
Dagger: Towards Efficient RPCs in Cloud Microservices with
Near-Memory Reconfigurable NICs

Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang, and Christina Delimitrou

Abstract— Cloud applications are increasingly relying on hundreds of loosely-coupled microservices to complete user requests that meet
an application’s end-to-end QoS requirements. Communication time between services accounts for a large fraction of the end-to-end
latency and can introduce performance unpredictability and QoS violations. This work presents our early work on Dagger, a hardware
acceleration platform for networking, designed specifically with the unique qualities of microservices in mind. The Dagger architecture
relies on an FPGA-based NIC, closely coupled with the processor over a configurable memory interconnect, designed to offload and
accelerate RPC stacks. Unlike the traditional cloud systems that use PCIe links as the NIC I/O interface, we leverage memory-interconnected
FPGAs as networking devices to provide the efficiency, transparency, and programmability needed for fine-grained microservices. We show
that this considerably improves CPU utilization and performance for cloud RPCs.
Index Terms—Microservices, programmable NICs, RPC, memory interconnects, FPGA, near-memory processing.

✦

1 Introduction

T HE past few years have seen a major shift in the way cloud

applications are designed, from traditional monolithic architectures

to microservices. While microservices improve error isolation and accel-

erate development and deployment iterations, they also introduce non-

negligible communication overheads in terms of networking [8], [19].

Remote Procedure Calls (RPC) are one of the most commonly-used

communication techniques in microservices. There is a variety of com-

mercially available RPC frameworks; however, since these frameworks

were not designed specifically with microservices in mind, they do not

address their unique resource requirements.

As the demand for high-bandwidth and low-latency networking in the

cloud continues to grow, research from both industry and academia has

offered numerous proposals for efficient datacenter network designs. One

set of proposals is based on user-space dataplane architectures pushing a

larger fraction of the networking stack from kernel to user space [4],

[10]. While this approach eliminates the overhead of the user/kernel

boundary crossing, it still implements the entire networking stack in

software, therefore consuming processor resources and being subject to

the generality overheads of CPU-based execution.

Another line of work proposes offloading network processing to

specialized adapters, and leverages RDMA to implement high level

communication primitives, such as RPCs [5], [12]. While prior work has

demonstrated the efficiency benefits of RDMA compared to traditional

networking, since commercially available network adapters are typically

viewed by the processor as peripheral devices over PCIe, such RDMA-

based architectures still suffer from unnecessary overheads from the

interconnect’s messaging model [7], [11], [13]. Moreover, the proposed

solutions do not offload the entire networking stack to hardware, leaving

computationally-intensive application layers (e.g., RPC data transforma-

tion, (de)encryption, (de)compression, etc.) to the host processor.

To address the aforementioned issues, prior work has proposed

closely integrating NICs with CPUs. NetDIMM [2], for example, sug-

gests embedding network interfaces into DIMM memory hardware.

While the idea has merit, implementing it in silicon and performing

an end-to-end evaluation requires taping-out custom memory hardware,

which is problematic given the frequency with which cloud services

change. soNUMA [14] offers a more practical solution by scaling out

coherent NUMA interconnects at the datacenter level, therefore provid-

ing fast and efficient networking. NeBuLa [21] extends soNUMA and

discusses the implementation of a hardware-based RPC stack over scaled

NUMA interconnects, and further proposes to directly deliver the RPC

payload all the way to the L1 cache. The NeBuLa architecture offers dra-

matic network queueing reduction and improved throughput and latency

for RPCs. However, NeBuLa requires changing the processor’s memory

system and fabricating dedicated silicon, a non-trivial undertaking when

targeting datacenter-scale deployments. The same applies for Optimus

• All authors are with the School of ECE, Cornell University, Ithaca, NY.

E-mail: {nl524, na469, sx233, zhiruz, delimitrou}@cornell.edu

Manuscript received June XXX, 2020; revised August XXX, 2020.

Prime [16], which proposes offloading RPC data transformations to a

closely-coupled integrated ASIC accelerator.

In this work, we present Dagger, the first end-to-end FPGA-based

reconfigurable RPC stack integrated with the processor over a NUMA-

like memory interconnect. In contrast to soNUMA [14], Dagger does not

rely on scaling-out complex memory interconnects and implementation

of the RPC stack in custom silicon, but rather follows the standard design

architecture of networking systems where the machines in a cluster are

connected over commodity Ethernet. Similarly to NeBula and Optimus

Prime, we leverage memory interconnects, but only as the interface

between the processor and the NIC as an Ethernet device. We use FPGAs

as the physical medium for Dagger to (1) make the implementation of the

near-memory RPC hardware feasible today without the need for taping-

out custom hardware, and to (2) make the NIC reconfigurable, so the

networking stack can dynamically adjust to the running workload. The

latter is especially important for microservices, which are by design very

diverse and frequently updated [8], [18]. While several prior proposals

have discussed the potential of programmable NICs [3], [6], [17], they

all rely on commodity PCIe technology for the interconnect, and are

not focused on hardware-based RPC systems, therefore, leaving the

application part of the RPC protocol stack running on the host processor.

We characterize the unique properties of microservice network

footprints using the Social Network and Media Service applications

from the DeathStarBench suite [8], and prototype Dagger on the Intel

Broadwell integrated CPU/FPGA architecture available in today’s cloud

systems. We demonstrate in practice that offloading networking to a near-

memory FPGA significantly increases per-core RPC throughput for the

small requests common in microservices up to 2.4− 3.8×, compared

to both specialized hardware platforms [12] and optimized software

protocols [4], [10]. Our solution yields single-thread throughput of 12.4

Mrps; it scales up to 42 Mrps with only four threads on two CPU cores,

and provides state-of-the-art µs-scale end-to-end latency.

2 Network Characteristics in Microservices
Microservices have distinct network requirements and traffic patterns,

compared to monolithic applications and traditional distributed systems.

First, every user request in microservices is propagated through a large

graph of tiers, with per-node processing and communication delays being

accumulated in the end-to-end latency. As a result, the Quality of Service

(QoS), which is usually defined in terms of tail latency under a certain

load in Queries per Second (QPS), critically depends on the performance

of every communication channel between each pair of microservices on

the call path. Hence, even a small latency increase in the networking

stack translates to considerable increases in end-to-end latency, as shown

in Figure 1 which plots the end-to-end fractions of networking and

application time (including queueing) with respect to load.

Second, even though RPC request and response payloads in typical

datacenter applications are already relatively small, ranging from hun-

dreds of bytes to few kBytes [9], [22], in microservices that number is

even smaller, as shown in Figure 2 for the Social Network and Media

Service from DeathStarBench [8].








