,b},n1
, Fdt

b,{ut−1
dt

b

,a},n2
, and Fdt

a,{ut−1
dt

a
,ut−1

dt
b

},n3
.

By Proposition 1,

worker ut−1
dt

a
transmits Fdt

a,{ut−1
dt

a
,b},n1

⊕Fdt
a,{ut−1

dt
a

,ut−1
dt

b

},n3
;

worker ut−1
dt

b
transmits Fdt

b,{ut−1
dt

b

,a},n2
⊕Fdt

a,{ut−1
dt

a
,ut−1

dt
b

},n3
,

such that each of the above linear combinations can

be decoded by its requesting worker. For example in

Table III, for pair (1, 3), we let worker 2 transmit

F1,{2,3},1⊕F1,{2,4},1, and worker 4 transmit F1,{2,4},1⊕
F3,{1,4},1.

• Case ut−1
dt

b
= a: Let ut−1

dt
a

= c and ut−1
dt

c
= d.

For each one of Fdt
a,{c,b}, Fdt

a,{c,d}, and Fdt
c,{a,d}, we

select one of its non-transmitted sub-pieces and assume

they are Fdt
a,{c,b},n1 , Fdt

a,{c,d},n2 , and Fdt
c,{a,d},n3 .

By Proposition 1,

worker c transmits Fdt
a,{c,b},n1;

worker d transmit Fdt
a,{c,d},n2 ⊕ Fdt

c,{a,d},n3 ,

such that each of the above sub-pieces can be decoded

by its requesting worker. For example in Table III, for

vector (1, 5), we let worker 2 transmit F1,{2,5},2 and

worker 3 transmit F1,{2,3},2 ⊕ F2,{1,3},1. Notice that in

the case if d = b, we have Fdt
a,{c,b} = Fdt

a,{c,d}, and thus

we transmit two different sub-pieces of Fdt
a,{c,b} for the

vector (a, b).
Next we prove that after considering all the pairs in Y , each

sub-piece of sub-block Fdt
a1

,{ut−1
dt

a1
,b1} has been transmitted for

(a1, b1) ∈ Y . For each (a1, b1) ∈ Y , if there exists one worker

c
∈ {a1, b1} such that c = ut−1
dt

a1
, b1 = ut−1

dt
c

, and a1 = ut−1
dt

b1
(in Example 4, this pair (a1, b1) does not exist), we transmit

two sub-pieces of Fdt
a1

,{ut−1
dt

a1
,b1} in the transmission for the

pair (a1, b1) and one sub-piece in the transmission for the

pair (b1, c). Otherwise, we transmit the three sub-pieces of

Fdt
a1

,{ut−1
dt

a1
,b1} in the following three transmissions for three

different pairs:

1) The transmission for the pair (a1, b1).
2) The transmission for the pair (a1, b2) where ut−1

dt
b2

= b1

if the requested data unit by worker ut−1
dt

a1
in time slot t

was not stored by worker b1 at the end of time slot

t − 1, (e.g., in Table III, let (a1, b1) = (1, 4), one sub-

piece of F1,{2,4} appears in the transmission for vector

(a1, b2) = (1, 3)).
Otherwise, the transmission for the pair (a1, b3) where

ut−1
dt

b3
= a1 (e.g., in Table III, let (a1, b1) = (1, 3),

one sub-piece of F1,{2,3} appears in the transmission

for vector (a1, b3) = (1, 5)).
3) The transmission for the pair (b1, a1) if ut−1

dt
b1

= a1

(e.g., in Table III, let (a1, b1) = (1, 3), one sub-piece of

F1,{2,3} appears in the transmission for vector (b1, a1) =
(3, 1)).
Otherwise, the transmission for the pair (b1, b4) where

ut−1
dt

b4
= b1 (e.g., in Table III, let (a1, b1) = (1, 5), one

sub-piece of F1,{2,5} appears in the transmission for

vector (b1, b4) = (5, 4)).
This shows that Fdt

a1
,{ut−1

dt
a1

,b1} is transmitted. In Scheme C,

we transmit each three sub-pieces in two sums, and thus the

multicast coding gain is 2/3.

Finally, by comparing the loads for different cases, the

worst-cases are when At−1
k ∩ At

k = ∅ for each k ∈ [K] and

the worst-case load achieved by Scheme C is

q
2K(K− 2)
3(K− 1)

=: RAch.C|M=2q , (72)

which is optimal within a factor 4/3 compared to the converse

bound
K(K−2)
2(K−1) under the constraint of uncoded storage for

M/q = 2.

Storage Update Phase of Time Slot t ∈ [T]: The storage

update phase of Scheme C is the same as the one of Scheme B.

D. Optimality Results of the Combined Achievable Scheme

Since the proposed converse bound is a piecewise linear

curve with corner points
(
mq, qK−m

m
K

K−1

)
for m ∈ [K] and

these corner points are successively convex, it follows imme-

diately that the combined scheme in Corollary 1 is optimal

under the constraint of uncoded storage when M/q = 1
or M/q ∈ [K − 2, K], thus proving Theorem 5 (and also

Corollary 2).

In order to prove Theorem 6 (i.e., an order optimality result

for the cases not covered by Theorem 5 or Corollary 2)

we proceed as follows. Recall that the proposed converse

bound is a piecewise linear curve with successively convex

corner points, and that the straight line in the storage-load

tradeoff between two achievable points is also achievable by

memory-sharing. Hence, in the following, we focus on each

corner point of the converse bound
(
mq, qK−m

m
K

K−1

)
where

m ∈ [K], and characterize the multiplicative gap between the

combined scheme and the converse when M = mq. Thus the

multiplicative gap between the achievability and the converse

curves is upper bounded by the maximum of the obtained K
gaps.

We do not consider the corner points where m ∈ {1, K −
2, K − 1, K} because the optimality of the combined scheme

has been proved. We have:

• M = 2q: It was proved in Section VI-C that the mul-

tiplicative gap between the Scheme C and the converse

bound is 4/3.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3634 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

• Interpolate the achievable bound for Scheme A in (21)

between M1 =
(
1+g K−1

K

)
q and M2 =

(
1+(g+1)K−1

K

)
q

to match the converse bound in (20) at M3 = (g + 1)q
where g ∈ [2 : K− 4]: For each g ∈ [2 : K− 4], we have

M1 =
(

1 + g
K− 1

K

)
q, RAch.A(M1) = q

K− g

g
,

(73)

M2=
(
1+(g + 1)

K− 1
K

)
q, RAch.A(M2)=q

K− g − 1
g + 1

.

(74)

By memory-sharing between (M1, RAch.A(M1)) and

(M2, RAch.A(M2)) with coefficient α = (K − 1 − g)/
(K− 1), we get

M3 = αM1 + (1 − α)M2|α=1−g/(K−1)

= (1 + g)q, (75)

as in the converse bound for m = g + 1 ∈ [3 : K − 3],
and

RAch.A(M3) = αRAch.A(M1) + (1− α)RAch.A(M2)

=
qK− g

g

K− 1− g

K− 1
+

qg

K− 1
K− g − 1

g + 1

=
q(K− g − 1)(Kg + K− g)

(K− 1)g(g + 1)
. (76)

From (the proof of) Theorem 1, we know that

ROut(M3) ≥ N
1− g/(K− 1)

g + 1
= q

K

K− 1
K− g − 1

g + 1
.

(77)

Hence, from (76) and (77), we have

RAch.A(M3)
ROut(M3)

≤ Kg + K− g

gK
= 1− 1

K
+

1
g

≤ 1− 0 +
1
2

=
3
2

(since g ≥ 2). (78)

We then focus on mq ≤ M ≤ (m+1)q, where m ∈ [K−1].
The converse bound in Theorem 1 for mq ≤ M ≤ (m +
1)q is a straight line between (M′, R′) = (mq, (K−m)K

m(K−1)) and

(M′′, R′′) =
(
(m + 1)q, (K−m−1)K

(m+1)(K−1)

)
.

• m = 1. The combined scheme can achieve (M′, R′) and

(M′′, 4R′′/3). Hence, by memory-sharing, the multiplica-

tive gap between the combined scheme and the converse

bound is less than 4/3.

• m = 2. The combined scheme can achieve (M′, 4R′/3)
and

(
M′′,

(
1− 1

K + 1
2

)
R′′

)
. Hence, by memory-sharing,

the multiplicative gap between the combined scheme and

the converse bound is less than 1− 1
K + 1

2 .

• m ∈ [3 : K − 4]. The combined scheme can achieve(
M′,

(
1− 1

K + 1
m−1

)
R′

)
and

(
M′′,

(
1− 1

K + 1
m

)
R′′

)
.

Hence, by memory-sharing, the multiplicative gap

between the combined scheme and the converse bound

is less than 1− 1
K + 1

m−1 .

• m = K − 3. The combined scheme can achieve(
M′,

(
1− 1

K + 1
m−1

)
R′

)
and (M′′, R′′). Hence, by

memory-sharing, the multiplicative gap between the com-

bined scheme and the converse bound is less than

1− 1
K + 1

m−1 .

• m ∈ {K− 2, K− 1}. The combined scheme can achieve

(M′, R′) and (M′′, R′′). Hence, the combined scheme

coincides with the converse bound.

This concludes the proof of Theorem 6.

On Communication Cost of Peer-to-Peer Operations:
By comparing the decentralized data shuffling converse bound

and the optimal centralized data shuffling load (denoted by

ROpt.Cen(M)), we have ROut(M)/ROpt.Cen(M) = K/(K− 1) for

any q ≤ M ≤ Kq. In addition, the maximum multiplicative

gap between the achieved load by the combined scheme and

ROut(M), is max
{

1− 1
K + 1

m−1 , 4
3

}
, where m ≥ 3. Hence,

the maximum multiplicative gap between the achieved load by

the combined scheme and ROpt.Cen(M) is

K

K− 1
max

{
1− 1

K
+

1
m− 1

,
4
3

}
= max

{
1 +

K

(m− 1)(K − 1)
,

4K

3(K− 1)

}
, (79)

which is no more than 5/3 if K ≥ 5. In addition, when

K ≤ 4, by Corollary 2, the combined scheme is optimal

such that the communication cost of peer-to-peer operations is

K/(K − 1) ≤ 2. In general, the communication cost of peer-

to-peer operations is no more than a factor of 2 as stated in

Corollary 3.

In addition, with a similar proof as above to analyse each

storage size regime mq ≤ M ≤ (m + 1)q where m ∈ [K− 1],
we prove Corollary 3.

VII. CONCLUSIONS

In this paper, we introduced the decentralized data shuffling

problem and studied its fundamental limits. We proposed a

converse bound under the constraint of uncoded storage and

three achievable schemes. In general, under the constraint of

uncoded storage, our schemes are order optimal to within a

factor of 3/2, and exactly optimal for small and large storage

sizes, or the systems with no more than four workers.

APPENDIX

We define

VS := {k ∈ S : dk ∈ S}, ∀S ⊆ [K], (80)

where VS represents the subset of workers in S whose

demanded data units in time slot t, indexed by At
k = At−1

dk

in (29), were stored by some workers in S at the end of time

slot t− 1.5

In addition, we also define Y t
S as the sub-blocks that any

worker in S either needs to store at the end of time slot t or

5For example, if K = 4 and (d1, . . . , d4) = (2, 3, 4, 1), we have V{2,3} =
{2} because d2 = 3 and thus the requested data unit by worker 2 in time

slot t was stored by worker 3 at the end of time slot t−1; similarly, we have
V{2,4} = ∅ and V{1,2,4} = {1, 4}.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3635

has stored at the end of time slot t− 1, that is,

Y t
S :=

{
Fi : i ∈ ∪k∈SAt

k

}
∪
{
Zt−1

k : k ∈ S
}

=
{

Fi : i ∈ ∪k∈S(At
k ∪ At−1

k)
}

∪
{
Fi,W : i /∈ ∪k∈S(At

k ∪ At−1
k),W ∩S
= ∅

}
. (81)

With the above definitions and recalling Xt
S defined in (30)

represents the messages sent by the workers in S during time

slot t, we have the following lemma:

Lemma 1 (Induction Lemma): For each non-empty set

S ⊆ [K], we have

H
(
Xt
S |Y t

[K]\S
)

≥
|S|∑

m=1

∑
k∈VS

∑
i∈At

k

∑
W⊆S\{k}:

ut−1
i ∈W,|W|=m

|Fi,W |
m

. (82)

Lemma 1 is the key novel contribution of our proof.

The bound in (82) can be intuitively explained as follows:

H(Xt
S |Y t

[K]\S) is lower bounded by the size of the requested

sub-blocks by the workers in VS (instead of in S as in the

distributed computing problem [14]) because each requested

data unit by the workers in S\VS was requested in the previous

time slot by some workers in [K] \ S because of the storage

constraint in (8) and the definition of VS in (80).

This lemma is proved by induction, inspired by [14].

Proof: Case |S| = 1: If S = {k} where k ∈ [K], we have

that V{k} = ∅ and thus the RHS of (82) is 0; thus (82) holds

for |S| = 1 because entropy is non-negative.

Case |S| ≤ s: Assume that (82) holds for all non-empty

S ⊆ [K] where |S| ≤ s for some integer s ∈ [K− 1].
Case |S| = s + 1: Having assumed that the lemma holds

for all S ⊆ [K] where |S| ≤ s, we aim to show that for any

set J ⊆ [K] where |J | = s + 1, we have

H(Xt
J |Y t

[K]\J) ≥
|J |∑

m=1

∑
k∈VJ

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

. (83)

From the independence bound on entropy we have

H(Xt
J |Y t

[K]\J)

=
1
|J |

∑
k∈J

(
H(Xt

J\{k}|Xt
k, Y t

[K]\J) + H(Xt
k|Y t

[K]\J)
)
(84a)

≥ 1
|J |

(∑
k∈J

H(Xt
J\{k}|Xt

k, Y t
[K]\J) + H(Xt

J |Y t
[K]\J)

)
,

(84b)

and thus

(|J | − 1)H(Xt
J |Y t

[K]\J) ≥
∑
k∈J

H(Xt
J\{k}|Xt

k, Y t
[K]\J)

(84c)

≥
∑
k∈J

H(Xt
J\{k}|Xt

k, Y t
[K]\J , Zt−1

k) (84d)

=
∑
k∈J

H(Xt
J\{k}, {Fi : i ∈ At

k}|Xt
k, Y t

[K]\J , Zt−1
k) (84e)

=
∑
k∈J

H({Fi : i ∈ At
k}|Zt−1

k , Y t
[K]\J)

+
∑
k∈J

H(Xt
J\{k}|{Fi : i ∈ At

k}, Zt−1
k , Y t

[K]\J) (84f)

=
∑
k∈J

H({Fi : i ∈ At
k}|Zt−1

k , Y t
[K]\J)

+
∑
k∈J

H
(
Xt
J\{k}|Y t

([K]\J)∪{k})
)
, (84g)

where (84d) follows because we added Zt−1
k in the condition-

ing, and conditioning cannot increase entropy, where (84e)

follows because {Fi : i ∈ At
k} is a function of (Zt−1

k , Xt)
by the decoding constraint in (5) (note that the knowledge of

(Y t
[K]\J , Zt−1

k) implies the knowledge of Zt−1
{k}∪[K]\J and thus

of Xt
{k}∪[K]\J by the encoding constraint in (4)), where (84f)

follow because Xt
k is a function of Zt−1

k (see the encoding

constraint in (4)), and (84g) from the definition in (81).

Next we bound the first term of (84g) by using the inde-

pendence of the sub-blocks, and the second term of (84g) by

the induction assumption. More precisely,
• First term of (84g). For each k ∈ J , if k /∈ VJ , we

have {Fi : i ∈ At
k} ⊆ Y t

[K]\J . So for each k ∈ J , by

independence of sub-blocks, we have (85), shown at the

bottom of this page, and thus we rewrite the first term

of (84g) as∑
k∈J

H({Fi : i ∈ At
k}|Zt−1

k , Y t
[K]\J)

=
∑

k∈VJ

∑
m∈[|J |]

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |. (86)

• Second term of (84g). By the induction assumption,∑
k∈J

H
(
Xt
J\{k}|Y t

([K]\J)∪{k}
)

=
∑
k∈J

H
(
Xt
J\{k}|Y t

[K]\(J\{k})
)

≥
∑
k∈J

∑
u∈VJ\{k}

|J |−1∑
m=1

∑
i∈At

u

∑
W⊆(J\{k,u}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

.

(87)

H({Fi : i ∈ At
k}|Zt−1

k , Y t
[K]\J)

=

{∑|J |
m=1

∑
i∈At

k

∑
W⊆(J\{k}):|W|=m,ut−1

i ∈W |Fi,W |, k ∈ VJ
0 otherwise

(85)

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3636 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

In order to combine (86) with (87), both terms need to

have the summations in the same form. Let us focus on one

worker u′ ∈ VJ and one sub-block Fi′,W′ , where i′ ∈ At
u′ ,

W ′ ⊆ J \ {u′}, |W ′| = m, and ut
i′ ∈ W ′. On the RHS

of (87), for each k ∈ J \ (W ′ ∪ {u′}), it can be seen that

Fi′,W′ appears once in the sum∑
m∈[|J |−1]

∑
u∈VJ\{k}

∑
i∈At

u

∑
W⊆(J\{k,u}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

, (88)

hence, the coefficient of Fi′,W′ on the RHS of (87) is (|J | −
m− 1)/m. Thus, from (87), we have∑
k∈J

H
(
Xt
J\{k}|Y t

[K]\J)∪{k}
)

(89a)

≥
∑

u′∈VJ

∑
m∈[|J |−1]

∑
i′∈At

u′

∑
W′⊆(J\{u′}):
|W′|=m,ut−1

i′ ∈W′

|Fi′,W′ |(|J | −m− 1)
m

(89b)

=
∑

u′∈VJ

∑
m∈[|J |]

∑
i′∈At

u′

∑
W′⊆(J\{u′}):
|W′|=m,ut−1

i′ ∈W′

|Fi′,W′ |(|J | −m− 1)
m

.

(89c)

We next take (86) and (89c) into (84g) to obtain,

H(Xt
J |Y t

[K]\J)

≥ 1
|J | − 1

∑
k∈VJ

|J |∑
m=1

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |

+
1

|J | − 1

∑
k∈VJ

|J |∑
m=1

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |(|J | −m− 1)
m

(90a)

=
∑

k∈VJ

∑
m∈[|J |]

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

, (90b)

which proves Lemma 1.

REFERENCES

[1] J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Ubershuffle: Communication-efficient data shuffling for SGD via cod-

ing theory,” in Proc. NIPS, 2017.

[2] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo, “Why random reshuf-
fling beats stochastic gradient descent,” Oct. 2015, arXiv:1510.08560.

[Online]. Available: https://arxiv.org/abs/1510.08560

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[4] F. A. Tobagi and V. B. Hunt, “Performance analysis of carrier sense

multiple access with collision detection,” Comput. Netw., vol. 4, no. 5,
pp. 245–259, Oct. 1980.

[5] Token Ring Access Method and Physical Layer Specifications,

ANSI/IEEE Standard 802.5, 1985.

[6] M. A. Attia and R. Tandon, “Information theoretic limits of data

shuffling for distributed learning,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016.

[7] M. A. Attia and R. Tandon, “On the worst-case communication overhead

for distributed data shuffling,” in Proc. 54th Annu. Allerton Conf.
Commun., Control, Comput., Sep. 2016.

[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[9] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded

cache placement,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016.
[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-

memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, Feb. 2018.

[11] M. Adel Attia and R. Tandon, “Near optimal coded data shuffling

for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,

pp. 7325–7349, Nov. 2019.

[12] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data
shuffling for distributed learning systems,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2018. [Online]. Available: https://arxiv.org/abs/1807.04255

[13] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,

pp. 849–869, Feb. 2016.

[14] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[15] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs

distributed computation: An alternative trade-off curve,” in Proc. IEEE
Inf. Theory Workshop (ITW), Nov. 2017.

[16] N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial design

of coded distributed computing,” in Proc. IEEE Int. Symp. Inf. The-
ory (ISIT), Jun. 2018.

[17] K. Konstantinos and A. Ramamoorthy, “Leveraging coding techniques

for speeding up distributed computing,” Feb. 2018, arXiv:1802.03049.

[Online]. Available: https://arxiv.org/abs/1802.03049

[18] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-
puting trade-offs with random connectivity,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018.

[19] S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded
computing for distributed graph analytics,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018.

[20] B. Guler, A. S. Avestimehr, and A. Ortega, “A topology-aware coding

framework for distributed graph processing,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2019.

[21] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable

framework for wireless distributed computing,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 2643–2654, Oct. 2017.

[22] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and commu-

nication: A fundamental tradeoff in distributed computing,” Jun. 2018,

arXiv:1806.07565. [Online]. Available: https://arxiv.org/abs/1806.07565
[23] N. Woolsey, R. Chen, and M. Ji, “Cascaded coded distributed computing

on heterogeneous networks,” Jan. 2019, arXiv:1901.07670. [Online].

Available: https://arxiv.org/abs/1901.07670
[24] N. Woolsey, R. Chen, and M. Ji, “Coded distributed computing with

heterogeneous function assignments,” Feb. 2019, arXiv:1902.10738.

[Online]. Available: https://arxiv.org/abs/1902.10738

[25] P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Distributed index coding,”
in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016.

[26] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y. Kim, “Capacity theorems

for distributed index coding,” Jan. 2018, arXiv:1801.09063. [Online].
Available: https://arxiv.org/abs/1801.09063

[27] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD)

over broadcast channels,” in Proc. IEEE Conf. Comput. Commun.,
Mar./Apr. 1998, pp. 1257–1264.

[28] A. Porter and M. Wootters, “Embedded index coding,” Apr. 2019,

arXiv:1904.02179. [Online]. Available: https://arxiv.org/abs/1904.02179

[29] C. Thapa, L. Ong, S. J. Johnson, and M. Li, “Structural characteristics

of two-sender index coding,” Jun. 2019, arXiv:1711.08150v2. [Online].
Available: https://arxiv.org/abs/1711.08150v2

[30] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge,

U.K.: Cambridge Univ. Press, 2011.

Kai Wan (Member, IEEE) received the M.Sc. and Ph.D. degrees in com-
munications from CentraleSupélec, Université Paris Sud, France, in 2014

and 2018, respectively. He is currently a Post-Doctoral Researcher with

the Communications and Information Theory Chair (CommIT), Technische
Universität Berlin, Berlin, Germany. His research interests include coded

caching, index coding, distributed storage, wireless communications, and

distributed computing.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING 3637

Daniela Tuninetti (Senior Member, IEEE) received the Ph.D. degree in

electrical engineering from ENST/Télécom ParisTech, Paris, France, in 2002,

with work done at the Eurecom Institute, Sophia Antipolis, France. She was
a Post-Doctoral Research Associate with the School of Communication and

Computer Science, Swiss Federal Institute of Technology Lausanne (EPFL),

Lausanne, Switzerland, from 2002 to 2004. She is currently a Professor with

the Department of Electrical and Computer Engineering, University of Illinois
at Chicago (UIC), where she joined in 2005. Her research interests are in the

ultimate performance limits of wireless interference networks (with special

emphasis on cognition and user cooperation), coexistence between radar and
communication systems, multi relay networks, content-type coding, cache-

aided systems, and distributed private coded computing. She was a recipient

of the Best Paper Award at the European Wireless Conference in 2002, the

NSF CAREER Award in 2007, and named University of Illinois Scholar in
2015. She was the Editor-in-Chief of the IEEE Information Theory Society

Newsletter from 2006 to 2008 and an Editor for the IEEE COMMUNICATION

LETTERS from 2006 to 2009, for the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS from 2011 to 2014, and for the IEEE TRANSACTIONS

ON INFORMATION THEORY from 2014 to 2017. She is currently a Distin-

guished Lecturer for the Information Theory Society.

Mingyue Ji (Member, IEEE) received the B.E. degree in communication

engineering from the Beijing University of Posts and Telecommunications,

China, in 2006, the M.Sc. degrees in electrical engineering from the Royal

Institute of Technology, Sweden, and from the University of California,
Santa Cruz, in 2008 and 2010, respectively, and the Ph.D. degree from

the Ming Hsieh Department of Electrical Engineering, University of South-

ern California, in 2015. He subsequently was a Staff II System Design

Scientist with Broadcom Corporation (Broadcom Limited) from 2015 to
2016. He is currently an Assistant Professor with the Electrical and Com-

puter Engineering Department and an Adjunct Assistant Professor with the

School of Computing, University of Utah. He is interested in the broad
areas of information theory, coding theory, concentration of measure and

statistics with the applications of caching networks, wireless communications,

distributed computing and storage, security and privacy, and (statistical)

signal processing. He received the IEEE Communications Society Leonard
G. Abraham Prize for the best IEEE JSAC paper in 2019, the Best Paper

Award in IEEE ICC 2015 Conference, the Best Student Paper Award in IEEE

European Wireless 2010 Conference, and USC Annenberg Fellowship from
2010 to 2014.

Giuseppe Caire (Fellow, IEEE) was born in Torino in 1965. He received

the B.Sc. degree in electrical engineering from the Politecnico di Torino in

1990, the M.Sc. degree in electrical engineering from Princeton University in
1992, and the Ph.D. degree from the Politecnico di Torino in 1994. He was

a Post-Doctoral Research Fellow with the European Space Agency (ESTEC),

Noordwijk, The Netherlands, from 1994 to 1995, an Assistant Professor in

telecommunications with the Politecnico di Torino, an Associate Professor
with the University of Parma, Italy, a Professor with the Department of

Mobile Communications, Eurecom Institute, Sophia-Antipolis, France, and

a Professor of electrical engineering with the Viterbi School of Engineering,
University of Southern California, Los Angeles. He is currently an Alexander

von Humboldt Professor with the Faculty of Electrical Engineering and Com-

puter Science, Technical University of Berlin, Germany. His main research

interests are in the field of communications theory, information theory, and
channel and source coding with particular focus on wireless communications.

Dr. Caire received the Jack Neubauer Best System Paper Award from

the IEEE Vehicular Technology Society in 2003, the IEEE Communications
Society and Information Theory Society Joint Paper Award in 2004 and 2011,

the Leonard G. Abraham Prize for best IEEE JSAC paper in 2019, the Okawa

Research Award in 2006, the Alexander von Humboldt Professorship in 2014,

the Vodafone Innovation Prize in 2015, and an ERC Advanced Grant in 2018.
He has served in the Board of Governors of the IEEE Information Theory

Society from 2004 to 2007, and as an Officer from 2008 to 2013. He was the

President of the IEEE Information Theory Society in 2011.

Pablo Piantanida (Senior Member, IEEE) received the B.Sc. degree in

electrical engineering and the M.Sc. degree (Hons.) from the University of

Buenos Aires, Argentina, in 2003, and the Ph.D. degree from Université

Paris-Sud, Orsay, France, in 2007. In October 2007, he has joined the
Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, together with

CNRS (UMR 8506) and Université Paris-Sud, as an Associate Professor of

network information theory. He is currently with the Montreal Institute for
Learning Algorithms (Mila), Université de Montréal, Quebec, Canada. His

research interests lie broadly in information theory and its interactions with

other fields, including multi terminal information theory, Shannon theory,

machine learning and representation learning, statistical inference, cooperative
communications, and communication mechanisms for security and privacy. He

served as a General Co-Chair of the 2019 IEEE International Symposium on

Information Theory (ISIT). He serves as an Associate Editor for the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

