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Abstract—In the problem of cache-aided Multiuser Private
Information Retrieval (MuPIR), a set of Ku cache-aided users
wish to download their desired messages from a set of N
distributed non-colluding databases each holding a library of K
independent messages. The communication load of this problem
is defined as the total number of bits downloaded (normalized
by the message length) by the users. The goal is to find the
optimal memory-load trade-off under the constraint of user
demand privacy, which ensures that any individual database
learns nothing about the demands of the users. In this paper, for
the MuPIR problem with K = 2 messages, Ku = 2 users and
N ≥ 2 databases, we provide achievability for the memory-load
pairs (N−1

2N
, N+1

N
) and ( 2(N−1)

2N−1
, N+1
2N−1

) by constructing specific
achievable schemes based on the novel idea of Private Cache-
aided Interference Alignment (PCIA). We prove that the proposed
scheme is optimal if the cache placement is uncoded (i.e., users
directly cache a subset of the library bits). Computer-aided
investigation also shows that the proposed schemes are optimal
in general when N = 2, 3.

I. INTRODUCTION

Introduced by Chor et al. in 1995 [1], the problem of private
information retrieval (PIR) seeks the most efficient way for a
user to retrieve a desired message fromN distributed databases
(each holding a library of K messages) while keeping the
desired message identity private from the databases. Sun and
Jafar recently characterized the capacity of the PIR problem
as C = (1 + 1

N + · · · 1
NK−1 )

−1 [2], [3], which is achieved
by leveraging the idea of Blind Interference Alignment (BIA)
originally introduced to exploit the diversity of coherence
patterns in wireless interference networks [4].
Coded caching was originally proposed by Maddah-Ali

and Niesen (MAN) in [5] for a shared-link caching system
containing a server with a library of K equal-length files,
which is connected to Ku users through a noiseless shared-
link, each of which can store M files in its cache. Each user
demands one file in the delivery phase. The MAN scheme uses
a combinatorial design in the placement phase so that during
the delivery phase multicast messages can simultaneously
satisfy the demands of multiple users. It was proved in [6] that
the MAN caching scheme is order optimal within a factor of 2
when K ≥ Ku. In addition, the optimal memory-load tradeoff
was characterized in [5] for the case where K = Ku = 2.1

1 To the best of our knowledge, for the coded caching problem, this is the
only non-trivial case (i.e., min{K,Ku} ≥ 2) where the exact optimality is
characterized for arbitrary memory size.

Under the constraint of uncoded cache placement and for
worst-case load, the MAN scheme was proved to be optimal
when K ≥ Ku [7].
Characterization of the optimal memory-load trade-off for

the cache-aided PIR problem, in which the effect of caching is
taken into account, has gained significant attentions recently.
Two different privacy models are commonly considered. In one
line of research [8]–[10], the user-against-database privacy
model is studied where individual databases are prevented
from learning the single-user’s demand. The author in [8]
studied the case where a single cache-aided user is connected
to a set of N replicated databases and showed that memory
sharing between the memory-load pairs (0, 1+ 1

N+· · ·+ 1
NK−1 )

and (K, 0) (i.e., split the messages and cache memory propor-
tionally and then implement two PIR schemes on independent
parts of the messages) is actually optimal if the databases are
aware of the user’s cached content. However, if the databases
are unaware of the user’s cached content, then there is an
“unawareness gain” in capacity as shown in [9], [10]. Another
line of research [11]–[13] deals with the user-against-user
privacy model where users are prevented from learning each
other’s demands. The authors in [11] first formulated the coded
caching with private demands problem where a shared-link
caching system with demand privacy, i.e., any user should not
learn anything about the demands of other users, was consid-
ered. The goal is to design efficient delivery schemes such
that the communication load is minimized while preserving
user demand privacy. Order optimal schemes were proposed
based on the novel concept of virtual user. In [14], the authors
studied the subpacketizaiton issues for this problem. Later,
coded caching with private demands was extended to the
Device-to-Device (D2D) network [12]. In general, the exact
capacity characterization remains open for these problems.
This paper formulates the problem of cache-aided multiuser

PIR (MuPIR), where each of the Ku cache-equipped users
aims to retrieve a message from N distributed databases
while preserving the privacy of user demands given that the
cached content of the users are known to the databases.
Based on the novel idea of Private Cache-aided Interference
Alignment (PCIA), we construct cache placement and private
delivery phases achieving the non-trivial memory-load pairs
(N−1

2N , N+1
N ) and ( 2(N−1)

2N−1 ,
N+1
2N−1 ) for the MuPIR problem

with K = 2 messages, Ku = 2 users and N ≥ 2 databases.
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Fig. 1. Cache-aided MuPIR system with N replicated databases, K inde-
pendent messages and Ku cache-equipped users. The users are connected to
each DB via an error-free shared-link broadcast channel.

Different from the existing cache-aided interference algiment
schemes in [15]–[18] which were designed for the cache-aided
interference channels, our proposed private caching scheme is
to let each server deliver symmetric messages (in order to keep
privacy), each of which contains some uncached and undesired
symbols (interferences) of each user. Our main strategy is
to align these interferences for each user. We prove that the
proposed scheme is optimal under the constraint of uncoded
cache placement. Computer-aided investigation also shows that
the proposed schemes are optimal in general when N = 2, 3.

Notation Convention: | · | represents the cardinality of
a set. [n] := {1, 2, · · · , n − 1, n}, [m : n] := {m,m +
1,m + 2, · · · , n} and (m : n) := (m,m + 1, · · · , n) for
some integers m ≤ n. For two sets A and B, let A\B :=
{x ∈ A : x /∈ B}. For an index set I, the notation AI
represents the set {Ai : i ∈ I}. When I = [m : n], we
write A[m:n] as Am:n for simplicity. For an index vector
I = (i1, i2, · · · , in), the notation AI represents a new vector
AI := (Ai1 , Ai2 , · · · , Ain). The operator ⊕ denotes the bit-
wise XOR. 0n denotes the all-zero vector with length n, i.e.,
0n := [0, 0, 0, · · · , 0︸ ︷︷ ︸

n terms

].

II. PROBLEM FORMULATION

We consider a system with Ku users, each of which aims
to privately retrieve a message from N ≥ 2 replicated (non-
colluding) databases (DBs). Each DB stores K independent
messages, denoted by W1,W2, · · · ,WK , each of which is
uniformly distributed over [2L]. Each user is equipped with
a cache memory of size ML bits, where 0 ≤ M ≤ K.
Let the random variables Z1, Z2, · · · , ZKu

denote the cached
content of the users. The system operates in two phases, a
cache placement phase followed by a private delivery phase.
In the cache placement phase, the users fill up their cache
memory without the knowledge of their future demands. It is
assumed that the cached content of each user is a deterministic
function of the messagesW1:K and is known to all DBs. In the
private delivery phase, each user k ∈ [Ku] wishes to retrieve
a message Wθk where θk ∈ [K]. Let θ := (θ1, θ2, · · · , θKu)
denote the demands of the users. We assume that θ is

generated according to the uniform distribution over [K]Ku .
Depending on θ and Z1, Z2, · · · , ZKu , users cooperatively
generate N queries Q[θ]

1 , Q
[θ]
2 , · · · , Q[θ]

N , and then send the
query Q[θ]

n to DB n. Upon receiving the query, DB n responds
with an answer A[θ]

n broadcasted to all users. The answer A[θ]
n

is a deterministic function of the query received by DB n, i.e.,
Q
[θ]
n , and the information available to DB n, i.e., W1:K and

Z1:K . Therefore,

H(A[θ]
n |Q[θ]

n ,W1:K , Z1:K) = 0, ∀n ∈ [N ]. (1)

After collecting all the answers from the N DBs, the users
should be able to recover their desired messages correctly with
the help of their caches. This decodability requirement can be
written as ∀k ∈ [Ku]:

H(Wθk |Q[θ]
1:N , A

[θ]
1:N , Zk) = ε1, (2)

where ε1 → 0 as L → ∞. When ε1 = 0, this corresponds to
the zero decoding error case.
To preserve the privacy of the users’ demands, from the

viewpoint of any individual DB, the demand vector θ should
be independent of all the information available to that DB, i.e.,
the following privacy constraint should be satisfied ∀n ∈ [N ]:

I(θ;Q[θ]
n , A[θ]

n ,W1:K , Z1:K) = ε2 (3)

where ε2 → 0 as L→ ∞.
The load (or transmission rate) of the MuPIR problem, de-

noted by R, is defined as the average (over random demands)
number of bits downloaded from the DBs per useful message
bit. Let D denote the total number of bits broadcasted from
the DBs, then

R :=
D

L
=

∑N
n=1H(A

[θ]
n )

L
(4)

Note that R does not depend on θ, otherwise this leaks
information of the user demands to the DBs. A memory-
load pair (M,R) is said to be achievable if there exists a
MuPIR scheme satisfying the decodability constraint (2) and
the privacy constraint (3). The goal of the MuPIR problem is
to design the cache placement and the corresponding private
delivery phases such that the load is minimized. For any
0 ≤M ≤ K, let R�(M) denote the minimal achievable load.
In addition, if users directly cache a subset of the library bits,
the placement phase is referred to as uncoded cache placement.
We denote the minimum achievable load under the constraint
of uncoded cache placement by R�

u (M).

III. MAIN RESULT

In this section we present the main results of this paper.
Theorem 1: For the cache-aided MuPIR problem with K =

2 messages, Ku = 2 users and N ≥ 2 DBs, the following
load is achievable

R(M) =

⎧⎪⎨
⎪⎩
2(1−M), 0 ≤M ≤ N−1

2N
(N+1)(3−2M)

2N+1 , N−1
2N ≤M ≤ 2(N−1)

2N−1
(N+1)(2−M)

2N , 2(N−1)
2N−1 ≤M ≤ 2

(5)
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Proof: The achievability proof of Theorem 1 is presented
in Section IV where specific schemes are constructed based
on the novel idea of PCIA achieving the memory-load pairs
(N−1

2N , N+1
N ) and ( 2(N−1)

2N−1 ,
N+1
2N−1 ). In addition, the memory-

load pairs (0, 2) and (2, 0) are trivially achievable. By memory
sharing, the lower convex envelope of the above four corner
points can be achieved, which gives the achievable rate in
Theorem 1.

Remark 1: Computer-aided investigation using the infor-
mation theory toolbox [19] showed that the achievable rate
provided in Theorem 1 is optimal when N = 2 and 3. �

Theorem 2: For the cache-aided MuPIR problem with K =
2 messages, Ku = 2 users and N ≥ 2 DBs, the optimal
memory-load trade-off under the constraint of uncoded cache
placement is given by

R�
u (M) =

{
2− 3

2M, 0 ≤M ≤ 2(N−1)
2N−1

(N+1)(2−M)
2N , 2(N−1)

2N−1 ≤M ≤ 2 (6)

Proof: For the achievability part, the corner points in
Theorem 2 are the memory-load pairs (0, 2), ( 2(N−1)

2N−1 ,
N+1
2N−1 ),

and (2, 0), which can be achieved by the same achievable
schemes as Theorem 1.
For the converse part, under the constraint of uncoded cache

placement, the converse bound for the original MAN caching
problem without privacy constraint in [7] is also the converse
for our considered problem. When M ∈ [0, 1], it was proved
in [7] that

R�
u (M) ≥ 2−

3

2
M. (7)

In addition, the converse bound for the single-user cache-aided
PIR problem in [8] is also the converse for our considered
problem since increasing the number of users while keeping
demand privacy can only possibly increase the load. When
M ∈ [0, 2],

R�
u (M) ≥

(
1− M

2

)(
1 +

1

N

)
=
(N + 1)(2−M)

2N
. (8)

By combining Eqs. (7) and (8), the converse bound of Eq. (6)
can be obtained, which coincides with the achievability.

IV. ACHIEVABILITY

In this section we provide the proof of Theorems 1 and
2 by showing the achievability of the non-trivial memory-
load pairs (N−1

2N , N+1
N ) and ( 2(N−1)

2N−1 ,
N+1
2N−1 ) for the MuPIR

problem with K = 2 messages, Ku = 2 users and N ≥ 2
DBs. The design of the achievable schemes utilizes the novel
idea of PCIA where certain undesired message symbols (i.e.,
interferences) are aligned into certain dimensions such that
the users can decode their desired messages by solving linear
equations after removing the aligned interference.

A. Achievability of (M,R) = (N−1
2N , N+1

N )

In this section we present the achievability of the memory-
load pair (N−1

2N , N+1
N ). We first provide an example to illus-

trate the basic design idea and then generalize the proposed
scheme to arbitrary number of DBs.

Example 1: (Achievability of ( 14 ,
3
2 )) Consider the MuPIR

problem with K = 2 messages, Ku = 2 users and N = 2
DBs. For simplicity, let W1 = A and W2 = B denote the
two messages. Let θ = (θ1, θ2) be the user demands. We next
show that the memory-load pair ( 14 ,

3
2 ) can be achieved.

1) Cache placement: Assume that each message consists
of F = 4 symbols over some finite field Fq , i.e, A =
(A1, A2, A3, A4), B = (B1, B2, B3, B4) where Ai, Bi ∈
Fq, ∀i ∈ [4] for some prime power q. For this case, binary
field is sufficient for the proposed scheme to work. Each user
stores a linear combination of the message symbols, i.e.,

Z1 = {α1A
T
(1:2) + β1B

T
(1:2)}, (9)

Z2 = {α2A
T
(3:4) + β2B

T
(3:4)}, (10)

in which αi,βi, ∀i = 1, 2 are the linear combination coeffi-
cients randomly picked from [F2]1×2\{[0, 0]}. Without loss of
generality, we use the coefficients

α1 = α2 = β1 = β2 = [1, 1]. (11)

2) Private delivery: In this phase, the users download
an answer from each DB. These answers take the form of
linear combinations of the message symbols. For different user
demands θ = (θ1, θ2), the linear combination coefficients are
designed accordingly such that the users can correctly decode
their desired messages while preserving demand privacy. More
specifically, the answer from DB 1 consists of two linear
combinations A[θ]

1,1 and A[θ]
1,2 which are

A
[θ]
1,1 = u1,1A

T
(1:2) + v1,1B

T
(1:2), (12)

A
[θ]
1,2 = u1,2A

T
(3:4) + v1,2B

T
(3:4). (13)

The answer from DB 2 consists of four linear combinations
A
[θ]
2,1, A

[θ]
2,2, A

[θ]
2,3 and A[θ]

2,4 which are

A
[θ]
2,1 = g1A

T
(1:2), (14)

A
[θ]
2,2 = g2B

T
(1:2), (15)

A
[θ]
2,3 = g3A

T
(3:4), (16)

A
[θ]
2,4 = g4B

T
(3:4), (17)

in which the coefficients u1,1,v1,1,u1,2,v1,2,g1,g2,g3,g4 ∈
[Fq]

1×2\{[0, 0], [1, 1]} are subject to design. The answers can
be written in a more compact form as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[θ]
1,1

A
[θ]
1,2

A
[θ]
2,1

A
[θ]
2,2

A
[θ]
2,3

A
[θ]
2,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1 02 v1,1 02
02 u1,2 02 v1,2
g1 02 02 02
02 02 g2 02
02 g3 02 02
02 02 02 g4

⎤
⎥⎥⎥⎥⎥⎥⎦
[
AT
(1:4)

BT
(1:4)

]
. (18)

We next show how these coefficients can be designed
according to different user demands (θ1, θ2) such that decod-
abilty and privacy can be guaranteed. Due to space limitation,
we will only illustrate the case of (θ1, θ2) = (1, 2) and omit
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other cases, which can be achieved similarly. In this case, users
1 and 2 request A and B respectively. We require that the
following six coefficient matrices to be full rank:2[

α1

g1

]
,

[
β2

g4

]
,

[
u1,2
g3

]
,

[
v1,1
g2

]
,

[
β1

g2

]
,

[
α2

g3

]
. (19)

and u1,1 and v1,2 are chosen as

[alignment] u1,1 = g1, v1,2 = g4. (20)

Now we show that with the above full rank and alignment
conditions the users can correctly decode their desired mes-
sages.
From Eq. (18), we obtain[

A
[(1,2)]
1,2

A
[(1,2)]
2,3

]
=

[
u1,2 v1,2
g3 02

] [
AT
(3:4)

BT
(3:4)

]
. (21)

Since g4 = v1,2, we have A[(1,2)]
2,4 = g4B

T
(3:4) = v1,2B

T
(3:4),

i.e, the interferences B3 and B4 are aligned. Removing the
interferences and due to rank([u1,2;g3]) = 2, the symbols
A(3:4) can be solved from Eq. (21) as[

A3

A4

]
=

[
u1,2
g3

]−1
[
A
[(1,2)]
1,2 −A[(1,2)]

2,4

A
[(1,2)]
2,3

]
. (22)

From Eq. (18), we also obtain[
A
[(1,2)]
1,1

A
[(1,2)]
2,2

]
=

[
u1,1 v1,1
02 g2

] [
AT
(1:2)

BT
(1:2)

]
. (23)

Since g1 = u1,1, we have A[(1,2)]
2,1 = g1A

T
(1:2) = u1,1A

T
(1:2),

i.e, the interferences A1, A2 are aligned. Removing the inter-
ferences, B(1:2) can be solved from Eq. (23) as[

B1

B2

]
=

[
v1,1
g2

]−1
[
A
[(1,2)]
1,1 −A[(1,2)]

2,1

A
[(1,2)]
2,2

]
. (24)

Hence, both users can correctly decode A3, A4 and B1, B2.
Now, user 1 still needs A1, A2 while user 2 needs B3, B4.

For user 1, the interference term β1B
T
(1:2) in Z1 can be

eliminated since B1, B2 are already available. Therefore, user
1 can decode A1, A2 from[

A1

A2

]
=

[
α1

g1

]−1
[
Z1 − β1B

T
(1:2)

A
[(1,2)]
2,1

]
. (25)

Similarly, for user 2, the interference term α2A
T
(3:4) can be

eliminated since A3, A4 are already available. Therefore, user
2 can decode B3, B4 from[

B3

B4

]
=

[
β2

g4

]−1
[
Z2 −α2A

T
(3:4)

A
[(1,2)]
2,4

]
. (26)

As a result, both users can correctly recover their desired
messages.

2 The way we choose the coefficients to satisfy these requirements will be
described later. Here we only present the conditions which are necessary for
correct decoding and preserving demand privacy.

We next show that how the specific coefficients are chosen
such that user demand privacy can be preserved.

Privacy: Due to the full rank requirements and alignment
conditions, it must hold that u1,i,v1,i 	= [1, 1], [0, 0], ∀i ∈ [2]
and gj 	= [1, 1], [0, 0], ∀j ∈ [4]. Therefore, there are 24 = 16
choices for (u1,1,v1,1,u1,2,v1,2) ∈ {[0, 1], [1, 0]}4 . For
each choice, we can uniquely determine (g1,g2,g3,g4) ∈
{[0, 1], [1, 0]}4 for each demand (θ1, θ2) ∈ [2]2 according
to the corresponding full rank and alignment conditions. If
we employ each choice of the linear coefficients of the DBs
with equal probability, then for any choice of the DB 1
linear combination coefficients, (θ1, θ2) is equally likely to
be (1, 2), (2, 1), (1, 1) or (2, 2) from the perspective of DB
1. On the other hand, there are also 24 = 16 choices for
[g1,g2,g3,g4] ∈ {[0, 1], [1, 0]}4 . For each choice, we can
uniquely determine [u1,1,v1,1,u1,2,v1,2] ∈ {[0, 1], [1, 0]}4 for
each demand (θ1, θ2) ∈ [2]2 according to the full rank and
alignment conditions therein. If we employ each choice of
the linear coefficients of the DBs with equal probability, then
for any choice of the DB 2 linear combination coefficients,
(θ1, θ2) is equally likely to be (1, 2), (2, 1), (1, 1) or (2, 2)
from the perspective of DB 2. Therefore, the proposed scheme
is private.

Performance: Since D = 6 linear combinations are down-
loaded in total, the achieved load is R = D

F =
3
2 . ♦

We next present the general achievable schemes for arbitrary
number of databases. The cache placement and the correspond-
ing private delivery phases are formally described as follows.

1) Cache placement: LetW1 = A,W2 = B denote the two
messages. Each message is assumed to consist of F = 2N
symbols over some finite field Fq , i.e.,

A = (A1, · · · , A2N ), (27)
B = (B1, · · · , B2N ). (28)

Each user then storesN−1 linear combinations of the message
symbols in its cache (therefore M = N−1

2N ), i.e.,

Z1 =
{
α1,jA

T
(1:N) + β1,jB

T
(1:N) : j ∈ [N − 1]

}
, (29)

Z2 =
{
α2,jA

T
(N+1:2N) + β2,jB

T
(N+1:2N) : j ∈ [N − 1]

}
.

(30)
in which the linear combination coefficients αi,j ,βi,j , ∀i ∈
[2], ∀j ∈ [N − 1] are randomly picked from [Fq]

1×N\{0N}
such that rank([αi,1;αi,2; · · · ;αi,N−1]) = N − 1 and
rank([βi,1;βi,2; · · · ;βi,N−1]) = N − 1, ∀i ∈ [2]. Let
Zi,1, Zi,2, · · · , Zi,N−1 denote the N − 1 stored linear com-
binations in Zi, ∀i ∈ [2], i.e., ∀j ∈ [N − 1]:

Z1,j = α1,jA
T
(1:N) + β1,jB

T
(1:N), (31)

Z2,j = α2,jA
T
(N+1:2N) + β2,jB

T
(N+1:2N). (32)

2) Private delivery: The answer of each DB consists of
several linear combinations of the message symbols. More
specifically, the answer of DB n ∈ [N − 1] consists of two
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linear combinations

A
[θ]
n,1 = un,1A

T
(1:N) + vn,1B

T
(1:N), (33)

A
[θ]
n,2 = un,2A

T
(N+1:2N) + vn,2B

T
(N+1:2N), (34)

and the answer of DB N consists of four linear combinations

A
[θ]
N,1 = g1A

T
(1:N), (35)

A
[θ]
N,2 = g2B

T
(1:N), (36)

A
[θ]
N,3 = g3A

T
(N+1:2N), (37)

A
[θ]
N,4 = g4B

T
(N+1:2N). (38)

The linear coefficients g1,g2,g3,g4,un,j ,vn,j , ∀n ∈ [N −
1], ∀j ∈ [2] belong to [Fq]

1×N\{0N} and are designed
according to the user demands.
In the private delivery phase, the users download all the

2N + 2 linear combinations from the N DBs. The linear
combination coefficients of the answers are chosen according
to θ such that both users can correctly decode their desired
messages. In the following, we will focus on the case of
θ = (1, 2) and omit the other demands, which can be designed
similarly. In the case of (θ1, θ2) = (1, 2), user 1 and 2 demand
message A and B respectively. We let

g1 = u1,1 = u2,1 = · · · = uN−1,1, (39)

g4 = v1,2 = v2,2 = · · · = vN−1,2, (40)

and the linear coefficient vectors

g1, . . . ,g4,u1,2, . . . ,uN−1,2,v1,1, . . . ,vN−1,1

are picked independently and uniformly at random from
[�q]

1×N\{0N} such that with high probability,3 the following
six matrices are full rank⎡

⎢⎢⎢⎣
α1,1

...
α1,N−1

g1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

β2,1

...
β2,N−1

g4

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

u1,2
...

uN−1,2

g3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

v1,1
...

vN−1,1

g2

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

α2,1

...
α2,N−1

g3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

β1,1

...
β1,N−1

g2

⎤
⎥⎥⎥⎦ . (41)

With such a design of the linear coefficients, we now
demonstrate that the users can correctly recover their desired
messages.
Due to the alignment condition of Eq. (40), we

have A
[(1,2)]
2,4 = g4B

T
(N+1:2N) = v1,2B

T
(N+1:2N) =

· · · = vN−1,2B
T
(N+1:2N), i.e., the interfering symbols

B(N+1:2N) are aligned among the linear combinations

3 The base field q is assumed to be large enough such that the probability
of the random matrices being full rank is arbitrarily close to 1.

A
[(1,2)]
1,2 , A

[(1,2)]
2,2 , · · · , A[(1,2)]

N−1,2. Subtracting g4B
T
(N+1:2N) from

A
[(1,2)]
1,2 , A

[(1,2)]
2,2 , · · · , A[(1,2)]

N−1,2, we obtain⎡
⎢⎢⎢⎢⎣
A
[(1,2)]
1,2 −A[(1,2)]

2,4
...

A
[(1,2)]
N−1,2 −A[(1,2)]

2,4

A
[(1,2)]
N,3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u1,2
...

uN−1,2

g3

⎤
⎥⎥⎥⎦AT

(N+1:2N). (42)

Since the linear coefficient matrix on the RHS of Eq. (42) is
full rank, A(N+1:2N) can be solved from

AT
(N+1:2N) =

⎡
⎢⎢⎢⎣

u1,2
...

uN−1,2

g3

⎤
⎥⎥⎥⎦
−1

⎡
⎢⎢⎢⎢⎣
A
[(1,2)]
1,2 −A[(1,2)]

2,4
...

A
[(1,2)]
N−1,2 −A[(1,2)]

2,4

A
[(1,2)]
N,3

⎤
⎥⎥⎥⎥⎦. (43)

Therefore, both users can correctly decode the symbols
A(N+1:2N). Similarly, due to the alignment condition of
Eq. (39), we have A[(1,2)]

2,1 = g1A
T
(1:N) = u1,1A

T
(1:N) =

u2,1A
T
(1:N) = · · · = uN−1,1A

T
(1:N), i.e., the interfer-

ing symbols A(1:N) are aligned among the linear combi-
nations A[(1,2)]

1,1 , A
[(1,2)]
2,1 , · · · , A[(1,2)]

N−1,1. Subtracting g1A
T
(1:N)

from A
[(1,2)]
1,1 , A

[(1,2)]
2,1 , · · · , A[(1,2)]

N−1,1, we obtain⎡
⎢⎢⎢⎢⎣
A
[(1,2)]
1,1 −A[(1,2)]

2,1
...

A
[(1,2)]
N−1,1 −A[(1,2)]

2,1

A
[(1,2)]
N,2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v1,1
...

vN−1,1

g2

⎤
⎥⎥⎥⎦BT

(1:N). (44)

Since the linear coefficient matrix on the RHS of Eq. (44) is
full rank, B(1:N) can be solved from

BT
(1:N) =

⎡
⎢⎢⎢⎣

v1,1
...

vN−1,1

g2

⎤
⎥⎥⎥⎦
−1

⎡
⎢⎢⎢⎢⎣
A
[(1,2)]
1,1 −A[(1,2)]

2,1
...

A
[(1,2)]
N−1,1 −A[(1,2)]

2,1

A
[(1,2)]
N,2

⎤
⎥⎥⎥⎥⎦. (45)

Therefore, both users can correctly decode the packets B(1:N).
Now the message symbols A(N+1:2N) and B(1:N) are

available to both users. User 1 still needs A(1:N) and user 2
still needs B(N+1:2N). For user 1, since B(1:N) are already
available, it obtains N − 1 linear combinations of A(1:N)

according to Eq. (29). Together with A[(1,2)]
N,1 = g1A

T
(1:N), user

1 obtains N independent linear combinations of A(1:N), from
which A(1:N) can be solved as

AT
(1:N) =

⎡
⎢⎢⎢⎣

α1,1

...
α1,N−1

g1

⎤
⎥⎥⎥⎦
−1

⎡
⎢⎢⎢⎢⎣

Z1,1 − β1,1B
T
(1:N)

...
Z1,N−1 − β1,N−1B

T
(1:N)

A
[(1,2)]
N,1

⎤
⎥⎥⎥⎥⎦ . (46)

Therefore, user 1 can correctly decode all the symbols
A(1:2N) of the desired message A. Similarly, for user 2,
since A(N+1:2N) are already available, it obtains N −1 linear
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combinations of B(N+1:2N) according to Eq. (30). Together
with A[(1,2)]

N,4 = g4B
T
(N+1:2N), user 2 obtains N independent

linear combinations of B(N+1:2N), from which B(N+1:2N) can
be solved as

BT
(N+1:2N) =

⎡
⎢⎢⎢⎣

β2,1

...
β2,N−1

g4

⎤
⎥⎥⎥⎦
−1

⎡
⎢⎢⎢⎢⎣

Z2,1 −α2,1A
T
(N+1:2N)

...
Z2,N−1 −α2,N−1A

T
(N+1:2N)

A
[(1,2)]
N,4

⎤
⎥⎥⎥⎥⎦ .

(47)
Therefore, user 2 can correctly decode all the symbols B(1:2N)

of the desired message B. As a result, both users can correctly
decode their desired messages.

Privacy: For any θ, for each DB n ∈ [N − 1], its
answer contains one linear combinations of A(1:N), B(1:N)

and one linear combination of A(N+1:2N), B(N+1:2N), which
are generated randomly and independently from its viewpoint.
For DB N , its answer contains four linear combinations
of A(1:N), A(N+1:2N), B(1:N), and B(N+1:2N) respectively,
which are generated randomly and independently from its
viewpoint. In addition, all of these linear combinations are
generated independently to the cache content of each user.
Since each individual DB does not know the exact full rank
and alignment conditions, the user demands (θ1, θ2) can be
arbitrary from that DB’s point of view. As a result, the
proposed scheme is private.

Performance: Since D = 2N + 2 linear combinations are
downloaded in total, the achieved load is R = D

F =
N+1
N .

B. Achievability of (M,R) = ( 2(N−1)
2N−1 ,

N+1
2N−1 )

In this section we present the achievability of the memory-
load pair ( 2(N−1)

2N−1 ,
N+1
2N−1 ), which is also based on the PCIA

strategy. We provide an example first and then generalize the
scheme to arbitrary number of databases.

Example 2: (Achievability of ( 23 , 1)) Consider the same
setting as Example 1 and each user has a cache memory of
M = 2

3 messages. We assume that each message consists of
L = 3 bits, i.e., A = (A1, A2, A3) and B = (B1, B2, B3).

1) Cache placement: The cache placement is

Z1 = {A1, B1}, (48)
Z2 = {A2, B2}. (49)

2) Private delivery: The answer of each DB 1 consists
of a linear combination A

[θ]
1 = u1A

T
(1:3) + v1B

T
(1:3) and

the answer of DB 2 consists of two linear combinations
A
[θ]
2,1 = g1A

T
(1:3) and A

[θ]
2,2 = g2B

T
(1:3) where the linear

coefficients u1 = [u1,1, u1,2, u1,3], v1 = [v1,1, v1,2, v1,3],
g1 = [g1,1, g1,2, g1,3] and g2 = [g2,1, g2,2, g2,3] belong to
[F2]

1×3\{[0, 0, 0]} and are subject to design according to
different user demands (θ1, θ2). The answers from the DBs
can be written in a more compact form as⎡

⎢⎣A
[θ]
1

A
[θ]
2,1

A
[θ]
2,2

⎤
⎥⎦ =

⎡
⎣u1 v1
g1 03
03 g2

⎤
⎦[
AT
(1:3)

BT
(1:3)

]
. (50)

In the private delivery phase, the users download all the
three linear combinations from the two DBs. In the following,
we will only illustrate the case of (θ1, θ2) = (1, 2). In this
case, we require that the following two coefficient matrices to
be full rank:4 [

u1,2 u1,3
g1,2 g1,3

]
,

[
v1,1 v1,3
g2,1 g2,3

]
, (51)

and

[g1,1, g1,3] = [u1,1, u1,3],

[g2,2, g2,3] = [v1,2, v1,3]. (52)

i.e., the symbols A1, A3 are aligned among the linear combi-
nations A[(1,2)]

1 and A[(1,2)]
2,1 , the symbols B2, B3 are aligned

among A[(1,2)]
1 and A[(1,2)]

2,2 . We next show that with the above
full rank and alignment conditions, both users can correctly
decode their desired messages.
For user 1, since [g2,2, g2,3] = [v1,2, v1,3], we have

[v1,2, v1,3][B2, B3]
T = [g2,2, g2,3][B2, B3]

T = A
[(1,2)]
2,2 −

g2,1B1. Then from Eq. (50), we obtain that[
A2

A3

]
=

[
u1,2 u1,3
g1,2 g1,3

]−1

y (53)

where

y =

[
A
[(1,2)]
1

A
[(1,2)]
2,1

]
−
[
A
[(1,2)]
2,2 − g2,1B1

0

]
−
[
u1,1
g1,1

]
A1−

[
v1,1
0

]
B1.

(54)
Since A1, B1 are already stored by user 1, it can correctly
decode the desired symbols A2 and A3. For user 2, since
[g1,1, g1,3] = [u1,1, u1,3], we have [u1,1, u1,3][A1, A3]

T =

[g1,1, g1,3][A1, A3]
T = A

[(1,2)]
2,1 − g1,2A2. Then from Eq. (50),

we obtain that [
B1

B3

]
=

[
v1,1 v1,3
g2,1 g2,3

]−1

y′ (55)

where

y′ =

[
A
[(1,2)]
1

A
[(1,2)]
2,2

]
−
[
A
[(1,2)]
2,1 − g2,1A2

0

]
−
[
u1,2
0

]
A2−

[
u1,2
g1,2

]
B2.

(56)
Since A2, B2 are already stored by user 2, it can correctly
decode the desired symbols B1 and B3. Together with the
cached symbols, both users can recover their desired messages.
Next we show how to choose the specific linear coefficients

such that the user demand privacy can be preserved.
Privacy: From the full rank and alignment requirements, to

preserve demand privacy, it must hold that u1,3 = v1,3 = 1,
g1,3 = g2,3 = 1 for any demand (θ1, θ2) ∈ [2]2. Therefore,
there are 24 = 16 choices for [u1,1, u1,2, v1,1, v1,2] ∈ {0, 1}4.
For each choice, we can uniquely determine the DB 2 linear
combination coefficients g1,g2 for each (θ1, θ2) ∈ [2]2. If
we employ each choice of the linear coefficients of the DBs

4 The way we choose the coefficients to satisfy these requirements will be
described later. Here we only present the conditions which are necessary for
correct decoding and preserving demand privacy.
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with equal probability, then for any choice of the DB 1
linear combination coefficients, (θ1, θ2) is equally likely to
be (1, 2), (2, 1), (1, 1) or (2, 2) from DB 1’s perspective. On
the other hand, there are also 24 = 16 choices of the DB
2 linear coefficients [g1,1, g1,2, g2,1, g2,2] ∈ {0, 1}4 (note that
g1,3 = g2,3 = 1). For each choice, we can uniquely determine
the DB 1 linear coefficients u1,v1 for each (θ1, θ2) ∈ [2]2.
If we employ each choice of the linear coefficients of the
DBs with equal probability, then for any choice of the DB
2 linear combination coefficients, (θ1, θ2) is equally likely to
be (1, 2), (2, 1), (1, 1) or (2, 2) from DB 2’s perspective. As a
result, the proposed scheme is private.

Performance: Since D = 3 linear combinations are down-
loaded in total, the achieved load is R = D

F = 1. ♦
Next we present the general achievable schemes for arbi-

trary number of databases. The cache placement and private
delivery phases are formally described as follows.

1) Cache placement: Each message is assumed to consist
of F = 2N − 1 symbols over some finite field, i.e., A =
(A1, A2, · · · , A2N−1), B = (B1, B2, · · · , B2N−1) for which
Ai, Bi ∈ Fq, ∀i ∈ [2N − 1] where q is assumed to be large
enough. The cache placement is

Z1 = {A1:N−1, B1:N−1}, (57)
Z2 = {AN :2N−2, BN :2N−2}. (58)

2) Private delivery: We first construct the answers from the
DBs. For DB n, n ∈ [N − 1], the answer is

A[θ]
n = unA

T
(1:2N−1) + vnB

T
(1:2N−1). (59)

For DB N , the answer consists of two linear combinations

A
[θ]
N,1 = g1A

T
(1:2N−1), (60)

A
[θ]
N,2 = g2B

T
(1:2N−1), (61)

in which the linear combination coefficients
un = [un,1, un,2, · · · , un,2N−1], ∀n ∈ [N − 1],
vn = [vn,1, vn,2, · · · , vn,2N−1], ∀n ∈ [N − 1], g1 =
[g1,1, g1,2, · · · , g1,2N−1] and g2 = [g2,1, g2,2, · · · , g2,2N−1]
belong to [�q]

1×(2N−1)\{02N−1} and are subject to design
according to different user demands (θ1, θ2).
The answers can be written in a more compact form as⎡

⎢⎢⎢⎢⎢⎢⎣

A
[θ]
1
...

A
[θ]
N−1

A
[θ]
N,1

A
[θ]
N,2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

u1 v1
...

...
uN−1 vN−1

g1 02N−1

02N−1 g2

⎤
⎥⎥⎥⎥⎥⎦
[
AT
(1:2N−1)

BT
(1:2N−1)

]
(62)

We will only consider the case of θ = (1, 2) in the
following. We let ∀n ∈ [N − 1]:

[g1,(1:N−1), g1,2N−1] = [un,(1:N−1), un,2N−1], (63)
g2,(N :2N−1) = vn,(N :2N−1), (64)

i.e., the message symbols A(1:N−1), A2N−1 are aligned among
A
[(1,2)]
1 , A

[(1,2)]
2 , · · · , A[(1,2)]

N,1 and the symbols B(N :2N−1) are

aligned among A[(1,2)]
1 , A

[(1,2)]
2 , · · · , A[(1,2)]

N,2 . The linear com-
bination coefficients g1, g2, un,(N :2N−2), vn,(1:N−1), ∀n ∈
[N − 1] are picked randomly (with uniform probability) and
independently from [Fq]

1×(2N−1)\{02N−1} such that with
high probability the following two coefficient matrices are full
rank:⎡

⎢⎢⎢⎣
u1,(N :2N−1)

...
uN−1,(N :2N−1)

g1,(N :2N−1)

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

[v1,(1:N−1), v1,2N−1]
...

[vN−1,(1:N−1), vN−1,2N−1]
[g2,(1:N−1), g2,2N−1]

⎤
⎥⎥⎥⎦ (65)

We next show that with such a design of linear coefficients,
both users can correctly decode their desired messages.
For user 1, due to the alignment of B(N :2N−1), we have

A
[(1,2)]
N,2 − g2,(1:N−1)B

T
(1:N−1) = g2,(N :2N−1)B

T
(N :2N−1) =

vn,(N :2N−1)B
T
(N :2N−1), ∀n ∈ [N − 1]. Subtracting A[(1,2)]

N,2 −
g2,(1:N−1)B

T
(1:N−1) from A

[(1,2)]
1 , A

[(1,2)]
2 , · · · , A[(1,2)]

N−1 in Eq.

(62), together with A
[(1,2)]
N,1 = g1A

T
(1:2N−1), we obtain N

independent linear combinations of A(N :2N−1), from which
A(N :2N−1) can be solved as

AT
(N :2N−1) =

⎡
⎢⎢⎢⎣

u1,(N :2N−1)

...
uN−1,(N :2N−1)

g1,(N :2N−1)

⎤
⎥⎥⎥⎦
−1

y (66)

where

y =

⎡
⎢⎢⎢⎢⎣
A
[(1,2)]
1 −A[(1,2)]

N,2 + g2,(1:N−1)B
T
(1:N−1)

...
A
[(1,2)]
N−1 −A[(1,2)]

N,2 + g2,(1:N−1)B
T
(1:N−1)

A
[(1,2)]
N,1

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

u1,(1:N−1) v1,(1:N−1)

...
uN−1,(1:N−1) vN−1,(1:N−1)

g1,(1:N−1) 0N−1

⎤
⎥⎥⎥⎦
[
AT
(1:N−1)

BT
(1:N−1)

]
.

(67)

Since the symbols A(1:N−1), B(1:N−1) are already cached by
user 1, it can correctly decode the symbols A(N :2N−1) and
recover message A.
For user 2, due to the alignment of A(1:N−1), A2N−1,

we have A
[(1,2)]
N,1 − g1,(N :2N−2)A

T
(N :2N−2) =

[g1,(1:N−1), g1,2N−1][A(1:N−1), A2N−1]
T =

un,(1:N−1), un,2N−1][A(1:N−1), A2N−1]
T, ∀n ∈ [N − 1].

Subtracting A
[(1,2)]
N,1 − g1,(N :2N−2)A

T
(N :2N−2) from

A
[(1,2)]
1 , A

[(1,2)]
2 , · · · , A[(1,2)]

N−1 , together with A
[(1,2)]
N,2 =

g2B
T
(1:2N−1), we obtain N independent linear combinations

of B(1:N−1), B2N−1, from which B(1:N−1), B2N−1 can be
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solved as

[
BT
(1:N−1)

B2N−1]

]
=

⎡
⎢⎢⎢⎣

[v1,(1:N−1), v1,2N−1]
...

[vN−1,(1:N−1), vN−1,2N−1]
[g2,(1:N−1), g2,2N−1]

⎤
⎥⎥⎥⎦
−1

y′ (68)

where

y′ =

⎡
⎢⎢⎢⎢⎣
A
[(1,2)]
1 −A[(1,2)]

N,1 + g1,(N :2N−2)A
T
(N :2N−2)

...
A
[(1,2)]
N−1 −A[(1,2)]

N,1 + g1,(N :2N−2)A
T
(N :2N−2)

A
[(1,2)]
N,1

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

u1,(N :2N−2) v1,(N :2N−2)

...
uN−1,(N :2N−2) vN−1,(N :2N−2)

0N−1 g2,(N :2N−2)

⎤
⎥⎥⎥⎦
[
AT
(N :2N−2)

BT
(N :2N−2)

]
.

(69)

Since the symbols A(N :2N−2), B(N :2N−2) are already
cached by user 2, it can correctly decode the symbols
B(1:N−1), B2N−1 and recover message B. Therefore, both
users can correctly decode their desired messages.

Privacy: First note that each DB only knows its own linear
combination coefficients and does not know what symbols are
aligned and what coefficients form full rank matrices (since
the linear coefficients are picked randomly and independently).
Since for different configurations of the symbol alignment
and full rank coefficient matrices, different messages can be
decoded by the users, each individual DB can not determine
the actual user demands (θ1, θ2). Therefore, the proposed
scheme is private.

Performance: Since D = N + 1 linear combinations are
downloaded in total, the achieved load is R = D

F =
N+1
2N−1 .

V. CONCLUSION

In this paper, we formulated the problem of cache-aided
multiuser Private Information Retrieval (MuPIR) where the
users wish to retrieve a set of messages from a set of
distributed databases while keeping the user demands private
from any individual database. For the MuPIR problem with
two users, two messages and arbitrary number of databases,
general achievable schemes utilizing the novel idea of PCIA
were proposed for the memory-load pairs

(
N−1
2N , N+1

N

)
and

( 2(N−1)
2N−1 ,

N+1
2N−1 ). This is the very first achievability result

on the cache-aided MuPIR problem with arbitrary number
of databases. On-going directions include: 1) Characteriza-
tion of the optimal memory-load trade-off for the MuPIR
problem with two messages, two users and arbitrary number
of databases; 2) Extending the achievability to more general
cases where the number of messages, users and databases are
arbitrary. Future directions may include extension to colluding
databases and characterization of the optimal memory-load
trade-off under the assumption of uncoded cache placement.
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