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Abstract—This paper formulates the cache-aided multi-user
Private Information Retrieval (MuPIR) problem, including Ku

cache-equipped users, each of which wishes to retrieve a desired
message efficiently from N distributed databases with access to
K independent messages. Privacy of the users’ demands requires
that any individual database can not learn anything about the
demands of the users. The load of this problem is defined as
the average number of downloaded bits per desired message
bit. The goal is to find the optimal memory-load trade-off while
preserving the demand privacy. Besides the formulation of the
MuPIR problem, the contribution of this paper is two-fold. First,
we characterize the optimal memory-load trade-off for a system
with N = 2 databases, K = 2 messages and Ku = 2 users
demanding distinct messages; Second, a product design with order
optimality guarantee is proposed. In addition, the product design
can achieve the optimal load when the cache memory is large
enough. The product design embeds the well-known Sun-Jafar
PIR scheme into coded caching, in order to benefit from the
coded caching gain while preserving the privacy of the users’
demands.

I. INTRODUCTION

Introduced by Chor et al. in 1995 [1], the problem of private
information retrieval (PIR) seeks the most efficient way for a
user to retrieve a desired message from N distributed databases
(each holding a library of K messages) while keeping the
desired message identity private from the databases. Sun and
Jafar recently characterized the capacity of the PIR problem as
C = (1+ 1

N +· · · 1
NK−1 )

−1 [2], which strictly outperforms the
previously best-known result 1− 1

N [3]. Many variants of the
PIR problem have been studied. In [4], the PIR capacity for
arbitrary message length was characterized since the original
scheme of [2] only deals with messages of certain length.
Multi-message PIR was considered by [5] where the user
demands multiple messages at a time and the new achievable
scheme outperforms the simple concatenation of multiple
rounds of the Sun-Jafar scheme in [2]. PIR with storage-
constrained databases was considered in [6]–[11] where the
capacity for MDS-coded and uncoded storage-constrained
databases were characterized.

Characterization of the optimal memory-load trade-off for
the cache-aided PIR problem, in which the effect of caching is
taken into account, has gained significant attentions recently.
Two different privacy models are commonly considered. In one
line of research [12]–[14], the user-against-database privacy
model is studied where individual databases are prevented
from learning the single-user’s demand. The author in [12]
studied the case where a single cache-aided user is connected

to a set of N replicated databases and showed that memory
sharing is actually optimal if the databases are aware of the
user’s cached content. However, if the databases are unaware
of the user’s cached content, then there is an “unawareness
gain” in capacity as shown in [13], [14]. More specifically,
the authors in [13] studied the case where the users’ cached
content is uncoded and unknown to the databases, and the
achievability therein strictly outperforms the scheme of [12],
demonstrating the unawareness gain. The authors in [14]
studied a similar setting where the user cache is partially
known the databases. Except certain cache memory regimes,
the capacity characterization of the cache-aided single-user
PIR problem with unknown cache placement remains an open
problem. Another line of research [15]–[17] deals with the
user-against-user privacy model where users are prevented
from learning each other’s demands. The authors in [15] first
formulated the coded caching with private demands problem
where a shared-link caching system with demand privacy, i.e.,
any user should not learn anything about the demands of other
users, was considered. The goal is to design efficient delivery
schemes such that the communication load is minimized
while preserving user demand privacy. Order optimal schemes
were proposed based on the novel concept of virtual user.
In [18], the authors studied the subpacketizaiton issues for
this problem. Later, coded caching with private demands was
extended to the Device-to-Device (D2D) scenario [16]. In
general, the exact capacity characterization still remains open
for these problems.

This paper formulates the cache-aided multi-user (MuPIR)
problem, where each of the Ku cache-equipped users wishes
to retrieve a message from N distributed databases while
preserving the privacy of user demands given that the cached
content at all users are known to the databases. The main
contribution of this paper includes:

1) Characterization of the optimal memory-load trade-off
for the two-user two-message two-database system: Under the
assumption of distinct user demands, the optimal memory-load
trade-off for the Ku = K = N = 2 system is characterized
for arbitrary cache memory size M(0 ≤ M ≤ 2).

2) Product design: We show that the multicast gain of
coded caching can be efficiently exploited via the incorpora-
tion of the general PIR codes into the coded deliveries, leading
to the idea of the product design. By comparing with existing
caching converse bounds, the product design is shown to be
order optimal within a multiplicative factor of 8.

Authorized licensed use limited to: The University of Utah. Downloaded on August 29,2020 at 07:43:22 UTC from IEEE Xplore.  Restrictions apply. 



DB 1 DB 2 DB N

user 1

ML

user 2

ML

user       

ML

...

...

Fig. 1. Cache-aided MuPIR system with N replicated databases, K inde-
pendent messages and Ku cache-equipped users. The users are connected to
each DB via an error-free shared-link broadcast channel.

Notation Convention: | · | represents the cardinality of
a set. Z

+ denotes the set of non-negative integers. [n] :=
{1, 2, · · · , n−1, n} and [m : n] := {m,m+1,m+2, · · · , n}
for some integers m ≤ n. For two sets A and B, let
A\B := {x ∈ A : x /∈ B}. For an index set I, the notation
AI represents the set {Ai : i ∈ I}. When I = [m : n], we
write A[m:n] as Am:n for simplicity. The operator ⊕ denotes
the bit-wise XOR.

II. PROBLEM FORMULATION

We consider a system (See Fig. 1.) with Ku users, each
of which wishes to privately retrieve a message from N ≥ 2
replicated (non-colluding) databases (DBs). Each DB stores K
independent messages, denoted by W1,W2, · · · ,WK , each of
which is uniformly distributed over [2L]. Each user is equipped
with a cache memory of size ML bits, where 0 ≤ M ≤ K.
Let the random variables Z1, Z2, · · · , ZKu denote the cached
content of all users. The system operates in two phases, a
cache placement phase followed by a private delivery phase.
In the cache placement phase, all the users fill up their cache
memory without the knowledge of their future demands. It is
assumed that the cached content of each user is a deterministic
function of the messages W1:K and is known to all DBs. In the
private delivery phase, each user k ∈ [Ku] wishes to retrieve
a message Wθk(θk ∈ [K]). Let θ := (θ1, θ2, · · · , θKu) be the
demands of the users. Depending on θ and (Z1, Z2, · · · , ZKu),
users cooperatively generate N queries Q

[θ]
1 , Q

[θ]
2 , · · · , Q[θ]

N ,
and then send the query Q

[θ]
n to DB n. Upon receiving the

query, DB n responds with an answer A[θ]
n broadcasted to all

users. The answer A[θ]
n is a function of the query received by

DB n, i.e., Q[θ]
n and the information available to DB n, i.e.,

W1:K and Z1:K . Therefore,

H(A[θ]
n |Q[θ]

n ,W1:K , Z1:K) = 0, ∀n ∈ [N ]. (1)

After collecting all the answers from the N DBs, the users
should be able to recover their desired messages correctly with
the help of their caches. This decodability requirement can be
written as ∀k ∈ [Ku]:

H(Wθk |Q[θ]
1:N , A

[θ]
1:N , Zk) = 0, (2)

To preserve the privacy of the users’ demands, from the
viewpoint of any individual DB, the demand vector θ should
be independent of all the information available to that DB,
i.e., the following privacy constraint should be satisfied ∀n ∈
[N ], ∀θ ∈ [K]Ku :

I(θ;Q[θ]
n , A[θ]

n ,W1:K , Z1:K) = 0 (3)

The load (or transmission rate) of the MuPIR problem,
denoted by R, is defined as the average number of bits
downloaded from the DBs per useful message bit. Let D
denote the total number of bits broadcasted from the DBs,
then

R :=
D

L
=

∑N
n=1 H(A

[θ]
n )

L
(4)

Note that R does not depend on θ, otherwise this leaks
information of the user demands to the DBs. A memory-
load pair (M,R) is said to be achievable if there exists a
MuPIR scheme satisfying the decodability constraint (2) and
the privacy constraint (3). The goal of the MuPIR problem is
to design the cache placement and the corresponding private
delivery phases such that the load is minimized. For any
0 ≤ M ≤ K, let R�(M) denote the minimal achievable load.1

III. MAIN RESULT

In this section we present the main results of this paper.
Theorem 1: For the MuPIR problem with parameters N = 2

DBs, K = 2 messages and Ku = 2 users demanding distinct
messages, the optimal memory-load trade-off is characterized
as ∀ 0 ≤ M ≤ 2:

R�(M) = max

{
2(1−M),

5

3
−M,

3(2−M)

4

}
(5)

Proof: See Section IV.
Remark 1: When 1 ≤ M ≤ 2, the load R(M) = 3(2−M)

4 is
actually optimal for arbitrary demands since it can be achieved
by the product design described in Section V.

Theorem 2: The proposed product design achieves the load
of R(M) = min{K(1− M

K ), R′(M)} in which

R′(M) =
Ku − t

t+ 1

(
1 +

1

N
+ · · ·+ 1

NK−1

)
, (6)

where t = KuM
N ∈ Z

+. For non-integer values of t, the lower
convex envelope the integer points (t, R′(M)) can be achieved.
Moreover, the achieved rate R(M) is order optimal within a
factor of 8, i.e, R(M)

R�(M) ≤ 8.
Proof: See Section V for achievability. Note that when

K(1 − M
K ) ≤ R′(M), there is a naive design as follows. We

let each user cache the same M
K portion of each message. In

the private delivery phase, the remaining 1 − M
M portion of

each message is broadcast to the users. It can be easily seen
that this naive design is correct and private (each user can
correctly decode any of the K messages), and the achieved
load is K(1−M

K ). The order optimality is explained as follows.
Note that when N ≥ 2, the PIR retrieval component is upper

1 Note that the capacity as defined in [4] is given by C = 1
R∗ .
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bounded by 2, i.e., 1+ 1
N + · · ·+ 1

NK−1 ≤ 2. Let R�
peak denote

the optimal coded caching peak rate of a shared-link coded
caching system with Ku users each having cache memory M .
The caching load component Rpeak = min{Ku−t

t+1 ,K(1−M
K )}

is shown to be optimal within a factor of 4 by [19]. Since the
optimal load R�(M) with demand privacy is lower bounded
by the load without privacy, i.e., R� ≥ R�

peak, we have

R(M)

R�(M)
≤ R(M)

R�
peak

=
Rpeak

R�
peak

(1+
1

N
+ · · ·+ 1

NK−1
) ≤ 8, (7)

which completes the proof of order optimality.
Corollary 1: If K ≥ Ku, the product design load (Eq. (6))

is optimal when (Ku−1)
Ku

K ≤ M ≤ K.
Proof: For the case of K ≥ Ku, when M = K(Ku−1)

Ku
(

i.e., t = Ku−1), the proposed product design achieves the load
R′(M) = 1

Ku

(
1 + 1

N + · · ·+ 1
NK−1

)
. On the other hand, the

author in [12] showed that when Ku = 1, the optimal cache-
aided single-user PIR load is equal to Rsingle−user(M) =(
1− M

K

) (
1 + 1

N + · · ·+ 1
NK−1

)
. It can be seen that when

M = K(Ku−1)
Ku

, the product design achieves the same
load as the single-user PIR load, implying its optimality.
By memory sharing between (K(Ku−1)

Ku
, R(K(Ku−1)

Ku
)) and

(K, 0), we conclude that the product design is optimal when
(Ku−1)

Ku
K ≤ M ≤ K.

IV. PROOF OF THEOREM 1
In this section we present the characterization of the optimal

memory-load trade-off for the MuPIR problem with K = 2
messages W1 and W2, N = 2 DBs and Ku = 2 users
demanding distinct messages, which provides the proof of
Theorem 1. The achievability and converse are described as
follows.

A. Achievability

We propose schemes achieving the memory-load pairs
(0, 2), ( 13 ,

4
3 ), (

2
3 , 1), and (2, 0). Any other point on the lower

convex envelope of the above corner points can be achieved
by memory sharing.

1) Points (0, 2) and (2, 0): When M = 0, let either of the
two DBs broadcast the two messages to both users. It is easy
to check the correctness and privacy. When M = 2, let each
user cache the two files, then there is no need to download
anything from the DBs, which is trivially private.

2) Point ( 13 ,
4
3 ): Assume that the users have distinct

demands, i.e., the demand vector (θ1, θ2) can only be (1, 2)
or (2, 1). Let A1,1 and A1,2 be two different answers from
DB 1, and let A2,1 and A2,2 be two different answers from
DB 2. Assume that each message contains L = 3 bits, i.e.,
W1 = (a1, a2, a3),W2 = (b1, b2, b3). The cache placement
is Z1 = {a1 ⊕ b1}, Z2 = {a2 ⊕ b2} and the answers are
constructed as

A1,1 = (a3, b1 ⊕ b2 ⊕ b3), A2,1 = (a2 ⊕ a3, b2 ⊕ b3) (8)
A1,2 = (a1 ⊕ a2 ⊕ a3, b3), A2,2 = (a1 ⊕ a3, b1 ⊕ b3) (9)

The users randomly choose A1,1 or A1,2 to request from DB
1 with equal probabilities. We then consider the two cases:

• (θ1, θ2) = (1, 2). If A1,1 is chosen, then go to DB 2 to
download A2,1; Otherwise, if A1,2 is chosen, go to DB
2 to download A2,2.

• (θ1, θ2) = (2, 1). If A1,1 is chosen, then go to DB 2 to
download A2,2; Otherwise if A1,2 is chosen, go to DB 2
to download A2,1.

This scheme is both correct and private due to the following
reasons. For correctness, one can check that

(A1,1, A2,1, Z1) → W1, (A1,1, A2,1, Z2) → W2 (10)

(A1,2, A2,2, Z1) → W1, (A1,2, A2,2, Z2) → W2 (11)

(A1,1, A2,2, Z1) → W2, (A1,1, A2,2, Z2) → W1 (12)

(A1,2, A2,1, Z1) → W2, (A1,2, A2,1, Z2) → W1 (13)

Therefore, all users can decode their desired messages. For
privacy, note that the answer from DB 1 is equally likely to
be A1,1 or A1,2, and the answer from DB 2 is also equally
likely to be A2,1 or A2,2. Therefore, we have

P{θ = (1, 2)} = P{(A1,1, A2,1)}+ P{(A1,2, A2,2)} =
1

2
(14)

P{θ = (2, 1)} = P{(A1,1, A2,2)}+ P{(A1,2, A2,1)} =
1

2
(15)

i.e., the demand vector θ is equally likely to be (1, 2) or (2, 1)
from each DB’s perspective. Therefore, the privacy constraint
(3) is satisfied (for distinct demands). Since D = 4 bits are
downloaded in total, the achieved load is R = D

L = 4
3 .

3) Point ( 23 , 1): Let L = 3 and W1 = (a1, a2, a3),W2 =
(b1, b2, b3). The cache placement is Z1 = {a1, b1}, Z2 =
{a2, b2} and the answers are constructed as

A1,1 = (a3 ⊕ b3 ⊕ b1 ⊕ b2), A2,1 = (a2 ⊕ a3, b2 ⊕ b3) (16)
A1,2 = (a3 ⊕ b3 ⊕ a1 ⊕ a2), A2,2 = (a1 ⊕ a3, b1 ⊕ b3) (17)

The private delivery phase works similarly to the above
corner point ( 13 ,

4
3 ). The correctness of this scheme can be

checked via Eqs. (10)-(13). The privacy argument is similar,
i.e., from each DB’s perspective, the demand vector θ is
equally likely to be (1, 2) or (2, 1). Since D = 3 bits are
downloaded in total, the achieved load is R = D

L = 1. This
completes the achievability proof of Theorem 1.

B. Converse

The converse curve consists of three piece-wise linear seg-
ments: R(M) = 2(1−M) for 0 ≤ M ≤ 1

3 , R(M) = 5
3 −M

for 1
3 ≤ M ≤ 2

3 , and R(M) = 3(2−M)
4 for 2

3 ≤ M ≤ 2. We
now prove the three segments respectively.

1) 0 ≤ M ≤ 1
3 : In this regime, the cut-set bound without

the privacy constriant is tight. Let A[(1,2)]
1 and A

[(1,2)]
2 be two

answers from DB 1 and DB 2 respectively when the user
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demands are θ = (1, 2). Since W1,W2 can be recovered from
{A[(1,2)]

1 , A
[(1,2)]
2 , Z1, Z2}, we have

H(A
[(1,2)]
1 ) +H(A

[(1,2)]
2 ) + 2ML (18a)

≥ H(A
[(1,2)]
1 ) +H(A

[(1,2)]
1 ) +H(Z1) +H(Z2) (18b)

≥ H(A
[(1,2)]
1 , A

[(1,2)]
2 , Z1, Z2) (18c)

≥ 2L (18d)

Similarly, we can obtain H(A
[(2,1)]
1 ) +H(A

[(2,1)]
2 ) + 2ML ≥

2L for another two answers A[(2,1)]
1 and A

[(2,1)]
2 corresponding

to θ = (2, 1). Therefore we have RL = 1
2 (H(A

[(1,2)]
1 ) +

H(A
[(1,2)]
2 ) + 1

2 (H(A
[(2,1)]
1 ) + H(A

[(2,1)]
2 )) ≥ 2(1 − M)L,

yielding R(M) ≥ 2(1−M).
2) 1

3 ≤ M ≤ 2
3 : Let A1,1 = A

[(1,2)]
1,1 = A

[(2,1)]
1,1 be

an answer of DB 1. Let A2,1 = A
[(1,2)]
2,1 = A

[(2,1)]
2,1 be an

answer of DB 2. It is clear that (A
[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z1) →

W1, (A
[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z2) → W2. For privacy of DB 1,

there must exist another answer A
[(2,1)]
2,2 of DB 2 such that

(A
[(2,1)]
1,1 , A

[(2,1)]
2,2 , Z1) → W2 and (A

[(2,1)]
1,1 , A

[(2,1)]
2,2 , Z2) →

W1. Also, for privacy of DB 2, there must exist another
answer A

[(2,1)]
1,2 of DB 1 such that (A

[(2,1)]
1,2 , A

[(2,1)]
2,1 , Z1) →

W2 and (A
[(2,1)]
1,2 , A

[(2,1)]
2,1 , Z2) → W1. Denote R[θ](M) :=

(H(A
[θ]
1,i) + H(A

[θ]
2,j))/L, ∀i, j ∈ [2] and X

[θ]
i,j,k :=

(A
[θ]
1,i, A

[θ]
2,j , Zk), ∀i, j, k ∈ [2]. We have

R[(1,2)](M)L+ 2R[(2,1)](M)L+ 3ML (19a)

= H(A
[(1,2)]
1,1 ) +H(A

[(1,2)]
2,1 ) +H(A

[(2,1)]
1,2 ) +H(A

[(2,1)]
2,1 )

+H(A
[(2,1)]
1,1 ) +H(A

[(2,1)]
2,2 ) +H(Z1) + 2H(Z2) (19b)

≥ H(X
[(1,2)]
1,1,1 ) +H(X

[(2,1)]
2,1,2 ) +H(X

[(2,1)]
1,2,2 ) (19c)

= 3L+H(X
[(1,2)]
1,1,1 |W1) +H(X

[(2,1)]
2,1,2 |W1) +H(X

[(2,1)]
1,2,2 |W1)

(19d)

≥ 3L+H(X
[(1,2)]
1,1,1 |W1) +H(Z2|W1) +H(A

[(2,1)]
2,1 |W1, Z2)

+H(X
[(2,1)]
1,2,2 |W1) (19e)

≥ 3L+H(X
[(1,2)]
1,1,1 , Z2|W1) +H(A

[(2,1)]
2,1 |W1, Z2)

+H(X
[(2,1)]
1,2,2 |W1) (19f)

= 4L+H(A
[(2,1)]
2,1 |W1, Z2) +H(X

[(2,1)]
1,2,2 |W1) (19g)

≥ 4L+H(A
[(2,1)]
2,1 |W1, Z2) +H(Z2|W1) +H(A

[(2,1)]
1,1 |W1, Z2)

(19h)

≥ 4L+H(A
[(2,1)]
1,1 , A

[(2,1)]
2,1 |W1, Z2) +H(Z2|W1) (19i)

= 4L+H(A
[(2,1)]
1,1 , A

[(2,1)]
2,1 , Z2|W1) (19j)

= 4L+H(A
[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z2|W1) (19k)

= 5L (19l)

Similarly, when assuming a different decoding structure, we
can obtain R[(1,2)](M)L + 2R[(2,1)](M)L + 3ML ≥ 5L.
Therefore, we have 3R[(1,2)](M)L+3R[(2,1)](M)L+6ML ≥
10L, which gives R(M) = 1

2 (R
[(1,2)](M) + R[(2,1)](M)) ≥

5
3 −M .

3) 2
3 ≤ M ≤ 2: In this regime, the achievable load

3(2−M)
4 coincides with the single-user cache-aided PIR bound

Rsingle−user(M) = 3(2−M)
4 given in [12]. Since increasing

the number of users while keeping the user demands private
from the DBs can only possibly increase the load, we conclude
that R(M) ≥ 3(2−M)

4 . This completes the converse proof of
Theorem 1.

V. PRODUCT DESIGN

In this section, we present the product design which is
inspired by both coded caching and the Sun-Jafar PIR schemes
and enjoys combined coding benefits from both coded caching
and PIR. An example is provided to illustrate the basic idea.
By comparing with the already established converse bounds
for caching, we show that the product design is optimal within
a factor 8 in general.

Example 1: Consider the MuPIR problem with K = 3
messages, N = 2 DBs and Ku = 3 users with cache memory
M = 1 (therefore t = KuM

N = 1). Let W1 = A,W2 = B and
W3 = C denote the three messages. Each message is assumed
to have L = 24 bits. The cache placement and private delivery
phases are described as follows.

1) Cache placement: The Maddah-Ali-Niesen (MAN) cache
placment [20] is used. More specifically, each message is
split into three packets each containing 8 bits, i.e., A =
(a1, a2, a3), B = (b1, b2, b3) and C = (c1, c2, c3). The
cache placement is Z1 = {a1, b1, c1}, Z2 = {a2, b2, c2} and
Z3 = {a3, b3, c3}.

2) Private delivery: Suppose the user demands are θ =
[θ1, θ2, θ3] = [1, 2, 3]. We first construct three different coded
messages {XS = (A

[θ]
1,S , A

[θ]
2,S) : S ⊆ [3], |S| = 2} each being

useful to a subset of two users in S . A[θ]
1,S and A

[θ]
2,S represents

the answers from DB 1 and 2 respectively.
The first coded message is X{1,2} = (A

[θ]
1,{1,2}, A

[θ]
2,{1,2}) in

which

A
[θ]
1,{1,2} = A

[θ1]
1 (a2, b2, c2)⊕A

[θ2]
1 (a1, b1, c1), (20)

A
[θ]
2,{1,2} = A

[θ1]
2 (a2, b2, c2)⊕A

[θ2]
2 (a1, b1, c1), (21)

where the code components A
[θ1]
1 (a2, b2, c2) and

A
[θ1]
2 (a2, b2, c2) represents the answer from DB 1 and

DB 2 respectively in the Sun-Jafar PIR scheme when the
messages are (First message, second message, third message
) = (a2, b2, c2) and the user demands a2. The meaning of
A

[θ2]
1 (a1, b1, c1) and A

[θ2]
2 (a1, b1, c1) follow similarly. More

specifically, let ai = (a1i , a
2
i , · · · , a8i ), bi = (b1i , b

2
i , · · · , b8i )

and ci = (c1i , c
2
i , · · · , c8i ), ∀i ∈ [2] be six independent random

permutations of the bits of the packets ai, bi, ci, i ∈ [2]. Then
the answers from the two DBs are constructed as
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A
[θ]
1,{1,2} A

[θ]
2,{1,2}

a12 ⊕ a11 a22 ⊕ a21
b12 ⊕ b11 b22 ⊕ b21
c12 ⊕ c11 c22 ⊕ c21

a32 ⊕ b32 ⊕ a21 ⊕ b21 a52 ⊕ b12 ⊕ a11 ⊕ b51
a42 ⊕ c22 ⊕ a31 ⊕ c31 a62 ⊕ c12 ⊕ a41 ⊕ c41
b32 ⊕ c32 ⊕ b41 ⊕ c21 b42 ⊕ c42 ⊕ b61 ⊕ c11

a72 ⊕ b42 ⊕ c42 ⊕ a41 ⊕ b71 ⊕ c41 a82 ⊕ b32 ⊕ c32 ⊕ a31 ⊕ b81 ⊕ c31

The second coded message is X{1,3} = (A
[θ]
1,{1,3}, A

[θ]
2,{1,3}) in

which

A
[θ]
1,{1,3} = A

[θ1]
1 (a3, b3, c3)⊕A

[θ3]
1 (a1, b1, c1), (22)

A
[θ]
2,{1,3} = A

[θ1]
2 (a3, b3, c3)⊕A

[θ3]
2 (a1, b1, c1). (23)

Using a another set of independent random permutations of
the bits of the packets ai, bi, ci, ∀i ∈ {1, 3}, the answers form
the two DBs are constructed as

A
[θ]
1,{1,3} A

[θ]
2,{1,3}

a13 ⊕ a11 a23 ⊕ a21
b13 ⊕ b11 b23 ⊕ b21
c13 ⊕ c11 c23 ⊕ c21

a33 ⊕ b23 ⊕ a31 ⊕ b31 a53 ⊕ b13 ⊕ a41 ⊕ b41
a43 ⊕ c23 ⊕ a21 ⊕ c31 a63 ⊕ c13 ⊕ a11 ⊕ c51
b33 ⊕ c33 ⊕ b21 ⊕ c41 b43 ⊕ c43 ⊕ b11 ⊕ c61

a73 ⊕ b43 ⊕ c43 ⊕ a41 ⊕ b41 ⊕ c71 a83 ⊕ b33 ⊕ c33 ⊕ a31 ⊕ b31 ⊕ c81

The third coded message is X{2,3} = (A
[θ]
1,{2,3}, A

[θ]
2,{2,3}) in

which

A
[θ]
1,{2,3} = A

[θ2]
1 (a3, b3)⊕A

[θ3]
1 (a2, b2), (24)

A
[θ]
2,{2,3} = A

[θ2]
2 (a3, b3)⊕A

[θ3]
2 (a2, b2). (25)

Applying a set of independent random permutations of the bits
of the message packets ai, bi, ci, ∀i ∈ {2, 3}, the answers can
be constructed as

A
[θ]
1,{2,3} A

[θ]
2,{2,3}

a13 ⊕ a12 a23 ⊕ a22
b13 ⊕ b12 b23 ⊕ b22
c13 ⊕ c12 c23 ⊕ c22

a23 ⊕ b33 ⊕ a32 ⊕ b32 a13 ⊕ b53 ⊕ a42 ⊕ b42
a33 ⊕ c33 ⊕ a22 ⊕ c32 a43 ⊕ c43 ⊕ a12 ⊕ c52
b43 ⊕ c23 ⊕ b22 ⊕ c42 b63 ⊕ c13 ⊕ b12 ⊕ c62

a43 ⊕ b73 ⊕ c43 ⊕ a42 ⊕ b42 ⊕ c72 a33 ⊕ b83 ⊕ c33 ⊕ a32 ⊕ b32 ⊕ c82

Note that for each coded message XS , a set of independent
random permutations (not known to the DBs) are employed
to the bits of the involved packets, which is key to privacy.

In the private delivery phase, the users download all the
three coded messages from the DBs. We next verify the
correctness (i.e., decodability) and privacy of the scheme.

Correctness: Let us look at X{1,2} first. Since the packets
have been cached by user 1, user 1 can remove the interfer-
ences A[θ2]

1 (a1, b1), A
[θ2]
2 (a1, b1) from Eqs. (20) (21) to obtain

the desired coded components A
[θ1]
1 (a2, b2) and A

[θ1]
2 (a2, b2).

By the decodability of the Sun-Jafar PIR scheme, user 1
can correctly decode the desired packet a2 from A

[θ1]
1 (a2, b2)

and A
[θ1]
2 (a2, b2); Also because the packets a2, b2 are al-

ready cached by user 2, user 2 can remove the interferences
A

[θ1]
1 (a2, b2) and A

[θ1]
2 (a2, b2) and obtain the desired code

components A
[θ2]
1 (a1, b1) and A

[θ2]
2 (a1, b1), from which the

packet a1 can be decoded. Following a similar decoding
process, it can be easily seen that from X{1,3}, user 1 and
3 can decode a3 and b1 respectively, and from X{2,3}, user 2
and 3 can decode a3 and b2 respectively. As a result,the three
users can correctly decode their desired messages.

Privacy: First note that regardless of the user demands
[θ1, θ2, θ3] ∈ [2]3, three coded messages are downloaded
from the DBs. So the DBs can not distinguish different user
demands by simply observing the traffic load. Second, each
component An,S , n = 1, 2 of the coded message XS , ∀S ⊆
[3], |S| = 2 is independent of the demands of the users in S .
The reason is explained as follows. Without loss of generality,
we show that both A1,{1,2} and A2,{1,2} are independent of
θ1 and θ2. By the privacy of the Sun-Jafar scheme, both
A

[θ1]
1 (a2, b2) and A

[θ1]
2 (a2, b2) are independent of θ1. Also,

both A
[θ2]
1 (a1, b1) and A

[θ2]
2 (a1, b1) are independent of θ2.

Therefore, both A
[θ]
1,{1,2} and A

[θ]
2,{1,2} are independent of θ1

and θ2. Similarly, both A
[θ]
1,{1,3} and A

[θ]
2,{1,3} are independent

of θ1 and θ3, and both A
[θ]
1,{2,3} and A

[θ]
2,{2,3} are independent of

θ2 and θ3. Moreover, since for each coded message XS , ∀S ⊆
[3], |S| = 2, a set of independent random permutations are
applied to the corresponding packets, these coded messages are
independent of each other. As a result, the answer from each
DB n ∈ [2], i.e., {A[θ]

n,S : S ⊆ [3], |S| = 2} is independent
of the user demands [θ1, θ2, θ3]. As a result, the scheme is
private.

Performance: Since D = 42 bits are downloaded in total,
the achieved load is R = D

L = 7
4 , which is better than the

naive design with load K −M = 2. ♦

VI. CONCLUSION

In this paper we studied the cache-aided MuPIR problem
where a set of cache-aided users wish to retrieve their desired
messages while keeping their demands private from the DBs.
We fully characterized the optimal memory-load trade-off for
a system with N = 2 databases, K = 2 messages and
Ku = 2 users when the users demand distinct messages.
We also proposed a novel product design which captures the
multicasting gain of coded caching in the delivery phase and
was shown to be order optimal within a factor of 8. One
on-going direction is to extend the scheme in Section IV to
incorporate identical user demands and more general system
parameters, in order to find the optimal memory-load trade-off
for the cache-aided MuPIR problem.
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