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Abstract.  Let o €e R\Q and B(«) =limsup,_, (Ingn+1)/qn < 00, where p,/q, is
the continued fraction approximation to . Let (Hy g ou)(n) =um +1)+un —1) +
2X cos 2w (6 4+ na)u(n) be the almost Mathieu operator on 02(Z), where A, 6 € R. Avila
and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170(1) (2009), 303-342]
conjectured that, for 20 € Z 4 Z, H, ¢ satisfies Anderson localization if |A| > e2B(@),
In this paper, we develop a method to treat simultaneous frequency and phase resonances
and obtain that, for 20 € aZ + Z, Hj, 4. satisfies Anderson localization if |A| > e3f(®),
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1. Introduction

The almost Mathieu operator (AMO) is the (discrete) quasi-periodic Schrédinger operator
on ¢2(Z) given by

(Hy.a0u)(n) =um+1)4+u(m—1) + 21 cos 2n (6 + no)u(n),

where A is the coupling, « is the frequency, and 6 is the phase.

The AMO is the most studied quasi-periodic Schrodinger operator, arising naturally as
a physical model. We refer the reader to [34, 40] and the references therein for physical
background. Most recently, there are a lot of interesting topics related to AMOs, e.g. [4,
27, 28, 31, 33, 35, 45].

We say that the phase 6 € R is completely resonant with respect to frequency « if 260 €
aZ + Z. In this paper, we always assume that @ € R\Q.
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Conjecture 1. Avila and Jitomirskaya [1, 2] assert that, for 20 € «Z + Z, H, 4, satisfies
Anderson localization if |A| > e?#, where

1
B = B(@) = lim sup —4"+1

n—00 qn

and p, /qy is the continued fraction approximation to «.

Completely resonant phases of quasi-periodic operators correspond to the rational
rotation numbers with respect to frequency in the Aubry dual model. We refer the reader
to [13, 18, 29] for the Aubry duality. The (quantitative) reducibility of Schrodinger
cocycles with rational rotation numbers is related to many topics in quasi-periodic
operators. For example, it is a good approach to show that all the spectral gaps G, labeled
by the gap labeling theorem (the rotation number p on gap G,, satisfies 2p = ma mod Z)
[7, 32] are open (named after the dry ten Martini problem for the AMO). The dry ten
Martini problem is stronger than the ten Martini problem (the latter one was finally solved
by Avila and Jitomirskaya [2]). We should mention that the dry ten Martini problem is
still open for all parameters. The non-critical coupling case has been solved by Avila-
You-Zhou [5]. It is also related to the Holder continuity of Lyapunov exponents, rotation
numbers and the integrated density of states.

The reducibility of the Schrodinger cocycles with rational rotation numbers was first
established by Moser and Poschel [41], who modified the proof of reducibility of cocycles
with Diophantine rotation numbers [14]. See [15, 19] for more precise results. It was
first realized by Puig [42, 43] that localization at completely resonant phases leads to
reducibility for Schrodinger cocycles with rational rotation numbers for the dual model.
The argument was significantly developed in [3, 20, 36, 39].

For completely resonant phases, Jitomirskaya—Koslover—Schulteis [25] proved
localization for @ € DC via a simple modification of the proof in [23]. We say « € R\Q
satisfies the Diophantine condition (DC) if there exist 7 > 1, ¥ > 0 such that

lka|| > «|k|™F forany k € Z \ {0},

where | x|| = dist(x, Z). Their result can be extended to o with 8(«) = 0 without any
difficulty. In order to avoid too many concepts, if B(«) = 0, we call @ Diophantine. To the
contrary, if (o) > 0, we call « Liouville.

Recently, there have been several remarkable sharp arithmetic transition results for all
parameters. In particular, phase transitions happen in a positive Lyapunov exponent regime
for Liouville frequencies [6, 21, 24, 26, 27]. Later, a universal (reflective) hierarchical
structure of eigenfunctions was established in the localization regime [27, 28] with an
arithmetic condition on 6. However, all the sharp results aforementioned excluded the
completely resonant phases. The purpose of this paper is to consider the missing part.

We prove Conjecture 1 for |A| > 3.

THEOREM 1.1. Suppose frequency o € R\Q satisfies (o) < 0o. Then the AMO H, 40
satisfies Anderson localization if 20 € aZ + 7 and |1| > e3P @, Moreover, if ¢ is an
eigenfunction, that is, Hy o o = E¢, then

In(@” (k) + ¢*(k — 1))

lim su <—(OnA-3p).
k%oop 2|k|
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Remark 1.2. For a with B(a) =400, Hj4¢ has a purely singular continuous
spectrum [17, 44] if |A| > 1.

Now we will discuss the history of Conjecture 1 and also our approach to the proof of
Theorem 1.1. We state another related conjecture first. Define
3(a, 6) = lim sup M.
n—00 ||
Conjecture 2. Jitomirskaya [22] conjectured the following.
(2a) (Diophantine phase) H, 4 satisfies Anderson localization if |A|> eP@ and
8(a, 0) =0, and H) o has a purely singular continuous spectrum for all 6 if
1 <|A| <efP@.
(2b) (Diophantine frequency) Suppose (o) =0. H, o satisfies Anderson localization
if |A| > ¢®@® and has a purely singular continuous spectrum if 1 < |A| < 3@,

Notice that 8(«) = O for almost every «, and § (o, 8) = 0 for almost every 6 and fixed «.

The case B(«) =0 and §(¢, ) =0 of Conjecture 2 was solved by Jitomirskaya in
her pioneering paper [23]. Avila and Jitomirskaya [2] proved the localization part for
Diophantine phases in the regime |A| > ¢(1/98 which was a key step in solving the
ten Martini problem. Liu and Yuan followed their proof and extended the result to
A > ¢BG/DB [37]. Liu and Yuan [38] further developed Avila—Jitomirskaya’s technique
in [2] and verified Conjecture 1 in the regime |A| > ¢’#. Here, % and 7 are the limits of the
method in [2].

Recently, Avila—You-Zhou [6] proved the singular continuous spectrum part of
Conjecture 2a, as well as the measure-theoretic version of Conjecture 2a: Hj 4.0
satisfies Anderson localization for |A|>e? and almost every 6. See also [24].
Diophantine frequency (Conjecture 2b) and the localization part of the Diophantine phase
(Conjecture 2a) were proved by Jitomirskaya and Liu [27, 28], who developed Avila—
Jitomirskaya’s scheme and found a better way of dealing with the phase and frequency
resonances.

One of the ideas of [27, 28] is that they treat the values of the generalized eigenfunction
at resonant points as variables and obtain the localization via solving the equations of
resonant points, not just by using block expansion and the exponential decay of the Green
functions. We should mention that the Green’s functions are not necessarily exponential
decay in [27, 28] and also in the present paper.

We want to explain the motivations for Conjectures 1 and 2, and also explain the new
challenge for completely resonant phases. For the Diophantine frequency B(«) =0, the
resonant points come from the phase resonances. Roughly speaking, if |20 + k|| is small,
k is called a phase resonance. For the Diophantine phase §(«, 8) = 0, the resonant points
come from the frequency resonances. Roughly speaking, if ||k« is small, k is called
a frequency resonance. Phase resonances lead to reflective repetitions of potential [30]
and frequency resonances lead to repetitions of potential [17, 44]. Indeed, all known
proofs of localization, for example [10-12, 16], are based, in one way or another, on
avoiding resonances and removing resonance-producing parameters. For AMOs and
|A| > 1, the Lyapunov exponent is In |A|. Conjecture 2 says that the competition between
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the Anderson localization and the singular continuous spectrum is actually the competition
between the Lyapunov exponent and the strength of the resonance. Conjecture 2a says
that, without phase resonances, if the Lyapunov exponent beats the frequency resonance,
then Anderson localization follows. Otherwise, H; ¢ has purely singular continuous
spectrum. Conjecture 2b says that without frequency resonances, if the Lyapunov exponent
beats the phase resonance, then Anderson localization follows. Otherwise, Hj 4,9 has
purely singular continuous spectrum.

For completely resonant phases, 20 € aZ + Z, 5(«, 6) = B(c). Thus phase resonances
and frequency resonances happen at the same time. Conjecture 1 says that if the
Lyapunov exponent beats the frequency resonance plus the phase resonance, then the
Anderson localization follows. This is the first challenge in our paper since we need
to deal with frequency and phase resonances simultaneously. The second challenge
is to avoid complete resonance. In dealing with Conjecture 1, the original arguments
of Jitomirskaya [23] do not work directly since there is complete resonance. In [25],
Jitomirskaya—Koslover—Schulteis found a trick to avoid complete resonance by shrinking
the size of the interval around zero (we refer it as the ‘shrinking scale’ technique). Later,
the shrinking scale technique was fully explored in [3, 20, 38, 39]. It is natural to develop
the shrinking scale technique and the localization arguments in [27, 28] to treat our
situation. Since we shrink the scale, there is one phase resonance and one frequency phase
resonance in a half scale. It is different from the situation in Conjecture 2, where there is
one phase resonance or one frequency resonance in one scale. Using the full strength of
the localization proof of [27, 28] to treat both phase resonances and frequency resonances,
one can only obtain the Anderson localization for || > e*# in Conjecture 1, where four is
the non-trivial technical limit in such approach. We bring several new ingredients that go
beyond the technique of [3, 20, 25, 27, 28, 38, 39] and allow us to improve the constant to
three, thus going well beyond the previous technical limit. In particular, instead of using
Lagrange interpolation uniformly, we treat Lagrange interpolation individually during the
process of finding the points without ‘small divisors’. This gives us significantly more
varieties to construct Green functions. We believe our method has wider applicability to
Anderson localization.

2. Some notation and known facts
It is well known that in order to prove Anderson localization of H, 4, we only need to
show the following statements [8]. Assume that ¢ is a generalized function, i.e.,

Hp=E¢p and |¢p(k)| <1+ k| forsome E.
Then there exists some constant ¢ > 0 such that
| (k)| < Ce™ ™ for all k.

It suffices to consider o with 0 < B(«) < co. Without loss of generality, we assume
that A > e3f, 0 € {a/2, /2 + %, 0, %} (shift is a unitary operator). In order to avoid too
many forms of notation, we still use 20 € aZ + Z to represent 0 € {&/2, o /2 + %, 0, %}.
We also assume that E € ¥, , (denote by X, , the spectrum of operator H) o ¢ since
the spectrum does not depend on 8). For simplicity, we usually omit the dependence on
parameters E, A, «, 6.
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Given a generalized eigenfunction ¢ of H, 4,9, without loss of generality, assume that
¢(0) = 1. Our objective is to show that there exists some specific ¢ > 0 such that

lp (k)| < e ™ fork — 0.
Let us denote
Py (8) = det(Ryo x—11(Hy, 0,06 — E)R[0,k—17)-

It is easy to see that Py (@) is an even function of 8 + %(k — D) and can be written as a
polynomial of degree k in cos 27 (0 + %(k — Da): ie.,

Pe—k--/‘zelklA 291k1 1
k()—Zc]cos 7r< ~|—§( — )a)—Qk<cos 71( +§( - )oz)). (1)

j=0
LEMMA 2.1. [2, p. 16] The following inequality holds.
1
lim sup — In |Py(0)] <InA.
k—00 geR k

By Cramer’s rule (see [9, p. 15], for example) for given x| and x3 = x1 + k — 1, with
yel =[x, x]CZ,

| Puy @ + (3 + Da)

|G 1(x1, y)l—‘ Pe® +x1c0) 2
_ Py—xl(e + x1@)

G (y, x2)| = WXCET TN 3)

By Lemma 2.1, the numerators in (2) and (3) can be bounded uniformly with respect to 6.
Namely, for any ¢ > 0,
|P(6)] < elmA+e @

for large enough n.

Definition 2.2. Fix t > 0. A point y € Z will be called (¢, k) regular if there exists an
interval [x, x2] containing y, where x, = x; + k — 1, such that

Gy o) (0, X)) <P 751 and |y —x;| > 3k fori=1,2.

It is easy to check that ([9, p. 61])

¢ (x) = =Gy 011, V)P (x1 — 1) — Gy xy) (X, X2)@(x2 + 1), &)
where x € I =[x, x2] C Z.
Given a set {01, . .., 6k+1}, the Lagrange interpolation terms La;, i =1,2, ...,k + 1,
are defined by
s |x — cos 20|
La; =In max l_[ / . (6)
xe[-1,1] jl i |cos2m6; — cos 20|

The following lemma is another form of Lemma 9.3 in [2].

LEMMA 2.3. Given a set {01, ..., 6kt1}, there exists some 0; in set {01, ..., Oky1} such
that
k—1 ek In A—La;
Pi| 60; — > .
k ( ) “) =Tkl
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Proof. Otherwise, foralli=1,2,...,k+1,

k—1 ek InA—La;
Qr(cos2mH;) = Py (91' - a) < k+—1

By (1), we can write the polynomial Q(x) in the Lagrange interpolation form at points
cos2mb;,i=1,2,...,k+ 1. Thus

k+1 I1:2;(x —cos276;)
_ 2726 Jj#i /
|Qk(x)| igl Qi (cos 2w z)l_[j7£i(cos 2m6; — cos 277:9/)
kInA—La; I kln
k4 el =k
<( + ) k+1 € e

for all x € [—1, 1]. By (1) again, | Pr(x)| < ek * for all x € R. However, by Herman’s
subharmonic function methods (see p.16 [9]), fR /L In|Pr(x)|dx > kInA. This is
impossible. O

Fix a sufficiently small constant i, which will be determined later. Let b, = ng,. For
any y # 0, we will distinguish between two cases:
1) dist(y, guZ + (gn/2)7Z) < b,, called n-resonance; and
@) dist(y, guZ + (gn/2)Z) > by, called n-non-resonance.

THEOREM 2.4. [38] Assume that 20 € aZ. + 7 and ) > 1.
Suppose either:
1)  bp <|y| < Cbyy for some C > 1 and y is n-non-resonant;
or
(i) |yl = Cqn and dist(y, gnZ + (gn/2)Z) > by.
Let ng be the least positive integer such that 4q,_,, < dist(y, gaZ + (g, /2)Z) — 2. Let

s € N be the largest number such that 4sqn_n, < dist(y, guZ + (gn/2)Z) — 2. Then, for
any & > 0 and sufficiently large n, y is (In A — €, 65q,_,, — 1) regular.

The proof of Theorem 2.4 builds on the ideas used in the proof of Lemma B.4 in [27],
which is originally from [2]. However, it requires some modifications to avoid the
completely resonant phases. Thus we give the proof in Appendix A.1.

The following lemma can be proved directly by block expansion and Theorem 2.4,
which is similar to the proof of Lemma 4.1 in [27]. We also give the proof in the Appendix.

LEMMA 2.5. Suppose k € [jgn, (j + H)anl ork € [(j + Dgn, (j + Dgnl with 0 < || <
C(bnt1/gn) + C, and dist(k, gnZ + (gn/2)Z) = 10nqy. Let d; = |k — tqyu| fort € {j, j +
%, j + 1}. Then, for sufficiently large n,

|¢ (k)| < max{r; exp{—(In A —n)(d; — 3ng,)},
rit12exp{—Unx —n)(djy12 — 3nqa)}}, 7

or

| (k)| < max{rji1/2 exp{—(InA —n)(djt+1/2 — 3ngn)},
ri+1exp{—=(Uni —n)(dj+1 — 3nga)}}. ®)
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3. Proof of Theorem 1.1
We always assume that n is large enough and that C is a large constant below. Denote by
Lx| the largest integer less or equal to x.

Let

ri= sup |¢(jgn +rqn)l
[r|<10n

¢>(jqn + V?"J + rqn) ‘

THEOREM 3.1. Let |¢| < (by+1/qn) + 3. Then, except for ry,

re <exp{—(Ini — 38 — Cn)|€|gn} €))

and

rj+1/2 = Sup
Iri<10n

We prove a crucial theorem first.

and
re—12 <exp{—(ni —38 — Cn)|t — Ligy}. (10)

LEMMA 3.2. Forany |j| <4(bp+1/qn) + 16,
ris12 <exp{—3(In i — 28 — Cn)gy) max{r;, rjy1}.

Proof. Take ¢ (jgn + Lqgn/2] 4+ rqn) with |r| < 107 into consideration. Without loss of
generality, assume that j > 0. Let ng be the least positive integer such that

1 1
E‘]nfno = g — 21 |qn-

Let s be the largest positive integer such that sg,—,, < (é — 21n)gy. Then

1

5> —
n

By the fact that (s + 1)gn—n, > (é — 21)qn, one has

(2 = 30)qn < Sqn-ny < (& — 2. (11)
Set I, I C Z as follows:
I = [-25qn—ny, —11;

L= [jqn + V?J — (5 + 05D Gnngs jdn + L%J + (5 + 105D dnng — 1}

and let 6,, =0 4+ mo form € Iy U I,. The set {6, }mer,ul, consists of (4s + 2[0S |)gn—n,
elements. Let k = (4s + 2[ns])qn—n, — 1.

By modifying the proof of [2, Lemma 9.9] or [38, Lemma 4.1], we can prove the claim
(Claim 1): for any ¢ > 0, m € I1, one has La,, < €qy; and for any m € I, one has La,, <
qn(B + €). We also give the proof in the Appendix.

By Lemma 2.3, there exists some joe€ I; such that Pr(0;, — ((k —1)/2)a) >
ekImA=¢dn or some jo € I» such that Py By — (k= 1)/2)a) > ek A—(B+e)qn
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Suppose Jj € Iy, i.e., Pe(0j, — ((k — 1)/2)ar) > ekMA=2an . Tet I =[jo — 25qn—n, —
5N 1qn—ny + 1, jo + 25Gn—ny + LSN)gn—ny — 11 =[x1, x2].  Denote x; =x; —1 and
xy=x3+ 1.

By (2)-(4), it is easy to verify that

|G[(O, xi)l S e(ln A+8)(k—2—|x,—|)—k In )»-‘ré‘qn

< e—|x;| In A+Cegqy )

Using (5) and noticing that |x;| > (ns/2)g,—y,, we obtain

pO) < D e /Do INAHCEd g (x| < 1, (12)
i=1,2

where the second inequality holds by (11). This is contradicted by the fact that ¢ (0) = 1.
Thus there exists ji € I> such that Pr(0j, — ((k — 1)/2)a) > ek M+ =B+ Tet | =
Ljo — 25Gn-ny — LsN1Gn—ny + 1, jo + 25qn—n, + Lsnlgn—n, — 11 = [x1, x2]. By (2), (3)

and (4) again,
|GI (p7 Xi)| < e(ln Ate)(k—2—|p—xi|)—k In A4+Bgn+eqn , (13)

where p = jg, + 19,/2] + rq,. Using (5), we obtain
p(p) < D ePHD g aple PNy, (14)

i=1,2

Let d; i, in = |xi —i1gn — 12(gn/2)|, where i =1,2, iy €Z and i, =0,1. If d;; ;, >
10ng,, then we replace ¢ (x;) in (14) with (7) (or (8)). If d; ;, ;, < 10ng,, then we replace
d)(xlf) in (14) with r; (i, /2). Then

rj+1/2 <max{exp{—3(In & — 28 — Cygalr;, exp{—5(n i — 28 — Cngalrj+1,
exp {—=25gn—ny IN A + Bgn + Cngnlrjii/2}. (15)
By (11),
=25qn—no In A + Bgn + Cngn < (_mT)\ +B+ Cn)tzn
<0,
for small 5. This implies that
rj+i12 < exp{—=2(sn + $)gn—no In A + Bgn + Cngulrj+1,2

cannot happen.
Thus (15) becomes

rj+172 < max{exp{—3(In A — 28 — Cn)gu}rj, exp{—s(n 1 — 28 — Cn)gu}rj41}. (16)
O

LEMMA 3.3. For1 <|j| <4(bps1/qn) + 12,

r; < max {max{exp(—(If| In & — p = Cn)gu}r 4.}, expl=(In & = 38 = Ci)garan .
(17)
where O = {£3, i%}.
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Proof. 1t suffices to estimate ¢ (jg, + rq,) with |j| > 1 and || < 10n. Without loss of
generality, assume that j > 1. Let ng be the least positive integer such that

1
—Gn—ng = % -2

Let s be the largest positive integer such that sg,_,, < (g,/6) — 2. Then s > 1/n.
Set Ji, J2, J3 C Z as follows:

J1=[-2sqn—ny, —11;
Jr=1jgn — 355]n7n0’ Jan — 255]n7n0 —1JU[jgn + ZSann()’ Jan + 3SQV17110 —1J
J3=[jgn — 2S‘]n—nov Jan + zsq"—"o — 15

and let 6,, =0 + ma for m € J; U Jo U J3. The set {0, }mes,usul; consists of 8sq,_p,

elements. By modifying the proof of [2, Lemma 9.9] or [38, Lemma 4.1] again, we can

prove the claim (Claim 2) that, for any m € J; U J3 and any ¢ > 0, La,, <2(8 + €)qn,

and for any m € Jp, La,, < (B + €)g,. We also give the details of proof in the Appendix.
Applying Lemma 2.3, there exists some jy with jy € J1 U J3 such that

Psg g —1Og — (45Gn—ny — Dar) = 3o M +=2Pdn=ean,
or there exists some jo with jy € J, such that

Pisgy 10y — (45Gn_ny — Der) = 5o IMA=Fan=can,
If jo€ Jo,let I =[jo —4sqn—ny + 1, jo +45Gn—n, — 11 = [x1, x2]. Then

|G (ign + rgn, xi)| < eI A+M B5Gn—ny=2—1jqn+rqn—xiD=85Gn—nq In 2+Bgn+Crign_ (18)

Using (5), we obtain

6 Gign +rgn)l < Y eBFEDI|p(x])|eliantranilind, (19)
i=1,2

Recall that d; ;, i, = |x; — {19y — i2qn/2|, where i =1,2, i; €Z and i =0, 1. If
d; i, .i» > 10nq,, then we replace ¢(xlf) in (19) with (7) (or (8)). If d; ;, i, < 10ng,, then
we replace ¢ (x}) in (19) with r;, 4 (i, 2).

Then by (19),

rj < exp{Bqn + Cng,} max {rtrgg({ew{—lthn InA}rjte, exp{—25qu—n, In k}rj}},

where O = +3, +1, +1.
Note that sg,—ny > (I — 1) ¢ (using (s + D@n—n, > £ga — 2 and s > 1/n). Then

rj < exp{Bgn + Cngn} eXP{—zs%—no In )‘}rj

cannot happen since In A > 3.
Thus

rj < rtré'g{eXp{ﬂqn + Cngn — |tlgn In A}rjqe},

where O = &3, &1, . This implies (17).
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If jo € J3, by the same arguments,

ax  {exp{2Bqn + Cngn — |tlgn In A}rjy}.

rj < m
te{£1,£1/2}

Using the estimate of 7j+1,7 in Lemma 3.2,
ri <exp{—(nA — 38— Cn)g,} max{rj+y, rj}.
By the same reason,
rj = exp{—=(ni =38 — Cnqnlr;
cannot happen. Thus

rj <exp{—=(ni =38 = Cnqn}rj+i. (20)

This also implies (17).
If joe Ji, then (20) holds for j =0, which will lead to |¢(0)] < 1. This is
impossible. O

3.1. Proof of Theorem 3.1. By Lemmas 3.2 and 3.3, for 1 < j <2(bu+1/qn) + 4,

ri—12 < exp{—%(In A — 38 — Cn)gn) max{r;_i, r;} (1)
and
rj < maxiexp(—|t|(In & = 3 = Cn)gn}r ), (22)

where O = {3, £1, £3}. For —by41/g, —3<j < —1,

ris12 < exp{—3(n i — 38 — Cn)gy) max{rji1, r;} (23)

and
rj < Itréég({GXp{—ltI(ln)» =38 = Cm)qn}rj+}- (24)
Suppose £ > 0. By letting j = £ in (22) and (21) and iterating 2¢ times or until j <1,

we obtain

re < (20 +2)gn exp{—(In A — 38 — Cn)lqn} (25)

and
re-172 < 2L+ 2)gn exp{—(In A — 38 — Cn)(€ — 5)qn}. (26)

Notice that we have used the fact that |r;| < (|j| +2)g, and |rj_12] < (|j — %| +2)qy.
Suppose £ < 0. By letting j = £ in (24) and (23) and iterating 2|¢| times or until j > —1,
we obtain
re < (284 2)gp exp{—(n i — 38 — Cn)|€|qn} 27

and
re+1/2 < (204 2)gn exp{—(In a1 — 38 — Cnp)|£ + %an}- (28)

Now Theorem 3.1 follows from (25)—(28).
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3.2. Proofof Theorem 1.1. Without loss of generality, we assume that k > 0. Let n > 0
be much smaller than In A — 38. For any k, let n be such that b, <k < by 1.

Case 1. dist(k, gnZ + (qn/2)Z) < 10ng,.
In this case, applying Theorem 3.1,
lp(K)], l¢(k — D] <exp{—(Ini—38—Cn)lkl}. (29)
Case 2. dist(k, g, Z + (g /2)Z) > 10nq,.
Let 0 < j < but1/4n such that k € [jga. (j + 3)qal otk € [(j + 3)qn, (j + Dan].
By Lemma 2.5 and Theorem 3.1, one also has
lp()], ok — D] = exp{—(Ini — 38 — Cn)lkl}. (30)
By (29), (30) and letting  — 0,

2 20
limsup RO O TE*=D) 5 s,

k— 00 2|k|
We have finished the proof.

A. Appendix. Proof of Theorem 2.4, Claims I and 2
Let p, /g, be the continued fraction approximation to . Then

forall 1 <k <gqp+1, disttka, Z) > |gua — pnl (A.D)

and

(A2)

< |gna — pnl < .
2qn+1 dn+1

LEMMA A.l. [2, Lemma 9.7] Let « e R\Q, x € R and 0 < £y < g, — 1 be such that
sinzr (x + £oar)| = info<g<y, 1 |Sinm(x + La)|. Then, for some absolute constant C > 0,
qn—1
—Clng, < Z In [sinT(x +La)| + (gn — 1) In2 < Cng,. (A.3)

=0
£

A.l. Proof of Theorem 2.4. We only give the proof of Case 1: b, <|y| < Cb,41 is
non-resonant.

By the definition of s and ng, we have 4sg,_,, < dist(y, g,Z) — 2 and 4g,_ny4+1 >
dist(y, gnZ) — 2. This leads to g, —ny < gn—no+1- Set I, Io C Z as follows:

I =[=2sqp—n,y, —11;
D=1y = 25qn—ny, ¥y + 25Gn—n, — 11;
and let §; =6 + jo for j € I1 U I,. The set {6;} e ,ul, consists of 6sg,_y, elements.
Let k = 65gn_n, — 1. We estimate La; first. For this reason, let x = cos 2w a and take

the logarithm in (6). Then
l_[ |cos2wa — cos 20|

In
|cos2m6; — cos 20|

Jehuly
Jj#
= E In |cos2ma — cos 20| — E In |cos2m8; — cos 27 0;].
jenui, jelul,
J#i J#i
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We start to estimate Y ;. 1y, j In [cos2mwa — cos 26;|. Obviously,

E In |cos2mwa — cos 2w 0|
JenUly
J#i

- Z In |sinz(a + 6;)] + Z In |sin (@ — 0;)| + (65Gu—p, — 1) In2
jel Ul jeljUl,
J#i J#
=31+ 34+ (65¢p—n, — 1) In2.

Both X and ¥_ consist of 6s terms of the form of (A.3), plus 6s terms of the form

In min [sin (x + jo)l,
]:Osl’--qu—no

minus In [sinz (a &£ 6;)|. Thus, using (A.3) 6s times of ¥ and X_, respectively, gives

Z In [cos2ma — cos 20| < —65qp_py IN2 + Cs In gp_p,. (A4)

Jenuly
J#i

Let a = 6;. We obtain
Z In [cos2m8; — cos 270

jenuL
J#

= > Inlsinm(@ +0)|+ Y In|sinw (6 — ;)| + (65qn—n, — 1) In2

jeljuly jeljuly
i i
=54 + B + (65¢n_ny — D 1n2, (A5)
where
Tp= Y Infsint(20 + (i + j)e)|
jelul,
J#
and
To= ) Infsint(i — jel.
JjehUl
J#i

We will estimate ;. Set J; =[—2s, —1] and J> = [0, 4s — 1], which are two adjacent
disjoint intervals of length 2s and 4s, respectively. Then I} U I can be represented as a
disjoint union of segments B;, j € J1 U J2, each of length g,,_p,.

Applying (A.3) to each B;, we obtain

X4 > —65qp_py In2 + Z In |sinnéj| —CsIngy_p, —In|sin2n (0 +ia)|, (A.6)
jeJiuly

where
|sinnéj| = em%n [sint (260 4+ (£ + i))|. (A7)
€B;j

By the construction of I; and I,

20 + (L +i)a = £(mgua +rie) mod Z (A.8)
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or
20 + (L +i)a = £rpe mod Z, (A.9)

where 0 <m < C(bp+1/qn) and 1 <r; <gqn,i =1, 2.
By (A.1) and (A.2), it follows that

Ay—
min In |sinTt (20 + (£ +i)a)| > C In (llriaHR/Z -t 1)

teul, 2
Ap—i
ZCln(Anl — nZ )
A
>InC22 > _Cing,, (A.10)

since |mgnallr/z < C(Nqn+1/9n) An < (Ap—1/2).
By the construction of 77 and I, we also have

rn#in In [sin(j — i)a)| > —C In gj,. (A.11)
i#]

i,jeljuly

Next, we estimate Zjell In |sinnéj|. Assume that éj+1 :éj + gn—noo for every
J» j + 1€ Jy. Inthis case, for any i, j € J; and i # j,

16i — 61R/Z = Ngn-no@|IR/2- (A.12)
By the Stirling formula, (A.10) and (A.12),

N
Z In |sin276;| > 2 Z In(jAy_ny) — C In gy
jeh j=I1

> 2sIn

—Clng, — Cs. (A.13)
qn—no+1

In the other cases, decompose J1 into maximal intervals T, such that, for j, j +
1 € T,, we have 0 i1 = 9 + gn—n,o. Notice that the boundary points of an interval
T, are either boundary points of J; or satisfy ||é lr/z + An—ny > An ng—1/2. This
follows from the fact that if 0 < |z| < g,—y,, then ||9 + gn-nottllr/z < ||9 Ir,/z + An_ng
and |I9 + @+ gn-np)alr/z > llzalr/z — ||9 + gn—ny@llR/Z > An—ng—1 — ||9 lr/z —
Ay_p,. Assuming that T, # Jj, there exists j € T such that ||9 lrR/z = (An—ng—1/2) —
An_ny. A

If T, contains some j with [|0;(lr/z < An—ny—1/10, then

(Anfnofl/z) - Anfno - (An,no,]/l())

T, | >
‘ Anng

> lAn—nO—l
4 Ay_n
since $qn—ny < qn-ny+1, Where |Ti,| =b —a + 1 for T;, = [a, b]. For such T, a similar
estimate to (A.13) gives

1= % _1, (A.14)

T,
> Insinmd; |>|T|1nL—cs—Clnqn

jeT, qn—no+1

> |T|In

—Cs —Clngy. (A.15)
qn—no+1
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If T, does not contain any j with ||éj lr/z < Ap—ny—1/10, then, by (A.2),
> Infsinmb)] = —|Te| In guny — C|Ts|

J€T
> |Te|In = C|T,|.
qn—ny+1
By (A.15) and (A.16),
> In|sinz6;| > 25 In —Cs—Clng,.
ieh qn—no+1
Similarly,

Zln|sinnéj|z4sln —Cs —Clngy.

qn—np+1

J€)
Putting (A.6), (A.17) and (A.18) together gives
Y4 > —65¢n_n, In2+ 65 In

—CsIngy_py, — ClIngy.
gn—ny+1
Now we start to estimate > _.

By replacing (A.10) with (A.11), and following the proof of (A.19), we obtain

Y_ > —65¢n_ny In2+ 65 In —CsIngy_p, — Clngy.
gn—np+1

By (A.5), (A.19) and (A.20), we obtain
Z In |cos2m8; — cos 20|

JenUly
J#I

> —65¢pn—ny In2 4 65 In

—CsIngy—p, — Clngy,.
qn—ny+1
By (A.4) and (A.21), forany i € I} U I,

l_[ |X — cos 27T91| < eGSQn—nO (=2 lﬂ(s/%z—n()Jrl)/‘Infno‘f‘g)
[cos2md; — cos 2w0;| —

Jjeluly
j#i
Using the fact that 4(s + 1)g,—», > 1gs — 2, one has, forany i € I U I,

l_[ |x — cos 20| B
jeon |cos2m6; — cos 20|
J#i
This implies that La; < esq,_y, foranyi =1,2, ...,k + 1, where k = 6s5g,_,, —

Applying Lemma 2.3, there exists some jo with jo € I U I such that

Firstly, we assume that jy € I».

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A22)

1.

Set I =[jo — 35qn—ny + 1, jo + 35Gn—n, — 11 = [x1, x2]. By (2), (3) and (4) again,
|G (y, x)| <exp{(n X +&)(65Gn—ny — 1 — |y — xi|) — 65gn_py(IN A — &)}

Notice that |y — x;| > $g,—n,. We obtain
IGr(y, x)| <exp{—(ni — &)y — x;l}.
If jo € I, we may let y = 0 in (A.23). By (5), we get
| (0)| < 65gn—n, exp{—(In A — &)sgp—n,}-
This contradicts ¢ (0) = 1. Thus jg € I», and the theorem follows from (A.23).
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A.2. Proof of Claim 1. By the construction of I and I in Claim 1, (A.1) and (A.2),
we have, fori € I,

min In [sinz(260 + (€ + D)a)| > —C In gn (A24)
teUl,
and
min In [sinz(j — i)a)| = —C In g,. (A.25)
jellTLlez

Replacing (A.10) with (A.24) and (A.11) with (A.25), and following the proof of (A.22),
we can show that, for any i € I,

l_[ |x — cos 27 6] -
_ |cos2m6; — cos 2mH;|
JelUly
J#i
This implies that, fori € 11, La; < &q,. By the construction of 7 and I, in Claim 1, (A.1)
and (A.2) again, we have, for i € I,

min In [sin7 (260 + (€ + )a)|r/z > —Pgn — C In g, (A.26)
teUl
and
min In [sinz(j — i)a)| = —C In g,. (A.27)
jellTLlez

We should mention that, for each i € I, there is exact one j € I} U I such that the lower
bound of (A.26) can be achieved.

Replacing (A.10) with (A.26) and (A.11) with (A.27), and following the proof of (A.22),
we can show that, for any i € I,

I1 X = cos2TO;l  _ esqunythan

. |cos2m6; — cos 2mH;| ~
JelUly

J#
This implies that, for any i € I, La; < g, (B + ¢).
A.3. Proofof Claim 2. Let J31 =[jqn — 25gn—ny, jqn — 1] and
T3 =1igns +25Gn-ny — 11
sothat J3=J} UJZ. Let = Jy U L U /.

Casel.ieJi U J31. By the construction of Ji, J> and J3 in Claim 2, and by (A.1), (A.2),

1}1i}1 In |sinT (20 + (£ 4+ i)a)| > —Bgn, — C Ingy, (A.28)
€
and
min In [sin (j — e)| = —Bga — C In g (A29)
i#]
jel

Moreover, there are exactly two £, j € I such that the lower bound of (A.28) can be
achieved for £ and the lower bound of (A.29) can be achieved for j.

Downloaded from https://www.cambridge.org/core. 29 Aug 2020 at 13:26:44, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

1890 W. Liu

Case2.ie J1 U J32. By the same reason,

rgli? In [sinT (20 4+ (€ + i))| > —Bg, — C Ing, (A.30)
€
and
n;in In [sin (j —i)a)| > —C In gp,. (A.31)
i#]j
jel

Moreover, there are exactly two £1, £ € I such that the lower bound of (A.30) can be
achieved for both £ and £5.

Case 3. i € J>. By the same reason,

I}li}l In [sinT (20 + (£ 4+ i)a)| > —Bgn — C In gy, (A.32)
S

and
I_r;in In [sint(j —i)a)| > —C In gj,. (A.33)
i#j
jel
Moreover, there is exactly one £ € I such that the lower bound of (A.32) can be achieved
for £.
Now following the proof of the Claim 1, we can prove Claim 2.

B. Appendix. Proof of Lemma 2.5
Without loss of generality, we assume that k € [jgq,, (j + %)qn] and j >0. Letd; =k —
janand dji12 = (j + 3)qn — k.

For any y € [jg, + ngn, (j + %)qn — ngn], by Theorem 2.4, y is regular with 7 =
In A — n. Therefore there exists an interval I (y) = [x1, x2] C [jgqn, (j + %)qn] such that
y e 1(y),

dist(y, d1(y)) > ;|1<y>| > qz;() (B.1)

and
G 1)y (y, x)| < e” A=l =0, (B.2)
where 01 (y) is the boundary of the interval I (y), i.e.,{x1, x2}, and |I(y)] is the size of
I(Y)NZ,ie., |[I(y)|=x2—x1+ 1. For z€dl(y), let Z be the neighbor of z, (i.e.,
|z — z/| = 1) not belonging to 1 (y).
fx+1<(+ %)qn —ngn or x1 — 1> jg, + ngn, we can expand ¢(xz + 1) or
¢(x1 — 1) using (5). We can continue this process until we arrive at z such that
z+1> + %)qn —ng, or z— 1< jgn, + ngu, or until the iterating number reaches

144G /Gn—n, |- Thus, by (5),

pk)= Y Gk, 2)G (@ 22) - Grep @ )b ), (B3)

$:2i41€91(2})
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where in each term of the summation one has jg, +ng, +1<z <({ + %)qn -

Ngn — 1.i=1,....s, andeither 11 & [jgn + 1gn + 1. ( + )gn —ngn — 115 + 1 <

1441 /n—no) OF s + 1= |4Gn /qn—n, . We should mention that zy 11 € [jgn, (j + $)qn].
If zs+1 € Lign, Jqn + nqnl, s + 1 < 14qn/Gn-n, ], this implies that

p ()] <7

By (B.2),

|Gk, Z])G1(Z’l)(z’1, 22) -+ G (@ 2s+1)@ (2511
<rj= e~ A= (k=21 |+37i_; 1z =2i+1])
< eI il =641)

< rje*(ln A=m)(dj=2nqn—4—=4qn/qn-ny)) (B.4)

If zs41€[(j+ %)qn —Ngn, (j + %)qn], s +1<149,/qn-ny], then, by the same
arguments,

|G 1) (k, Zl)GI(Z/l)(Z’l, 22) -+ G (2 25+ 1)@ (251
< rj+1/2€7(1n A=n)(dj1/2=209n—4=(4qn/Gn-ny)) (B.5)
If s + 1 = [491/qn—n,], using (B.1) and (B.2), we obtain

1G 1 (k. 200Gy (@), 22) - Grgy) (@5 25419 (25 )]
< e~ I A=m(1/2)qn—ng 144n/dn-n; | |¢(Z;+1)| (B.6)

Notice that the total number of terms in (B.3) is at most 24%4/9-n01 and g ivdjit12 >
105gn. By (B.4)~(B.6),

|¢ (k)| < max {rje—(ln )L_rl)(dj_:;’/qn)’ rj+1/2@_(ln )L_n)(dj+l/2_377qn)’

—(nA—n)gy
e max Pl B.7)
PELign,(j+1/2)qnl ot |}

Now we will show that, for any p € [jqn, (j + %)qn], one has |¢(p)| < max{r;, rji1/2}.
Then (B.7) implies Lemma 2.5. Otherwise, by the definition of r;, if [¢p(p)| is
the largest one of |¢(z)|, z € [jgn + 10ng, + 1, (j + %)qn — 10ng, — 1], then | (p)| >
max{r;, rj+1,2}. Applying (B.7) to ¢ (p) and noticing that dist(p’, g,Z) > 10nq,, we get

lp(p)| < e TIMA=mndn max{r;, rit1 2, 19 (P}

This is impossible because |¢ (p’)| > max{r;, rj1,2}.
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