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Abstract. Let α ∈ R\Q and β(α)= lim supn→∞(ln qn+1)/qn <∞, where pn/qn is
the continued fraction approximation to α. Let (Hλ,α,θu)(n)= u(n + 1)+ u(n − 1)+
2λ cos 2π(θ + nα)u(n) be the almost Mathieu operator on `2(Z), where λ, θ ∈ R. Avila
and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170(1) (2009), 303–342]
conjectured that, for 2θ ∈ αZ+ Z, Hλ,α,θ satisfies Anderson localization if |λ|> e2β(α).
In this paper, we develop a method to treat simultaneous frequency and phase resonances
and obtain that, for 2θ ∈ αZ+ Z, Hλ,α,θ satisfies Anderson localization if |λ|> e3β(α).
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1. Introduction

The almost Mathieu operator (AMO) is the (discrete) quasi-periodic Schrödinger operator
on `2(Z) given by

(Hλ,α,θu)(n)= u(n + 1)+ u(n − 1)+ 2λ cos 2π(θ + nα)u(n),

where λ is the coupling, α is the frequency, and θ is the phase.

The AMO is the most studied quasi-periodic Schrödinger operator, arising naturally as
a physical model. We refer the reader to [34, 40] and the references therein for physical
background. Most recently, there are a lot of interesting topics related to AMOs, e.g. [4,
27, 28, 31, 33, 35, 45].

We say that the phase θ ∈ R is completely resonant with respect to frequency α if 2θ ∈
αZ+ Z. In this paper, we always assume that α ∈ R\Q.
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Conjecture 1. Avila and Jitomirskaya [1, 2] assert that, for 2θ ∈ αZ+ Z, Hλ,α,θ satisfies
Anderson localization if |λ|> e2β , where

β = β(α)= lim sup
n→∞

ln qn+1

qn

and pn/qn is the continued fraction approximation to α.

Completely resonant phases of quasi-periodic operators correspond to the rational
rotation numbers with respect to frequency in the Aubry dual model. We refer the reader
to [13, 18, 29] for the Aubry duality. The (quantitative) reducibility of Schrödinger
cocycles with rational rotation numbers is related to many topics in quasi-periodic
operators. For example, it is a good approach to show that all the spectral gaps Gm labeled
by the gap labeling theorem (the rotation number ρ on gap Gm satisfies 2ρ = mα mod Z)
[7, 32] are open (named after the dry ten Martini problem for the AMO). The dry ten
Martini problem is stronger than the ten Martini problem (the latter one was finally solved
by Avila and Jitomirskaya [2]). We should mention that the dry ten Martini problem is
still open for all parameters. The non-critical coupling case has been solved by Avila-
You-Zhou [5]. It is also related to the Hölder continuity of Lyapunov exponents, rotation
numbers and the integrated density of states.

The reducibility of the Schrödinger cocycles with rational rotation numbers was first
established by Moser and Pöschel [41], who modified the proof of reducibility of cocycles
with Diophantine rotation numbers [14]. See [15, 19] for more precise results. It was
first realized by Puig [42, 43] that localization at completely resonant phases leads to
reducibility for Schrödinger cocycles with rational rotation numbers for the dual model.
The argument was significantly developed in [3, 20, 36, 39].

For completely resonant phases, Jitomirskaya–Koslover–Schulteis [25] proved
localization for α ∈ DC via a simple modification of the proof in [23]. We say α ∈ R\Q
satisfies the Diophantine condition (DC) if there exist τ > 1, κ > 0 such that

‖kα‖ ≥ κ|k|−τ for any k ∈ Z \ {0},

where ‖x‖ = dist(x, Z). Their result can be extended to α with β(α)= 0 without any
difficulty. In order to avoid too many concepts, if β(α)= 0, we call α Diophantine. To the
contrary, if β(α) > 0, we call α Liouville.

Recently, there have been several remarkable sharp arithmetic transition results for all
parameters. In particular, phase transitions happen in a positive Lyapunov exponent regime
for Liouville frequencies [6, 21, 24, 26, 27]. Later, a universal (reflective) hierarchical
structure of eigenfunctions was established in the localization regime [27, 28] with an
arithmetic condition on θ . However, all the sharp results aforementioned excluded the
completely resonant phases. The purpose of this paper is to consider the missing part.

We prove Conjecture 1 for |λ|> e3β .

THEOREM 1.1. Suppose frequency α ∈ R\Q satisfies β(α) <∞. Then the AMO Hλ,α,θ
satisfies Anderson localization if 2θ ∈ αZ+ Z and |λ|> e3β(α). Moreover, if φ is an
eigenfunction, that is, Hλ,α,θφ = Eφ, then

lim sup
k→∞

ln(φ2(k)+ φ2(k − 1))
2|k|

≤ −(ln λ− 3β).
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Remark 1.2. For α with β(α)=+∞, Hλ,α,θ has a purely singular continuous
spectrum [17, 44] if |λ|> 1.

Now we will discuss the history of Conjecture 1 and also our approach to the proof of
Theorem 1.1. We state another related conjecture first. Define

δ(α, θ)= lim sup
n→∞

−ln ‖2θ + nα‖
|n|

.

Conjecture 2. Jitomirskaya [22] conjectured the following.
(2a) (Diophantine phase) Hλ,α,θ satisfies Anderson localization if |λ|> eβ(α) and

δ(α, θ)= 0, and Hλ,α,θ has a purely singular continuous spectrum for all θ if
1< |λ|< eβ(α).

(2b) (Diophantine frequency) Suppose β(α)= 0. Hλ,α,θ satisfies Anderson localization
if |λ|> eδ(α,θ) and has a purely singular continuous spectrum if 1< |λ|< eδ(α,θ).

Notice that β(α)= 0 for almost every α, and δ(α, θ)= 0 for almost every θ and fixed α.
The case β(α)= 0 and δ(α, θ)= 0 of Conjecture 2 was solved by Jitomirskaya in

her pioneering paper [23]. Avila and Jitomirskaya [2] proved the localization part for
Diophantine phases in the regime |λ|> e(16/9)β , which was a key step in solving the
ten Martini problem. Liu and Yuan followed their proof and extended the result to
|λ|> e(3/2)β [37]. Liu and Yuan [38] further developed Avila–Jitomirskaya’s technique
in [2] and verified Conjecture 1 in the regime |λ|> e7β . Here, 3

2 and 7 are the limits of the
method in [2].

Recently, Avila–You–Zhou [6] proved the singular continuous spectrum part of
Conjecture 2a, as well as the measure-theoretic version of Conjecture 2a: Hλ,α,θ
satisfies Anderson localization for |λ|> eβ and almost every θ . See also [24].
Diophantine frequency (Conjecture 2b) and the localization part of the Diophantine phase
(Conjecture 2a) were proved by Jitomirskaya and Liu [27, 28], who developed Avila–
Jitomirskaya’s scheme and found a better way of dealing with the phase and frequency
resonances.

One of the ideas of [27, 28] is that they treat the values of the generalized eigenfunction
at resonant points as variables and obtain the localization via solving the equations of
resonant points, not just by using block expansion and the exponential decay of the Green
functions. We should mention that the Green’s functions are not necessarily exponential
decay in [27, 28] and also in the present paper.

We want to explain the motivations for Conjectures 1 and 2, and also explain the new
challenge for completely resonant phases. For the Diophantine frequency β(α)= 0, the
resonant points come from the phase resonances. Roughly speaking, if ‖2θ + kα‖ is small,
k is called a phase resonance. For the Diophantine phase δ(α, θ)= 0, the resonant points
come from the frequency resonances. Roughly speaking, if ‖kα‖ is small, k is called
a frequency resonance. Phase resonances lead to reflective repetitions of potential [30]
and frequency resonances lead to repetitions of potential [17, 44]. Indeed, all known
proofs of localization, for example [10–12, 16], are based, in one way or another, on
avoiding resonances and removing resonance-producing parameters. For AMOs and
|λ|> 1, the Lyapunov exponent is ln |λ|. Conjecture 2 says that the competition between
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the Anderson localization and the singular continuous spectrum is actually the competition
between the Lyapunov exponent and the strength of the resonance. Conjecture 2a says
that, without phase resonances, if the Lyapunov exponent beats the frequency resonance,
then Anderson localization follows. Otherwise, Hλ,α,θ has purely singular continuous
spectrum. Conjecture 2b says that without frequency resonances, if the Lyapunov exponent
beats the phase resonance, then Anderson localization follows. Otherwise, Hλ,α,θ has
purely singular continuous spectrum.

For completely resonant phases, 2θ ∈ αZ+ Z, δ(α, θ)= β(α). Thus phase resonances
and frequency resonances happen at the same time. Conjecture 1 says that if the
Lyapunov exponent beats the frequency resonance plus the phase resonance, then the
Anderson localization follows. This is the first challenge in our paper since we need
to deal with frequency and phase resonances simultaneously. The second challenge
is to avoid complete resonance. In dealing with Conjecture 1, the original arguments
of Jitomirskaya [23] do not work directly since there is complete resonance. In [25],
Jitomirskaya–Koslover–Schulteis found a trick to avoid complete resonance by shrinking
the size of the interval around zero (we refer it as the ‘shrinking scale’ technique). Later,
the shrinking scale technique was fully explored in [3, 20, 38, 39]. It is natural to develop
the shrinking scale technique and the localization arguments in [27, 28] to treat our
situation. Since we shrink the scale, there is one phase resonance and one frequency phase
resonance in a half scale. It is different from the situation in Conjecture 2, where there is
one phase resonance or one frequency resonance in one scale. Using the full strength of
the localization proof of [27, 28] to treat both phase resonances and frequency resonances,
one can only obtain the Anderson localization for |λ|> e4β in Conjecture 1, where four is
the non-trivial technical limit in such approach. We bring several new ingredients that go
beyond the technique of [3, 20, 25, 27, 28, 38, 39] and allow us to improve the constant to
three, thus going well beyond the previous technical limit. In particular, instead of using
Lagrange interpolation uniformly, we treat Lagrange interpolation individually during the
process of finding the points without ‘small divisors’. This gives us significantly more
varieties to construct Green functions. We believe our method has wider applicability to
Anderson localization.

2. Some notation and known facts
It is well known that in order to prove Anderson localization of Hλ,α,θ , we only need to
show the following statements [8]. Assume that φ is a generalized function, i.e.,

Hφ = Eφ and |φ(k)| ≤ 1+ |k| for some E .

Then there exists some constant c > 0 such that

|φ(k)| ≤ Ce−c|k| for all k.

It suffices to consider α with 0< β(α) <∞. Without loss of generality, we assume
that λ > e3β , θ ∈ {α/2, α/2+ 1

2 , 0, 1
2 } (shift is a unitary operator). In order to avoid too

many forms of notation, we still use 2θ ∈ αZ+ Z to represent θ ∈ {α/2, α/2+ 1
2 , 0, 1

2 }.
We also assume that E ∈6λ,α (denote by 6λ,α the spectrum of operator Hλ,α,θ since
the spectrum does not depend on θ ). For simplicity, we usually omit the dependence on
parameters E, λ, α, θ .
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Given a generalized eigenfunction φ of Hλ,α,θ , without loss of generality, assume that
φ(0)= 1. Our objective is to show that there exists some specific c > 0 such that

|φ(k)| ≤ e−c|k| for k→∞.

Let us denote
Pk(θ)= det(R[0,k−1](Hλ,α,θ − E)R[0,k−1]).

It is easy to see that Pk(θ) is an even function of θ + 1
2 (k − 1)α and can be written as a

polynomial of degree k in cos 2π(θ + 1
2 (k − 1)α): i.e.,

Pk(θ)=

k∑
j=0

c j cos j 2π
(
θ +

1
2
(k − 1)α

)
, Qk

(
cos 2π

(
θ +

1
2
(k − 1)α

))
. (1)

LEMMA 2.1. [2, p. 16] The following inequality holds.

lim
k→∞

sup
θ∈R

1
k

ln |Pk(θ)| ≤ ln λ.

By Cramer’s rule (see [9, p. 15], for example) for given x1 and x2 = x1 + k − 1, with
y ∈ I = [x1, x2] ⊂ Z,

|G I (x1, y)| =
∣∣∣∣ Px2−y(θ + (y + 1)α)

Pk(θ + x1α)

∣∣∣∣, (2)

|G I (y, x2)| =

∣∣∣∣ Py−x1(θ + x1α)

Pk(θ + x1α)

∣∣∣∣. (3)

By Lemma 2.1, the numerators in (2) and (3) can be bounded uniformly with respect to θ .
Namely, for any ε > 0,

|Pn(θ)| ≤ e(ln λ+ε)n (4)

for large enough n.

Definition 2.2. Fix t > 0. A point y ∈ Z will be called (t, k) regular if there exists an
interval [x1, x2] containing y, where x2 = x1 + k − 1, such that

|G[x1,x2](y, xi )| ≤ e−t |y−xi | and |y − xi | ≥
1
7 k for i = 1, 2.

It is easy to check that ([9, p. 61])

φ(x)=−G[x1,x2](x1, x)φ(x1 − 1)− G[x1,x2](x, x2)φ(x2 + 1), (5)

where x ∈ I = [x1, x2] ⊂ Z.
Given a set {θ1, . . . , θk+1}, the Lagrange interpolation terms Lai , i = 1, 2, . . . , k + 1,

are defined by

Lai = ln max
x∈[−1,1]

k+1∏
j=1, j 6=i

|x − cos 2πθ j |

|cos2πθi − cos 2πθ j |
. (6)

The following lemma is another form of Lemma 9.3 in [2].

LEMMA 2.3. Given a set {θ1, . . . , θk+1}, there exists some θi in set {θ1, . . . , θk+1} such
that

Pk

(
θi −

k − 1
2

α

)
≥

ek ln λ−Lai

k + 1
.
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Proof. Otherwise, for all i = 1, 2, . . . , k + 1,

Qk(cos 2πθi )= Pk

(
θi −

k − 1
2

α

)
<

ek ln λ−Lai

k + 1
.

By (1), we can write the polynomial Qk(x) in the Lagrange interpolation form at points
cos 2πθi , i = 1, 2, . . . , k + 1. Thus

|Qk(x)| =
∣∣∣∣ k+1∑

i=1

Qk(cos 2πθi )

∏
j 6=i (x − cos 2πθ j )∏

j 6=i (cos 2πθi − cos 2πθ j )

∣∣∣∣
< (k + 1)

ek ln λ−Lai

k + 1
eLai = ek ln λ

for all x ∈ [−1, 1]. By (1) again, |Pk(x)|< ek ln λ for all x ∈ R. However, by Herman’s
subharmonic function methods (see p.16 [9]),

∫
R/Z ln |Pk(x)|dx ≥ k ln λ. This is

impossible. �

Fix a sufficiently small constant η, which will be determined later. Let bn = ηqn . For
any y 6= 0, we will distinguish between two cases:
(i) dist(y, qnZ+ (qn/2)Z)≤ bn , called n-resonance; and
(ii) dist(y, qnZ+ (qn/2)Z) > bn , called n-non-resonance.

THEOREM 2.4. [38] Assume that 2θ ∈ αZ+ Z and λ > 1.
Suppose either:

(i) bn ≤ |y|< Cbn+1 for some C > 1 and y is n-non-resonant;
or
(ii) |y| ≤ Cqn and dist(y, qnZ+ (qn/2)Z) > bn .

Let n0 be the least positive integer such that 4qn−n0 ≤ dist(y, qnZ+ (qn/2)Z)− 2. Let
s ∈ N be the largest number such that 4sqn−n0 ≤ dist(y, qnZ+ (qn/2)Z)− 2. Then, for
any ε > 0 and sufficiently large n, y is (ln λ− ε, 6sqn−n0 − 1) regular.

The proof of Theorem 2.4 builds on the ideas used in the proof of Lemma B.4 in [27],
which is originally from [2]. However, it requires some modifications to avoid the
completely resonant phases. Thus we give the proof in Appendix A.1.

The following lemma can be proved directly by block expansion and Theorem 2.4,
which is similar to the proof of Lemma 4.1 in [27]. We also give the proof in the Appendix.

LEMMA 2.5. Suppose k ∈ [ jqn, ( j + 1
2 )qn] or k ∈ [( j + 1

2 )qn, ( j + 1)qn] with 0≤ | j | ≤
C(bn+1/qn)+ C, and dist(k, qnZ+ (qn/2)Z)≥ 10ηqn . Let dt = |k − tqn| for t ∈ { j, j +
1
2 , j + 1}. Then, for sufficiently large n,

|φ(k)| ≤max{r j exp{−(ln λ− η)(d j − 3ηqn)},

r j+1/2 exp{−(ln λ− η)(d j+1/2 − 3ηqn)}}, (7)

or

|φ(k)| ≤max{r j+1/2 exp{−(ln λ− η)(d j+1/2 − 3ηqn)},

r j+1 exp{−(ln λ− η)(d j+1 − 3ηqn)}}. (8)
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3. Proof of Theorem 1.1
We always assume that n is large enough and that C is a large constant below. Denote by
bxc the largest integer less or equal to x .

Let
r j = sup

|r |≤10η
|φ( jqn + rqn)|

and

r j+1/2 = sup
|r |≤10η

∣∣∣∣φ( jqn +

⌊
qn

2

⌋
+ rqn

)∣∣∣∣.
We prove a crucial theorem first.

THEOREM 3.1. Let |`| ≤ (bn+1/qn)+ 3. Then, except for r0,

r` ≤ exp{−(ln λ− 3β − Cη)|`|qn} (9)

and
r`−1/2 ≤ exp{−(ln λ− 3β − Cη)|`− 1

2 |qn}. (10)

LEMMA 3.2. For any | j | ≤ 4(bn+1/qn)+ 16,

r j+1/2 ≤ exp{− 1
2 (ln λ− 2β − Cη)qn}max{r j , r j+1}.

Proof. Take φ( jqn + bqn/2c + rqn) with |r | ≤ 10η into consideration. Without loss of
generality, assume that j ≥ 0. Let n0 be the least positive integer such that

1
η

qn−n0 ≤

(
1
6
− 2η

)
qn .

Let s be the largest positive integer such that sqn−n0 ≤ (
1
6 − 2η)qn . Then

s ≥
1
η
.

By the fact that (s + 1)qn−n0 ≥ (
1
6 − 2η)qn , one has

( 1
6 − 3η)qn ≤ sqn−n0 ≤ (

1
6 − 2η)qn . (11)

Set I1, I2 ⊂ Z as follows:

I1 = [−2sqn−n0 ,−1];

I2 =

[
jqn +

⌊
qn

2

⌋
− (s + bηsc)qn−n0 , jqn +

⌊
qn

2

⌋
+ (s + bηsc)qn−n0 − 1

]
;

and let θm = θ + mα for m ∈ I1 ∪ I2. The set {θm}m∈I1∪I2 consists of (4s + 2bηsc)qn−n0

elements. Let k = (4s + 2bηsc)qn−n0 − 1.
By modifying the proof of [2, Lemma 9.9] or [38, Lemma 4.1], we can prove the claim

(Claim 1): for any ε > 0, m ∈ I1, one has Lam ≤ εqn ; and for any m ∈ I2, one has Lam ≤

qn(β + ε). We also give the proof in the Appendix.
By Lemma 2.3, there exists some j0 ∈ I1 such that Pk(θ j0 − ((k − 1)/2)α)≥

ek ln λ−εqn , or some j0 ∈ I2 such that Pk(θ j0 − ((k − 1)/2)α)≥ ek ln λ−(β+ε)qn .
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Suppose j0 ∈ I1, i.e., Pk(θ j0 − ((k − 1)/2)α)≥ ek ln λ−εqn . Let I = [ j0 − 2sqn−n0 −

bsηcqn−n0 + 1, j0 + 2sqn−n0 + bsηcqn−n0 − 1] = [x1, x2]. Denote x ′1 = x1 − 1 and
x ′2 = x2 + 1.

By (2)–(4), it is easy to verify that

|G I (0, xi )| ≤ e(ln λ+ε)(k−2−|xi |)−k ln λ+εqn

≤ e−|xi | ln λ+Cεqn .

Using (5) and noticing that |xi | ≥ (ηs/2)qn−n0 , we obtain

|φ(0)| ≤
∑

i=1,2

e−(ηs/2)qn−n0 ln λ+Cεqn |φ(x ′i )|< 1, (12)

where the second inequality holds by (11). This is contradicted by the fact that φ(0)= 1.
Thus there exists j0 ∈ I2 such that Pk(θ j0 − ((k − 1)/2)α)≥ ek ln λ−(β+ε)qn . Let I =

[ j0 − 2sqn−n0 − bsηcqn−n0 + 1, j0 + 2sqn−n0 + bsηcqn−n0 − 1] = [x1, x2]. By (2), (3)
and (4) again,

|G I (p, xi )| ≤ e(ln λ+ε)(k−2−|p−xi |)−k ln λ+βqn+εqn , (13)

where p = jqn + bqn/2c + rqn . Using (5), we obtain

|φ(p)| ≤
∑

i=1,2

e(β+Cη)qn |φ(x ′i )|e
−|p−xi | ln λ. (14)

Let di,i1,i2 = |xi − i1qn − i2(qn/2)|, where i = 1, 2, i1 ∈ Z and i2 = 0, 1. If di,i1,i2 ≥

10ηqn , then we replace φ(xi ) in (14) with (7) (or (8)). If di,i1,i2 ≤ 10ηqn , then we replace
φ(x ′i ) in (14) with ri1+(i2/2). Then

r j+1/2 ≤max{exp{− 1
2 (ln λ− 2β − Cη)qn}r j , exp{− 1

2 (ln λ− 2β − Cη)qn}r j+1,

exp {−2sqn−n0 ln λ+ βqn + Cηqn}r j+1/2}. (15)

By (11),

−2sqn−n0 ln λ+ βqn + Cηqn <

(
−

ln λ
3
+ β + Cη

)
qn

< 0,

for small η. This implies that

r j+1/2 ≤ exp{−2(sη + s)qn−n0 ln λ+ βqn + Cηqn}r j+1/2

cannot happen.
Thus (15) becomes

r j+1/2 ≤max{exp{− 1
2 (ln λ− 2β − Cη)qn}r j , exp{− 1

2 (ln λ− 2β − Cη)qn}r j+1}. (16)

�

LEMMA 3.3. For 1≤ | j | ≤ 4(bn+1/qn)+ 12,

r j ≤max
{

max
t∈O
{exp{−(|t | ln λ− β − Cη)qn}r j+t }, exp{−(ln λ− 3β − Cη)qn}r±1

}
,

(17)
where O = {± 3

2 ,±
1
2 }.
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Proof. It suffices to estimate φ( jqn + rqn) with | j | ≥ 1 and |r | ≤ 10η. Without loss of
generality, assume that j ≥ 1. Let n0 be the least positive integer such that

1
η

qn−n0 ≤
qn

6
− 2.

Let s be the largest positive integer such that sqn−n0 ≤ (qn/6)− 2. Then s ≥ 1/η.
Set J1, J2, J3 ⊂ Z as follows:

J1 = [−2sqn−n0 ,−1];

J2 = [ jqn − 3sqn−n0 , jqn − 2sqn−n0 − 1] ∪ [ jqn + 2sqn−n0 , jqn + 3sqn−n0 − 1];

J3 = [ jqn − 2sqn−n0 , jqn + 2sqn−n0 − 1];

and let θm = θ + mα for m ∈ J1 ∪ J2 ∪ J3. The set {θm}m∈J1∪J2∪J3 consists of 8sqn−n0

elements. By modifying the proof of [2, Lemma 9.9] or [38, Lemma 4.1] again, we can
prove the claim (Claim 2) that, for any m ∈ J1 ∪ J3 and any ε > 0, Lam ≤ 2(β + ε)qn ,
and for any m ∈ J2, Lam ≤ (β + ε)qn . We also give the details of proof in the Appendix.

Applying Lemma 2.3, there exists some j0 with j0 ∈ J1 ∪ J3 such that

P8sqn−n0−1(θ j0 − (4sqn−n0 − 1)α)≥ e8sqn−n0 ln λ−2βqn−εqn ,

or there exists some j0 with j0 ∈ J2 such that

P8sqn−n0−1(θ j0 − (4sqn−n0 − 1)α)≥ e8sqn−n0 ln λ−βqn−εqn .

If j0 ∈ J2, let I = [ j0 − 4sqn−n0 + 1, j0 + 4sqn−n0 − 1] = [x1, x2]. Then

|G I ( jqn + rqn, xi )| ≤ e(ln λ+η)(8sqn−n0−2−| jqn+rqn−xi |)−8sqn−n0 ln λ+βqn+Cηqn . (18)

Using (5), we obtain

|φ( jqn + rqn)| ≤
∑

i=1,2

e(β+Cη)qn |φ(x ′i )|e
−| jqn+rqn−xi | ln λ. (19)

Recall that di,i1,i2 = |xi − i1qn − i2qn/2|, where i = 1, 2, i1 ∈ Z and i2 = 0, 1. If
di,i1,i2 ≥ 10ηqn , then we replace φ(x ′i ) in (19) with (7) (or (8)). If di,i1,i2 ≤ 10ηqn , then
we replace φ(x ′i ) in (19) with ri1+(i2/2).

Then by (19),

r j ≤ exp{βqn + Cηqn}max
{

max
t∈O
{exp{−|t |qn ln λ}r j+t , exp{−2sqn−n0 ln λ}r j }

}
,

where O =± 3
2 ,±1,± 1

2 .
Note that sqn−n0 ≥ (1− η)

1
6 qn (using (s + 1)qn−n0 >

1
6 qn − 2 and s ≥ 1/η). Then

r j ≤ exp{βqn + Cηqn} exp{−2sqn−n0 ln λ}r j

cannot happen since ln λ > 3β.
Thus

r j ≤max
t∈O
{exp{βqn + Cηqn − |t |qn ln λ}r j+t },

where O =± 3
2 ,±1,± 1

2 . This implies (17).
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If j0 ∈ J3, by the same arguments,

r j ≤ max
t∈{±1,±1/2}

{exp{2βqn + Cηqn − |t |qn ln λ}r j+t }.

Using the estimate of r j±1/2 in Lemma 3.2,

r j ≤ exp{−(ln λ− 3β − Cη)qn}max{r j±1, r j }.

By the same reason,
r j ≤ exp{−(ln λ− 3β − Cη)qn}r j

cannot happen. Thus

r j ≤ exp{−(ln λ− 3β − Cη)qn}r j±1. (20)

This also implies (17).
If j0 ∈ J1, then (20) holds for j = 0, which will lead to |φ(0)|< 1. This is

impossible. �

3.1. Proof of Theorem 3.1. By Lemmas 3.2 and 3.3, for 1≤ j ≤ 2(bn+1/qn)+ 4,

r j−1/2 ≤ exp{− 1
2 (ln λ− 3β − Cη)qn}max{r j−1, r j } (21)

and
r j ≤max

t∈O
{exp{−|t |(ln λ− 3β − Cη)qn}r j+t }, (22)

where O = {± 3
2 ,±1,± 1

2 }. For −bn+1/qn − 3≤ j ≤−1,

r j+1/2 ≤ exp{− 1
2 (ln λ− 3β − Cη)qn}max{r j+1, r j } (23)

and
r j ≤max

t∈O
{exp{−|t |(ln λ− 3β − Cη)qn}r j+t }. (24)

Suppose ` > 0. By letting j = ` in (22) and (21) and iterating 2` times or until j ≤ 1,
we obtain

r` ≤ (2`+ 2)qn exp{−(ln λ− 3β − Cη)`qn} (25)

and
r`−1/2 ≤ (2`+ 2)qn exp{−(ln λ− 3β − Cη)(`− 1

2 )qn}. (26)

Notice that we have used the fact that |r j | ≤ (| j | + 2)qn and |r j−1/2| ≤ (| j − 1
2 | + 2)qn .

Suppose ` < 0. By letting j = ` in (24) and (23) and iterating 2|`| times or until j ≥−1,
we obtain

r` ≤ (2`+ 2)qn exp{−(ln λ− 3β − Cη)|`|qn} (27)

and
r`+1/2 ≤ (2`+ 2)qn exp{−(ln λ− 3β − Cη)|`+ 1

2 |qn}. (28)

Now Theorem 3.1 follows from (25)–(28).
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3.2. Proof of Theorem 1.1. Without loss of generality, we assume that k > 0. Let η > 0
be much smaller than ln λ− 3β. For any k, let n be such that bn ≤ k < bn+1.

Case 1. dist(k, qnZ+ (qn/2)Z)≤ 10ηqn .
In this case, applying Theorem 3.1,

|φ(k)|, |φ(k − 1)| ≤ exp{−(ln λ− 3β − Cη)|k|}. (29)

Case 2. dist(k, qnZ+ (qn/2)Z)≥ 10ηqn .
Let 0≤ j ≤ bn+1/qn such that k ∈ [ jqn, ( j + 1

2 )qn] or k ∈ [( j + 1
2 )qn, ( j + 1)qn].

By Lemma 2.5 and Theorem 3.1, one also has

|φ(k)|, |φ(k − 1)| ≤ exp{−(ln λ− 3β − Cη)|k|}. (30)

By (29), (30) and letting η→ 0,

lim sup
k→∞

ln(φ2(k)+ φ2(k − 1))
2|k|

≤ −(ln λ− 3β).

We have finished the proof.

A. Appendix. Proof of Theorem 2.4, Claims 1 and 2
Let pn/qn be the continued fraction approximation to α. Then

for all 1≤ k < qn+1, dist(kα, Z)≥ |qnα − pn| (A.1)

and
1

2qn+1
≤ |qnα − pn| ≤

1
qn+1

. (A.2)

LEMMA A.1. [2, Lemma 9.7] Let α ∈ R\Q, x ∈ R and 0≤ `0 ≤ qn − 1 be such that
|sinπ(x + `0α)| = inf0≤`≤qn−1 |sinπ(x + `α)|. Then, for some absolute constant C > 0,

−C ln qn ≤

qn−1∑
`=0
` 6=`0

ln |sinπ(x + `α)| + (qn − 1) ln 2≤ C ln qn . (A.3)

A.1. Proof of Theorem 2.4. We only give the proof of Case 1: bn ≤ |y|< Cbn+1 is
non-resonant.

By the definition of s and n0, we have 4sqn−n0 ≤ dist(y, qnZ)− 2 and 4qn−n0+1 >

dist(y, qnZ)− 2. This leads to sqn−n0 ≤ qn−n0+1. Set I1, I2 ⊂ Z as follows:

I1 = [−2sqn−n0 ,−1];

I2 = [y − 2sqn−n0 , y + 2sqn−n0 − 1];

and let θ j = θ + jα for j ∈ I1 ∪ I2. The set {θ j } j∈I1∪I2 consists of 6sqn−n0 elements.
Let k = 6sqn−n0 − 1. We estimate Lai first. For this reason, let x = cos 2πa and take

the logarithm in (6). Then

ln
∏

j∈I1∪I2
j 6=i

|cos2πa − cos 2πθ j |

|cos2πθi − cos 2πθ j |

=

∑
j∈I1∪I2

j 6=i

ln |cos2πa − cos 2πθ j | −
∑

j∈I1∪I2
j 6=i

ln |cos2πθi − cos 2πθ j |.
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We start to estimate
∑

j∈I1∪I2, j 6=i ln |cos2πa − cos 2πθ j |. Obviously,∑
j∈I1∪I2

j 6=i

ln |cos2πa − cos 2πθ j |

=

∑
j∈I1∪I2

j 6=i

ln |sinπ(a + θ j )| +
∑

j∈I1∪I2
j 6=i

ln |sinπ(a − θ j )| + (6sqn−n0 − 1) ln 2

=6+ +6− + (6sqn−n0 − 1) ln 2.

Both 6+ and 6− consist of 6s terms of the form of (A.3), plus 6s terms of the form

ln min
j=0,1,...,qn−n0

|sinπ(x + jα)|,

minus ln |sinπ(a ± θi )|. Thus, using (A.3) 6s times of 6+ and 6−, respectively, gives∑
j∈I1∪I2

j 6=i

ln |cos2πa − cos 2πθ j | ≤ −6sqn−n0 ln 2+ Cs ln qn−n0 . (A.4)

Let a = θi . We obtain∑
j∈I1∪I2

j 6=i

ln |cos2πθi − cos 2πθ j |

=

∑
j∈I1∪I2

j 6=i

ln |sinπ(θi + θ j )| +
∑

j∈I1∪I2
j 6=i

ln |sinπ(θi − θ j )| + (6sqn−n0 − 1) ln 2

=6+ +6− + (6sqn−n0 − 1) ln 2, (A.5)

where
6+ =

∑
j∈I1∪I2

j 6=i

ln |sinπ(2θ + (i + j)α)|

and
6− =

∑
j∈I1∪I2

j 6=i

ln |sinπ(i − j)α|.

We will estimate 6+. Set J1 = [−2s,−1] and J2 = [0, 4s − 1], which are two adjacent
disjoint intervals of length 2s and 4s, respectively. Then I1 ∪ I2 can be represented as a
disjoint union of segments B j , j ∈ J1 ∪ J2, each of length qn−n0 .

Applying (A.3) to each B j , we obtain

6+ ≥−6sqn−n0 ln 2+
∑

j∈J1∪J2

ln |sinπθ̂ j | − Cs ln qn−n0 − ln |sin2π(θ + iα)|, (A.6)

where
|sinπθ̂ j | = min

`∈B j
|sinπ(2θ + (`+ i)α)|. (A.7)

By the construction of I1 and I2,

2θ + (`+ i)α =±(mqnα + r1α) mod Z (A.8)
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or
2θ + (`+ i)α =±r2α mod Z, (A.9)

where 0≤ m ≤ C(bn+1/qn) and 1≤ ri < qn , i = 1, 2.
By (A.1) and (A.2), it follows that

min
`∈I1∪I2

ln |sinπ(2θ + (`+ i)α)| ≥C ln
(
‖riα‖R/Z −

1n−1

2

)
≥C ln

(
1n−1 −

1n−1

2

)
≥ ln C

1n−1

2
≥−C ln qn, (A.10)

since ‖mqnα‖R/Z ≤ C(ηqn+1/qn)1n ≤ (1n−1/2).
By the construction of I1 and I2, we also have

min
i 6= j

i, j∈I1∪I2

ln |sinπ( j − i)α)| ≥ −C ln qn . (A.11)

Next, we estimate
∑

j∈J1
ln |sinπθ̂ j |. Assume that θ̂ j+1 = θ̂ j + qn−n0α for every

j, j + 1 ∈ J1. In this case, for any i, j ∈ J1 and i 6= j ,

‖θ̂i − θ̂ j‖R/Z ≥ ‖qn−n0α‖R/Z. (A.12)

By the Stirling formula, (A.10) and (A.12),∑
j∈J1

ln |sin2πθ̂ j |> 2
s∑

j=1

ln( j1n−n0)− C ln qn

> 2s ln
s

qn−n0+1
− C ln qn − Cs. (A.13)

In the other cases, decompose J1 into maximal intervals Tκ such that, for j, j +
1 ∈ Tκ , we have θ̂ j+1 = θ̂ j + qn−n0α. Notice that the boundary points of an interval
Tκ are either boundary points of J1 or satisfy ‖θ̂ j‖R/Z +1n−n0 ≥1n−n0−1/2. This
follows from the fact that if 0< |z|< qn−n0 , then ‖θ̂ j + qn−n0α‖R/Z ≤ ‖θ̂ j‖R/Z +1n−n0

and ‖θ̂ j + (z + qn−n0)α‖R/Z ≥ ‖zα‖R/Z − ‖θ̂ j + qn−n0α‖R/Z ≥1n−n0−1 − ‖θ̂ j‖R/Z −
1n−n0 . Assuming that Tκ 6= J1, there exists j ∈ Tκ such that ‖θ̂ j‖R/Z ≥ (1n−n0−1/2)−
1n−n0 .

If Tκ contains some j with ‖θ̂ j‖R/Z <1n−n0−1/10, then

|Tκ | ≥
(1n−n0−1/2)−1n−n0 − (1n−n0−1/10)

1n−n0

≥
1
4
1n−n0−1

1n−n0

− 1≥
s
8
− 1, (A.14)

since sqn−n0 ≤ qn−n0+1, where |Tκ | = b − a + 1 for Tκ = [a, b]. For such Tκ , a similar
estimate to (A.13) gives∑

j∈Tκ

ln |sinπθ̂ j | ≥ |Tκ | ln
|Tκ |

qn−n0+1
− Cs − C ln qn

≥ |Tκ | ln
s

qn−n0+1
− Cs − C ln qn . (A.15)
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If Tκ does not contain any j with ‖θ̂ j‖R/Z <1n−n0−1/10, then, by (A.2),∑
j∈Tκ

ln |sinπθ̂ j | ≥ −|Tκ | ln qn−n0 − C |Tκ |

≥ |Tκ | ln
s

qn−n0+1
− C |Tκ |. (A.16)

By (A.15) and (A.16),∑
j∈J1

ln |sinπθ̂ j | ≥ 2s ln
s

qn−n0+1
− Cs − C ln qn . (A.17)

Similarly, ∑
j∈J2

ln |sinπθ̂ j | ≥ 4s ln
s

qn−n0+1
− Cs − C ln qn . (A.18)

Putting (A.6), (A.17) and (A.18) together gives

6+ >−6sqn−n0 ln 2+ 6s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn . (A.19)

Now we start to estimate 6−.
By replacing (A.10) with (A.11), and following the proof of (A.19), we obtain

6− >−6sqn−n0 ln 2+ 6s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn . (A.20)

By (A.5), (A.19) and (A.20), we obtain∑
j∈I1∪I2

j 6=i

ln |cos2πθi − cos 2πθ j |

≥ −6sqn−n0 ln 2+ 6s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn . (A.21)

By (A.4) and (A.21), for any i ∈ I1 ∪ I2,∏
j∈I1∪I2

j 6=i

|x − cos 2πθ j |

|cos2πθi − cos 2πθ j |
≤ e6sqn−n0 (−2 ln(s/qn−n0+1)/qn−n0+ε).

Using the fact that 4(s + 1)qn−n0 > ηqn − 2, one has, for any i ∈ I1 ∪ I2,∏
j∈I1∪I2

j 6=i

|x − cos 2πθ j |

|cos2πθi − cos 2πθ j |
≤ esqn−n0ε. (A.22)

This implies that Lai ≤ εsqn−n0 for any i = 1, 2, . . . , k + 1, where k = 6sqn−n0 − 1.
Applying Lemma 2.3, there exists some j0 with j0 ∈ I1 ∪ I2 such that

Pk−1

(
θ j0 −

k − 1
2

α

)
≥ e(ln λ−ε)k .

Firstly, we assume that j0 ∈ I2.
Set I = [ j0 − 3sqn−n0 + 1, j0 + 3sqn−n0 − 1] = [x1, x2]. By (2), (3) and (4) again,
|G I (y, xi )| ≤ exp{(ln λ+ ε)(6sqn−n0 − 1− |y − xi |)− 6sqn−n0(ln λ− ε)}.

Notice that |y − xi | ≥ sqn−n0 . We obtain
|G I (y, xi )| ≤ exp{−(ln λ− ε)|y − xi |}. (A.23)

If j0 ∈ I1, we may let y = 0 in (A.23). By (5), we get
|φ(0)| ≤ 6sqn−n0 exp{−(ln λ− ε)sqn−n0}.

This contradicts φ(0)= 1. Thus j0 ∈ I2, and the theorem follows from (A.23).
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A.2. Proof of Claim 1. By the construction of I1 and I2 in Claim 1, (A.1) and (A.2),
we have, for i ∈ I1,

min
`∈I1∪I2

ln |sinπ(2θ + (`+ i)α)| ≥ −C ln qn (A.24)

and
min
i 6= j

j∈I1∪I2

ln |sinπ( j − i)α)| ≥ −C ln qn . (A.25)

Replacing (A.10) with (A.24) and (A.11) with (A.25), and following the proof of (A.22),
we can show that, for any i ∈ I1,∏

j∈I1∪I2
j 6=i

|x − cos 2πθ j |

|cos2πθi − cos 2πθ j |
≤ eεsqn−n0 .

This implies that, for i ∈ I1, Lai ≤ εqn . By the construction of I1 and I2 in Claim 1, (A.1)
and (A.2) again, we have, for i ∈ I2,

min
`∈I1∪I2

ln |sinπ(2θ + (`+ i)α)|R/Z ≥−βqn − C ln qn (A.26)

and
min
i 6= j

j∈I1∪I2

ln |sinπ( j − i)α)| ≥ −C ln qn . (A.27)

We should mention that, for each i ∈ I2, there is exact one j ∈ I1 ∪ I2 such that the lower
bound of (A.26) can be achieved.

Replacing (A.10) with (A.26) and (A.11) with (A.27), and following the proof of (A.22),
we can show that, for any i ∈ I1,∏

j∈I1∪I2
j 6=i

|x − cos 2πθ j |

|cos2πθi − cos 2πθ j |
≤ eεsqn−n0+βqn .

This implies that, for any i ∈ I2, Lai ≤ qn(β + ε).

A.3. Proof of Claim 2. Let J 1
3 = [ jqn − 2sqn−n0 , jqn − 1] and

J 2
3 = [ jqn,+2sqn−n0 − 1]

so that J3 = J 1
3 ∪ J 2

3 . Let I = J1 ∪ J2 ∪ J2.

Case 1. i ∈ J1 ∪ J 1
3 . By the construction of J1, J2 and J3 in Claim 2, and by (A.1), (A.2),

min
`∈I

ln |sinπ(2θ + (`+ i)α)| ≥ −βqn − C ln qn (A.28)

and
min
i 6= j
j∈I

ln |sinπ( j − i)α)| ≥ −βqn − C ln qn . (A.29)

Moreover, there are exactly two `, j ∈ I such that the lower bound of (A.28) can be
achieved for ` and the lower bound of (A.29) can be achieved for j .
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Case 2. i ∈ J1 ∪ J 2
3 . By the same reason,

min
`∈I

ln |sinπ(2θ + (`+ i)α)| ≥ −βqn − C ln qn (A.30)

and
min
i 6= j
j∈I

ln |sinπ( j − i)α)| ≥ −C ln qn . (A.31)

Moreover, there are exactly two `1, `2 ∈ I such that the lower bound of (A.30) can be
achieved for both `1 and `2.

Case 3. i ∈ J2. By the same reason,

min
`∈I

ln |sinπ(2θ + (`+ i)α)| ≥ −βqn − C ln qn (A.32)

and
min
i 6= j
j∈I

ln |sinπ( j − i)α)| ≥ −C ln qn . (A.33)

Moreover, there is exactly one ` ∈ I such that the lower bound of (A.32) can be achieved
for `.

Now following the proof of the Claim 1, we can prove Claim 2.

B. Appendix. Proof of Lemma 2.5

Without loss of generality, we assume that k ∈ [ jqn, ( j + 1
2 )qn] and j ≥ 0. Let d j = k −

jqn and d j+1/2 = ( j + 1
2 )qn − k.

For any y ∈ [ jqn + ηqn, ( j + 1
2 )qn − ηqn], by Theorem 2.4, y is regular with τ =

ln λ− η. Therefore there exists an interval I (y)= [x1, x2] ⊂ [ jqn, ( j + 1
2 )qn] such that

y ∈ I (y),

dist(y, ∂ I (y))≥
1
7
|I (y)| ≥

qn−n0

2
(B.1)

and
|G I (y)(y, xi )| ≤ e−(ln λ−η)|y−xi |, i = 1, 2, (B.2)

where ∂ I (y) is the boundary of the interval I (y), i.e.,{x1, x2}, and |I (y)| is the size of
I (y) ∩ Z, i.e., |I (y)| = x2 − x1 + 1. For z ∈ ∂ I (y), let z′ be the neighbor of z, (i.e.,
|z − z′| = 1) not belonging to I (y).

If x2 + 1≤ ( j + 1
2 )qn − ηqn or x1 − 1≥ jqn + ηqn , we can expand φ(x2 + 1) or

φ(x1 − 1) using (5). We can continue this process until we arrive at z such that
z + 1> ( j + 1

2 )qn − ηqn or z − 1< jqn + ηqn , or until the iterating number reaches
b4qn/qn−n0c. Thus, by (5),

φ(k)=
∑

s;zi+1∈∂ I (z′i )

G I (k)(k, z1)G I (z′1)
(z′1, z2) · · · G I (z′s )(z

′
s, zs+1)φ(z′s+1), (B.3)
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where in each term of the summation one has jqn + ηqn + 1≤ zi ≤ ( j + 1
2 )qn −

ηqn − 1, i = 1, . . . , s, and either zs+1 /∈ [ jqn + ηqn + 1, ( j + 1
2 )qn − ηqn − 1], s + 1<

b4qn/qn−n0c or s + 1= b4qn/qn−n0c. We should mention that zs+1 ∈ [ jqn, ( j + 1
2 )qn].

If zs+1 ∈ [ jqn, jqn + ηqn], s + 1< b4qn/qn−n0c, this implies that

|φ(z′s+1)| ≤ r j .

By (B.2),

|G I (k)(k, z1)G I (z′1)
(z′1, z2) · · · G I (z′s )(z

′
s, zs+1)φ(z′s+1)|

≤ r j = e−(ln λ−η)(|k−z1|+
∑s

i=1 |z
′
i−zi+1|)

≤ r j e−(ln λ−η)(|k−zs+1|−(s+1))

≤ r j e−(ln λ−η)(d j−2ηqn−4−(4qn/qn−n0 )). (B.4)

If zs+1 ∈ [( j + 1
2 )qn − ηqn, ( j + 1

2 )qn], s + 1< b4qn/qn−n0c, then, by the same
arguments,

|G I (k)(k, z1)G I (z′1)
(z′1, z2) · · · G I (z′s )(z

′
s, zs+1)φ(z′s+1)|

≤ r j+1/2e−(ln λ−η)(d j+1/2−2ηqn−4−(4qn/qn−n0 )). (B.5)

If s + 1= b4qn/qn−n0c, using (B.1) and (B.2), we obtain

|G I (k)(k, z1)G I (z′1)
(z′1, z2) · · · G I (z′s )(z

′
s, zs+1)φ(z′s+1)|

≤ e−(ln λ−η)(1/2)qn−n0b4qn/qn−n0c|φ(z′s+1)|. (B.6)

Notice that the total number of terms in (B.3) is at most 2b4qn/qn−n0c and d j , d j+1/2 ≥

10ηqn . By (B.4)–(B.6),

|φ(k)| ≤max
{

r j e−(ln λ−η)(d j−3ηqn), r j+1/2e−(ln λ−η)(d j+1/2−3ηqn),

e−(ln λ−η)qn max
p∈[ jqn ,( j+1/2)qn ]

|φ(p)|
}
. (B.7)

Now we will show that, for any p ∈ [ jqn, ( j + 1
2 )qn], one has |φ(p)| ≤max{r j , r j+1/2}.

Then (B.7) implies Lemma 2.5. Otherwise, by the definition of r j , if |φ(p′)| is
the largest one of |ϕ(z)|, z ∈ [ jqn + 10ηqn + 1, ( j + 1

2 )qn − 10ηqn − 1], then |φ(p′)|>
max{r j , r j+1/2}. Applying (B.7) to φ(p′) and noticing that dist(p′, qnZ)≥ 10ηqn , we get

|φ(p′)| ≤ e−7(ln λ−η)ηqn max{r j , r j+1/2, |φ(p′)|}.

This is impossible because |φ(p′)|>max{r j , r j+1/2}.
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