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Abstract—In this paper, we propose a new design frame-
work on Device-to-Device (D2D) coded caching networks with
optimal communication load (rate) but significantly less file
subpacketizations compared to that of the well-known D2D coded
caching scheme proposed by Ji, Caire and Molisch (JCM).
The proposed design framework is referred to as the Packet
Type-based (PTB) design, where each file is partitioned into
packets according to their pre-defined types while the cache
placement and user multicast grouping are based on the packet
types. This leads to the so-called raw packet saving gain for the
subpacketization levels. By a careful selection of transmitters
within each multicasting group, a so-called further splitting ratio
gain of the subpacketizatios can also be achieved. By the joint
effect of the raw packet saving gain and the further splitting ratio
gain, an order-wise subpacketization reduction can be achieved
compared to the JCM scheme while preserving the optimal rate.
In addition, as the first time presented in the literature according
to our knowledge, we find that unequal subpacketizaton is a key
to achieve subpacketization reductions when the number of users
is odd. As a by-product, instead of directly translating shared link
caching schemes to D2D caching schemes, at least for the sake
of subpackeitzation, a new design framework is indeed needed.

I. INTRODUCTION

Coded caching has been shown to be an efficient approach to
handle dramatically increased traffic in the current Internet. In
[1], Maddah-Ali and Niesen (MAN) introduced a centralized
shared-link caching network model, where a central controller
serves K users, each of which is equipped with a cache
of size M files from a library of N files, via an errorless
broadcast link (shared link). In order to achieve the optimal
worst-case rate (i.e., the total number of file transmissions
in the network) under uncoded cache placement, a cache
placement and a coded delivery scheme were proposed [1]
and required to partition each file into

(
K
t

)
packets where

t = KM
N ∈ Z

+. Later, [2] shows that this file subpacketization
level is necessary to achieve the optimal rate under a so-called
Placement Delivery Arrary (PDA) design based on uncoded
cache placement. In order to reduce the subpacketization level,
the authors in [3]–[7] proposed schemes based on various
combinatorial designs and showed that the subpacketization
can be reduced at a cost of a higher transmission rate (or higher
traffic load). Ji, Molisch and Caire (JCM) extended the shared-
link caching model to Device-to-Device (D2D) coded caching
networks, where no central controller is present and all users
serve each other via individual shared links [8]. This network
model has been studied extensively in the literature and a

few examples of the information-theoretic study are given
in [9]–[12]. Under uncoded cache placement, [8] proposed a
caching scheme referred to as the JCM scheme that achieves
the optimal worst-case rate of R(M) = N

M

(
1− M

N

)
when

N ≥ K. In this case, R(M) is surprisingly not a function
of K and hence it is scalable. In order to achieve this rate,
the required number of packets (subpacketization level) is
F JCM = t

(
K
t

)
, which can be impractical for large K. Efforts

have been made in reducing the subpacketization levels for the
D2D coded caching problem [13]–[16]. For example, a design
approach named D2D placement delivery array (DPDA) was
introduced in [14], which designed new DPDA schemes when
t = 2, t = K − 2, for which the JCM scheme is actually not
optimal in terms of subpacketization although it achieves the
optimal rate.

In this paper, we propose a new design framework called
Packet Type-based (PTB) design tailored for subpacketization
reduction in D2D coded caching while preserving the optimal
rate. Specifically, in the PTB design, D2D users (or nodes)
are first partitioned into multiple groups. Then packet types
are designed based on the user grouping and different types
of multicasting groups are designed based on the packet types.
Note that the JCM scheme contains all the packet types and all
multicasting group types; any t+ 1 users form a multicasting
group and every user in each multicasting group transmit
“symmetric” coded multicast message that is useful to all
the group members. In contrast, the proposed PTB scheme
excludes certain packet types which leads to a reduction of the
subpacketization level. This is referred to as the raw packet
saving gain. In addition, in each multicasting group, it is
possible that not all nodes will perform as transmitters. Hence,
based on a careful selection of the transmitters within each
type of multicasting group, a so-called further splitting ratio
gain can also be obtained. While preserving the optimal rate,
the joint effect of the raw packet saving gain and the further
splitting ratio gain can lead to an order-wise subpacketization
reduction compared to the JCM scheme, where none of these
gains is available. In fact, the PTB design problem can be cast
into an integer optimization problem subject to node cache
memory constraints and the design variables are the choices
of possible transmitters within each multicasting group type.
Moreover, according to our knowledge, it is the first time in
the literature showing that unequal subpacketizaton is one of
the keys to achieve a subpacketization gain when K is odd.
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In [8], in order to achieve the optimal rate, the JCM
scheme proposed a direct translation from MAN scheme [1]
by splitting each packet further into t packets. It turns out
that when the cache placement is uncoded and the delivery
scheme is one-shot (i.e., every user can decode one requested
packet from each coded transmission), this translation holds
in general and it seems that the design procedure for the D2D
coded caching scheme should be that 1) designing a shared-
link coded caching scheme; 2) translating it into D2D coded
caching scheme. As a by-product of the PTB design, we show
that the above design methodology is not optimal in terms
of subpacketization in general. Hence, in order to achieve
good subpackeitzations in D2D coded caching networks, a new
design framework is indeed needed.

Notation Convention: | · | represents the cardinality
of a set. Z

+ denotes the non-negative integer set. [n] :=
{1, · · · , n}, [m : n] := {m,m + 1, · · · , n} for some integers
m < n. an := (a, a, · · · , a) and |an| = n.

II. PROBLEM FORMULATION AND ILLUSTRATIONS

A. General Problem Description
Consider a D2D caching network with a user set U where

|U| = K. Each file from a library {Wn : n ∈ [N ]} of N
files consists of F packets with equal length.1 The system
operates in two separate phases, i.e., the cache placement
phase and delivery phase as described in [8]. In the cache
placement phase, each user k stores up to MF packets from
the file library. This phase is done without the knowledge of
the users’ requests. In the delivery phase, each user k reveals
its request for a specific file Wdk

, dk ∈ [N ] to other users.
Let d := (d1, d2, · · · , dK) denote the user demand vector.
Since users have already cached some of the files, the task in
the delivery phase is to design a corresponding transmission
scheme for each user based on the cache placement and the
user demand vector so that the users’ demands can be satisfied
with vanishing error probability. The objective is to minimize
the transmission rate defined as the total number of transmitted
bits normalized by the file size. In this paper, our goal is
to propose a new design framework based on combinatorial
optimizations such that the subpacketization level of each file
is significantly reduced while preserving the optimal rate. In
the rest of this paper, we use F JCM and FPTB to represent the
subpacketization level of the JCM scheme and the proposed
PTB scheme.

B. JCM D2D Coded Caching Scheme
The cache placement in JCM scheme is the same as MAN

cache placement scheme introduced in [1]. Let t := MK
N ,

each file Wn is divided into
(
K
t

)
disjoint sub-files denoted by

Wn,T , where T ⊂ [K] and |T | = t. The size of each sub-
file is F/

(
K
t

)
packets. Each user u caches all the packets in

sub-files Wn,T , for all n ∈ [N ] and u ∈ T .

1 The equal length assumption is for the ease of presentation. In practice, the
length of each packet may be a design parameter since only the file length
should be fixed. In the main results, we will see that if this assumption is
relaxed, it is possible to achieve additional gain in terms of the subpacketi-
zations.

In the delivery phase, for each multicasting group with
t + 1 users, it can be seen that there exists a unique sub-file
that is available at t users and is requested by the remaining
user. In order to symmetrize all transmissions (minimize the
communication load), each sub-file needs be divided into t
packets, where Wn,T = {W (j)

n,T }, where j ∈ [t]. It can be
seen that each file needs to be partitioned into t

(
K
t

)
packets.

Hence, the transmitted coded multicast message for user u is
given by Y u

Au =
⊕

k∈Au W
(j)
dk,{Au∪{u}\{k}}, for all the user

groups Au ⊂ [K] \ {u} with |Au| = t and for j ∈ [t] that
is not chosen yet. It can be seen that all users can decode
all the desired sub-files and the transmission rate is given by
R = N

M (1− M
N ), which is optimal if N > K.

C. An Example to Illustrate PTB schemes

In this section, we present an example to show the key
ideas of the PTB design approach and its difference from the
JCM scheme. We consider a D2D coded caching network with
parameters K = 9, N = 3,M = 2 and t = KM/N = 6. The
user set is U = [9]. We evenly partition U to 3 groups, denoted
as Q1,Q2 and Q3, where Q1 = {1, 2, 3}, Q2 = {4, 5, 6}
and Q3 = {7, 8, 9} (see Fig. 1). We use a partition vector
q = (3, 3, 3) to indicate such a node grouping, where each
element in q denotes the number of nodes in each group. One
of the key ideas of the proposed approach is to introduce the
packet type, which is a partition of t = 6 nodes from all
user groups. In this example, there are three partition vectors
(i.e, three packet types) v1 = (2, 2, 2), v2 = (3, 2, 1) and
v3 = (3, 3, 0), where the sum of all the elements in each
partition vector is 6. The packets of type v1 are cached by 2
users in Q1, 2 users in Q2 and 2 users in Q3 respectively. The
meaning of packet types v2 and v3 follows similarly. Fig. 1
shows an example for all three packet types. For instance, for
packet type v1, Fig. 1 illustrates the case where the packets
are cached by users T = {2, 3, 5, 6, 8, 9}. When all packets
have the same size, in order to design the cache placement,
we need to decide the number of packets for each type. It
can be shown that packet type v3 can be excluded. This
means that only the packet types v1 and v2 are needed for
designing the D2D coded caching scheme. This results in(
3
2

)3
+

(
3
1

)(
3
2

)(
2
1

)(
3
1

)
= 81 sub-files while the JCM scheme

requires
(
9
6

)
= 84. At this stage, the saving of the PTB design

in terms of sub-files is 84 − 81 = 3, which is referred to as
the raw packet saving gain. It can also be seen that the JCM
scheme includes all possible packet types v1,v2, and v3. 2

Moreover, each sub-file of type v1 needs to be partitioned into
4 packets and each sub-file of type v2 needs to be partitioned
into 3 packets according to the PTB scheme. Note that each
sub-file in the JCM scheme needs to be partitioned into t = 6
packets. This further reduction of subpacketization of PTB
scheme is referred to as the further splitting ratio gain. Hence,
using the PTB design, we can compute the number of total
packets needed for each file as

(
3
2

)3 ·4+(
3
1

)(
3
2

)(
2
1

)(
3
1

)
·3 = 270

2 Note that the subpacketization is not final yet, we call the unit of the file
partition as “sub-files”, not packet, which is the smallest unit in a file.
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while the number of packet per file required by JCM is
t
(
K
t

)
= 6

(
9
6

)
= 504. Clearly, the cache placement, determined

by the packet type, is that node k stores any packet W (j)
n,T for

k ∈ T , j ∈ [4] n ∈ [N ]. For example, Fig.1 shows the four
packets {W [j]

n,T : j ∈ [4]} derived from the type v1 sub-file
Wn,T where T = {2, 3, 5, 6, 8, 9}.

In the delivery phase, the JCM scheme exploits the “sym-
metric” multicasting group structure , where any t + 1 out
of K users can form a multicasting group and any node in
each multicasting group is a transmitter. For the proposed PTB
scheme, this “symmetry” breaks, which means that the mul-
ticasting groups have to be designed according to the packet
types and the transmitter in each multicasting group has to be
designated specifically. This means that we can have different
“types” of multicasting group. In this example, we have two
types of multicasting groups denoted as s1 = (3, 3, 1∗) and
s2 = (3, 2∗, 2∗), where each element in s1 and s2 means
the number of users from the corresponding user group and
the symbol “∗” means that all nodes in the corresponding
user group are selected as transmitters. For example, for a
multicasting group S = [7] of type s1, all users in Q1 and
Q2 are included and one node 7 from Q3 is included. The
only transmitter in this multicasting group is node 7 from Q3.
Note that the JCM scheme includes all types of multicasting
groups in general and every node in each multicasting group
is a transmitter.

Next, we will illustrate the design of the coded multicast
message. For a type-s1 multicasting group S1 = [7], node 7
is the only transmitter and it transmits three coded multicast
messages

⊕
k∈[6] W

(j)
dk,S1\{k}, j = 1, 2, 3 to other nodes in

S1. Each node k recovers its desired packets {W (j)
dk,S1\{k} :

j = 1, 2, 3} with the help of the cached packets while node
7 itself only transmits but receives nothing. For a type-s2
multicasting group S2 = [9]\{6, 9}, the set of type-v1 and
v2 subpackets involved are {W (j)

dk,S2\{k} : j ∈ [4], k ∈ [3]}
and {W (j)

dk,S2\{k} : j ∈ [3], k ∈ S2\Q1} respectively.

Denote W (j) :=
⊕

k∈[3] W
(j)
dk,S2\{k}, j ∈ [4]. Each node

k ∈ {4, 5, 7, 8} sends a coded multicast message Yk as
follows:
Y4 = W (1) ⊕W

(1)
d5,S2\{5} ⊕W

(1)
d7,S2\{7} ⊕W

(1)
d8,S2\{8}

Y5 = W (2) ⊕W
(1)
d4,S2\{4} ⊕W

(2)
d7,S2\{7} ⊕W

(2)
d8,S2\{8}

Y7 = W (3) ⊕W
(2)
d4,S2\{4} ⊕W

(2)
d5,S2\{5} ⊕W

(3)
d8,S2\{8}

Y8 = W (4) ⊕W
(3)
d4,S2\{4} ⊕W

(3)
d5,S2\{5} ⊕W

(3)
d7,S2\{7}

from which we can see that all nodes can recover their
desired packets. Since each coded message is simultaneously
useful for t = 6 nodes, the transmission rate is N

M − 1. The
transmission procedure for other multicasting groups is similar.

D. General Packet Type Based (PTB) Design Framework

The specific design proposed in the previous example is
not unique and can be generalized by solving the following
optimization problem, where the solutions are called PTB
designs.
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Fig. 1. An illustration of packet types under node grouping q = (3, 3, 3) with
three specific groups Q1 = {1, 2, 3},Q2 = {4, 5, 6} and Q3 = {7, 8, 9}.

min
αLCM,F

FPTB = αLCMFT (1a)

s.t. αLCM ∈ Φ, (1b)

αLCMΔFT
i = 0, i ∈ [Nd − 1] (1c)

where F denotes the raw packet number vector; αLCM denotes
the further splitting vector and all the notations will be ex-
plained in detail in the Appendix. It can be seen that this is an
integer optimization problem and cannot be solved analytically
in general. In the following, we will provide some solutions
in some specific parameter regimes. Note that the solutions
of this combinatorial problem achieve the transmission rate
N
M (1− M

N ), which is optimal when K > N .

III. MAIN RESULTS

In this section, we present the main theorems. First, we
consider the scenario when K is even and t is large.

Theorem 1: For even t̄ := K − t, where K = 2m, using
the PTB design framework, the rate of N

M − 1 in D2D coded
caching networks is achievable and

FPTB

F JCM
= Θ

(
f(t̄)

K − t̄

)
, (2)

where f(t̄) :=
∏ t̄

2
i=1(2i − 1) is a function which depends

only on t̄. Moreover, ∀K ≥ 2t̄, and t̄ = O(log logK), F
F JCM

vanishes as K goes to infinity. �
From Theorem 1, it can be seen that when K ≤ 2t is

even and t is large enough (i.e., t = K − O(log logK)),
an order gain in terms of subpacketization can be obtained
using the PTB design compared to the JCM scheme while
preserving the optimal rate. However, it can be seen that for
small t, the PTB design achieving Theorem 1 may result in
an even worse subpacketization compared to the JCM scheme.
In the following theorem, we provide a general result for
even K and t based on a specific PTB design demonstrating
subpacketization gains compared to the JCM scheme when t
is small.

Theorem 2: For (K, t) = (2q, 2r) with q ≥ t + 1 and r ≥
1(r ∈ �

+), using the PTB design framework with the two-
group equal grouping, i.e., q = (K2 ,

K
2 ), the rate of N

M − 1
of D2D coded caching networks is achievable by the further
splitting ratio vector αLCM = (0, 1, 2, · · · , r). Further, when
r ≥ 2, we have FPTB

F JCM < 1
2

(
1− 1

2t−1

)
. �

When K is odd, it is surprisingly more difficult than the
case of even K. In Section II-C, we provided an example
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showing that when K = 3m and t = K − 3, m ∈ Z
+, it is

possible to exploit an equal user grouping to achieve an order
gain of subpacketization level compared to the JCM scheme.
However, in general, we may need to use the general PTB
design framework that exploits the heterogeneous packet size.

Theorem 3: For (K, t) = (2q + 1, 2r) with q ≥ 2r +
1, r ≥ 1(r ∈ �

+), using the two-group unequal grouping
q = (K+1

2 , K−1
2 ), the rate of N

M − 1 in D2D coded caching
networks is achievable by the further splitting ratio vector
αLCM = (0, 2, 4, · · · , t− 2, t, t, · · · , t) and we have

FPTB

F JCM
<

1

t

((
t
r

)
2t

− 1

)
+ 1 (3)

�
From Theorem 3, it can be seen that by using the general

PTB design framework with the consideration of heteroge-
neous subpacket size, when K is odd, a constant gain in
terms of subpacketization compared to the JCM scheme can
be achieved while preserving the optimal rate when t small.

IV. CONCLUSION

This paper proposed a new design framework called PTB
designs for D2D coded caching networks. The key ideas of this
specific design are 1) classifying packets by the packet types;
2) grouping users into multicasting groups based on the cached
packet types and 3) asymmetrically assigning transmitters
in each multicasting group. This new design approach is
completely different from the original coded D2D caching
schemes and shows that the coded D2D caching problem
may need a new design idea in contrast to firstly designing
a centralized coded caching problem and then convert it to a
D2D coded caching scheme.
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APPENDIX A
GENERAL PTB DESIGN FRAMEWORK

We will present the general PTB design framework by
decomposing it into the concepts including Node Grouping,
Packet Type, Multicasting Group Type, Further Splitting Ratio
(FSR), Further Splitting Ratio Table (FSRT), Memory Con-
straint Table (MCT) and PTB Design as an Integer Optimiza-
tion Problem.

1) Node Grouping: The user set U is partitioned into
m ∈ Z

+ non-empty groups denoted by Q1,Q2, · · · ,Qm,
where the i-th group contains |Qi| = qi nodes. We use a
partition vector q := (q1, q2, · · · , qm, 0, 0, · · · , 0)(|q| = K)
to represent such a node grouping, satisfying

∑m
i=1 qi = K

and q1 ≥ q2 ≥ · · · ≥ qm > 0. For a specific partition
q, there are actually multiple ways to assign the set of K
nodes, but they are all considered the same partition/grouping.

The number of groups m and the number of nodes contained
in each group, i.e., {qi}i∈[m] are parameters to be designed.
Let Nd denote the number of distinct elements in q. We
define a unique group as the union of the non-empty groups
containing the same number of nodes. The i-th (i ∈ [Nd])
unique group, denoted by Ui, contains ψi groups and each of
these groups contains βi nodes, i.e., |Ui| = ψiβi. It is clear
that

∑Nd

i=1 βiψi = K and
∑Nd

i=1 ψi = m. For example, let
K = 7 and the user set be U = [K]. q = (3, 2, 1, 1, 0, 0) is
a partition vector representing a partition of U into m = 4
groups which are Q1 = {1, 2, 3}, Q2 = {4, 5}, Q3 = {6} and
Q4 = {7}. In this case, there are Nd = 3 unique groups, i.e.,
U1 = Q1 = {1, 2, 3}, U2 = Q2 = {4, 5}, U3 = Q3 ∪ Q4 =
{6, 7}. According to the definitions, we also have (β1, ψ1) =
(3, 1), (β2, ψ2) = (2, 1), (β3, ψ3) = (1, 2). Using the defi-
nition of unique groups, we can represent a partition vec-
tor q = (β1, · · · , β1, β2, · · · , β2, · · · , βm, · · · , βm, 0, · · · , 0)
(each βi, i ∈ [m] has ψi terms) by a more compact form
q = (β

(ψ1)
1 ,β

(ψ2)
2 , · · · ,β(ψm)

m ,0). Moreover, we call a node
grouping an equal grouping if all the groups contain the same
number of nodes, i.e., q1 = q2 = · · · = qm = K

m . Otherwise, it
is called an unequal grouping. Clearly, the example presented
in Section II-C uses an unequal grouping.

2) Packet Type: A packet type refers to a partition of t :=
KM
N ∈ Z

+ nodes and is represented by a partition vector
v := (v1, v2, · · · , vt) satisfying

∑t
i=1 vi = t and v1 ≥ v2 ≥

· · · ≥ vt ≥ 0. Different partitions of t correspond to different
packet types. A raw packet Wn,T , for some T ⊂ U , |T | = t
refers to a sub-file that is cached exclusively by a set of nodes
in T . Each packet type may contain multiple raw packets.
Since not all packets types can appear under a given node
grouping, we can exclude some invalid packet types, meaning
that these packet types will not be used in the PTB design.
This is called raw packet saving gain. In the delivery phase,
raw packets (i.e, sub-files) might be further split into multiple
packets, i.e., Wn,T = {W (i)

n,T }i∈[α(v)] where v is the packet
type and α(v) is called further splitting ratio. Raw packets
of the same type must have the same further splitting ratio.
Note that all raw packets have the same further splitting ratio
α(v) = t, for any packet type v in the JCM scheme.

3) Multicasting Group Type: A multicasting group is a set
of t + 1 nodes among which each node broadcasts some
packets needed by the remaining t nodes. A multicasting
group type refers to a specific partition of t+ 1 nodes which
is represented by a partition vector s := (s1, s2, · · · , st+1)
satisfying

∑t+1
i=1 si = t + 1 and s1 ≥ s2 ≥ · · · st+1 ≥ 0.

Different partitions of t + 1 nodes correspond to different
multicasting group types. A unique group in s, denoted by
Ūi(i ∈ N̄d), refers to the union of parts of s that contain
the same number of nodes, where N̄d denotes the number of
distinct parts in s. For a specific multicasting group S of type
s, the set of unique groups of s are represented by {Ūi}i∈[N̄d]

and we have S =
⋃

i∈[N̄d]
Ūi. We define a involved packet

type set, denoted by ρ, corresponding to a specific multicasting
group type s, as the set of packet types that can appear in the
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transmission process within multicasting groups of type s.
4) Further Splitting Ratio (FSR): The further splitting ratio

of a packet type v, denoted by α(v), implies that all the
type-v raw packets need to be split into α(v) ∈ �+ packets
in the PTB design. For a multicasiting group S of type s
containing N̄d different unique groups, a set of nodes Tx ⊆ S
is selected to serve as transmitters for the coded multicasting
transmissions in S . We can select Tx in such a way that it can
be expressed as a union of |DT| different unique groups where,
in the multicasting group S of type s, DT ⊆ [N̄d] is defined as
the set of the indices of the unique groups i.e., Tx =

⋃
i∈DT

Ūi.
Denote gi := |Ūi| as the number of nodes contained in the
unique group Ūi, then we have |Tx| =

∑
i∈DT

gi. The involved
packet type set associated with S contains N̄d different packet
types, i.e., ρ = {vi}i∈[N̄d]. The packet type vi(i ∈ [N̄d]) is
composed of a set of raw packets {Wdki

,S\{ki}}ki∈Ūi
. Under

such a selection of transmitters, the further splitting ratios for
the involved packet types are

α(vi) =

⎧⎨
⎩

∑
j∈DT

gj − 1 if i ∈ DT∑
j∈DT

gj if i /∈ DT
(4)

which means that each type-vi raw packet needs to be split
into α(vi) packets when considering the coded multicasting
transmission within the multicasting group S of type s in
the delivery phase. Since one packet type can possibly be
contained in multiple involved packet type sets and the above
further splitting ratios are derived when only one multicasting
group type is considered, we refer to this further splitting ratio
as local further splitting ratio.

5) Further Splitting Ratio Table (FSRT): Given a node
grouping q, denote V, S as the total number of different valid
packets types and multicasting types respectively. A further
splitting ratio table is a matrix Λ = [αij ]S×V which specifies
the local further splitting ratios of packet types derived from all
the S multicasting types. More specifically, the i-th (i ∈ [S])
row of the FSRT, which is referred to as the local further
splitting ratio vector αi, consists further splitting ratios α(vj)
for all packet types vj ∈ ρi (ρi is the involved packet set
corresponding to multicasting type si) and is specified by Eq.
(4). All the other entries {α(vj) : vj /∈ ρi} are left empty.
Note that a further splitting ratio of α = 0 is not the same
as an empty entry. To determine the overall further splitting
ratio for all the V types of packets, we need to derive the
Least Common Multiple (LCM) vector αLCM (defined below)
of the S different local further splitting ratio vectors.

Definition 1: (Least Common Multiple (LCM) Vector)
For a set of n vectors A = {ai}i∈[n] in which |ai| = V
and ai may contain ‘empty’ entries, the LCM vector
of A, denoted by aLCM := LCM(A), is defined as:
∃ z1, z2, · · · , zn ∈ Z

+ such that: (1) z1a1 = z2a2 =
· · · = znan and (2) aLCM = argminz1∼zn ||a||22 =
argminz1∼zn ||combine

(
{ziai}i∈[n]

)
||22 in which the

combine operation means that the j-th entry of aLCM takes
the value of the non-zero and non-empty value among the
j-th entries all the n vectors {ziai}i∈[n]. We assume that

1) the product of any integer and an empty entry is still
an empty entry; 2) entry ‘0’ is equal to any other entries,
including non-zero entries and empty entries; 3) empty entry
is equal to any other zero/non-zero entries. �

Note that the LCM vector may not always exist. If it
exists, it must be unique. In a specific PTB design, the
overall splitting ratio vector, denoted by αLCM, is obtained
via deriving the LCM vector of the set of local splitting ratio
vectors {αi}i∈[S], i.e., αLCM := LCM

(
{αi}i∈[S]

)
.

6) Memory Constraint Table (MCT): Given a node group-
ing q containing Nd different unique groups, a memory
constraint table is a matrix Ω = [ωij ]Nd×V with ωij :=
Fi(vj) where Fi(vj) denotes the number of raw packets
of type vj cached by a node in the i-th unique group.
Denote Fi := [Fi(v1), Fi(v2), · · · , Fi(vV )] as the i-th row
of Ω. Also denote the raw packet number vector as F :=
[F (v1), F (v2), · · · , F (vV )] where F (vj) represents the num-
ber of raw packets of type vj(j ∈ [V ]) in a PTB design.
Furthermore, ∀i ∈ [Nd − 1], we define the node cache
difference vector as ΔFi := (fi1, fi2, · · · , fiV ) = Fi+1 − Fi

in which fij = Fi+1(vj)− Fi(vj), ∀j ∈ [V ] is the difference
of the number of type-vj raw packets cached by nodes in the
(i+1)-th and i-th unique group Ui+1 and Ui. Let all the packets
have the same size, the memory constraint can be represented
as αLCMΔFi

T = αLCM(Fi+1−Fi)
T = 0, ∀i ∈ [1 : Nd− 1],

i.e., αLCMF1
T = αLCMF2

T · · · = αLCMFNd

T, implying
that nodes in all the Nd unique groups have cached the same
number of packets. Since all the nodes have identical cache
memory size, caching the same number of packets of equal
length satisfies the memory constraint. The exact length of the
packets can be determined by the fact that each node has a
cache memory size of M files.

7) PTB Design as An Integer Optimization: With all the
above definitions, under the condition of equal-length sub-
packetizations (all packets have identical length), the integer
optimization problem that determines the optimal LCM vector
which results in the minimum F is given by Eq. (1a) to (1c),
where Φ represents the set of all possible LCM vectors derived
from the S local further splitting vectors based on the set of all
possible node grouping q and the set of all possible selections
of transmitters within each multicasting group type under each
q. Although each feasible solution of the above optimization
problem corresponds to a valid PTB design which may or may
not yield a lower subpacketization level than the JCM scheme,
in this paper, we present several PTB designs with order or
constant reduction on the subpacketization levels compared
to the JCM scheme, implying that the JCM scheme is far
from optimal in terms of subpacketization. The extension of
the optimization problem (1a) to (1c) to the case of unequal-
length subpacketizations (different packets may have distinct
packet length) can be found in [17].

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Trans. on, vol. 60, no. 5, pp. 2856–2867,
2014.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:15:25 UTC from IEEE Xplore.  Restrictions apply. 



[2] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Transactions
on Information Theory, vol. 63, no. 9, pp. 5821–5833, 2017.

[3] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis.,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Transactions on Information Theory, vol. 62, no. 10, pp. 5524–5537,
Oct 2016.

[4] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using ruzsa-szeméredi graphs,”
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