
Cache-Aided Scalar Linear Function Retrieval
Kai Wan∗, Hua Sun†, Mingyue Ji‡, Daniela Tuninetti§, Giuseppe Caire∗

∗Technische Universität Berlin, 10587 Berlin, Germany, {kai.wan, caire}@tu-berlin.de
†University of North Texas, Denton, TX 76203, USA, hua.sun@unt.edu

‡University of Utah, Salt Lake City, UT 84112, USA, mingyue.ji@utah.edu
§University of Illinois at Chicago, Chicago, IL 60607, USA, danielat@uic.edu

Abstract—In the shared-link coded caching problem, formu-
lated by Maddah-Ali and Niesen (MAN), each cache-aided user
demands one file (i.e., single file retrieval). This paper generalizes
the MAN problem so as to allow users to request scalar linear
functions (aka, linear combinations with scalar coefficients) of
the files. We propose a novel coded delivery scheme, based on
MAN uncoded cache placement, that allows for the decoding of
arbitrary scalar linear functions of the files on arbitrary finite
fields. Surprisingly, it is shown that the load for cache-aided
scalar linear function retrieval depends on the number of linearly
independent functions that are demanded, akin to the cache-
aided single-file retrieval problem where the load depends on the
number of distinct file requests. The proposed scheme is proved
to be optimal under the constraint of uncoded cache placement,
in terms of worst-case load, and within a factor 2 otherwise.

I. INTRODUCTION

Coded caching is a promising technique to smooth the
network traffic by storing parts of content in the library at the
users’ caches. The seminal work on coded caching by Maddah-
Ali and Niesen (MAN) [1] uses a combinatorial design in
the placement phase (referred to as MAN cache placement),
such that in the delivery phase binary messages (referred to
as MAN multicast messages) can simultaneously satisfy the
demands of users. Under the constraint of uncoded cache
placement (i.e., each user directly caches a subset of the library
bits), the MAN scheme can achieve the minimum worst-
case load among all possible demands when there are less
users than files [2]. On the observation that if there are files
demanded multiple times some MAN multicast messages can
be obtained as a binary linear combination of other MAN
multicast messages, Yu, Maddah-Ali, and Avestimehr (YMA)
proposed a delivery scheme that avoid the transmission of
‘redundant’ MAN multicast messages [3]. The YMA delivery
achieves the minimum worst-case load under the constraint
of uncoded cache placement in all regimes. The load cost of
uncoded cache placement compared to coded cache placement
is no more than a multiplicative factor of 2 [4].

In general, linear and multivariate polynomial operations are
widely used fundamental primitives for building the complex
queries that support on-line analytics and data mining proce-
dures. This paper studies the fundamental tradeoff between
local storage and network load when users are interested in
retrieving a function of the dataset available at the server. The
question we ask in this paper is, compared to the original
MAN caching problem, whether the optimal worst-case load is
increased when the users are allowed to request scalar linear

functions of the files – the first non-trivial extension of the
MAN single-file-retrieval problem, on the way to understand
the problem of retrieving general functions. The original MAN
shared-link caching problem, where each user request one file,
is thus a special case of the formulated shared-link cache-aided
scalar linear function retrieval problem.

In addition to the novel problem formulation, our main
results are as follows:

1) Achievable scheme for demanded functions on the

binary field. We start by considering the case of scalar
linear functions on the binary field. Based on the YMA
delivery, which can be thought of as interference can-
cellation, we propose a novel delivery scheme whose
key idea is to deliver only the largest set of linearly
independent functions, while the remaining ones can be
reconstructed by proper linear combinations of those
already retrieved. This can be thought of as the gen-
eralization of the idea to only deliver the files requested
by the “leader users” in the YMA delivery [3].

2) Generalization to demanded functions on arbitrary

finite field. We then generalize the proposed scheme to
the case where the demands are scalar linear functions
on an arbitrary finite field. To the best of our knowledge,
even for the originally MAN coded caching problem, no
caching scheme is known in the literature for arbitrary
finite field, which achieves the same load as the YMA
scheme. Compared to the YMA scheme, we use different
multicast message encoding (inspired by interference
alignment) and decoding procedures that work on an
arbitrary finite field, which are highly non-trivial and
not from direct extensions from the YMA scheme. In-
terestingly, the achieved load of our proposed scheme
only depends on the number of linearly independent
functions that are demanded, akin to the YMA’s cache-
aided single-file retrieval scheme where the load depends
on the number of distinct file requests.

3) Optimality. On observation that any converse bound for
the original MAN caching problem is also a converse in
the considered cache-aided function retrieval problem,
we prove that the proposed scheme achieves the optimal
worst-cast load under the constraint of uncoded cache
placement. Moreover, the achieved worst-case load of
the proposed scheme is also proved to be order optimal
in general within a factor of two.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:25:17 UTC from IEEE Xplore. Restrictions apply.

From the results in this paper, we can answer the question
we asked at the beginning of this paper: the optimal worst-
case load under the constraint of uncoded cache placement
is not increased when the users are allowed to request scalar
linear functions of the files. The key idea of this paper can
be extended to cache-aided device-to-device [5], [6] and/or
demand-private [7], [8] settings.

Notation convention: Calligraphic symbols denote sets,
bold symbols denote vectors, and sans-serif symbols denote
system parameters. We use | · | to represent the cardinality of
a set or the length of a vector; [a : b] := {a, a+ 1, . . . , b} and
[n] := [1, 2, . . . , n]; ⊕ represents bit-wise XOR; Fq represents
a finite field with order q; rankq(A) represents the rank of
matrix A on field Fq; det(A) represents the determinant matrix
A; AS,V represents the sub-matrix of A by selecting from A,
the rows with indices in S and the columns with indices in
V . we let

(
x
y

)
= 0 if x < 0 or y < 0 or x < y. In this paper,

for each set of integers S , we sort the elements in S in an
increasing order and denote the ith smallest element by S(i),
i.e., S(1) < . . . < S(|S|).

II. SYSTEM MODEL

A (K,N,M, q) shared-link cache-aided scalar linear func-
tion retrieval problem is defined as follows. A central server
has access to a library of N files. The files are denoted
as F1, . . . , FN. Each file has B independent and uniformly
distributed symbols over a finite field Fq, for some prime-
power q. The central server is connected to K users through
an error-free shared-link. Each user is equipped with a cache
that can store up to MB symbols, where M ∈ [0,N].

The system operates in two phases.
Cache Placement Phase. During the cache placement phase,

each user stores information about the N files in its local cache
without knowledge of future users’ demands, that is, there exist
placement functions φk, k ∈ [K], such that

φk : [Fq]
BN → [Fq]

BM, (1)

We denote the content in the cache of user k ∈ [K] by Zk =
φk(F1, . . . , FN).

Delivery Phase. During the delivery phase, each user re-
quests one scalar linear function of the files. The demand
of user k ∈ [K] is represented by the row vector yk =
(yk,1, . . . , yk,N) ∈ [Fq]

N, i.e., that user k wants to retrieve

Bk := yk,1F1 + . . .+ yk,NFN. (2)

We denote the demand matrix of all users by the Matlab-like
notation

D = [y1; . . . ;yK;] ∈ [Fq]
K×N. (3)

In addition, for each set S ⊆ [K], we denote the demand matrix
of the users in S by DS := DS,[N].

Given the demand matrix D, the server broadcasts the
message X = ψ(D, F1, . . . , FN) to each user k ∈ [K], where
the encoding function ψ is such that

ψ : [Fq]
KN × [Fq]

BN → [Fq]
BR, (4)

for some non-negative R.
Decoding. Each user k ∈ [K] decode its desired function

from (D, Zk, X). In other words, there exist decoding func-
tions ξk, k ∈ [K], such that

ξk : [Fq]
KN × [Fq]

BM × [Fq]
BR → [Fq]

B, (5)
ξk(D, Zk, X) = yk,1F1 + . . .+ yk,NFN. (6)

Objective. For a given memory sizeM ∈ [0,N], the objective
is to determine the minimum worst-case load among all
possible demands, defined as the smallest R such that there
exist placement functions φk, k ∈ [K], encoding function ψ,
and decoding functions ξk, k ∈ [K], satisfying all the above
constraints. The optimal load is denoted as R�.

If each user directly copies some symbols of the N files
into its cache, the cache placement is said to be uncoded.
The minimum worst-case load under the constraint of uncoded
cache placement is denoted by R�

u. Evidently R�
u ≥ R�.

III. MAIN RESULTS

The proposed caching scheme in Sections IV (for q = 2)
and V (for any prime-power q), achieves the following load.

Theorem 1 (Achievability). For the (K,N,M, q) shared-link
cache-aided scalar linear function retrieval problem, when
M = Nt

K with t ∈ [0 : K], for demand matrix D, the load

R(D) :=

(
K

t+1

)− (
K−rankq(D)

t+1

)
(
K
t

) (7)

is achievable. The worst-case load is attained by rankq(D) =
min(N,K). �

Since the setting where each user demands one file is a
special case of the considered cache-aided scalar linear func-
tion retrieval problem, any converse bounds for the original
shared-link coded caching problem is also a converse in our
considered problem. Thus we have:

Theorem 2 (Optimality). For the (K,N,M, q) shared-link
cache-aided scalar linear function retrieval problem, the opti-
mal worst-case load-memory tradeoff under the constraint of
uncoded cache placement is the lower convex envelop of

(M,R�
u) =

(
Nt

K
,

(
K

t+1

)− (
K−min{K,N}

t+1

)
(
K
t

)
)
, ∀t ∈ [0 : K].

(8)

Moreover, the achieved worst-case load in (8) is optimal within
a factor of 2 in general. �

A. High-level ideas to derive the load in Theorem 1

File Split. Fix a t ∈ [K]. We partition the “symbol

positions" set [B] as follows

[B] = {IW : W ⊆ [K], |W| = t} : |IW | = B/

(
K

t

)
. (9)

Then, with a Matlab-like notation, we let

Fi,W = Fi(IW), ∀W ⊆ [K] : |W| = t, ∀i ∈ [N], (10)

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:25:17 UTC from IEEE Xplore. Restrictions apply.

representing the set of symbols of Fi whose position is in IW .
Uncoded Placement. User k ∈ [K] caches Fi,W if k ∈ W .

As in the MAN placement, the needed memory size is

M = N

(
K− 1

t− 1

)
/

(
K

t

)
= N

t

K
. (11)

By this placement, any scalar linear function Bk in (2) is
naturally partitioned into “blocks” as follows

Bk = {Bk,W : W ⊆ [K], |W| = t}, (12)
Bk,W := yk,1F1(IW) + . . .+ yk,NFN(IW). (13)

We refer to Bk,W in(13) as the W-th block of the k-th
demanded function. Some blocks of the demanded functions
can thus be computed based on the cache content available at
each user while the remaining ones need to be delivered by
the server in the delivery phase.

Multicast Messages. With this specific file split and cache
placement, we aim to operate a YMA-like delivery over

the blocks instead of over the subfiles. More precisely, we
construct multicast messages as

WS :=
∑
k∈S

αS,kBk,S\{k}, ∀S ⊆ [K] : |S| = t+ 1, (14)

for some αS,k ∈ Fq \ {0} and where Bk,W was defined
in (12). Clearly, this scheme achieves the same load as the
MAN caching scheme.

Delivery. In order to operate YMA-like delivery, we need to
identify a set of leader users L ⊆ [K], send only the multicast
messages in (14) for which S : S ∩L 	= ∅, and make sure that
all non-sent multicast messages (i.e., S : S ∩ L = ∅) can be
locally reconstructed from the transmitted ones.

Clearly, if L = [K], we get a MAN-like delivery (that works
with any αS,k ∈ Fq\{0} in (14)) to achieve R =

(
K

t+1

)
/
(
K
t

)
=

(K− t)/(1 + t). The question is whether we can do better.
The novelty of our novel scheme in Theorem 1 is to

achieve the same load as the YMA scheme in the following
way: multicast messages are constructing by alternating

the coefficients of block demanded by leaders and those

demanded by non-leaders between +1 and −1. We propose:
1) We choose rankq(D) leaders (the leader set is denoted by

L), where the demand matrix of the leaders is full-rank.
2) We separate the blocks demanded by the leaders from

those demanded by non-leaders in WS in (14) as∑
k∈S

αS,kBk,S\{k} =
∑

k1∈S∩L
αS,k1

Bk1,S\{k1}

+
∑

k2∈S\L
αS,k2

Bk2,S\{k2}. (15)

We then alternate the coefficients of the desired blocks
by the leaders (i.e., users in S ∩ L) between +1 and
−1, i.e., the coefficient of the desired block of the first
leader is +1, the coefficient of the desired block of the
second leader is −1, the coefficient of the desired block
of the third leader is +1, etc. Similarly, we alternate
the coefficients of the desired blocks by the non-leaders
(i.e., users in S \ L) between +1 and −1.

We note that this type of code was originally proposed
for the private function retrieval problem [9], where there
is a cache-less user aiming to retrieval a scalar linear
function of the files stored at multiple servers (each
server can access to the whole library), while preserving
the demand of this user from each server.

3) With the above encoding scheme, we seek decoding
coefficients {βA,S} such that

WA =
∑

S⊆A∪L:|S|=t+1,S∩L�=∅
βA,SWS . (16)

holds for each A ⊆ [K] where |A| = t+1 and A∩L =
∅. In other words, each user can recover all multicast
messages WS where S ⊆ [K] and |S| = t+ 1, and thus
it can recover its desired function. One can show that
each decoding coefficient βA,S is given in (36).

The load achieved by the proposed scheme is exactly the
same as that of the YMA scheme for the original coded-
caching file retrieval problem.

We note that the load in (7) is a generalization of the
achieved load by the YMA scheme. More precisely, if each
user k ∈ [K] requests one file (i.e., yk ∈ [0 : 1]N with a
unit norm), rankq(D) is exactly the number of demanded files,
and thus the proposed scheme achieves the load of the YMA
scheme. Interestingly, the load of the proposed scheme only
depends on the rank of the demand matrix of all users, instead
of on the specifically demanded functions.

IV. NOVEL ACHIEVABLE SCHEME FOR q = 2

In the following, we describe the proposed scheme when
the demands are scalar linear functions on F2. We use the file
split in (9)-(10), resulting in the demand split in (12).

In the delivery phase, the demand matrix D is revealed to
all users, where each element in D is either 0 or 1. Among
the K users we first choose rank2(D) leaders (assume the set
of leaders is L = {L(1), . . . ,L(|L|)}), where

|L| = rank2(DL) = rank2(D). (17)

Encoding. We focus on each set S ⊆ [K] where |S| = t+1,
and generate the multicast message in (14) with αS,k = 1.

Delivery. The server broadcastsWS for each S ⊆ [K] where
|S| = t+ 1 and S ∩ L 	= ∅.

Decoding. For each set of users B ⊆ [K], let VB be the
family of subsets V ⊆ B, where |V| = |L| and rank2(DV) =
|L|. We now consider each set A ⊆ [K] where |A| = t + 1
and A∩L = ∅, and focus on the binary sum with B = L∪A,

⊕
V∈VB

WB\V . (18)

A subfile Fi,W appears in the sum (18) if and only if
W ⊆ B and there exists some user k ∈ B \ W such that
rank2(DB\(W∪{k})) = |L| (i.e., DB\(W∪{k}) is full-rank) and
yk,i 	= 0. In the extended version of this paper [10, Appendix
A], we show that if Fi,W appears in (18), the number of

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:25:17 UTC from IEEE Xplore. Restrictions apply.

multicast messages in the sum which contains Fi,W is even.1

From this observation, it follows that each subfile in the
sum (18) appears an even number of times, and thus the
coefficient of this subfile in the sum is 0 over the binary field,
which allows one to rewrite the sum in (18) as

WA = ⊕
V∈VB:V�=L

WB\V . (19)

In other words, WA can be reconstructed by the transmitted
multicast messages.

As a result, each user k can recover each multicast message
WS where S ⊆ [K] and |S| = t + 1, and thus it can decode
its desired function.

Performance. In total, we transmit
(

K
t+1

) − (
K−rank2(D)

t+1

)
multicast messages, each of which contains B/

(
K
t

)
bits. Hence,

the transmitted load is as in (7).

V. NOVEL ACHIEVABLE SCHEME FOR PRIME-POWER q

In the following, we generalize the proposed caching
scheme in Section IV to the case where the demands are scalar
linear functions on arbitrary finite field Fq. All the operations
in the proposed scheme are on Fq. We start with an example.

A. Example: (K,N,M, q) = (5, 3, 3/5, q)

In this case, we have t = KM/N = 1. Hence, in the
cache placement, each file is partitioned into

(
K
t

)
= 5 equal-

length subfiles. We use the file split in (9)-(10), resulting in
the demand split in (12).

In the delivery phase, we assume that

user 1 demands F1;
user 2 demands F2;
user 3 demands F3;
user 4 demands y4,1F1 + y4,2F2 + y4,3F3;
user 5 demands y5,1F1 + y5,2F2 + y5,3F3.

We choose the set of leaders L = [3], since rankq(D[3]) = 3.
Each user k ∈ [K] should recover each block Bk,W =

yk,1F1,W +yk,2F2,W +yk,3F3,W in the delivery phase, where
W ∈ [5] \ {k} and |W| = t = 1.

Encoding. For each set S ⊆ [K] where |S| = t + 1 = 2,
the multicast message WS is given in (15). We alternate the
coefficients (either 1 or −1) of the desired blocks of the leaders
in S , and then alternate the coefficients (either 1 or −1) of the
desired blocks of the non-leaders in S . With this, we can list
all the multicast messages as

W{1,2} = F1,{2} − F2,{1};
W{1,3} = F1,{3} − F3,{1};
W{1,4} = F1,{4} + (y4,1F1,{1} + y4,2F2,{1} + y4,3F3,{1});
W{1,5} = F1,{5} + (y5,1F1,{1} + y5,2F2,{1} + y5,3F3,{1});
W{2,3} = F2,{3} − F3,{2};

1 In the YMA scheme for the MAN caching problem, each subfile in [3,
eq. 6] is contained in two multicast messages in [3, eq. 6]. Hence, our proof
is also a generalization of [3, Lemma 1] for the YMA scheme.

W{2,4} = F2,{4} + (y4,1F1,{2} + y4,2F2,{2} + y4,3F3,{2});
W{2,5} = F2,{5} + (y5,1F1,{2} + y5,2F2,{2} + y5,3F3,{2});
W{3,4} = F3,{4} + (y4,1F1,{3} + y4,2F2,{3} + y4,3F3,{3});
W{3,5} = F3,{5} + (y5,1F1,{3} + y5,2F2,{3} + y5,3F3,{3});
W{4,5} = (y4,1F1,{5} + y4,2F2,{5} + y4,3F3,{5})

− (y5,1F1,{4} + y5,2F2,{4} + y5,3F3,{4}).

Delivery. The server broadcastsWS for each S ⊆ [K] where
|S| = t + 1 = 2 and S ∩ L 	= ∅. In other words, the server
broadcasts all the multicast messages except for W{4,5}.

Decoding. We first show the untransmitted multicast mes-
sage W{4,5} can be reconstructed by the transmitted multicast
messages. More precisely, we aim to choose the decoding
coefficients β{4,5},S ∈ Fq in (16) for each S ⊆ [K] where
|S| = t+ 1 and S ∩ L 	= ∅, such that

W{4,5} =
∑

S⊆[K]:|S|=t+1,S∩L�=∅
β{4,5},SWS . (20)

Since on the RHS of (20) the subfile F1,{4} only appears in
W{1,4} and on the LHS of (20) the coefficient of F1,{4} is
−y5,1, in order to have the same coefficient for F1,{4} on
both sides of (20), we let2

β{4,5},{1,4} = −y5,1 = −det([y5,1]). (21)

Similarly for F2,{4}, we let

β{4,5},{2,4} = −y5,2 = −det([y5,2]);

for F3,{4} we let

β{4,5},{3,4} = −y5,3 = −det([y5,3]);

for F1,{5} we let

β{4,5},{1,5} = y4,1 = det([y4,1]);

for F2,{5} we let

β{4,5},{2,5} = y4,2 = det([y4,2]);

for F3,{5}, we let

β{4,5},{3,5} = y4,3 = det([y4,3]).

Next we focus F1,{1}, which appears in W{1,4} and W{1,5}.
Since β{4,5},{1,4} = −y5,1 and β{4,5},{1,5} = y4,1, the
coefficient of F1,{1} on the RHS of (20) is

y4,1β{4,5},{1,4} + y5,1β{4,5},{1,5} = 0. (22)

Similarly, the coefficient of F2,{2} on the RHS of (20), which
appears in W{2,4} and W{2,5}, is zero; and of F3,{3} on the
RHS of (20), which appears in W{3,4} and W{3,5}, is zero.

Now we focus on F1,{2}, which appears in W{1,2}, W{2,4},
and W{2,5}. Since β{4,5},{2,4} = −y5,2 and β{4,5},{2,5} =

2Notice that (21) we write y5,1 as the determinant of the 1×1 matrix [y5,1]
because this will be generalized later on and that these decoding coefficients
are always given by determinants of suitable matrices.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:25:17 UTC from IEEE Xplore. Restrictions apply.

y4,2, in order to let the coefficient of F1,{2} on the RHS of (20)
be zero, we let

β{4,5},{1,2} = y4,1y5,2 − y5,1y4,2 = det([y4,1, y4,2; y5,1, y5,2]).

In addition, F2,{1} appears in W{1,2}, W{1,4}, and W{1,5}.
The coefficient of F2,{1} on the RHS of (20) is

−β{4,5},{1,2} + y4,2β{4,5},{1,4} + y5,2β{4,5},{1,5} = 0. (23)

Similarly, we let

β{4,5},{1,3} = y4,1y5,3 − y5,1y4,3 = det([y4,1, y4,3; y5,1, y5,3]),

such that the coefficients of F1,{3} and F3,{1} on the RHS
of (20) are zero. We let

β{4,5},{2,3} = y4,2y5,3 − y5,2y4,3 = det([y4,2, y4,3; y5,2, y5,3]),

such that the coefficients of F2,{3} and F3,{2} on the RHS
of (20) are 0.

With the above choice of decoding coefficients, we satis-
fies (20). In conclusion, each user can recover all multicast
messages, and then recover its demanded function.

Performance. In total we transmit
(

K
t+1

) − (
K−rankq(D)

t+1

)
=(

5
2

) − (
2
2

)
= 9 multicast messages, each of which contains B

5
symbols. Hence, the transmitted load is 9

5 , which coincides
with the optimal worst-case load for single-file retrieval under
the constraint of undcoded cache placement and it is thus also
optimal under the same conditions for function retrieval.

B. General Description

We use the file split in (9)-(10), resulting in the demand split
in (12). In the delivery phase, after the demand matrix D is
revealed, among the K users we first choose rankq(D) leaders
(assume the set of leaders is L = {L(1), . . . ,L(|L|)}), where

|L| = rankq(DL) = rankq(D). (24)

For each i ∈ [|L|], we also define that the leader index of
leader L(i) is i. From (24), we can represent the demands
of non-leaders by the linear combinations of the demands of
leaders. More precisely, we define

F ′
i := yL(i),1F1 + . . .+ yL(i),NFN, ∀i ∈ [|L|], (25)

and represent the demand of each user k ∈ [K] by

yk,1F1 + . . .+ yk,NFN = xk,1F
′
1 + . . .+ xk,|L|F ′

|L|. (26)

Clearly, for each leader L(i) where i ∈ [|L|], xL(i) is an
|L|-dimension unit vector where the ith element is 1. The
transformed demand matrix D

′ is defined as follows,

D
′ = [x1,1, . . . , x1,|L|; . . . ;xK,1, . . . , xK,|L|]. (27)

In addition, for each i ∈ [|L|] and each W ⊆ [K] where
|W| = t, we define

F ′
i,W := yL(i),1F1,W + . . .+ yL(i),NFN,W , (28)

refer F ′
i,W to as a transformed subfile, and refer

B′
k,W = xk,1F

′
1,W + . . .+ xk,|L|F ′

|L|,W (29)

to as a transformed block.
Encoding. For S ⊆ [K], denote the set of leaders in S by

LS := S ∩ L, (30)

and the set of non-leaders in S by

NS := S \ L. (31)

We also denote the leader indices of leaders in S by

IndS := {i ∈ [|L|] : L(i) ∈ S}. (32)

For example, if L = {2, 4, 5} and S = {1, 2, 5}, we have
LS = {2, 5}, NS = {1}, and IndS = {1, 3}.

Now we focus on each set S ⊆ [K] where |S| = t+ 1, and
generate the multicast message

WS =
∑

i∈[|LS |]
(−1)i−1B′

LS(i),S\{LS(i)}

+
∑

j∈[|NS |]
(−1)j−1B′

NS(j),S\{NS(j)}. (33)

Delivery. The server broadcastsWS for each S ⊆ [K] where
|S| = t+ 1 and S ∩ L 	= ∅.

Decoding. We consider each set A ⊆ [K] where |A| = t+1
and A ∩ L = ∅. We define that the non-leader index of non-
leader A(i) is i, where i ∈ [t + 1]. For each S ⊆ A ∪ L, we
have NS ⊆ A. In addition, with a slight abuse of notation we
denote the non-leader indices of non-leaders in A \ S by

IndS = {i ∈ [t+ 1] : A(i) /∈ S}. (34)

For example, if A = {4, 5, 6} and S = {1, 2, 5}, we have
IndS = {1, 3}. For any set X and any number y, we define
Tot(X) as the sum of the elements in X , i.e.,

Tot(X) :=
∑

i∈[|X |]
X (i); . (35)

It is proved in [10, Appendix A] that (16) holds with

βA,S = (−1)1+Tot(IndS)det(D′
A\S,IndS). (36)

In other words, each user k ∈ [K] can recover all messagesWS
where S ⊆ [K] and |S| = t+1. For each desired transformed
block B′

k,W , where W ⊆ ([K] \ {k}) and |W| = t, user
k can recover it in WW∪{k}, because it knows all the other
transformed blocks in WW∪{k}. Hence, user k can recover
xk,1F

′
1 + . . .+ xk,|L|F ′

|L|, which is identical to its demand.
Performance. We transmit

(
K

t+1

) − (
K−rankq(D)

t+1

)
multicast

messages, each of B/
(
K
t

)
symbols, thus giving (7).

VI. CONCLUSION

This paper shows that there is no load penalty in retrieving
linear functions of the library files in cache-aided shared-link
systems with uncoded cache placement.

Acknowledgement: The work of K. Wan and G. Caire
was partially funded by the European Research Council under
the ERC Advanced Grant N. 789190, CARENET. The work
of M. Ji was supported in part by NSF Awards 1817154 and
1824558. The work of D. Tuninetti was supported in part by
NSF Award 1910309.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:25:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Infor. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in IEEE Infor. Theory Workshop, Sep. 2016.

[3] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” IEEE Trans. Infor.
Theory, vol. 64, pp. 1281 – 1296, Feb. 2018.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Infor. Theory, vol. 65, no. 1, pp. 647–663, Jan. 2019.

[5] M. Ji, G. Caire, and A. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp.
849–869, 2016.

[6] C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
of d2d coded caching with uncoded cache placement and one-shot
delivery,” in IEEE Int. Symp. Inf. Theory, Jul. 2019.

[7] K. Wan and G. Caire, “On coded caching with private demands,”
arXiv:1908.10821, Aug. 2019.

[8] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Fundamen-
tal limits of device-to-device private caching with trusted server,”
arXiv:1912.09985, Dec. 2019.

[9] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE
Trans. Inf. Theory, vol. 65, no. 5, pp. 3880–3897, Jun. 2019.

[10] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “On optimal
load-memory tradeoff of cache-aided scalar linear function retrieval,”
arXiv:2001.03577, Jan. 2020.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:25:17 UTC from IEEE Xplore. Restrictions apply.

