3616

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Fundamental Limits of Decentralized Data Shuffling

Kai Wan"', Member, IEEE, Daniela Tuninetti

Giuseppe Caire

Abstract—Data shuffling of training data among different
computing nodes (workers) has been identified as a core element
to improve the statistical performance of modern large-scale
machine learning algorithms. Data shuffling is often considered as
one of the most significant bottlenecks in such systems due to the
heavy communication load. Under a master-worker architecture
(where a master has access to the entire dataset and only
communication between the master and the workers is allowed)
coding has been recently proved to considerably reduce the
communication load. This work considers a different communica-
tion paradigm referred to as decentralized data shuffling, where
workers are allowed to communicate with one another via a
shared link. The decentralized data shuffling problem has two
phases: workers communicate with each other during the data
shuffling phase, and then workers update their stored content
during the sforage phase. The main challenge is to derive novel
converse bounds and achievable schemes for decentralized data
shuffling by considering the asymmetry of the workers’ storages
(i.e., workers are constrained to store different files in their
storages based on the problem setting), in order to characterize
the fundamental limits of this problem. For the case of uncoded
storage (i.e., each worker directly stores a subset of bits of the
dataset), this paper proposes converse and achievable bounds
(based on distributed interference alignment and distributed
clique-covering strategies) that are within a factor of 3/2 of one
another. The proposed schemes are also exactly optimal under
the constraint of uncoded storage for either large storage size or
at most four workers in the system.

Manuscript received March 27, 2019; revised October 28, 2019; accepted
December 29, 2019. Date of publication January 13, 2020; date of current
version May 20, 2020. The work of Kai Wan and Giuseppe Caire was
supported in part by the European Research Council under the ERC Advanced
Grant 789190, CARENET. The work of Daniela Tuninetti was supported in
part by NSF under Grant 1527059 and Grant 1910309. The work of Mingyue
Ji was supported by NSF under Grant 1817154 and Grant 1824558. The
work of Pablo Piantanida was supported by the European Commission’s Marie
Sklodowska-Curie Actions (MSCA) through the Marie Sklodowska-Curie IF
under Grant H2020-MSCAIF-2017-EF-797805-STRUDEL. This article was
presented at the 56th Annual Allerton Conference (2018) on Communication,
Control, and Computing.

Kai Wan and Giuseppe Caire are with the Electrical Engineering and
Computer Science Department, Technische Universitit Berlin, 10587 Berlin,
Germany (e-mail: kai.wan@tu-berlin.de; caire @tu-berlin.de).

Daniela Tuninetti is with the Electrical and Computer Engineering Depart-
ment, University of Illinois at Chicago, Chicago, IL 60607 USA (e-mail:
danielat@uic.edu).

Mingyue Ji is with the Electrical and Computer Engineering Depart-
ment, University of Utah, Salt Lake City, UT 84112 USA (e-mail:
mingyue.ji @utah.edu).

Pablo Piantanida is with the CentraleSupélec—French National Center for
Scientific Research (CNRS), Université Paris-Sud, 91192 Gif-sur-Yvette,
France, and also with the Montreal Institute for Learning Algorithms
(MILA), Université de Montréal, Montréal, QC H3T IN8, Canada (e-mail:
pablo.piantanida@centralesupelec.fr).

Communicated by P. Sadeghi, Associate Editor for Coding Techniques.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T1T.2020.2966197

, Senior Member, IEEE, Mingyue Ji™, Member, IEEE,
, Fellow, IEEE, and Pablo Piantanida

, Senior Member, IEEE

Index Terms— Decentralized data shuffling, uncoded storage,
distributed clique covering.

I. INTRODUCTION

ECENT years have witnessed the emergence of big data

and machine learning with wide applications in both
business and consumer worlds. To cope with such a large
size/dimension of data and the complexity of machine learning
algorithms, it is increasingly popular to use distributed com-
puting platforms such as Amazon Web Services Cloud, Google
Cloud, and Microsoft Azure services, where large-scale dis-
tributed machine learning algorithms can be implemented. The
approach of data shuffling has been identified as one of the
core elements to improve the statistical performance of modern
large-scale machine learning algorithms [1], [2]. In particular,
data shuffling consists of re-shuffling the training data among
all computing nodes (workers) once every few iterations,
according to some given learning algorithms. However, due
to the huge communication cost, data shuffling may become
one of the main system bottlenecks.

To tackle this communication bottleneck problem, under a
master-worker setup where the master has access to the entire
dataset, coded data shuffling has been recently proposed to
significantly reduce the communication load between master
and workers [3]. However, when the whole dataset is stored
across the workers, data shuffling can be implemented in a dis-
tributed fashion by allowing direct communication between the
workers.! In this way, the communication bottleneck between
a master and the workers can be considerably alleviated.
This can be advantageous if the transmission capacity among
workers is much higher than that between the master and
workers, and the communication load between this two setups
are similar.

In this work, we consider such a decentralized data shuffling
framework, where workers, connected by the same communi-
cation bus (common shared link), are allowed to communi-
cate.> Although a master node may be present for the initial
data distribution and/or for collecting the results of the training

'In practice, workers communicate with each other as described in [1].

2Notice that putting all nodes on the same bus (typical terminology in
Compute Science) is very common and practically relevant since this is
what happens for example with Ethernet, or with the Peripheral Component
Interconnect Express (PCI Express) bus inside a multi-core computer, where
all cores share a common bus for intercommunication. The access of such
bus is regulated by some collision avoidance protocol such as Carrier Sense
Multiple Access (CSMA) [4] or Token ring [5], such that once one node
talks at a time, and all other listen. Therefore, this architecture is relevant in
practice.

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

Data shuffling phase of time slot t:

Master Library: .
N data units

broadcasts
Xt

/

=

Storage: Storallge: Storage:
7t z5 A%

Storage Update Phase of time slot t:

Based on (X' Ztk’l), updates its storage by Z§, which must contain

all data units in 4§.

(a) Centralized data shuffling.

Data shuffling phase of time slot t:

broadcasts broadcasts

—
Storage: Storage:

X
: \ / -
X3

broadcasts
t

Storage:
!

Storage Update Phase of time slot t:

iBased on (X, X5, X5, Y, updates its storage by Zf, which must

jcontain all data units in 4f.

(b) Decentralized data shuffling.

Fig. 1. The system models of the 3-worker centralized and decentralized
data shuffling problems in time slot ¢. The data units in Afc are assigned to
worker k, where k € {1,2,3} at time ¢.

phase in a machine learning application, it is not involved in
the data shuffling process which is entirely managed by the
worker nodes in a distributed manner. In the following, we
will review the literature of coded data shuffling (which we
shall refer to as centralized data shuffling) and introduce the
decentralized data shuffling framework studied in this paper.

A. Centralized Data Shuffling

The coded data shuffling problem was originally proposed
in [3] in a master-worker centralized model as illustrated in
Fig. 1a. In this setup, a master, with the access to the whole
dataset containing N data units, is connected to K = N/q
workers, where q := N/K is a positive integer. Each shuffling

3617

epoch is divided into data shuffling and storage update phases.
In the data shuffling phase, a subset of the data units is
assigned to each worker and each worker must recover these
data units from the broadcasted packets of the master and its
own stored content from the previous epoch. In the storage
update phase, each worker must store the newly assigned data
units and, in addition, some information about other data units
that can be retrieved from the storage content and master
transmission in the current epoch. Such additional information
should be strategically designed in order to help the coded
delivery of the required data units in the following epochs.
Each worker can store up to M data units in its local storage.
If each worker directly copies some bits of the data units in
its storage, the storage update phase is said to be uncoded.
On the other hand, if the workers store functions (e.g., linear
combinations) of the data objects’ bits, the storage update is
said to be coded. The goal is, for a given (M, N,q), to find
the best two-phase strategy that minimizes the communication
load during the data shuffling phase regardless of the shuffle.

The scheme proposed in [3] uses a random uncoded storage
(to fill users’ extra memories independently when M > q)
and a coded multicast transmission from the master to the
workers, and yields a gain of a factor of O(K) in terms of
communication load with respect to the naive scheme for
which the master simply broadcasts the missing, but required
data bits to the workers.

The centralized coded data shuffling scheme with coordi-
nated (i.e., deterministic) uncoded storage update phase was
originally proposed in [6], [7], in order to minimize the worst-
case communication load R among all the possible shuffles,
i.e., R is smallest possible such that any shuffle can be
realized. The proposed schemes in [6], [7] are optimal under
the constraint of uncoded storage for the cases where there is
no extra storage for each worker (i.e., M = q) or there are
less than or equal to three workers in the systems. Inspired by
the achievable and converse bounds for the single-bottleneck-
link caching problem in [8]-[10], the authors in [11] then
proposed a general coded data shuffling scheme, which was
shown to be order optimal to within a factor of 2 under
the constraint of uncoded storage. Also in [11], the authors
improved the performance of the general coded shuffling
scheme by introducing an aligned coded delivery, which was
shown to be optimal under the constraint of uncoded storage
for either M = q or M > (K — 2)q.

Recently, inspired by the improved data shuffling scheme
in [11], the authors in [12] proposed a linear coding scheme
based on interference alignment, which achieves the opti-
mal worst-case communication load under the constraint of
uncoded storage for all system parameters. In addition, under
the constraint of uncoded storage, the proposed coded data
shuffling scheme in [12] was shown to be optimal for any
shuffles (not just for the worst-case shuffles) when q = 1.

B. Decentralized Data Shuffling

An important limitation of the centralized framework is the
assumption that workers can only receive packets from the
master. Since the entire dataset is stored in a decentralized

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3618

fashion across the workers at each epoch of the distributed
learning algorithm, the master may not be needed in the data
shuffling phase if workers can communicate with each other
(e.g., [1]). In addition, the communication among workers
can be much more efficient compared to the communication
from the master node to the workers [1], e.g., the connec-
tion between the master node and workers is via a single-
ported interface, where only one message can be passed for
a given time/frequency slot. In this paper, we propose the
decentralized data shuffling problem as illustrated in Fig. 1b,
where only communications among workers are allowed dur-
ing the shuffling phase. This means that in the data shuffling
phase, each worker broadcasts well designed coded packets
(i.e., representations of the data) based on its stored content
in the previous epoch. Workers take turn in transmitting,
and transmissions are received error-free by all other workers
through the common communication bus. The objective is to
design the data shuffling and storage update phases in order to
minimize the total communication load across all the workers
in the worst-case shuffling scenario.

Importance of Decentralized Data Shuffling in Practice:
In order to make the decentralized topology work in practice,
we need to firstly guarantee that all the data units are already
stored across the nodes so that the communication among
computing nodes is sufficient. This condition is automatically
satisfied from the definition of the decentralized data shuffling
problem. Although the decentralized coded data shuffling
incurs a larger load compared to its centralized counterpart,
in practice, we may prefer the decentralized coded shuffling
framework. This is due to the fact that the transmission
delay/latency of the data transmission in real distributed com-
puting system may depend on other system properties besides
the total communication load, and the decentralized topology
may achieve a better transmission delay/latency. This could be
due to that 1) the connection between the master node and the
worker clusters is normally via a single-ported interference,
where only one message can be transmitted per time/frequency
slot [1]; 2) computing nodes are normally connected (e.g., via
grid, or ring topologies) and the link bandwidth is generally
much faster, in addition, computing nodes can transmit in
parallel.

C. Relation to Device-to-Device (D2D) Caching and
Distributed Computing

The coded decentralized data shuffling problem considered
in this paper is related to the coded device-to-device (D2D)
caching problem [13] and the coded distributed computing
problem [14] — see also Remark 1 next.

The coded caching problem was originally proposed in [8]
for a shared-link broadcast model. The authors in [13]
extended the coded caching model to the case of D2D net-
works under the so-called protocol model. By choosing the
communication radius of the protocol model such that each
node can broadcast messages to all other nodes in the network,
the delivery phase of D2D coded caching is resemblant (as
far as the topology of communication between the nodes is
concerned) to the shuffling phase of our decentralized data
shuffling problem.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

Recently, the scheme for coded D2D caching in [13]
has been extended to the coded distributed computing prob-
lem [14], which consists of two stages named Map and
Reduce. In the Map stage, workers compute a fraction of
intermediate computation values using local input data accord-
ing to the designed Map functions. In the Reduce stage,
according to the designed Reduce functions, workers exchange
among each other a set of well designed (coded) intermediate
computation values, in order to compute the final output
results. The coded distributed computing problem can be seen
as a coded D2D caching problem under the constraint of
uncoded and symmetric cache placement, where the symmetry
means that each worker uses the same cache function for each
file. A converse bound was proposed in [14] to show that the
proposed coded distributed computing scheme is optimal in
terms of communication load. This coded distributed com-
puting framework was extended to cases such as computing
only necessary intermediate values [15], [16], reducing file
partitions and number of output functions [16], [17], and con-
sidering random network topologies [18], random connection
graphs [19], [20], stragglers [21], storage cost [22], and het-
erogeneous computing power, function assignment and storage
space [23], [24].

Compared to coded D2D caching and coded distributed
computing, the decentralized data shuffling problem differs
as follows. On the one hand, an asymmetric constraint on the
stored contents for the workers is present (because each worker
must store all bits of each assigned data unit in the previous
epoch, which breaks the symmetry of the stored contents
across data units of the other settings). On the other hand, each
worker also needs to dynamically update its storage based on
the received packets and its own stored content in the previous
epoch. Therefore the decentralized data shuffling problem over
multiple data assignment epochs is indeed a dynamic system
where the evolution across the epochs of the node stored
content plays a key role, while in the other problems reviewed
above the cache content is static and determined at a single
initial placement setup phase.

D. Relation to Centralized, Distributed, and Embedded Index
Codings

In a distributed index coding problem [25], [26], there are
multiple senders connected to several receivers, where each
sender or receiver can access to a subset of messages in the
library. Each receiver demands one message and according
to the users’ demands and side informations, the senders
cooperatively broadcast packets to all users to satisfy the
users’ demands. The difference in a centralized index coding
problem [27] compared to the distributed one is that only one
sender exists and this sender can access the whole library.
Very recently, the authors in [28] considered a special case
of distributed index coding, referred to as embedded index
coding, where each node acts as both a sender and a receiver
in the system. It was shown in [28] that a linear code for
this embedded index coding problem can be obtained from a
linear index code for the centralized version of the problem
by doubling the communication load.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

The centralized and decentralized data shuffling phases
with uncoded storage are special cases of centralized and
embedded index coding problems, respectively. By using the
construction in [28] we could thus design a code for the
decentralized data shuffling problem by using the optimal
(linear) code for the centralized case [12]; this would give
a decentralized data shuffling scheme with a load twice that
of [12]. It will be clarified later (in Remark 2) that the proposed
decentralized data shuffling schemes are strictly better than the
those derived with the construction in [28]. This is so because
the construction in [28] is general, while our design is for the
specific topology considered.

E. Contributions

In this paper, we study the decentralized data shuffling prob-
lem, for which we propose converse and achievable bounds as
follows.

1) Novel converse bound under the constraint of uncoded
storage. Inspired by the induction method in [14, Thm.1]
for the distributed computing problem, we derive a
converse bound under the constraint of uncoded storage.
Different from the converse bound for the distributed
computing problem, in our proof we propose a novel
approach to account for the additional constraint on the
“asymmetric” stored content.

2) Scheme A: General scheme for any M. By extending the
general centralized data shuffling scheme from [11] to
our decentralized model, we propose a general decen-
tralized data shuffling scheme, where the analysis holds
for any system parameters.

3) Scheme B: Improved scheme for M > (K — 2)q. It can

be seen later that Scheme A does not fully leverage
the workers’ stored content. With the storage update
phase inspired by the converse bound and also used in
the improved centralized data shuffling scheme in [11],
we propose a two-step scheme for decentralized data
shuffling to improve on Scheme A. In the first step we
generate multicast messages as in [8], and in the second
step we encode these multicast messages by a linear
code based on distributed interference alignment (see
Remark 3).
By comparing our proposed converse bound and Scheme
B, we prove that Scheme B is exactly optimal under
the constraint of uncoded storage for M > (K — 2)q.
Based on this result, we can also characterize the exact
optimality under the constraint of uncoded storage when
the number of workers satisfies K < 4.

4) Scheme C: Improved scheme for M = 2q. The deliv-
ery schemes proposed in [8], [11], [13] for coded
caching with a shared-link, D2D caching, and central-
ized data shuffling, all belong to the class of clique-
covering method from a graph theoretic viewpoint. By a
non-trivial extension from a distributed clique-covering
approach for the two-sender distributed index coding
problems [29] to our decentralized data shuffling prob-
lem for the case M = 2q, we propose a novel decen-
tralized data shuffling scheme. The resulting scheme

3619

outperforms the previous two schemes for this specific
storage size.

5) Order optimality under the constraint of uncoded stor-
age. By combing the three proposed schemes and com-
paring with the proposed converse bound, we prove the
order optimality of the combined scheme within a factor
of 3/2 under the constraint of uncoded storage.

FE. Paper Organization

The rest of the paper is organized as follows. The system
model and problem formulation for the decentralized data
shuffling problem are given in Section II. Results from decen-
tralized data shuffling related to our work are compiled in
Section III. Our main results are summarized in Section IV.
The proof of the proposed converse bound can be found
in Section V, while the analysis of the proposed achievable
schemes is in Section VI. Section VII concludes the paper. The
proofs of some auxiliary results can be found in the Appendix.

G. Notation Convention

We use the following notation convention. Calligraphic
symbols denote sets, bold symbols denote vectors, and sans-
serif symbols denote system parameters. We use |-| to represent
the cardinality of a set or the length of a vector; [a : b] :=
{a,a+1,...,b} and [n] := {1,2,...,n}; @ represents bit-
wise XOR; N denotes the set of all positive integers.

II. SYSTEM MODEL

The (K,q,M) decentralized data shuffling problem illus-
trated in Fig. 1b is defined as follows. There are K € N
workers, each of which is charged to process and store q € N
data units from a dataset of N := Kq data units. Data units
are denoted as (Fi, Fy, ..., Fy) and each data unit is a binary
vector containing B i.i.d. bits. Each worker has a local storage
of MB bits, where ¢ < M < Kg = N. The workers are
interconnected through a noiseless multicast network.

The computation process occurs over T time slots/epochs.
At the end of time slot ¢t — 1, ¢ € [T], the content of the local
storage of worker k € [K] is denoted by Z;'; the content of
all storages is denoted by Z¢~1 = (Zi™', Z47 ' ... 2.
At the beginning of time slot ¢ € [T], the N data units are
partitioned into K disjoint batches, each containing q data
units. The data units indexed by A% C [N] are assigned to
worker k € [K] who must store them in its local storage by the
end of time slot ¢ € [T]. The dataset partition (i.e., data shuffle)

in time slot ¢ € [T] is denoted by A" = (AL, AL, ... Ak) and
must satisfy
ALl = q, Yk € [K], (1a)

(1b)
(Ic)

LNAL =0, (ki ko) € K]t ki # ko,
Ukek) Ak = [N] (dataset partition).
If g =1, we let A} = {d}} for each k € [K].
We denote the worker who must store data unit F; at the
end of time slot ¢ by uﬁ, where

u! = k if and only if i € A}. (2)

The following two-phase scheme allows workers to store
the requested data units.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3620

Initialization: We first focus on the initial time slot
t = 0, where a master node broadcasts to all the workers.
Given partition A%, worker k£ € [K] must store all the data
units F; where i € AY; if there is excess storage, that is, if
M > g, worker k € [K] can store in its local storage parts of
the data units indexed by [N] \ A?. The storage function for
worker k € [K] in time slot ¢t = 0 is denoted by 1%, where

ZY =) (AO, (F;:i€ N)) (initial storage placement) :

(3a)
H (Zg) < MB, VE € [K] (initial storage size constraint),

(3b)
H ((E RS A%) |Z,2) =0 (initial storage content constraint).

(3¢)

Notice that the storage initialization and the storage update
phase (which will be described later) are without knowledge
of later shuffles. In subsequent time slots ¢ € [T], the master
is not needed and the workers communicate with one another.
Data Shuffling Phase: Given global knowledge of the
stored content Z'~1 at all workers, and of the data shuffle
from A1 to A’ (indicated as A'~! — A?) worker k € [K]
broadcasts a message X }; to all other workers, where X }; is
based only on the its local storage content Z};fl, that is,

H(X;;|Z;;*1) —0 (encoding). 4)

The collection of all sent messages is denoted by X? :=
(X1, X4, ..., Xk). Each worker k € [K] must recover all data
units indexed by A from the sent messages X' and its local
storage content Z};fl, that is,

H((Fi i e Ag)|Z;;*1,Xt) —0 (decoding). (5)

The rate K-tuple (RA™ —A" ... RA" —A") is said to be
feasible if there exist delivery functions ¢}, : X} = ¢} (Z1 ")
for all ¢ € [T] and k € [K] satisfying the constraints (4)
and (5), and such that

H(X,g) <BRA A" (load). (6)

Storage Update Phase: After the data shuffling phase in
time slot £, we have the storage update phase in time slot
t € [T]. Each worker k € [K] must update its local storage
based on the sent messages X* and its local stored content
Z,i_l, that is,

H(Z};|Z};71, Xt) =0 (storage update), 7
by placing in it all the recovered data units, that is,
H((Fz pi€ AL |Z,t€) =0, (stored content). (8)
Moreover, the local storage has limited size bounded by
H(Z,i,) < MB, Vk € [K], (storage size).)

A storage update for worker k£ € [K] is said to be feasible
if there exist functions ¥ : Z = % (AL, Z;~", X?) for all

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

t € [T] and k € [K] satisfying the constraints in (7), (8)
and (9).

Note: if for any ki,ke € [K] and t1,t2 € [T] we have
\11211 = \I/’,?Q (i.e., \I/Z}l is equivalent to \11222) the storage phase
is called structural invariant.

Objective: The objective is to minimize the worst-case
total communication load, or just load for short in the follow-
ing, among all possible consecutive data shuffles, that is we
aim to characterized R* defined as

R* := lim min max {max Z thil_'At :
Tooe g (A9an) LeElT] S
t'€[T),kE[K]

the rate K-tuple and the storage are feasible}. (10)

The minimum load under the constraint of uncoded storage
is denoted by R7. In general, R} > R*, because the set of
all general data shuffling schemes is a superset of all data
shuffling schemes with uncoded storage.

Remark 1 (Decentralized Data Shuffling vs D2D Caching):
The D2D caching problem studied in [13] differs from our
setting as follows:

1) in the decentralized data shuffling problem one has the
constraint on the stored content in (8) that imposes that
each worker stores the whole requested files, which is
not present in the D2D caching problem; and

2) in the D2D caching problem each worker fills its local
cache by accessing the whole library of files, while in
the decentralized data shuffling problem each worker
updates its local storage based on the received packets
in the current time slot and its stored content in the
previous time slot as in (7).

Because of these differences, achievable and converse bounds
for the decentralized data shuffling problem can not be
obtained by trivial renaming of variables in the D2D caching
problem. U

III. RELEVANT RESULTS FOR CENTRALIZED
DATA SHUFFLING

Data shuffling was originally proposed in [3] for the central-
ized scenario, where communications only exists between the
master and the workers, that is, the K decentralized encoding
conditions in (4) are replaced by H(X'|Fy,...,Fn) = 0
where X! is broadcasted by the master to all the workers.
We summarize next some key results from [11], which will
be used in the following sections. We shall use the subscripts
“u,cen,conv”’ and “u,cen,ach” for converse (conv) and achiev-
able (ach) bounds, respectively, for the centralized problem
(cen) with uncoded storage (u). We have

1) Converse for centralized data shuffling: For a (K, q, M)

centralized data shuffling system, the worst-case com-
munication load under the constraint of uncoded storage
is lower bounded by the lower convex envelope of the
following storage-load pairs [11, Thm.2]

M R K-
(—zm, _:—m> , Yme [K]. (11)
q q m u,cen,conv

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

3621

TABLE I

EXAMPLE OF FILE PARTITIONING AND STORAGE IN (14) AT THE END OF TIME SLOT ¢ FOR THE DECENTRALIZED DATA
SHUFFLING PROBLEM WITH (K, q, M) = (3,1, 7/3) AND A* = (3,1,2) WHERE g = 2

[Workers [Sub-blocks of F} [

Sub-blocks of F» [Sub-blocks of F3 |

Worker 1 stores G1,01,2}> G1,{1,3}

G2, (1.2}, Ga.{1.3}

Gs (1.2}, Gs.{1,3}, Gs.{2.3}

Worker 2 stores | Gy (1.2}, G1,{1.3}, G1.{2,3}

G (1,21, G2.q2.3}

G3.11,2)> G3.02.3)

Worker 3 stores

G1,01,31 G1.{2.3}

G (1,21, G2, 11,3}, Ga.q2.3}

Gs.{1.3} Gs{2.3}

2) Achievability for centralized data shuffling: In [11] it
was also shown that the lower convex envelope of the
following storage-load pairs is achievable with uncoded
storage [11, Thm.1]

(M_1+ K-1 R K-g
q 97K "q g+1

) , Vgel0: K].
u,cen,ach
(12)

The achievable bound in (12) was shown to be within a
factor % < 2 of the converse bound in (11) under the
constraint of uncoded storage [11, Thm.3].

Optimality for centralized data shuffling: It was shown
in [12, Thm.4] that the converse bound in (11) can be
achieved by a scheme that uses linear network coding
and interference alignement/elimination. An optimality
result similar to [12, Thm.4] was shown in [11, Thm.4],
but only for m € {1, K—2,K—1}; note that m = K is
trivial.

Although the scheme that achieves the load in (12) is not
optimal in general, we shall next describe its inner workings as
we will generalize it to the case of decentralized data shuffling.

Structural Invariant Data Partitioning and Storage: Fix
g € [0 : K] and divide each data unit into (';) non-overlapping
and equal-length sub-blocks of length B/ (';) bits. Let each
data unit be F; = (G : W C [K] : (W] = g), Vi € [N].
The storage of worker & € [K] at the end of time slot ¢ is as
follows,?

3)

- ((Gi,w YW, Vi€ ALU(Gy oy - keW,We[N]\A’,;))

required data units

other data units

(13)
= ((Gi,w kg W, Vie ADU(Giw kEW, Vie [N])).

variable part of the storage

fixed part of the storage

(14)

Worker k € [K] stores all the (') sub-blocks of the required g
data units indexed by .Ai,, and also (';j) sub-blocks of each

data unit indexed by [N] \ A% (see (13)), thus the required
storage space is

K—-1
(g —1)
K
(o)

3 Notice that here each sub-block G yy is stored by workers {ut} U W.
In addition, later in our proofs of the converse bound and proposed achievable

schemes for decentralized data shuffling, the notation F})y denotes the sub-
block of F;, which is stored by workers in WW.

M=q+(N—aq)

- (1 n g%)q. (15)

It can be seen (see (14) and also Table I) that the storage
of worker k € [K] at time ¢ € [T] is partitioned in two parts:
(1) the “fixed part” contains all the sub-blocks of all data points
that have the index k in the second subscript; this part of the
storage will not be changed over time; and (ii) the “variable
part” contains all the sub-blocks of all required data points at
time ¢ that do not have the index k in the second subscript;
this part of the storage will be updated over time.

Initialization (for the Achievable Bound in (12)): The
master directly transmits all data units. The storage is as in (14)
given A°.

Data Shuffling Phase of Time slot t € [T] (for the
Achievable Bound in (12)): After the end of storage update
phase at time ¢ — 1, the new assignment A’ is revealed. For
notation convenience, let

v = (Giw i € AL\ ALY, (16)
for all k € [K] and all W C [K], where |W| =g and k ¢ W.
Note that in (16) we have |G§€7W| < B(%), with equality

g
(i.e., worst-case scenario) if and only if A} N A};_l = 0.
To allow the workers to recover their missing sub-blocks, the
central server broadcasts X? defined as

a7)
(18)

X'=(W5:TCIK:|T|=g+1),
where W/, = Oreg G, 7\ (k)

where in the multicast message W} in (18) the sub-blocks
G,y involved in the sum are zero-padded to meet the length
of the longest one. Since worker £ € J requests G;§7 T\{k}
and has stored all the remaining sub-blocks in W} defined
in (18), it can recover G;C’J\{k} from W}, and thus all its
missing sub-blocks from X¢.

Storage Update Phase of Time slot t € [T] (for the
Achievable Bound in (12)): Worker k € [K] evicts from the
(variable part of its) storage the sub-blocks (G;w : k ¢
W, Vi € Ai7'\ Ab) and replaces them with the sub-blocks
(Giw : k € W,Vi € AL\ Ai~"). This procedure maintains
the structural invariant storage structure of the storage in (14).

Performance Analysis (for the Achievable Bound in (12)):
The total worst-case communication load satisfies

K
R < q(g+1) _

T ()

with equality (i.e., worst-case scenario) if and only if A} N
ALY = () for all k € [K].

; 19)

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3622

IV. MAIN RESULTS

In this section, we summarize our main results for the
decentralized data shuffling problem. We shall use the sub-
scripts “u,dec,conv” and “u,dec,ach” for converse (conv) and
achievable (ach) bounds, respectively, for the decentralized
problem (dec) with uncoded storage (u). We have:

1) Converse: We start with a converse bound for the

decentralized data shuffling problem under the constraint
of uncoded storage.

Theorem 1 (Converse): For a (K,q,M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage is lower bounded by the
lower convex envelope of the following storage-load
pairs

M R K— K
(F-me="S"0) vmelk)
q q m K-—1 u,dec,conv
(20)

Notice that the proposed converse bound is a piecewise
linear curve with the corner points in (20) and these
corner points are successively convex.
The proof of Theorem 1 can be found in Section V and
is inspired by the induction method proposed in [14,
Thm.1] for the distributed computing problem. However,
there are two main differences in our proof compared to
[14, Thm.1]: (i) we need to account for the additional
constraint on the stored content in (8), (ii) our storage
update phase is by problem definition in (8) asymmetric
across data units, while it is symmetric in the distributed
computing problem.

2) Achievability: We next extend the centralized data shuf-
fling scheme in Section III to our decentralized setting.

Theorem 2 (Scheme A): For a (K,q, M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage is upper bounded by the
lower convex envelope of the following storage-load

pairs
K-1 R K-
(_:1+g ,— = g) , Vge [K—1].
K q g u,dec,ach
(2D
M R
and (smallest storage) (— =1,—= K) ,
q q u,dec,ach
(22)
M R
and (largest storage) (— =K, — = 0) .
q q u,dec,ach
(23)

The proof is given in Section VI-A.

A limitation of Scheme A in Theorem 2 is that, in time
slot ¢t € [T] worker k& € [K] does not fully leverage
all its stored content. We overcome this limitation by
developing Scheme B described in Section VI-B.

Theorem 3 (Scheme B): For a (K,q,M) decentralized
data shuffling system, the worst-case load under the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

constraint of uncoded storage for M > (K—2)q is upper
bounded by the lower convex envelope of the following
storage-load pairs

(M R K—-m K)
—=m,—- =77)
q q m K-1 u,dec,ach

vm e {K —2,K—1,K}. (24)

We note that Scheme B is neither a direct extension of
[11, Thm.4] nor of [12, Thm.4] from the centralized to
the decentralized setting. As it will become clear from
the details in Section VI-B, our scheme works with a
rather simple way to generate the multicast messages
transmitted by the workers, and it applies to any shuffle,
not just to the worst-case one. In Remark 4, we also
extend this scheme for the general storage size regime.

Scheme B in Theorem 3 uses a distributed clique-
covering method to generate multicast messages similar
to what is done for D2D caching [8], where distributed
clique cover is for the side information graph (more
details in Section V-A). Each multicast message corre-
sponds to one distributed clique and includes one linear
combination of all nodes in this clique. However, due
to the asymmetry of the decentralized data shuffling
problem (not present in D2D coded caching), the lengths
of most distributed cliques are small and thus the multi-
cast messages based on cliques and sent by a worker
in general include only a small number of messages
(i.e., small multicast gain). To overcome this limitation,
the key idea of Scheme C for M/q = 2 (described in
Section VI-C) is to augment some of the cliques and
send them in M/q = 2 linear combinations.

Theorem 4 (Scheme C): For a (K,q, M) decentralized
data shuffling system, the worst-case load under the

constraint of uncoded storage for M/q = 2 is upper
bounded by
M R 2K(K-2
(——2,——7()> . (25)
q q 3(K - 1) u,dec,ach

It will be seen later that the proposed schemes only use
binary codes, and only XOR operations are needed for
the decoding procedure.

Finally, we combine the proposed three schemes (by
considering the one among Schemes A, B or C that
attains the lowest load for each storage size).

Corollary 1 (Combined Scheme): For a (K, q, M) decen-
tralized data shuffling system, the achieved storage-load
tradeoff of the combined scheme is the lower convex
envelope of the corner points is as follows:

e M = g. With Scheme A, the worst-case load is
K—m K

q m K-1°
¢ M = 2q. With Scheme C, the worst-case load is
K—m K 4
9 m K-13"
« M = (1+g%)q where g € [2 : K — 3]. With
Scheme A, the worst-case load is qﬂ.

o M = mq where m € [K — 2 : K]. With Scheme B,

the worst-case load is q%}"’%

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

3) Optimality: By comparing our achievable and converse
bounds, we have the following exact optimality results.
Theorem 5 (Exact Optimality for M/q > K — 2):
For a (K, q, M) decentralized data shuffling system, the
optimal worst-case load under the constraint of uncoded
storage for M/q € [K—2,K] is given in Theorem 1 and
is attained by Scheme B in Theorem 3.

Note that the converse bound on the load for the
case M/q = 1 is trivially achieved by Scheme A in
Theorem 2.

From Theorem 5 we can immediately conclude the
following.

Corollary 2 (Exact Optimality for K < 4): For a
(K, g, M) decentralized data shuffling system, the opti-
mal worst-case load under the constraint of uncoded
storage is given by Theorem 1 for K < 4.

Finally, by combining the three proposed achievable
schemes, we have the following order optimality result
proved in Section VI-D.

Theorem 6 (Order Optimality for K > 4): For a
(K, g, M) decentralized data shuffling system under the
constraint of uncoded storage, for the cases not covered
by Theorem 5, the combined scheme in Corollary 1
achieves the converse bound in Theorem 1 within a
factor of 3/2. More precisely, when mq < M < (m +
1)q, the multiplicative gap between the achievable load
in Corollary 1 and the converse bound in Theorem 1 is
upper bounded by

o 4/3,if m=1;
. 1—%+%,ifm:2;
o l— g+ A5 ifme[3:K=3];

e Lifme{K-2K-1}

4) Finally, by directly comparing the minimum load
for the centralized data shuffling system (the master-
worker framework) in (12) with the load achieved by
the combined scheme in Corollary 1, we can quan-
tify the communication cost of peer-to-peer operations
(i.e., the multiplicative gap on the minimum worst-case
load under the constraint of uncoded storage between
decentralized and centralized data shufflings), which will
be proved in Section VI-D.

Corollary 3: For a (K, q, M) decentralized data shuffling
system under the constraint of uncoded storage, the
communication cost of peer-to-peer operations is no
more than a factor of 2. More precisely, when K < 4,
this cost is %; when K > 5 and mq <M < (m+1)q,
this cost is upper bounded by

. %, if m=1;

o 14 oty if m=2;

. 1+W'((K71),ifm€[3:K—3];

o g ifme{K—-2,K-1}.

Remark 2 (Comparison to the Direct Extension From [28]):

As mentioned in Section I-D, the result in [28] guarantees that
from the optimal (linear) centralized data shuffling scheme

3623

in [12] one can derive a linear scheme for the decentral-
ized setting with twice the number of transmissions (by the
construction given in [28, Proof of Theorem 4]), that is, the
following storage-load corner points can be achieved,

<M EZQK—m

(26)

— =m,

q q m
The multiplicative gap between the data shuffling scheme
in (26) and the proposed converse bound in Theorem 1, is
Q(KK_D, which is close to 2 when K is large. Our proposed
combined scheme in Corollary 1 does better: for K < 4,
it exactly matches the proposed converse bound in Theorem
1, while for K > 4 it is order optimal to within a factor
of 3/2.

In addition, the multiplicative gap 2(K|; D s independent
of the storage size M. It is shown in Theorem 6 that the
multiplicative gap between the combined scheme and the
converse decreases towards 1 when M increases.

Similar observation can be obtained for the communication
cost of peer-to-peer operations. With the data shuffling scheme
in (26), we can only prove this cost upper is bounded by 2,
which is independent of M and K. With the combined scheme,
it is shown in Corollary 3 that this cost decreases towards to
1 when M and K increase.

>, Ym € [K].

We conclude this section by providing some numerical
results. Fig. 2 plots our converse bound and the best convex
combination of the proposed achievable bounds on the worst-
case load under the constraint of uncoded storage for the
decentralized data shuffling systems with K = 4 (Fig. 2a)
and K = 8 (Fig. 2b) workers. For comparison, we also plot
the achieved load by the decentralized data shuffling scheme
in Remark 2, and the optimal load for the corresponding
centralized system in (11) under the constraint of uncoded
storage. For the case of K = 4 workers, Theorem 1 is
tight under the constraint of uncoded storage. For the case
of K = 8 workers, Scheme B meets our converse bound when
M/q € [6, 8], and also trivially when M/q = 1.

V. PROOF OF THEOREM 1: CONVERSE BOUND UNDER
THE CONSTRAINT OF UNCODED STORAGE

We want to lower bound max.ae > yepq R ' for a
fixed ¢t € [T] and a fixed A*~!. It can be also checked that
this lower bound is also a lower bound on the worst-case total
communication load in (10) among all ¢ € [T] and all possible
(A% ... AT). Recall that the excess storage is said to be
uncoded if each worker simply copies bits from the data units
in its local storage. When the storage update phase is uncoded,
we can divide each data unit into sub-blocks depending on the
set of workers who store them.

t—1

A. Sub-Block Division of the Data Shuffling Phase
Under Uncoded Storage

Because of the data shuffling constraint in (1), all the bits
of all data units are stored by at least one worker at the end of
any time slot. Recall that the worker who must store data unit
F; at the end of time slot ¢ is denoted by u! in (2). In the case
of excess storage, some bits of some files may be stored by

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3624

a
6 T T
Decentralized data shuffling
scheme in Remark 2
51 —(— Scheme B |
~—}-~ Converse bound in Theorem 1
Optimal centralized data shuffling scheme
—fF— under the constraint of uncoded storage
44 in [12, Elmahdy and Mohajer, ISIT 18]

g 3l 1
ot]
1k -]
0 L L L L L —

1 15 2 25 3 3.5 4
M/q
(a) K=4.
14 T T T
Decentralized data shuffling
scheme in Remark 2
12 Scheme A)
Scheme B
D Scheme C
10 - —-—-— Converse bound in Theorem 1 J
Optimal centralized data shuffling scheme
—fF— under the constraint of uncoded storage
in [12, EImahdy and Mohajer,)
86\ in [12, ElImahd d Mohajer, ISIT 18]

I

AN
6 \\ 1

M/q
(b) K=8.

Fig. 2. The storage-load tradeoff for the decentralized data shuffling problem.

multiple workers. We denote by Fj 1y the sub-block of bits of
data unit F; exclusively stored by workers in W where i € [N]
and VW C [K]. By definition, at the end of step ¢t — 1, we have
that uf_l must be in W for all sub-blocks F;)y of data unit
F;; we also let F)y = 0 for all W C [K] if uf_l Z W. Hence,
at the end of step ¢ — 1, each data unit F; can be written as

F,={Fiw :WC[K,utew}, (27)
and the storage content as
Zy = A{Fw W C K {ul kY S Wi e N]}

={Fic A Y Fiw i g A7 {ul kY C Wy

required data units

other data units

(28)

We note that the sub-blocks Fjyy have different content at
different times (as the partition in (27) is a function of A*~!
through (ufi_l, e uf,;,_l)); however, in order not to clutter the
notation, we will not explicitly denote the dependance of Fj)y
on time. Finally, please note that the definition of sub-block
F; v, as defined here for the converse bound, is not the same

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

as G,y defined in Section VI for the achievable scheme (see
Footnote 3).

B. Proof of Theorem 1

We are interested in deriving an information theoretic lower
bound on the worst-case communication load. We will first
obtain a number of lower bounds on the load for some
carefully chosen shuffles. Since the load of any shuffle is at
most as large as the worst-case shuffle, the obtained lower
bounds are valid lower bounds for the worst-case load as well.
We will then average the obtained lower bounds.

In particular, the shuffles are chosen as follows. Consider a
permutation of [K] denoted by d = (dy, ..., dk) where dj, # k

for each k € [K] and consider the shuffle
p=AL" Yk e [K]. (29)

We define X% as the messages sent by the workers in S

during time slot ¢, that is,
XL = {X,g ke s}. (30)

From Lemma 1 in the Appendix with S = [K], which is the
key novel contribution of our proof and that was inspired by
the induction argument in [14], we have

5 2 4(x)

S

m=1 ke[K] €Al

Z |F i,W|
ot
WCKI\{k}: ! T ew, (Wi=m
(€19
To briefly illustrate the main ingredients on the derivation
of (31), we provide the following example.

Example 1 (K = N = 3): We focus on the decentralized
data shuffling problem with K = N = 3. Without loss of
generality, we assume

AT = {3}, Ayt = {1}, A = {2)

Based on (AL', ALY ALY, we can divide each data unit
into sub-blocks as in (27). More precisely, we have

(32)

Fy = {Fy g2y, F1 1.2y, Fuqey, P2,y)
Fy = {Fy g3y, I (1.3y, Fa q2,3), Fo (12,3})
F3 = {F3 1y, 5 (1,23, F3.41,3), F3.01,2,31 }-

At the end of time slot ¢ — 1, each worker k € [3] stores F; yy
if £k € W. Hence, we have

27 ={Fi 10y, Fgi2,y: Fo 13y Fo (12,31
F3 01y, F5 1.2y, Fa 41,3y, F3.01,2,3})5

Z5 ={Fi 2y, Preys Fipesys Fi 2.y Fooge.9),
F2,{1,2,3},F3,{1,2},F3,{1,2,3}}5

zi ! ={F1 1.3y Fiq1,2.3) Fo g3y Fo g3y, Foq2,8)s
Fy 412,31, F3.11,3y, Fs.01,2,3) |-

Now we consider a permutation of [3] denoted by d =
(d1,ds,ds) where dj, # k for each k € [3] and assume the

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

considered permutation is (2, 3, 1). Based on d, from (29), we
consider the shuffle

Ay = Ayt = (1) Ay = Ay = 2 A = AT = (3]
(33)

We first prove
H(X[tz]|Z§71aF3) > [Fy 23] (34)

More precisely, by the decoding constraint in (5), we have

H(Fy (2312771, X[t:a]) =0, (35)
which implies
H(F17{2}|Zf‘1,X[t3], Zt 1 F3) = 0. (36)

Since F' {0} is not stored by workers 1 and 3, we have

|Fy 23] < H(FL{Q},X{Q]|Z{—1,X§, ZEUF) (37a)
= H(X[y|21', X3, 2571 Fy)+

H(Fy |21 X[y, 2571 F3) (37b)
= H(X[y|2{7", X5, 257 Fs) (37¢)
< H(X{y| X3, 257", Fy) (37d)
= H(X[y|Z;™", Fy), (37¢)

where (37¢) comes from (36) and (37¢) comes from the fact
that X¢ is a function of Zéfl. Hence, we prove (34).
Similarly, we can also prove

H(X{, 317571 F2) > | F 1y . (38)
H(Xf2’3}|Zf’1,F1) > |Fy (3y]- (39
In addition, we have
1
H(Xfy) = 3 > (H(Xk) + H(X| {k}|Xk)) (40a)
ke[3]
1
> = | H(Xfy) + D H(Xfy X0 | (40b)
ke(3]
and thus
2H(X{y) > Y H(X[3 1y | X7) (40c)
ke[3]
> Y H(Xfyp 20 (40d)
ke(3]
=Y H(X{y\ . Fl 2,7 (40e)
ke(3]
=Y H(FZ") + H(X[y | Frs 2471, (406)
ke(3]

where (40d) comes from the fact that X ,tc is a function of Z,’;_l
and conditioning cannot increase entropy, and (40e) comes
from the decoding constraint for worker k in (5).
Let us focus on worker 1 and we have
H(F|Z77h) =

[F1 oy | + [F1 2,33 (41)

3625

In addition, we have H(Xt23}|Z TLUR) > [Pyl
from (39). Hence,

H(F1|Zf_1) + H(Xf273}|Zf_1, Fy)

> |Fy o3| + |Fu 2,33 + [Fo (33| (42)
Similarly, we have
H(Fo|Z570) + H(X {1 31125 Fo)
> |Fy g3y | + | Fo g3y | + [F5 1y s (43)
H(F3|Z571) + H(Xf172}|Z§_1, Fy)
> |Fs gy | + | Fs g2y + [F1 g2 |- (44)
By taking (42)-(44) to (40f), we have
H(X(y) > ZHFk|Zt)+ H(X g\ 1y Fr Z,)
kE[]
(45a)
|F1 23] [F2 1,3
= |Fy 1oy + |Foqsy| + | Fa 01y + {2 i {2 !
F:
1 B 3’{21’2}|, (45b)
coinciding with (31).]

We now go back to the general proof of Theorem 1. We next
consider all the permutations d = (dq,...,dk) of [K] where
di. # k for each k € [K], and sum together the inequalities in
the form of (31). For an integer m € [K], by the symmetry
of the problem, the sub-blocks Fj;)y where i € [N], uﬁ_l S
W and |W| = m appear the same number of times in the
final sum. In addition, the total number of these sub-blocks in
general is N (K_ll) and the total number of such sub-blocks in

each inequality in the form of (31) is N(m 1) So we obtain

(IZ 21) qK
m=1 €[N WCIK]: u!"tew, W|=m = \m— 1

(46)

K
:Zquml—(m—l)/(K—l) (47)

m
K
K—-—m K

where we defined x,,, as the total number of bits in the sub-
blocks stored by m workers at the end of time slot ¢ — 1
normalized by the total number of bits NB, i.e.,

|Fwl
0<z,, = L 4
= Tm Z Z NB (49)
i€[N] WCIK]: ul tew, [W|=m
which must satisfy
Z T, = 1 (total size of all data units), (50)
me|[K]
M M
MLy < — = E (total storage size). (1))
me[K]

We then use a method based on Fourier-Motzkin elimination
[30, Appendix D] for to bound R} from (47) under the

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3626

constraints in (50) and (51), as we did in [9] for coded caching
with uncoded cache placement. In partlcular for each integer
p € [K], we multiply (50) by “N@Rp—p"+K=p) () obtain

p(p+1)
—N(2Kp — p> + K —p) EK: N(2Kp — p> + K — p)
p(p+1) — p(p+1)
T,
(52)
and we multiply (51) by W to have
K
NK KM NK
N r. (53)
(K=1)p(p+1) N Z‘l (K=1)p(p+1)
We then add (52), (53), and (47) to obtain,
NK(1— NK KM
Rfl 2 Z p m p ha)xm_ -~
Jp(p+1) (K=1)p(p+1) N
N 2K K—
(p—p*+K-p) (54)
pp+1)
NK KM N(2Kp —p? + K —p)

C(K=1)p(p+1) N p(p+1)

(55)

Hence, for each integer p € [K], the bound in (55) becomes
a linear function in M. When M = qp, from (55) we have

Ry > (|£ 1); When M = q(p + 1), from (55) we have R} >
N(K—p—1)

m. In conclusion, we prove that R} is lower bounded
by the lower convex envelope (also referred to as “meme-
ory sharing”) of the points (l\/l = qm, R = MK= m)), where
m € [K].

This concludes the proof of Theorem 1.

(K—=1)m

C. Discussion

We conclude this session the following remarks:
1) The corner points from the converse bound are of the

K—2
form (M/q =m,R/q = K(p 1)

m (1)

the following placement.
At the end of time slot £ —1, each data unit is partitioned
into (*7!) equal-length sub-blocks of length B/ (™)
bits as F; = (Fiy : W C [K], W] = m,ul~! € W);
by definition F; 1y =) if either u!~" ¢ W or |[W| # m.
Each worker k € [K] stores all the sub-blocks Fjyy if
k € W; in other words, worker k € [K] stores all the
(:f;ll) sub-blocks of the desired data units, and (m 2)
sub-blocks of the remaining data units.
In the data shuffling phase of time slot ¢, worker k € [K]
must decode the missing (*71) — (K72) = (X72) sub-
blocks of data unit Fj for all j € AL\ AL, An inter-
pretation of the converse bound is that, in the worst case,
the total number of transmissions is equivalent to at least
‘:—5 (2:21) sub-blocks.

We will use this interpretation to design the storage

update phase our proposed Schemes B and C.
2) The converse bound is derived for the objective of

minimizing the “sum load” > kelK RAt , see (10).

, which may suggest

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

The same derivation would give a converse bound for
PP . t—1_, gt

the “largest individual load” maxy¢ k) Ryt A" In the

latter case, the corner points from converse bound are of

(1)
the form (M/q =m,R/q = ’(" 1)
m—1

may suggest that, in the worst case, all the individual
loads thilé““t are the same, i.e., the burden of com-
municating missing data units is equally shared by all
the workers.

Our proof technique for Theorem 1 could also be
directly extended to derive a converse bound on the
average load (as opposed to the worst-case load) for all
the possible shuffles in the decentralized data shuffling
problem when N = K.

. This view point

VI. ACHIEVABLE SCHEMES FOR DECENTRALIZED
DATA SHUFFLING

In this section, we propose three schemes for the decentral-
ized data shuffling problem, and analyze their performances.

A. Scheme A in Theorem 2

Scheme A extends the general centralized data shuffling
scheme in Section III to the distributed model. Scheme A
achieves the load in Theorem 2 for each storage size M = (1—|—
g&=L 7)q, where g € [K — 1]; the whole storage-load tradeoff
piecewise curve is achieved by memory-sharing* between
these points (given in (21)) and the (trivially achievable) points
in (22)-(23).

Structural Invariant Data Partitioning and Storage: This
is the same as the one in Section III for the centralized case.

Initialization: The master directly transmits all data units.
The storage is as in (14) given A°.

Data Shuffling Phase of Time Slot t € [T]: The data shuf-
fling phase is inspired by the delivery in D2D caching [13].
Recall the definition of sub-block G;c,w in (16), where each
sub-block is known by |[W| = ¢ workers and needed by
worker k. Partition G, %, into g non-overlapping and equal-
length pieces Gy 1y, = {G}, \,(j) : 7 € W}. Worker j € J
broadcasts

®» G
el T\ (e ()

VJ C [K] where | J| =g+ 1,

in other words, one linear combination Wf7 in (17) for the
centralized setting becomes g + 1 linear combinations W; 7
in (56) for the decentralized setting, but of size reduced by a
factor g. Evidently, each sub-block in W i is stored in the
storage of worker j at the end of time slot t — 1. In addition,
each worker & € J\{;j} knows G}, 7\ (;,,(j) where k1 € J\
{k,j} such that it can recover its desired block G 7\ 1, (J)-

t
Wiz =

(56)

4 Memory-sharing is an achievability technique originally proposed by
Maddah-Ali and Niesen in [8] for coded caching systems, which is used
to extend achievability in between discrete memory points. More precisely,
focus one storage mze M = aM; + (1 — a)Ms2, where a € [0,1],
M1 = (1+g % La, My = (1+(g+1)%)q, and g € [K—1].
We can divide each data unit into two non-overlapping parts,with aB and
(1 — a)B bits, respectively. The first and second parts of the N data units are
stored and transmitted based on the proposed data shuffling scheme for My
and Mo, respectively.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

Since |G}, | < qB/(g), the worst-case load is
K-yg

(g+ 15
=q K(9+1) =q = RACh.A7
a(j) g

as claimed in Theorem 2, where the subscript “Ach.A” in (57)
denotes the worst-case load achieved by Scheme A.

Storage Update Phase of Time Slot t € [T]: The storage
update phase is the same as the general centralized data
shuffling scheme in Section III, and thus is not repeated here.

(57)

B. Scheme B in Theorem 3

During the data shuffling phase in time slot ¢ of Scheme
A, we treat some sub-blocks known by g + 1 workers as if
they were only known by g workers (for example, if uf_l ¢
W, G is stored by workers {uf_l} U W, but Scheme A
treats (G;)y as if it was only stored by workers in V), which
may be suboptimal as more multicasting opportunities may be
leveraged. In the following, we propose Scheme B to remedy
for this shortcoming for M = mgq for m € {K — 2, K — 1}.

Structural Invariant Data Partitioning and Storage: Data
units are partitions as inspired by the converse bound (see
discussion in Section V-C), which is as in the improved
centralized data shuffling scheme in [11]. Fix m € [K].
Partition each data unit into (X~}) non-overlapping equal-
length sub-block of length B/ (5;11) bits. Write F; = (Fiw ¢
W C [K],[W| = m,ul € W), and set F;)y, = 0 if either
ul ¢ W or |W| # m. The storage of worker k € [K] at the
end of time slot ¢ is as follows,

Zt = ((Fi,wzz'eAg,wv)u(Fi,W;z'ng‘,;,keW)),

required data units

other data units

(53)
that is, worker k € [K] stores all the (X~}) sub-blocks of data
unit F; if i« € At, and (5;22) sub-blocks of data unit F} if
jé .A’,‘;, (the sub-blocks stored are such that k € V), thus the
required storage space is

K—2
(m—2)
K—1
(m—l)
In the following, we shall see that it is possible to maintain

the storage structure in (58) after the shuffling phase.
Initialization: The master directly transmits all data units.
The storage is as in (58) given A°.
Data Shuffling Phase of Time Slot t € [T| for m = K—1:
Each data unit has been partitioned into (71) = K — 1 sub-
blocks and each sub-block is stored by m = K — 1 workers.

Similarly to Scheme A, define the set of sub-blocks needed
by worker & € [K] at time slot ¢ and not previously stored as

SyNZa g (59)

M=q+(N-aq) K1

=q+(m

B gy =(Frw 8 € AL\VATL WK {R3) Vi € [K)
(60)

Since F, K]\ (k) (of length qB/(K — 1) bits in the worst
case) is desired by worker k£ and known by all the remaining
m = K — 1 workers, we partition F];_[K]\{k,} intom=K-1

3627

pieces (of length qB/(K — 1) bits in the worst case), and
write FY) = (F];’[K.]\{k}(j:) 1j € K] \.{k}). Worker
j € [K] broadcasts the single linear combination (of length
qB/(K — 1)? bits in the worst case) given by

W} = kngli,[K]\{k}(j)' (61)
Therefore, the worst-case satisfies
K K-m K
RE®—129™ —m k=19| _, = Raansluikonya
(62)

which coincides with the converse bound.

Storage Upadte Phase of Time Slot t € [T for m =
K — 1: In time slot ¢t — 1 > 0, we assume that the above
storage configuration of each worker & € [K] can be done
with Z} % and X;fl where j € [K]\ {k}. We will show
next that at the end of time slot ¢, we can re-create the same
configuration of storage, but with permuted data units. Thus
by the induction method, we prove the above storage update
phase is also structural invariant.

For each worker & € [K] and each data unit F; where
ie AL\ Af;l, worker k stores the whole data unit £} in its
storage. For each data unit F; where ¢ € A’,f;l \.At,, instead
of storing the whole data unit F;, worker k only stores the
bits of F; which was stored at the end of time slot ¢t — 1 by
worker uf. For other data units, worker k& does not change the
stored bits. Hence, after the storage phase in time slot ¢, we
can re-create the same configuration of storage as the end of
time slot £ — 1 but with permuted data units.

Data Shuffling Phase of Time Slot t € [T| for m = K—2:
We partition the N data units into q groups as [N] = EL[J]Hi,
i€lq

where each group contains K data units, and such that for
each group H;,i € [q], and each worker k € [K] we have
|H; N AL = 1 and |H; N AL'| = 1. In other words, the
partition is such that, during the data shuffling phase of time
slot ¢, among all the K data units in each group, each worker
requests exactly one data unit and knows exactly one data
unit. Such a partition can always be found [12, Lemma 7].
The dependance of H; on t is not specified so not to clutter
the notation. For group H;,i € [q], we define

UH;) = {k € [K] : H;N AL C A}, Vieq], (63)
as the set of workers in the group who already have stored the
needed data point (i.e., who do not need to shuffle). Since each
worker has to recover at most one data unit in each group, the
delivery in each group is as if g = 1. Hence, to simplify the
description, we focus on the case q = 1, in which case there
is only one group and thus we simplify the notation U(H;)
to just U. We first use the following example to illustrate the
main idea.

Example 2: Consider the (K, q, M) = (5, 1, 3) decentralized
data shuffling problem, where m = M/q = 3. Let A" =
(5,1,2,3,4). During the storage update phase in time slot t—1,
we partition each data unit into 6 equal-length sub-blocks, each

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3628

of which has B/6 bits, as

Fy =(Fy 112,83y, F1 12,43 Fiq,2,50 Fuoge,says Fioge.ssy

Fi 245} (64a)
Fy =(Fy 12,3y, Fo (1,343 P2 41,350 F2.2,3,4) o (2,351
Fy (3451} (64b)
F3 =(F3 11,243, F5,{1,3,43, F3.41,4,5), F3.12,3,41> F5,{2,4,5}»
F3 43451} (64c)
Fy =(Fy 1125 Faqi35) Faqras) Faqessy Fag2as)
Fy 345} (64d)
Fs =(F5 11,2,3y: F5 {1,243 F5 41,2,5) F5.11,3,43 F5.{1,3,5}»
Fs 145} (64e)

and each worker k stores Fjyy if k€ W.

In the following, we consider various shuffles in time slot ¢.
If one sub-block is stored by some worker in U, we let
this worker transmit it and the transmission is equivalent to
centralized data shuffling; otherwise, we will introduce the
proposed scheme B to transmit it.

We first consider A = (1,2, 3,4,5). For each set J C [K]
of size |J| =m+1=K—1=4, we generate

Vr= 8 Fa.a\m (65)
where df, represents the demanded data unit of worker % in
time slot ¢ if q = 1. The details are illustrated in Table II.
For example, when J = {1,2,3,4}, we have V{, ,,
Fi 234y +F5 1,34y + F3 12,4y + Fy (1,233 where Fy 1 53)
is empty and we replace Fy 123y by B/6 zero bits. Since
F {2 3.4)> £ (1,34}, and F3 (1 4y are all stored by worker
4, V{1 53,4} Can be transmitted by worker 4. Similarly, we
let worker 3 transmit V{1 2,35} worker 2 transmit V{1 2,45}
worker 1 transmit V{1 3,45} and worker 5 transmit V{2 34,5}
It can be checked that each worker can recover its desired sub-
blocks and the achieved load is 5/6, which coincides with the
proposed converse bound.

Let us then focus on A' = (5,2,3,4,1). For this shuffle,
Affl = A’ such that worker 1 needs not to decode anything
from what the other workers transmit. We divide all desired
sub-blocks into two sets, stored and not stored by worker 1 as
follows

Siiy = {F1 12,3y P24y Fo 13,43, Foq1,3,5): 301,24
Fs 1,451, Faq1,250 Faq1,351)
So = {F1 q2,343, 213,45, F5,(2.4,5), Faq2,3,51)

Since the sub-blocks in Sy} are all stored by worker 1,
we can treat worker 1 as a central server and the transmis-
sion of Sy1) is equivalent to centralized data shuffling with
Keg = 4, Meq = 2 and qeq = 1, where Ueq = (). For this
centralized problem, the data shuffling schemes in [11], [12]
are optimal under the constraint of uncoded storage. Alter-
natively, we can also use the following simplified scheme.
By generating V{1 2,34} in (65), and it can be seen that
V{1 2,34} is known by workers 1 and 4. Similarly, V{1 2,35}
is known by workers 1 and 3, V{1727475} is known by workers
1 and 2, and ‘/'{t1737475} is known by workers 1 and 5.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

TABLE II

MULTICAST MESSAGES FOR EXAMPLE 2. EMPTY
SUB-BLOCKS ARE COLORED IN MAGENTA

For At
Worker Twants (Fy o 3 43+ F1,{2,3,5} F1,{2,4,5} F'1,{3,4,°
Worker 2 wants (Fo 1 3 43+ F2, {1,3,5) F2,{3,4,5}» F2,{1,4.
Worker 3 wants (F3 1124} F3,{1,4,5} - F3,{2,4,5)» F3 (1,2,
2
3

=(1,2,3,4,5) = (I, Fp, F3, Fy, I's)

Worker 4 wants (Fy (1,25} P {1,3,5}> Fa,{2,3,5} T, (1.2,

Worker 5 wants (F5 11 9.3y, F5,{1,2,4}> F5,{1,3.4}> I'5,{2.3.
T —

Vii1,2,3,4y = F1,{2,3,4} + P2, {1,343 T F3,{1,2,4} + Fa {1.2.3}

Vi1,2,3,5y = F1,{2,3,5} T F2.{1,3,5} T I3, {1,2,5} + F5,{1,2,3}

Vit,2,4,5y = F1{2,4,5) T Fa {145y T Fa (1,25} + F5,{1,2,4}
Vi1,3,4,5) = F1.{3,45} T F3,{1,4,5} + F4 1,35} + F5,{1,3,4}
Vi2.3.4,5) = F2,43,4,5} T F3,{2,4,5} + Fa{2,3,5} T F5.{2.3,4}

For A' = (5,2,3,4,1) =
Worker 1 wants <F5_{2_3 4y

(F5, Fa, Fg, Fy, F1)

Fs (2,35} F5 {2,4,5} F5 {3,4,5
Worker 2 wants (Fg (1 3 43> F2,{1,3,5}> F2,{3,4,5} F2, {1,451 = D)
Worker 3 wants (F3 (1 2 4}, F3,{1,4,5}> F3,{2,4,5} I3, {1,251 = D)
Worker 4 wants (Fy (1 2 53> F4 {1,3,5}> Fa,{2,3,5} F'1,{1,2,31 =)
W°t‘k°f 5wants (Fy (9 9.3}.F1,41,2,4}> F1,{2,3,4} F1,{1,3,4} =D
V.

1,2,3,4} = I5.{2,3,4y T F2,{1,3,4} + F3,{1,2,4} T P4 {1,2,3}
V{i’l,g,g,:)} =F5 1235} t Fa (1,35} T F3 {1,257 + F1,{1,2,3}
Vit,2,4,5y = F5.{2,45) T Faf1a5) T Fa (12,5} F1.{1,2,4}
V{tl’3’4’5} =F5 13,45} t F3,{1,4,5} T Fa,{1,3,5} + F1, {1,3,4}

Vi2,3,45) = F2,{3,45} T F3,{2,4,5) T Fu {235} + F1,{2,3,4}
For A' = (5,1,3,4,2) =

(F5, F1, F3, Fy, Fg)

Worker 1 wants (F5 (5 3 41+ F5 {2,3,5} F5,{2,4,5} F5,{3,4,5}) = 0
Worker 2 wants (F'y (1 3 43> F1,{1,3,5}> £1,{3,4,5}> F1,{1,4,5}) =0
Worker 3 wants (F3 (1 2 43> F3,{1,4,5}> F3,{2,4,5} I3, {1,2,5} = D)
Worker 4 wants (Fy (1 2 53> F4,{1,3,5}> Fa,{2,3,5} F'1,{1,2,31 = D)
Worker 5 wants (F {1.2.3}>F2.{1,34} F2.{2.34}>F2. {124} =0

Vt1,2,3,4}: 5,{2,3,4} T F1 {1,343 + F3,{1,2,4} T 4, {1,2,3}
Vii,2,3,5y = F5.{2,3,5) T Frq135) T F3 (1,25} + F2{1,2,3}
Vit,2,4,5y = F5.{2,4,5) T F1{1,4,5) T Fa (1,25} + 2 {1.2,4}
Vii1,3,4,5)y = F5.(3,4,5) T F3,{1,4,5} T Fa (1,35} + F2,{1,3,4}
Vi2,3,45) = F1.{3,45) T F3.q{2,45) + Fa {2,355} + Fa,{2,3,4)

Hence, we can let worker 1 transmit V{t1 93,4} D V{t1 23,5}
V{1234} ® V{1245}’ and V{1234} ® ‘/{1345} Hence,
each worker can recover V{1 2,34} V{1 2,35} V{1 2,45} and
‘/'{1737475}. We then consider the transmission for Sy =
{F 12,343, F5 (3,4,5y, F3,02,4,5), Fa,12,3,51 }» Which is equiva-
lent to decentralized data shuffling with Keq = 4, Meqg = 3
and qe¢q = 1, where Uy = () defined in (63). Hence, we
can use the proposed Scheme B for m = K — 1. More
precisely, we split each sub-block in V{t2’3’ 45} into 3 non-
overlapping and equal-length sub-pieces, e.g., F3 (345 =
{F2,13,451(3), 2 134,51 (4), I3 134,53 (5)}. We then let

2
3
4
)

worker 2 transmit I3 19 4 53 (2) © Fy (2,35} (2) © F1 {2,3,4}(2);
DFy (2,351 (3)DF1 (2,3,43(3
(4)
(5)

(
worker 3 transmit Fy ¢34 5} (
O3 (2,45 (4)BF 234)(4

(
)

worker 4 transmit F5 (3 4 5})

AA/_\/_\
o — — ~—

)i
);
)i
worker 5 transmit [1345} (5) @ F3 (24,53 (5) @ Fy y2,3.5)(5)-

In conclusion, the total load for A! =

34213

6 "9 18 . .
Finally, we consider A" = {5,1,3,4,2}. For this shuffle,

ATt = AL and ALY = AY such that workers 1 and 2

need not to decode anything from other workers. We divide

all desired sub-blocks into three sets

(5,2,3,4,1) is

Sti2y = {11,280 P 1,241 Fa250

stored by workers 1 and 2,

5{1} = {FQ,{1,3,4}; F3,{1,4,5}; F4,{1,3,5}};

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

stored by worker 1 and not by worker 2, and

Stoy = {2 12,343, F3,(2,4,5), Fa 12,351}

stored by worker 2 and not by worker 1.

The transmission for Sy 2 is equivalent to a centralized
data shuffling with Ky = 3, Mg = 1 and qoq = 1. We use
the following simplified scheme to let worker 1 transmit
V{r 2,34} @V{l 23,5} and V{1 2.3 4} @V{l 24,5} such that each
worker can recover V{f1 23,4} V{1 2,3,5}° and V{1 2,4,5} (as
illustrated in Table II, V{1 2,34} = F3 11,2,4) V{1 2,35} =
F5 (12,3, and V{1 245} = Fy {1,2,5))- Similarly, for Sy
we let worker 1 transmit V{1 3,45} For i3y, we let worker
2 transmit V{2737 4,5} In conclusion the total load for At =
{5,1,3,4,2}is 2+ 1+ 1 =2 O

Now we are ready to introduce Scheme B for m = K — 2
as a generalization of Example 2. Recall that, from our earlier
discussion, we can consider without loss of generality q = 1,
and that U/ represents the set of workers who need not to
recover anything from others. We divide all desired sub-blocks
by all workers into non-overlapping sets

Sic:={Fy, w:k € [KI\UWEm +1WNU =Kk ¢ W},
(66)

where K C U. We then encode the sub-blocks in each set in
Sk in (66) as follows:

e For each K C U where K # (), the transmission for Sy
is equivalent to a centralized data shuffling problem with
Keg = K= |[U[, deqg = 1 and Mg = m — |K|, where
Ueq = 0. Tt can be seen that K,q — Mg < 2. Hence, we
can use the optimal centralized data shuffling schemes
in [11], [12].

Alternatively, we propose the following simplified
scheme. For each set J C [K] of size |[J| =m+1 =
K —1, where J NU = K, we generate V} as in (65).
Each sub-block in Sk appears in one V%, where 7 C [K],
|7 = K—1and J NU = K. It can be seen that for
each worker j € [K] \ U, among all V where J C [K],
|7l =K—-1and JNU = K, worker j knows one of

them (which is V[KN\ (')). We denote all sets 7 C [K]

where |J| =K -1 and JNU =K, by Ji(K), J2(K),
- j(K U])(IC) For Sy, we choose one worker in K
K—1—|K|
: t t t
to transmit le(,c)@Vj (K)? o0 le(,C)GBVJ _—

(K
(%1 5)
such that each worker in K\ can recover all V/ where

JCKL|J=K=1and JNU =K.

e For K = (), the transmission for Sy is equivalent to
decentralized data shuffling with Keq = K — |U], geq = 1
and Meq = m = K — 2, where U,q = (. Hence, in this
case U < 2.

If U| = 2, we have Mgq = K¢q and thus we do not
transmit anything for Sy.

If || = 1, we have M¢q = Keq — 1 and thus we can use
Scheme B for m = K — 1 to transmit Sp.

Finally, we consider [/| = (). For each set 7 C [K] where
|J| = m+1 = K—1, among all the workers in J, there is
exactly one worker in J where u gé J (this worker is

3629

assumed to be k and we have u!, ' = [K]\ J with a slight
k

abuse of notation). We then let worker & transmit V}.
In conclusion, by comparing the loads for different cases, the
worst-cases are when A" N AL = () for each k& € [K] and
the worst-case load achieved by Scheme B is

K—1 K-—m K
qK/<K_ >—q

: ! =: RAch.B|M=(K—2)q’

m=K-—1

(67)

which coincides with the converse bound.

Storage Update Phase of Time Slott € [T form = K—2:
The storage update phase for m = K — 2 is the same as the
one of scheme B for m = K — 1.

Remark 3 (Scheme B Realizes Distributed Interference
Alignment): Tn Example 2, from A*~! = (5,1,2,3,4) to
At = (1,2,3,4,5), by the first column of Table II, we see
that each worker desires K — 2 = 3 of the sub-blocks that
need to be shuffled. Since each worker cannot benefit from
its own transmission, we see that the best possible scheme
would have each worker recover its K — 2 = 3 desired sub-
blocks from the K — 1 = 4 “useful transmissions,” that is, the
unwanted sub-blocks should “align” in a single transmission,
e.g., for worker 1, all of its unwanted sub-blocks are aligned
in V{t2737 4,5} From the above we see that this is exactly what
happens for each worker when K — 2 = m. How to realize
distributed interference alignment seems to be a key question
in decentralized data shuffling. 0

Remark 4 (Extension of Scheme B to Other Storage Sizes):
We can extend Scheme B to any storage size by the following
three steps:

o We partition the N data units into q groups, where each
group contains K data units, and such that during the
data shuffling phase each worker requests exactly one
data unit and knows exactly one data unit among all the
K data units in each group.

o For each group H;, we partition all desired sub-blocks
by all workers into sets depending on which workers
in U(H;) know them. Each set is denoted by Sk (H,;),
which is known by workers in I C U(H;), and is defined
similarly to (66).

o For each set Si(H;),

— if K # (), the transmission is equivalent to centralized
data shuffling with Keq = K — |U(H,)],
Meq = M — |KC]. We can use the optimal centralized
data shuffling scheme in [12];

- if K = 0, for each set J C ([K] \ U(H,;)), where

|J| = m + 1, we generate the multicast messages
V5 as defined in (65).
If there exists some empty sub-block in V}, we let
the worker who demands this sub-block transmit V}.
Otherwise, ij is transmitted as Scheme B for
m=K-—1.

Unfortunately, a general closed-form expression for the load

in this general case is not available as it heavily depends on
the shuffle.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3630

Note: in Example 3 next we show the transmission for
K = 0, can be further improved by random linear
combinations. (]

Example 3: Consider the (K, g, M) = (5, 1, 2) decentralized
data shuffling problem, where m = M/q = 2. From the
outer bound we have R} > 15/8; if each sub-block is of
size 1/ (:ff_ll) = 1/4, the outer bound suggests that we need
to transmit at least 15/2 = 7.5 sub-blocks in total.

Let A= = (5,1,2,3,4). During the storage update phase
in time slot ¢ — 1, we partition each data unit into 4 equal-
length sub-blocks, each of which has B/4 bits, as

Fy = (F1 12y, o3y, Fueay, Presy) (68a)
Fy = (Fy q1,3), Fa 12,3y, Fo 3,43, Fo.43,51 1 (68b)
F3 = (F3 (1,4}, 3 12,4y, F3,(3,4}, 3,045 } (68¢)
Fy = (Fyq15), Faq2,5y Fass), Faqasy) (68d)
Fs = (F5,{1,2}7F5,{1,3};F5,{1,4}7F5,{1,5}}7 (68¢)

and each worker k stores Fjyy if k€ W.

Let A = (1,2,3,4,5). During the data shuffling phase in
time slot ¢, each worker must recover 3 sub-blocks of the
desired data unit which it does not store, e.g., worker 1 must
recover (Fy g3y, I 12,4}, F1,{2,5}), worker 2 must recover

(Fo41,31, Fo (3,43, Fo g3,51)s etc.
For each set J C [K] where |J| = m+1 = 3, we generate
V} = k?ij’J\{k} as in (65). More precisely, we have

V{t17273} = F| (2.3} @ F3 (1,3}, (can be sent by worker 3),
(69a)

V{t1,2,4} = F1,{2,4}7 (69b)

V{th,g,} = F 25} ® F5 (1,2}, (can be sent by worker 2),

(69¢)
V{t1,3,4} = F3 (1,4}, (69d)
V{t1,3,5} = F5 (1,3}, (69e)
V{tL4,5} = Fy (1,51 @ F5,{1,4), (can be sent by worker 1),

(69f)
V{t27374} = F5 (3.4} ® F3 (2,4, (can be sent by worker 4),

(692)
V{t2,3,5} =I5 (3.5}, (69h)
V{t2,4,5} = F} (2,5} (691)

V{t3’4’5} = F3 (451 ® Fy (35, (can be sent by worker 5).
(69))

We deliver these multicast messages with a two-phase
scheme, as follows.

o Phase 1. It can be seen that the multicast messages like
V{t17273} in (69) (which is known by worker 3 only) can be
sent by one specific worker. Similarly, we can let workers
2, 1, 4 and 5 broadcast V{t17275}, V{t17475}, V{t27374} and
V{t& 4,5)> Tespectively.

o Phase 2. After the above Phase 1, the remaining messages
are known by two workers. For example, V{t1727 g =
F17{274} is known by workers 2 and 4; we can let worker

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

2 transmit V{tl’Q’ e If we do so as Scheme B, since each
multicast message in (69) has B/4 bits and there are 10
multicast messages in (69), the total load is 10/4.

In this example Phase 2 of Scheme B can be improved as
follows. The problem with the above strategy (i.e., assign
each multicast message to a worker) is that we have
not leveraged the fact that, after Phase 1, there are still
five sub-blocks to be delivered (one demanded per wor-
ker, namely I (2 4y, F5 (3,51, F3 (1,4}, Fa (2,55 F5,{1,3})s
each of which is known by two workers. Therefore, we
can form random linear combinations so that each worker
can recover all three of the unstored sub-blocks. In other
words, if a worker receivers from each of the remaining
K —1 = 4 workers 3/4 x “size of a sub-block” linear
equations then it solved for the three missing sub-blocks,
that is, each worker broadcasts 28 random linear combi-

16
nations of all bits of the two sub-blocks he stores among

Fi 2.4y, F2 q3.5), F3 (1,43, Fa (2,5, F5,01,3)- It can be
checked that for worker 1, the received 3B/4 random
linear combinations from other workers are linearly inde-
pendent known Fi (5 4; and Fj ¢ 3y as B — oo, such
that it can recover all these five sub-blocks. By the
symmetry, each other worker can also recover these five
sub-blocks.

In conclusion, the total load with this two-phase is
5(1 +3/4) x 1/4 = 2 < 10/4, which is achieved by
Scheme B. By comparison, the load of Scheme A is % and
the converse bound under the constraint of uncoded storage in
Theorem 1 is %.

As a final remark, note that the five sub-blocks in Phase
2 is symmetric, i.e., the number of sub-blocks stored by
each worker is the same and the one known by each worker
is also the same. In general case, this symmetry may not
hold (thus the conditional linearly independent of the received
random linear combinations by each worker may not hold),
and the generalization of this scheme is part of ongoing
work. O

Remark 5 (Limitation of Scheme B for Small Storage
Size): The data shuffling phase with uncoded storage can
be represented by a directed graph, where each sub-block
demanded by some worker is represented by a node in the
graph. A directed edge exists from node a to node b in the
graph if the worker demanding the data represented by node b
has the data represented by node « in its storage. By generating
a directed graph for the data shuffling phase as described in
Section II, we can see that each multicast message in (65) is
the sum of the sub-blocks contained in a clique, where a clique
is a set of nodes where each two of them are connected in two
directions. The sub-blocks in each multicast message in (65)
also form a distributed clique, where a distributed clique is a
clique whose nodes are all known by some worker.

Consider the case where K = N is much larger than M =
m = 2 (i.e., small storage size regime). Consider a “cyclic
shuffle” of the form A" = {K} and A}"' = {k — 1} for
ke [2:K], to AL = {k} for k € [K]. Each data unit is split
into (Kil) = K — 1 sub-blocks and each worker needs to

m—1
recover (WK;QI) = K — 2 sub-blocks.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

If during the data shuffling phase in time slot ¢ we generate
the multicast messages as above, only 2 of the K—2 demanded
sub-blocks are in a distributed clique of size m = 2. More
precisely, let us focus on worker 1 who needs to recover Fj.
Notice that each sub-block of Fj is stored by worker 2, and
each of its demanded sub-blocks F 5 ;1 where j € [K]\
{1,2}, is in the multicast message

Vi = Frizg ® Fo 1,y ® Fjg1,2)- (70)

When j = 3, it can be seen that F3 (1 o) is empty because all
sub-blocks of Fj are stored by worker 4, and thus V{t1 23} =

Fy {23y ®F5 (1,3) could be transmitted by worker 3. However,
when j = 4, both sub-blocks Fy 1,43 and Fy fq 2y are empty,
and thus V{t172’4} = F} [2,4}. Similarly, among all the K — 2
demanded sub-blocks by worker 1, only F 5 3y and F' 12 k)
are in cliques including two sub-blocks, while the remaining
K — 4 ones are in cliques including only one sub-block.

If the delivery strategy is to assign each multicast message,
or distributed clique, to a worker, we see that most of the
distributed cliques have a multicast coding gain of 1 (where
the multicast coding gain is the gain on the transmitted load
compared to uncoded/direct transmission, e.g., if we transmit
one sub-block in a distributed clique of length 2, the multicast
coding gain to transmit this sub-block is 2). Hence, Scheme
B is generally inefficient for m € [2 : K —3]. In this paper we
mainly use Scheme B for m € {K—2,K—1,K} for which it
is optimal under the constraint of uncoded storage. (]

C. Scheme C in Theorem 4

To overcome the limitation of Scheme B described in
Remark 5, in the following we propose Scheme C for M /q =
m = 2 based on an unconventional distributed clique-covering
strategy for the two-sender distributed index coding problems
proposed in [29].

The storage update phase of Scheme C is the same as
Scheme B, which is structural invariant, and thus we only
describe the transition from time slot ¢ — 1 to time slot t.
The main idea is not to use the conventional distributed
clique-covering method which transmits distributed cliques
(e.g, the multicast messages in Scheme B), because most of the
distributed cliques only contain one sub-block, and most sub-
blocks are not in any distributed clique including more than
one sub-blocks, as explained in Remark 5. Instead, we propose
a novel decentralized data shuffling scheme to increase the
efficiency (coded multicasting gain) of the transmissions. The
main idea is that we search for cliques with length m = 2;
if this clique is not a distributed clique, we add one node to
the clique and transmit the three nodes by two binary sums,
such that each node can be recovered by the corresponding
user; if this clique is a distributed clique we proceed as in
Scheme B.

Before introducing the details of Scheme C, we first
recall the unconventional clique-covering method for the
two-sender distributed index coding problems proposed in
[29, Theorem 8, Case 33].

Proposition 1 (Unconventional Distributed Clique-covering
in [29]): In a distributed index coding problem with two

3631

<b)
demanded by u(b);
stored by u(a), k> .

a =

demanded by u(a);
stored by u(b), u(c),

and kq.
demanded by u(c);
stored by kq, k> .
Fig. 3. Directed graph of the two-sender (k1 and k2) distributed index

problem in Proposition 1. A direct edge from node a to node b, means
that receiver u(b) demanding message b stores message a demanded by
receiver u(a).

senders (assumed to be k; and ks), as illustrated Fig. 3,
there are three messages a (demanded by receiver u(a)),
b (demanded by receiver u(b)), and ¢ (demanded by receiver
u(c)), where u(a) stores b, u(b) stores a, and u(c) stores a.
Sender k1 stores a and ¢, and sender ko stores b and ¢. We can
let worker kq transmit a @ ¢ and worker ko transmit b® ¢, such
that workers u(a), u(b) and u(c) can recover node a, b and c,
respectively.

Indeed, receiver u(a) knows b such that it can recover c,
and then recover a. Similarly receiver u(b) can recover b. User
u(c) knows a, such that it can recover ¢ from a @ c.

In the decentralized data shuffling problem, each data unit
is divided into sub-blocks depending on which subset of
workers stored them before the data shuffling phase; each
sub-block desired by a worker is an independent message in
the corresponding distributed index coding problem; thus the
data shuffling phase is a K-sender distributed index coding
problem that contains a number of messages that in general is
doubly exponential in the number of workers in the original
decentralized data shuffling problem. Hence, it is non-trivial to
use Proposition 1 in the decentralized data shuffling problem.

We then illustrate the main idea of Scheme C by means of
an example.

Example 4: We consider the same example as Remark 4,
where K = 5, q = 1 and M = 2. Let A" = {5} and
A7t = {k — 1} for k € [2: 5], and A} = {k} for k € [5].
The data units are split as in (68).

In the data shuffling phase of time slot ¢, the distributed
clique-covering method in Scheme B has many sub-blocks
which are not in any distributed clique including more than
one sub-block (e.g., Fy (24)), as explained in Remark 5.
Moreover, the sub-blocks Fi (5 3y and F3 (1 4y are in a clique
in the graph, but none of the workers can transmit Fy (o 3y &
F3 (1,43, and thus it is not a distributed clique. However, if
we add F| (54 to the group, and transmit the two sums
Fi 123y © F1 24y (by worker 2) and F3 14y © Fi (2.4)
(by worker 4), we see that worker 1 (who knows F3 (1 4})
can recover Fy rp 4y from the second sum, and then recover
F {2,3y from the first sum. Similarly, worker 3 (who knows
F {2,3y) can recover F| (5 4y from the first sum, and then
recover F3 ¢ 4y from the second sum. It can be seen that
Fy (2.3),1 is message a, I (1 4},1 is message b, and Fy (4} 1
is message c¢ in Proposition 1, while u(a) and u(c) are both

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3632

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

TABLE IIT
TRANSMISSION OF SCHEME C FOR EXAMPLE 4

[Considered vectors | Groups of sub-pieces [First sum Second sum
(1,3) FrosyvFieay 1Py | Fie311 @ Fieayg | Fiiea,1® F3 1410
(1,4) Fipay 2 Fiesyu Fansya | Fipea2®Fisia | Fies1a®Faasya
(1,5) Fi125y,2F1,023},2, F2. {1,311 Fi125),2 Fi 231,29 F2 (1311
(2,4) Fy a3, Fo a5y, Faqesya | Foq3a3 10 ®Fo (3511 | Fo 351,10 D Faqasya
(2,5) Fa a2 Fo (1332 Fs 01031 | Fo 3512 Fo 1312 | Fo (13129 F5 (1211
(2,1) Fy (1,313, F2,(3,41,2, F3 (2,411 F> (1313 F3 (3,4},20 F3 (2411
(3,5) F3 a5y, F3 01432, Fs 13y | F3qa530 O F5 (a2 | F300,4129 F5 (1311
(3:1) F3ay3 F324y2 Fiq23y3 | F301413® F5 (2412 | F512412BF1 (2313
(3,2) F3 (2,413 F3.45y.2 Fa (3511 F3(2.4}.3 F3 (45129 Fy (3511
(4,1) Fysy2 Faesy2 Fieays | Faisy2®Faqesie | Fuias5129 F1(24}3
(4,2) Fyo513 Faqssyo Faqsays | Faqes13® Faq3sye | Faq351,29 Fo (34},
(4,3) Fy (3513 Fa {1,513 F5, (1.4} 1 1,{3,5}.3 Fy (15139 F5 (1411
(5,2) Fs (1212 F5 (1312, F2 3513 | F5.(12128 F5 (1312 | F5{131,29 Fa (3513
(5,3) Fs 13v3 Fsq14y.2, F3 04513 | F501333 @ F5 (1432 | F5{1,4)2 D F3 (4513
(5,4) F5 (1,413 F5 {1233, F1 (2513 F5(14y3 F5(12y3® F1.{25}3

worker 1, u(b) is worker 3. In addition, workers 2 and 4 serve
as senders ki and ks.

Similarly, the sub-blocks Fi (54) and Fj (15 are in a
clique in the graph, but none of the workers can transmit
Fy {24y ® Fy 11,5 However, if we add Fy ;2 5y to the group,
and transmit F 9 4y © F f2 51 (by worker 2) and Fy (25 ©
Fy (15, (by worker 5), then worker 1 (who knows Fy (1 5))
can recover F17{275} from the second sum, and then recover
Fi {24y from the first sum; also, worker 4 (who knows
F {2,4y) can recover F (55 from the first sum, and then
recover Fy (1 5y from the second sum.

In general, we have the following data shuffling scheme
in time slot ¢. Recall that uf_l denotes the worker who
should recover F; at the end of time slot ¢t — 1. We partition
each sub-block into 3 equal-length sub-pieces as Fj,y =
(FLW717 F7;7W72, F;;7W73) (recall |W| =m = 2 and Ugil eWw).
In general, we consider a pair (a,b), where a € [5] and
b e [5]\ {a,ul1}, ie., a is a worker with the request F,
in time slot ¢, while b is another worker which is not the one
who requests F, in time slot £ — 1. We have two cases:

D If a # uf) !, we find the group of sub-blocks
Fa {Ua lb}’ Fa {uf l7uf 1}, and Fb Aa, uf 1} We ple
one of untransmitted’ sub- pieces for cach of these
three sub-blocks. Assume the picked sub-pieces are nq,
ng, and ng, respectively. We let worker ut*1 trans-

mit F, L b ® F, {0l b Y g and let worker

uz L transmit F, Lo 0t s @Fb {aul Y- It can

be seen that worker a can recover F, L b

and F Lt s while worker b can recover
b L
Fb,{a,ub }ns®
2) Ifa:ué ! weassumec—u

and d = u't (e.g, if
1ar1db—5wehavec:u’i1 2andd

uz L' = 3), ie,, worker a requests F, in time slot ¢,
worker c¢ requests F, in time slot ¢ — 1 and requests F,
in time slot ¢, worker d requests F, in time slot ¢ — 1
and requests Fy in time slot t. We find the group of
sub-blocks Fy (cvy, Fa,{c,ay, and Fi (4,43 Notice that
Fo (c,ay and F (4 4y form a distributed clique. We pick
one of untransmitted sub-pieces for each of these three

sub-blocks (assumed to be n1, no, and ng, respectively).
We let worker ¢ transmit F), (¢ p},n,, and let worker d
transmit Fy, (e dy.n, © Fe{a,d}ns- It can be seen that
worker a can recover Iy, (cp).n, and Fy (¢ dy,n, While
worker ¢ can recover Fi, 14 4} n,-
By this construction, see also Table III, each sub-block appears
in three groups such that each of its sub-pieces is transmitted.
We use two binary sums to encode each group containing 3
sub-pieces, such that the coding gain of this scheme is 2/3.
The achieved worst-case load is 5/2, while the achieved loads
by Schemes A and B are 2 and E , respectively.

The introduced scheme 1n this example has the same load
as Scheme B. However, in general when M = 2q, the coding
gain of the new scheme is 2/3, and this is independent of K.
For the other schemes, the coding gain of Scheme B is close
to 1 if K is large, and the same holds for Scheme A (as it will
be shown in Section VI-D). Therefore, Scheme C is preferable
to the other schemes when M = 2q and K is large. U

We are now ready to generalize the scheme in Example 4
to the case M/q =m = 2.
Structural Invariant Data Partitioning and Storage: This
is the same as in Scheme B (described in Section VI-B),
i.e., each sub-block of F},i € [N], is stored by worker u’ and
by another Worker in [K]\ {u!}. The length of each sub-block
is (K—le) =2
Data Shuffling Phase of Time Slot t € [T]: As in
Scheme B, we partition the N data units into q equal-length
groups such that, during the data shuffling phase of time
slot ¢, among all the K data units in each group, each worker
requests exactly one data unit and knows exactly one data unit.
To simplify the description, as in Scheme B, we focus on one
group and remove the H; in the notation. In addition, we can
restrict attention to &/ = (), because if U # () we can divide
all desired sub-blocks by all workers into sets as we did in
Scheme B. For each set which is known by some worker in i/,
the transmission for this set is equivalent to centralized data
shuffling. Thus we only need to consider the set which is not
known by any worker in U/, and the transmission for this set is
equivalent to decentralized data shuffling with Koq = K —

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

Geq = 1 and M¢q = m. Hence, for the simplicity, we only
consider U = () for Scheme C.
We define a set of pair of workers as

Y= {(@b) raeKibe (K {u " a))}.

For each vector (a,b) €), we divide Fy qbul) into 3

(71)

non-overlapping and equal-length sub-pieces, th {but 1110
dr
th fbut1),2 and th oty 1} 4. For each vector (a,b) cy,

we COIlSldCI‘ two cases:

o Case ugtl #+

Fdz7{u2t17a}, and F, Attty we select one of

a: For each one of th{ e

. . b
its non—transmltted sub- pleces

F‘dt {uttlb} ny’ {u

By Proposmon 1,

and assume they are
and Fdé7{ut—1 t—

1
,af,na’ u ng’
}, 2 dz E dz }7 3

t—1 .
worker Uge transmits Fdt {u*‘,‘l,b},nl@Fdf,{u;, 1,u;, g

worker u ! transmits th {uft U abind DF,

f!{u;f17uf1 }ins?
such that each of the above linear combinations can
be decoded by its requesting worker. For example in
Table I, for pair (1,3), we let worker 2 transmit
F17{273}71 @F17{274}71, and worker 4 transmit F17{274}71 D
F3 (1.4y1-

. Case ul,l = . et

dt a: Let udt = ¢ and Uge = d.
For each one of th {eb)s th’{c 43> and th {a,d}s We
select one of its non-transmitted sub-pieces and assume
they are de{c’b}’nl, ng,{C,d},nz’ and Fd37{a7d}’n3.
By Proposition 1,

worker ¢ transmits Fye (e} n,;

worker d transmit Fgt te.a}ny © Fat {a,d}nss

such that each of the above sub-pieces can be decoded

by its requesting worker. For example in Table III, for

vector (1,5), we let worker 2 transmit [} 155} and

worker 3 transmit F 5 3y o & F3 (13y,1- Notice that in

the case if d = b, we have Fy: .y = Fye (e 4y, and thus

we transmit two different sub-pieces of Fiy: (.5 for the
vector (a, b).

Next we prove that after considering all the pairs in), each

sub-piece of sub-block F' d At by has been transmitted for

1
(a1,b1) € Y. For each (a, bl) e Y, if there exists one worker
¢ & {a1,b1} such that ¢ = udt , by = udt ,and a1 = ugtl
(in Example 4, this pair (aq, bl) does not exist), we transmit
two sub-pieces of F {ut b} in the transmission for the

pair (a1,b1) and one sub plece in the transmission for the
pair (b1, c). Otherwise, we transmit the three sub-pieces of
th Wi i} in the following three transmissions for three

dlfferent palrs

1) The transmission for the pair (a1,b1).

2) The transmission for the pair (ai,by) where u =b

if the requested data unit by worker u’ d, in tlme slot ¢

was not stored by worker b; at the end of time slot

3633

t —1, (e.g., in Table III, let (a1, b;) = (1,4), one sub-
piece of F' y2 4) appears in the transmission for vector
(a’lv b2) = (1ﬂ 3))
Otherwise, the transmission for the pair (a1,bs) where
ufigl = a; (e.g., in Table III, let (ai,b1) = (1,3),
one sub-piece of F (23} appears in the transmission
for vector (ay,b3) = (1,5)).
3) The transmission for the pair (bi,aq) if uggl %+ ay
(e.g., in Table IIL, let (a1,b1) = (1, 3), one subipiece of
Fy (2,3} appears in the transmission for vector (b1, a;) =
(3,1)).
Otherwise, the transmission for the pair (b1, bs) Where
! = b, (e.g., in Table III, let (a;,b1) = (1,5), one
subzl-piece of Fi (25, appears in the transmission for
vector (by,bs) = (5,4)).
This shows that F d fut b} is transmitted. In Scheme C,

we transmit each three suﬂ) pieces in two sums, and thus the
multicast coding gain is 2/3.

Finally, by comparing the loads for different cases, the
worst-cases are when Aj ' N A% = () for each k € [K] and
the worst-case load achieved by Scheme C is

2K(K =2
Clﬁ =: Rachclm=ag s

which is optimal within a factor 4/3 compared to the converse
bound ((K_f)) under the constraint of uncoded storage for
M/q=2.

Storage Update Phase of Time Slot t € [T]: The storage

update phase of Scheme C is the same as the one of Scheme B.

(72)

D. Optimality Results of the Combined Achievable Scheme

Since the proposed converse bound is a piecewise linear
curve with corner points (mq, q¥=2£-) for m € [K] and
these corner points are successively convex, it follows imme-
diately that the combined scheme in Corollary 1 is optimal
under the constraint of uncoded storage when M/q = 1
or M/q € [K — 2,K], thus proving Theorem 5 (and also
Corollary 2).

In order to prove Theorem 6 (i.e., an order optimality result
for the cases not covered by Theorem 5 or Corollary 2)
we proceed as follows. Recall that the proposed converse
bound is a piecewise linear curve with successively convex
corner points, and that the straight line in the storage-load
tradeoff between two achievable points is also achievable by
memory-sharing. Hence, in the following, we focus on each
corner point of the converse bound (mq,q%=2 %) where
m € [K], and characterize the multiplicative gap between the
combined scheme and the converse when M = mgq. Thus the
multiplicative gap between the achievability and the converse
curves is upper bounded by the maximum of the obtained K
gaps.

We do not consider the corner points where m € {1,K —
2,K — 1, K} because the optimality of the combined scheme
has been proved. We have:

e M = 2q: It was proved in Section VI-C that the mul-

tiplicative gap between the Scheme C and the converse
bound is 4/3.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3634

o Interpolate the achievable bound for Scheme A in (21)
between My = (1+¢5-2)qand My = (1+(9+1)%2)q
to match the converse bound in (20) at M3 = (g + 1)q
where g € [2: K —4]: For each g € [2: K— 4], we have

K-1 K—-g
1 (+g K)q, acha(M1) =q g’
(73)
K—1 Keg—1
Mo={(1 1) —— R My)=q————.
2 <+(9+) K >q, Ach.a(M2)=q g1
(74)
By memory-sharing between (M1, Racha(M;p)) and

(Mg, Rach.a(M2)) with coefficient @« = (K — 1 — g)/

(K—1), we get
Ms = aMy + (1 — a)Ma|,_y_ g k1)
=(1+g)a, (75)
as in the converse bound for m = g+ 1 € [3 : K — 3],
and
Rach.a(M3) = aRacna(M1) + (1 — a)Rach.a(Mz2)
_dK—gK-1-g a9 K-g-1
g K-1 K—1 g+1
K—g—1)(Kg+ K-
_AK=g-1)(Kg+K—g) (76)
(K=1)g(g+1)
From (the proof of) Theorem 1, we know that
1—-g/(K—-1 K K-—g-1
Rou(M3) > N 9/) _ g
g+1 K—1 g+1
(77
Hence, from (76) and (77), we have
Racha(M3) Kg+K-—yg _ 1_1 1
Rou(M3) — gK K g
1
§1—0+§:g(sin06922). (78)

We then focus on mq < M < (m+1)q, where m € [K—1].
The converse bound in Theorem 1 for mq < M < (m +
1)q is a straight line between (M',R’) = (mq, E':(K@S) and
("R = ((m+ D, IR)

o m = 1. The combined scheme can achieve (M’,R") and
(M” 4R /3). Hence, by memory-sharing, the multiplica-
tive gap between the combined scheme and the converse
bound is less than 4/3.

o m = 2. The combined scheme can achieve (M’,4R’/3)
and (M”, (1 — % + 3) R”). Hence, by memory-sharing,
the multiplicative gap between the combined scheme and
the converse bound is less than 1 — % + %

e m € [3: K —4]. The combined scheme can achieve
SM" L= f+ 5) RY) and (M7, (1= % + L) R").

ence, by memory-sharing, the multiplicative gap
between the combined scheme and the converse bound
is less than 1 — & + —L-.
e m = K — 3. The combined scheme can achieve
(M’, (1 — Lt) R’) and (M” R”). Hence, by

m—1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

memory-sharing, the multiplicative gap between the com-
bined scheme and the converse bound is less than
1 1
1 - K + m—1"
e m € {K—2,K—1}. The combined scheme can achieve
(M/R") and (M”,R"”). Hence, the combined scheme

coincides with the converse bound.

This concludes the proof of Theorem 6.

On Communication Cost of Peer-to-Peer Operations:
By comparing the decentralized data shuffling converse bound
and the optimal centralized data shuffling load (denoted by
Ropt.cen(M)), we have Rouw(M)/Ropi.cen(M) = K/(K — 1) for
any q < M < Kgq. In addition, the maximum multiplicative
gap between the achieved load by the combined scheme and

Rou(M), is max {1 — %+ ﬁ, %}, where m > 3. Hence,
the maximum multiplicative gap between the achieved load by

the combined scheme and Rop.cen(M) is

K 1 1 4
mmax{l‘Wm’g}
K 4K } (79)
(m—1)(K—-1)3K=-1)/"

which is no more than 5/3 if K > 5. In addition, when
K < 4, by Corollary 2, the combined scheme is optimal
such that the communication cost of peer-to-peer operations is
K/(K — 1) < 2. In general, the communication cost of peer-
to-peer operations is no more than a factor of 2 as stated in
Corollary 3.

In addition, with a similar proof as above to analyse each
storage size regime mq < M < (m + 1)q where m € [K—1],
we prove Corollary 3.

:max{l—i—

VII. CONCLUSIONS

In this paper, we introduced the decentralized data shuffling
problem and studied its fundamental limits. We proposed a
converse bound under the constraint of uncoded storage and
three achievable schemes. In general, under the constraint of
uncoded storage, our schemes are order optimal to within a
factor of 3/2, and exactly optimal for small and large storage
sizes, or the systems with no more than four workers.

APPENDIX

We define

Vs :={keS:d, €S}, VS C K], (80)
where Vs represents the subset of workers in & whose
demanded data units in time slot ¢, indexed by A = Afizl
in (29), were stored by some workers in S at the end of time
slot t — 1.

In addition, we also define Y& as the sub-blocks that any
worker in S either needs to store at the end of time slot ¢ or

SFor example, if K = 4 and (d1, ..., ds) = (2,3,4,1), we have V5 3y =
{2} because do = 3 and thus the requested data unit by worker 2 in time
slot ¢t was stored by worker 3 at the end of time slot ¢ — 1; similarly, we have
V{2,4} = () and V{1,2,4} ={1,4}.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

has stored at the end of time slot ¢ — 1, that is,
véi={F:icuesa}u{zi kes)
- {Fi i € Upes (AL uA‘;;l)}
U {FW Li ¢ Upes(AL UAL) WS £ @}. 1)

With the above definitions and recalling X% defined in (30)
represents the messages sent by the workers in S during time
slot ¢, we have the following lemma:

Lemma 1 (Induction Lemma): For each non-empty set
S C [K], we have

H(X§|Y[f<]\s)

S|)
>y Yy el
m=1 kEVs ic Al WCS\{k}:

ultew, \Wl=m

i

Lemma 1 is the key novel contribution of our proof.
The bound in (82) can be intuitively explained as follows:
H (X§|Y[tK]\ s) is lower bounded by the size of the requested
sub-blocks by the workers in Vs (instead of in S as in the
distributed computing problem [14]) because each requested
data unit by the workers in S\ Vs was requested in the previous
time slot by some workers in [K] \ S because of the storage
constraint in (8) and the definition of Vs in (80).

This lemma is proved by induction, inspired by [14].

Proof: Case |S| = 1: If S = {k} where k € [K], we have
that Vi = () and thus the RHS of (82) is 0; thus (82) holds
for |S| = 1 because entropy is non-negative.

Case |S| < s: Assume that (82) holds for all non-empty
S C [K] where |S| < s for some integer s € [K — 1].

Case |S| = s + 1: Having assumed that the lemma holds
for all § C [K] where |S| < s, we aim to show that for any
set J C [K] where | J| = s+ 1, we have

H(XZ Y o) >

3635
and thus
(71 = DHXGVing) = D>, HX 91X Yiig7)
keT
(84c)
> Y H(X [g 1 X5 Yy 471) (40
keJ
= ST H(X Yy AFs i € AHXE Y0 Z0") (840)
keJ
=" H({F i€ Az Yig)
keJ
+ Y HX G g {F i€ AL 207 Yigyy) (84D)
keT
=Y H({F; i€ Az Yig)
keJ
+ D H(X o oy Yo (8%
keT

where (84d) follows because we added Z};_l in the condition-
ing, and conditioning cannot increase entropy, where (84e)
follows because {F; : i € At} is a function of (Z} ', X?)
by the decoding constraint in (5) (note that the knowledge of
(Y7o Z;~1) implies the knowledge of ng}lu[K]\ 7 and thus
of X {k}UIKN\T by the encoding constraint in (4)), where (84f)
follow because X} is a function of Z};fl (see the encoding
constraint in (4)), and (84g) from the definition in (81).

Next we bound the first term of (84g) by using the inde-
pendence of the sub-blocks, and the second term of (84g) by
the induction assumption. More precisely,

o First term of (84g). For each k € 7, if k ¢ Vg, we
have {F; : i € A} C Y\ 7. So for each k € J, by
independence of sub-blocks, we have (85), shown at the
bottom of this page, and thus we rewrite the first term
of (84¢g) as

STH{F i€ AYZE Vi)
keJ

- 5wl =2 > > > [Eiowl. (86)
Z Z Z Z — (33) keVs me(|T[ie AL WC(I\{k}):
m=LkeVsic Al WC(T\{k}): IWl=m,u! " ew
IWi=m,u;" €W o Second term of (84g). By the induction assumption,
From the independence bound on entropy we have Z I (Yt v)
t T\ (KN Uik}
H(X5 Y o) ke
1 _ t t
=7 > (H(ij\{kﬂthwY[qu) + H(thc|Y[f<]\J)) = > HXG i Yy ixn)
| | keg keJ
(84a) & |Fiwl
1 t t vt t vt = Z Z Z Z Z m
=z m(Z H(Xj\{k”Xk?Yv[K]\j) +H(X\7|Y’[K]\j))a k€T ueV s\ (ny m=1 i€ Al WC(I\{k,u}):
keT |W\=m,u§716W
(84b) (87)
H({F; i€ AHZ Y g)
|71
_ { m=1 ZieA}c ng(j\{k}):\l/\”:m’uf*lew |Fz',W|7 ke Vg (85)
0

otherwise

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

3636

In order to combine (86) with (87), both terms need to
have the summations in the same form. Let us focus on one
worker u' € V7 and one sub-block Fjs y/, where i/ € Af,,
W C I\ {u}, W] = m, and ul, € W'. On the RHS
of (87), for each k € J \ W' U {u'}), it can be seen that
F yyr appears once in the sum

IIEED DY

me[|T|—1]u€Vr\ (r} i€AL

F:
v Ll gy
m
WE(T\{k,u}):
\W|:m,u;’_1EW
hence, the coefficient of F})y, on the RHS of (87) is (|J|—
m — 1)/m. Thus, from (87), we have

> HX G i Y moiey) (8%a)
keJ
[Fiow | (|T] —m —1)
=D D DD DD m
u' €Vy me(|T|—1] i/EAT‘ w’ C(J\{u 1:
W' |=m,u® o tew’
(89b)

Fi/ ’ j—m—l

weVg me(|T|]ieAr, W C(j\{u H:
(W' |=m,u® o tew’

(89¢)
We next take (86) and (89c¢) into (84g) to obtain,

H(X5Z Y o)
|7

DD 3D VDS

keVy m=1ic Al WC(J\{k}):

|F5w]

IW|=m,ut"tew
J Fawl(1T| = m 1)
P IDIDINEDS m
kEng lic Al WC(J\{k})
(Wl=mul~tew
(90a)
F;
-y y oy Bl e
keVs me[|T|ie AL WC(T\{k}):
IW|=m,ut"tew
which proves Lemma 1. u
REFERENCES

[1] J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Ubershuffle: Communication-efficient data shuffling for SGD via cod-
ing theory,” in Proc. NIPS, 2017.

[2] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo, “Why random reshuf-
fling beats stochastic gradient descent,” Oct. 2015, arXiv:1510.08560.
[Online]. Available: https://arxiv.org/abs/1510.08560

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[4] F. A. Tobagi and V. B. Hunt, “Performance analysis of carrier sense
multiple access with collision detection,” Comput. Netw., vol. 4, no. 5,
pp- 245-259, Oct. 1980.

[5] Token Ring Access Method and Physical Layer Specifications,
ANSI/IEEE Standard 802.5, 1985.

[6] M. A. Attia and R. Tandon, “Information theoretic limits of data
shuffling for distributed learning,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

[7] M. A. Attia and R. Tandon, “On the worst-case communication overhead
for distributed data shuffling,” in Proc. 54th Annu. Allerton Conf.
Commun., Control, Comput., Sep. 2016.

[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[9] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded

cache placement,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-

memory tradeoff for caching with uncoded prefetching,” IEEE Trans.

Inf. Theory, vol. 64, no. 2, pp. 1281-1296, Feb. 2018.

M. Adel Attia and R. Tandon, “Near optimal coded data shuffling

for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,

pp- 7325-7349, Nov. 2019.

A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data

shuffling for distributed learning systems,” in Proc. IEEE Int. Symp. Inf.

Theory, Jul. 2018. [Online]. Available: https://arxiv.org/abs/1807.04255

M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching

in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,

pp- 849-869, Feb. 2016.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed comput-

ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs

distributed computation: An alternative trade-off curve,” in Proc. [EEE

Inf. Theory Workshop (ITW), Nov. 2017.

N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial design

of coded distributed computing,” in Proc. IEEE Int. Symp. Inf. The-

ory (ISIT), Jun. 2018.

K. Konstantinos and A. Ramamoorthy, “Leveraging coding techniques

for speeding up distributed computing,” Feb. 2018, arXiv:1802.03049.

[Online]. Available: https://arxiv.org/abs/1802.03049

S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-

puting trade-offs with random connectivity,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), Jun. 2018.

S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded

computing for distributed graph analytics,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), Jun. 2018.

B. Guler, A. S. Avestimehr, and A. Ortega, “A topology-aware coding

framework for distributed graph processing,” in Proc. IEEE Int. Conf.

Acoust., Speech Signal Process. (ICASSP), May 2019.

S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable

framework for wireless distributed computing,” IEEE/ACM Trans. Netw.,

vol. 25, no. 5, pp. 2643-2654, Oct. 2017.

Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and commu-

nication: A fundamental tradeoff in distributed computing,” Jun. 2018,

arXiv:1806.07565. [Online]. Available: https://arxiv.org/abs/1806.07565

N. Woolsey, R. Chen, and M. Ji, “Cascaded coded distributed computing

on heterogeneous networks,” Jan. 2019, arXiv:1901.07670. [Online].

Available: https://arxiv.org/abs/1901.07670

N. Woolsey, R. Chen, and M. Ji, “Coded distributed computing with

heterogeneous function assignments,” Feb. 2019, arXiv:1902.10738.

[Online]. Available: https://arxiv.org/abs/1902.10738

P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “Distributed index coding,”

in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016.

Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y. Kim, “Capacity theorems

for distributed index coding,” Jan. 2018, arXiv:1801.09063. [Online].

Available: https://arxiv.org/abs/1801.09063

Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD)

over broadcast channels,” in Proc. IEEE Conf. Comput. Commun.,

Mar./Apr. 1998, pp. 1257-1264.

A. Porter and M. Wootters, “Embedded index coding,” Apr. 2019,

arXiv:1904.02179. [Online]. Available: https://arxiv.org/abs/1904.02179

C. Thapa, L. Ong, S. J. Johnson, and M. Li, “Structural characteristics

of two-sender index coding,” Jun. 2019, arXiv:1711.08150v2. [Online].

Available: https://arxiv.org/abs/1711.08150v2

A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge,

U.K.: Cambridge Univ. Press, 2011.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Kai Wan (Member, IEEE) received the M.Sc. and Ph.D. degrees in com-
munications from CentraleSupélec, Université Paris Sud, France, in 2014
and 2018, respectively. He is currently a Post-Doctoral Researcher with
the Communications and Information Theory Chair (CommlIT), Technische
Universitdt Berlin, Berlin, Germany. His research interests include coded
caching, index coding, distributed storage, wireless communications, and
distributed computing.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: FUNDAMENTAL LIMITS OF DECENTRALIZED DATA SHUFFLING

Daniela Tuninetti (Senior Member, IEEE) received the Ph.D. degree in
electrical engineering from ENST/Télécom ParisTech, Paris, France, in 2002,
with work done at the Eurecom Institute, Sophia Antipolis, France. She was
a Post-Doctoral Research Associate with the School of Communication and
Computer Science, Swiss Federal Institute of Technology Lausanne (EPFL),
Lausanne, Switzerland, from 2002 to 2004. She is currently a Professor with
the Department of Electrical and Computer Engineering, University of Illinois
at Chicago (UIC), where she joined in 2005. Her research interests are in the
ultimate performance limits of wireless interference networks (with special
emphasis on cognition and user cooperation), coexistence between radar and
communication systems, multi relay networks, content-type coding, cache-
aided systems, and distributed private coded computing. She was a recipient
of the Best Paper Award at the European Wireless Conference in 2002, the
NSF CAREER Award in 2007, and named University of Illinois Scholar in
2015. She was the Editor-in-Chief of the IEEE Information Theory Society
Newsletter from 2006 to 2008 and an Editor for the IEEE COMMUNICATION
LETTERS from 2006 to 2009, for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS from 2011 to 2014, and for the IEEE TRANSACTIONS
ON INFORMATION THEORY from 2014 to 2017. She is currently a Distin-
guished Lecturer for the Information Theory Society.

Mingyue Ji (Member, IEEE) received the B.E. degree in communication
engineering from the Beijing University of Posts and Telecommunications,
China, in 2006, the M.Sc. degrees in electrical engineering from the Royal
Institute of Technology, Sweden, and from the University of California,
Santa Cruz, in 2008 and 2010, respectively, and the Ph.D. degree from
the Ming Hsieh Department of Electrical Engineering, University of South-
ern California, in 2015. He subsequently was a Staff II System Design
Scientist with Broadcom Corporation (Broadcom Limited) from 2015 to
2016. He is currently an Assistant Professor with the Electrical and Com-
puter Engineering Department and an Adjunct Assistant Professor with the
School of Computing, University of Utah. He is interested in the broad
areas of information theory, coding theory, concentration of measure and
statistics with the applications of caching networks, wireless communications,
distributed computing and storage, security and privacy, and (statistical)
signal processing. He received the IEEE Communications Society Leonard
G. Abraham Prize for the best IEEE JSAC paper in 2019, the Best Paper
Award in IEEE ICC 2015 Conference, the Best Student Paper Award in IEEE
European Wireless 2010 Conference, and USC Annenberg Fellowship from
2010 to 2014.

Giuseppe Caire (Fellow, IEEE) was born in Torino in 1965. He received
the B.Sc. degree in electrical engineering from the Politecnico di Torino in
1990, the M.Sc. degree in electrical engineering from Princeton University in
1992, and the Ph.D. degree from the Politecnico di Torino in 1994. He was
a Post-Doctoral Research Fellow with the European Space Agency (ESTEC),
Noordwijk, The Netherlands, from 1994 to 1995, an Assistant Professor in
telecommunications with the Politecnico di Torino, an Associate Professor
with the University of Parma, Italy, a Professor with the Department of
Mobile Communications, Eurecom Institute, Sophia-Antipolis, France, and
a Professor of electrical engineering with the Viterbi School of Engineering,
University of Southern California, Los Angeles. He is currently an Alexander
von Humboldt Professor with the Faculty of Electrical Engineering and Com-
puter Science, Technical University of Berlin, Germany. His main research
interests are in the field of communications theory, information theory, and
channel and source coding with particular focus on wireless communications.

Dr. Caire received the Jack Neubauer Best System Paper Award from
the IEEE Vehicular Technology Society in 2003, the IEEE Communications
Society and Information Theory Society Joint Paper Award in 2004 and 2011,
the Leonard G. Abraham Prize for best IEEE JSAC paper in 2019, the Okawa
Research Award in 2006, the Alexander von Humboldt Professorship in 2014,
the Vodafone Innovation Prize in 2015, and an ERC Advanced Grant in 2018.
He has served in the Board of Governors of the IEEE Information Theory
Society from 2004 to 2007, and as an Officer from 2008 to 2013. He was the
President of the IEEE Information Theory Society in 2011.

Pablo Piantanida (Senior Member, IEEE) received the B.Sc. degree in
electrical engineering and the M.Sc. degree (Hons.) from the University of
Buenos Aires, Argentina, in 2003, and the Ph.D. degree from Université
Paris-Sud, Orsay, France, in 2007. In October 2007, he has joined the
Laboratoire des Signaux et Systemes (L2S), CentraleSupélec, together with
CNRS (UMR 8506) and Université Paris-Sud, as an Associate Professor of
network information theory. He is currently with the Montreal Institute for
Learning Algorithms (Mila), Université de Montréal, Quebec, Canada. His
research interests lie broadly in information theory and its interactions with
other fields, including multi terminal information theory, Shannon theory,
machine learning and representation learning, statistical inference, cooperative
communications, and communication mechanisms for security and privacy. He
served as a General Co-Chair of the 2019 IEEE International Symposium on
Information Theory (ISIT). He serves as an Associate Editor for the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:06:49 UTC from IEEE Xplore. Restrictions apply.

