978-1-7281-6432-8/20/$31.00 ©2020 IEEE

Heterogeneous Computation Assignments in Coded
Elastic Computing

Nicholas Woolsey, Rong-Rong Chen, and Mingyue Ji
Department of Electrical and Computer Engineering, University of Utah
Salt Lake City, UT, USA
Email: {nicholas.woolsey @utah.edu, rchen@ece.utah.edu, mingyue.ji@utah.edu}

Abstract—We study the optimal design of a heterogeneous
coded elastic computing (CEC) network where machines have
varying relative computation speeds. CEC introduced by Yang
et al. is a framework which mitigates the impact of elastic
events, where machines join and leave the network. A set of
data is distributed among storage constrained machines using
a Maximum Distance Separable (MDS) code such that any
subset of machines of a specific size can perform the desired
computations. This design eliminates the need to re-distribute the
data after each elastic event. In this work, we develop a process
for an arbitrary heterogeneous computing network to minimize
the overall computation time by defining an optimal computation
load, or number of computations assigned to each machine.
We then present an algorithm to define a specific computation
assignment among the machines that makes use of the MDS code
and meets the optimal computation load.

I. INTRODUCTION

Coding is an effective tool to speed up distributed comput-
ing networks. Examples include Coded Distributed Computing
(CDC) for MapReduce-like frameworks [1] and coded data
shuffling for distributed machine learning [2]-[4], where code
designs minimize the communication load by trading increased
computation and/or storage on each machine. Another example
is to use codes to mitigate the straggler effect in applications
such as matrix multiplications [5], [6], where any subset of
machines with a cardinality larger than the recovery threshold
can recover the matrix multiplication. This eliminates the need
to wait for the computation of slow machines.

Coded Elastic Computing (CEC) was designed by Yang et
al. in 2019 to mitigate the impact of preempted machines
on a storage limited computing network [7]. As opposed to
stragglers, whose identities are unknown when computations
are assigned, the preempted (unavailable) machines are known.
In elastic computing, computations are performed over many
times steps and between each time step an elastic event may
occur where machines become preempted or available again.
Computations are performed on the same set of data, for
example a matrix, but the computations change each time
step. For example, in each time step the data matrix may
be multiplied with a different vector. In each time step, the
goal becomes to assign computations among the available

Work supported through the National Science Foundation grants CCF-
1817154 and SpecEES-1824558 and the INL Laboratory Directed Research
and Development (LDRD) Program under DOE Idaho Operations Office
Contract DE-AC07-05ID14517.

168

machines. A naive approach is to assign each machine a non-
overlapping part of the data. However, this is inefficient as the
storage has to be redefined with each elastic event.

In CEC the storage of each machine is defined once using
a Maximum Distance Separable (MDS) code and remains
unchanged between elastic events. The data is split into L
equal sized, disjoint data sets and each machine stores a coded
combination of these sets. In this way, each machine only
stores an equivalent of a % fraction of the data. Furthermore,
any computation can be resolved by combining the coded com-
putation results of L machines. Then, given a set of available
machines, each computation is assigned to L machines. In the
original CEC scheme of [7], the authors proposed a “cyclic”
computation assignment such that each machine is assigned
the same number computations.

The recent work [8] also studies CEC and aims to maximize
the overlap of the task assignments between computation time
steps. With each elastic event, the computation assignment
must change. In the cyclic approach in [7], the assignments
in the current time step are independent of assignments in
previous time steps. In [8], the authors design assignment
schemes to minimize the changes in the assignments between
time steps. In some cases, the proposed assignment schemes
were shown to achieve zero transition waste, or minimize the
amount of new local computations at the machines. However,
both [7] and [8] only study homogeneous computing networks.

In this paper, we propose a CEC framework optimized for
a heterogenous network where machines have varying compu-
tation speeds. In this setting, more computations are assigned
to faster machines and less computations to slower machines
to minimize the maximum local computation time among the
machines. This assignment problem is non-trivial since by the
MDS code design we still require that each computation is
assigned to L machines. We propose and solve an optimization
problem to find the optimal computation load, or amount of
computations assigned to each machine. We then show an
assignment exists that yields this computation load and design
a low complexity algorithm to find such an assignment.! Our
proposed CEC design works for an arbitrary set of machine
speeds and requires a number of computation assignments at
most equal to the number of available machines.

IThe CEC assignment algorithm is adapted from our heterogeneous private
information retrieval (PIR) storage placement algorithm of [9].

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:37:14 UTC from IEEE Xplore. Restrictions apply.

ISIT 2020

Notation Convention: We use | - | to represent the cardi-
nality of a set or the length of a vector and [n] :=[1,2,...,n].

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a set of N machines. Each stores a coded
matrix derived from a ¢ xr data matrix, X . The coded matrices
are defined by an N x L MDS generator matrix G = (gn¢)
such that any L rows of G are invertible. The data matrix, X,

is row-wise split into L disjoint, < x r matrices, X 1,..., X .
Each machine n € [N] stores the ¢ x r coded matrix
L
Xn=> gniXo. (1)
=1

The machines collectively perform matrix-vector computa-
tions? over multiple times steps. In a given time step only
a subset of the N machines are available to perform matrix
computations. More specifically, in time step £, a set of
available machines N; C [N] aims to compute

Yy, = Xwy @

where w; is some vector of length r. The machines of
[N] \ AN, are preempted and we assume the number of
available machines is N; = [N;| > L.

The machines of N; do not compute y, directly. Instead,
each machine n € N; computes the set

}/:{U:X?wﬁiem%} 3)

where X'f,l) is the i-th row of X,, and W, C [4] is the set
of rows assigned to machine n in time step ¢. Furthermore,

we define the computation load vector, p, such that
Wal
(%)
is the fraction of rows computed by machine n in time step
t. Note that, u, V,, and W, change with each time step, but
reference to t is omitted for ease of disposition. Moreover,
the machines have varying computation speeds defined by the
strictly positive vector, s, which is fixed over all time steps.
Here, computation speed is the number of row multiplications
per unit time. The computation time is dictated by the machine
that takes the most time to perform its assigned computations
such that the computation time in a particular time step is

, VneMN)

pln] =

pln]

o(p) = max Sl)

In a given time step, for each i € [%}, L machines perform
the vector-vector multiplication with the ¢-th row of their local
coded matrix and w;. The results are sent to a master node
which can resolve the elements of y, by the MDS code design.
To assign each row to L machines, we define F' disjoint sets
of rows, M; = (My,...,Mp) whose union is [%]. Then,
F sets of L machines, Py = (P1,...,Pr), are defined such

It can be shown that our CEC designs can also operate on the other
applications outlined in [10] and not just matrix-vector multiplications.

that Py C N, and |Py| = L for all f € [F]. The rows of M
are assigned to the machines of P;. The rows computed by
machine n € N, in time step ¢ are in the set

Wa =J{My 1 f € [Fl.n e Py} (6)

and p is a function of (M, Py). The sets My, ..., Mp and
Pi,...,Pr and F may vary with each time step.

In a given time step ¢, our goal is to define the computation
assignments, M, and P, such that the resulting computation
load vector defined in (4) has the minimum computation time.
In time step ¢, given N; and s, the optimal computation time,
c*, is the infimum of computation time defined by all possible
computation assignments, (M, P;), such that

c(p(My,Py))

*

¢ = inf

(M, Pye)

s U oM =[4] 0
MpeMy
|Pg| = L VPy € Py,
[Mi| = [P

Remark 1: In Sections IV and V, we precisely solve the
combinatorial optimization problem of (7). We decompose
the problem into two sub-problems: 1) a convex optimization
problem to find an optimal o without the consideration of a
specific computation assignment and 2) a computation assign-
ment problem. Moreover, we show that an optimal assignment,
(M, P+), can be found via a low complexity algorithm.

III. AN EXAMPLE

There are a total of N = 6 machines where each has the
storage capacity to store % of a data matrix X. In time step ¢,
the machines have the collective goal of computing y, = X w;
where w; is some vector. In order to allow for preempted
machines, X is split row-wise into L = 3 sub-matrices, X,
X, and X3 and an MDS code is used to define the matrices
{X,, : n € [N]} which are stored among the machines. This
placement is designed such that any element of y, can be
recovered by obtaining the corresponding coded computation
from any 3 machines. To recover the entirety of y,, we split
the coded matrices into sets of rows, such that each set is used
for computation at L = 3 machines.

The machines have relative computation speeds defined by

s=[2, 2 3, 3, 4, 4]. (8)

Machines 5 and 6 are the fastest machines and can perform
row computations twice as fast as machines 1 and 2. Machines
3 and 4 are the next fastest machines and can perform matrix
computations 1.5 times as fast as machines 1 and 2. Our goal
is to assign computations, or rows of the coded matrices, to
the machines to minimize the overall computation time with
the constraint that each computation is assigned to 3 machines.

In time step 1, there are no preempted machines and
M = {1,...,6}. We assign fractions of the rows to the
machines defined by the computation load vector

11 1 1 2 2

M= 373 2 2 3 3 O]

169

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:37:14 UTC from IEEE Xplore. Restrictions apply.

1/3 1/3
" 1/6 1/6 1/6 1/5 1/5
machine1l machine2 machine3 machine4 machine5 machine6 machine1 machine2 machine3 machine4 machine5 machine6
a) no preempted machines, ¢ = 1 b) one preempted machine, ¢t = 2
/7.

machine1 machine2 machine3 machine4 machine5 machine6

c¢) two preempted machines, ¢t = 3

P Mo

| .|

machine 1 machine2 machine3 machine4 machine5 machine6

d) three preempted machines, t = 4

J not preempted

e

computed

computed

e) legend

Fig. 1.

such that machines 1 and 2 are assigned %, machines 3 and
4 are assigned % and machines 5 and 6 are assigned % of
the rows of their respective coded matrices. We define p such
that it sums to L = 3 and each row can be assigned to 3
machines. Furthermore, based on the machine computation
speeds, the machines finish at the same time to minimize
the overall computation time. In Section IV, we outline the
systematic approach to determine p. Next, given u, the rows
of the coded matrices must be assigned. We define sets of
rows, My, Mo, Mgz, and My which are assigned to sets
of machines Py, P2, Ps, and Py, respectively. These sets are
depicted in Fig. 1(a) where, for example, M contains the first
% of the rows assigned to machines P; = {1,5,6}. Moreover,
M contains the next % of the rows assigned to machines
Py ={2,3,4}, M3 contains the next % of the rows assigned
to machines P3 = {3,5,6} and M, contains the final & of
the rows assigned to machines Py = {4,5,6}. In Section
V, we present Algorithm 1, which defines the computation
assignment for general p. By this assignment, the fraction of
rows assigned to machine n sums to p[n] and each row is
assigned to L = 3 machines to recover the entirety of y,.

In time step 2, N; = 5 as machine 4 is preempted and is
no longer available to perform computations. Therefore, the
computations must be reassigned. First, we define

44
"5 5

2 2 3

g) 57 ga (10)

l_L =
which sums to L. = 3 and minimizes the overall computation
time. Given p, we then use Algorithm 1, which aims to assign
computations to a machine with the least remaining rows to

Optimal computation assignments over 4 times steps on a heterogeneous CEC network.

be assigned and L — 1 = 2 machines with the most remaining
rows to be assigned. For example, in the first iteration, M;
is defined to contain the first % of the rows and is assigned
to machines P; = {1,5,6}. After this iteration, machines 2,
5 and 6 require % of the total rows to still be assigned to
them and machine 3 requires % of the total rows. In the next
iteration, Mo contains the next £ of the rows and is assigned to
P, = {2,3,6}. Note that, only g of the rows could be assigned
in this iteration otherwise there would only be two machines,
3 and 5, which still require assignments and therefore, the
remaining rows cannot be assigned to three machines. In the
final two iterations, M3 and M, contain é of the previously
unassigned rows and are assigned to the machines of P3 =
{2,3,5} and P, = {3,5,6}, respectively. These assignments
are depicted in Fig. 1(b).

Next, in time step 3, machines 4 and 6 are preempted.
Similar to previous examples it is ideal to have machines 3
and 5 compute 1.5x and 2x the number of computations,
respectively, compared to machines 1 and 2. However, this
is not possible since each machine can be assigned at most
a number of rows equal to the number of rows of the coded
matrices. In this case, we assign all rows to the fastest machine,
machine 5, and assign fractions of the rows to the remaining
machines which sum up to 2. As a result, we define

(4 4 6
T T
Then, Algorithm 1 defines, M;, M> and M3, disjoint sets

containing %, 1 and % of the rows respectively. Moreover,
these row sets are assigned to the machines of Py = {1, 3,5},

m 0,1, 0. (11)

7

170

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:37:14 UTC from IEEE Xplore. Restrictions apply.

{1,2,5} and P3 {2,3,5}, respectively. These
assignments are depicted in Fig. 1(c).
Finally, in time step 4, machines 1, 4 and 6 are preempted.
To assign all the rows to L. = 3 machines, each available
machine is assigned all of the rows and

p=1[0 1,1, 0, 1, 0]. (12)

In other words, M; contains all rows and P; = {2,3,5}. This
is depicted in Fig. 1(d).

IV. OPTIMAL COMPUTATION LOAD VECTOR

We solve the exact optimization problem of (7). We start
by introducing a relaxed optimization problem of (7) without
considering an explicit computation assignment (M, P;). In
this domain, we find the optimal computation load vector p*
and computation time ¢* < ¢*. Then, in Section V, we show
there is no gap between this relaxed optimization problem and
(7) because there exists a computation assignment (M, Py)
that yields the computation load vector p* and computation
time ¢*. Therefore, we find that ¢* = ¢*.

Henceforth, WLOG, we assume N; = {1,2,..., N;} and
ignore the computation load of any preempted machine which
is simply 0.

A. A Relaxed Convex Optimization Problem

Given a computation speed vector s, we define the optimal
computation load vector p* to be the solution to the following
relaxed optimization problem:

pln]

= ar mln max ——
w S etN s[n]

s.t. Z pln] =L

n€E[Ny]
0 < uln] <1,Vn € [IVy],

(13)

which can be shown to be convex. While computation assign-
ments, (M, P;), are not explicitly considered in (13), we
note that the key constraint of > v, u[n] = L is a relaxed
version of that requirement on the computation assignment that
each row should be assigned to L machines. When N, = L,
the solution to (13) is p* = [1,.. ., 1]. The analytical solution
to (13) when N, > L is presented in Theorem 1.

Theorem 1: Assume that Ny > L and s[1] < s[2] < --- <
s[N¢]. The optimal solution p* to the optimization problem
of (13) must take the following form

. ¢sln] if1<n<k*
wln] = .
1 ifk*+1<n<N,

(14)

where k* is the largest integer in [N; — L + 1, V;] such that
1 . Kk +L—-N 1

e N6 T = LS

slk* +1] D on—y 8n] s[k*]

Here, ¢* = ¢(p*) is the maximum computation time among
the N; machines given the computation load assignment p*.

The left side of (15) is ignored when k* = N;. O
Theorem 1 is proved in our online version [11].

s)

Remark 2: The two cases in (14) are determined by whether
a machine n satisfies p*[n] = ¢*s[n| or p*[n] < ¢*s[n]. For
1 < n < k¥, the equality is achieved and we must have
0 < p*[n] < 1. When k* +1 < n < N, we have the
strict inequality and p*[n] = 1. The equality in (15) ensures
that 25;1 w*[n] = L; the right-most inequality ensures that
w*n] < p*lk*] = é¢*slk*] < 1, for any 1 < n < k*; the
left-most inequality ensures that for any £* +1 < n < N,
we have p*[n] < ¢*s[n]. Hence, the computation time ¢* is
induced by the k* slowest machines.

Since the optimization problem of (13) aims to minimize a
convex function on a closed and convex set, the existence of
an optimal solution is guaranteed. This ensures the existence
of some k* € [Ny — L + 1, Ny] such that (15) is satisfied. In
the following, we provide a numerical procedure to find k*.
First, it is straightforward to verify that if the right-hand-side
(RHS) inequality “<” of (15) is violated for £* = ¢, then
the left-hand-side (LHS) inequality “<” of (15) must hold for
k =14 — 1. In other words, for any i = Ny, -+ ,Ny—L + 2,

If ¢f > Lwthen i < G-
sl sli]

We first check k* = N;. If the RHS of (15) holds, then we have
k* = Ny. Otherwise, it follows from (16) that the LHS of (15)
must hold for k* = N; — 1. If the RHS of (15) also hold for
k* = Ny —1, then we have k* = N; — 1. Otherwise, it follows
from (16) that the LHS of (15) must hold for k* = N; — 2.
We continue this process by decreasing £* until we find one
value of £* for which both sides of (15) hold. This process is
guaranteed to terminate before reaching £* = N — L + 1 for
which the RHS of (15) always hold. Hence, this establishes
the procedure to find k* directly using (15).

(16)

B. Computation Load Examples

We return to the first example and explain how to find
the optimal computation load vector. When ¢ = 1, we have
Ny = 6,L = 3. Given s = [2, 2, 3, 3, 4, 4], the largest
k* that satisfies (15) is k* = 6, and thus ¢* = 1/6, pu* =
c*s = [g, 55513 5 g]. Similarly, for ¢ = 2, since machine
4 preempts, we have now N; = 5, and s = [2, 2, 3, 4, 4]
(we ignore any preempted machines) In this case, we have
k* = 5, and thus ¢* = 1/5, u* = ¢*s = [2,2,2,2 4],
Similarly, for t = 3, we have N; = 4, and s = [2, 2, 3, 4]
because machines 4 and 6 preempts. Here, we have k:* =3,
¢t =2/7 and p* = [$,2,8,1]. Note that, similar to the
optimization problem of (13), the computation load of the
preempted machines are ignored since they are simply O,
presenting a slight difference between the optimal computation

load vectors presented in Section III.

V. OPTIMAL COMPUTATION ASSIGNMENT

We present a computation assignment (M, P,) that solves
the optimization problem of (7). First, we show the existence
of a computation assignment that yields the computation load
vector p* and computation time ¢*. Therefore, we show there
is no gap between (7) and the relaxed optimization problem of

171

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:37:14 UTC from IEEE Xplore. Restrictions apply.

(13). Then, we provide an iterative algorithm that converges
to such an assignment in NV, iterations.

Our goal is to assign computations among the machines
such that each computation is assigned to L machines and
the assignments satisfy p*. This is equivalent to the filling
problem (FP) introduced in [9]. In particular, it was shown
that a FP solution exists if and only if

iy 1]
L

for all n € [IVy]. In this case, we see that vaztl w*[i] = L and

w*[n] <1 for all n € [N]. Therefore, an optimal computation

assignment exists. Moreover, we provide Algorithm 1 to define

an optimal computation assignment, (M, Py).

win] < (17)

Algorithm 1 Computation Assignment: Heterogeneous CEC
Input: pu*, Ny, L, and ¢

1 m < p*

22 f+0
3: while m contains a non-zero element do
4: f—f+1
5
6
7

L' 33t min]

N’ <+ number of non-zero elements in m

£ < indices that sort the non-zero elements of m from
smallest to largest?

Py« {L[1],4{[N' —L+2],...,([N']}
9: if N/ > L + 1 then

oo

10: <Wenm<%meNfL+mmMMD

11: else

12: ay < m[l[1]]

13: end if

14: for n € Py do

15: mn] < mn] — ay

16: end for

17: end while

18: F« f

19: Partition rows [£] into F* disjoint row sets: My,..., Mp
of size 14, ..., *£1 rows respectively

Remark 3: In [9], Algorithm 1 was shown to take at most
N, iterations to complete. Therefore, ' < N, and at most
there are N; computations assignments.

A. Example Using Algorithm 1

We return to the example of Section III and use Algorithm
1 to derive the computation (row) assignments for ¢ = 2. The
steps of the algorithm are shown in Fig. 2. In the first iteration,
f =1, m = p as no computations have been assigned yet.
Rows of the respective coded matrices are assigned to machine
1, which is a machine with the least remaining computations
to be assigned, and machines 5 and 6 with the most remaining
computations to be assigned. Moreover,
2 L 3 2
m[l]:ggf—m[?)]:l—g:g

3¢ is an N'-length vector and 0 < m[¢[1]] < m[¢[2]] < --- < m[¢[N']].

(18)

[ayp | mA]fm[2] m[3]|m[4]|m[5]|m[6]| L'
Vs | Y5 | s | s | 0 | Ys |5 | 3
2 |1 o s | ¥s 275 2/:5 9
3 |1 17-5 225 2 /s 175 6/
4 1Y 5 175 175 Ys | s
A NRBHEHHE

Fig. 2. Task assignment by Algorithm 1 for example of III (¢ = 2).

where machine 3 is the machine with the most remaining
rows to be assigned that is not included in P; = {1,5,6}.
Therefore, a fraction a; = % of the rows are assigned to
machines 1, 5, 6. Then, m is adjusted to reflect the remaining
computations to be assigned and L' = 3 — 3a; = %

In the second iteration, f = 2, machine 2 is a machine
with the least remaining rows to be assigned. Computations
are assigned to machine 2 and machines 3 and 6 which are a
pair of machines with the most remaining computations to be
assigned. Ideally, we would like to assign all the remaining
rows to machine 2. However,

A 3 2 1
m[2] = E >4 —ml5] = =

and assigning the remaining rows to machine 2 in this iteration
will prevent a valid solution going forward. Therefore, gy = é
and after this iteration m and L’ are adjusted accordingly.

In the third iteration, f = 3,

1 L 2 1 1
=57 ml=5-5"3
and an ag = é of the rows are assigned to machines 2, 3,5. m
and L' are adjusted accordingly. Finally, in the fourth iteration,
f = 4, the three machines with remaining assignments,
machines 3, 5, 6 are assigned an oy = % of the rows. After the
4 iterations, m[n] = 0 for all n € 1,2, 3, 4 and the computation

assignment is complete.

19)

m|2] (20)

VI. CONCLUSION

In this work, we study CEC where machines store MDS
coded data and have varying computation speed. Given a
set of available machines with arbitrary relative computation
speeds, we derive an optimal computation load among the
machines. Then, we show the existence of a computation
assignment which yields the optimal computation load. The
assignment makes use of the MDS code design by assigning
computations to L machines. Moreover, we present a low
complexity algorithm to define the computation assignments
with at most a number of iterations equal to the number
of available machines. Our CEC design has the potential to
perform computations faster than the state-of-the-art design
which was developed for a homogeneous computing network.

172

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:37:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S.Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed com-

puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.

109-128, 2018.

M. Adel Attia and R. Tandon, “Near optimal coded data shuffling for

distributed learning,” IEEE Transactions on Information Theory, vol.

65, no. 11, pp. 7325-7349, Nov 2019.

A. Elmahdy and S. Mohajer, “On the fundamental limits of coded

data shuffling,” in 2018 IEEE International Symposium on Information

Theory (ISIT), June 2018, pp. 716-720.

[4] K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental
limits of decentralized data shuffling,” IEEE Transactions on Informa-
tion Theory, 2020.

[5] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. PP, no. 99, pp. 1-1, 2017.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.
1920-1933, 2020.

[7] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,

“Coded elastic computing,” in 2019 IEEE International Symposium on

Information Theory (ISIT), July 2019, pp. 2654-2658.

H. Dau, R. Gabrys, Y. Huang, C. Feng, Q. Luu, E. Alzahrani, and Z. Tari,

“Optimizing the transition waste in coded elastic computing,” arXiv

preprint arXiv:1910.00796, 2019.

N. Woolsey, R. Chen, and M. Ji, “An optimal iterative placement

algorithm for pir from heterogeneous storage-constrained databases,” in
GLOBECOM 2019 IEEE Global Communications Conference. 1EEE,
2019.
[10] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” arXiv preprint arXiv:1812.06411, 2018.

[11] N. Woolsey, R. Chen, and M. Ji, “Heterogeneous computation assign-
ments in coded elastic computing,” arXiv preprint arXiv:2001.04005,
2020.

[2

—

[3

[8

9

—

173

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:37:14 UTC from IEEE Xplore. Restrictions apply.

