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Abstract: Let h: = — Z;”ig be the nondegenerate M&bius transformation with integer entries. We get a bound of the

continued fraction of h(z) by upper and lower bounds of the continued fraction of x.
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1. Introduction

A continued fraction representation of a number x € R is an expansion of the form

1
r=ag+ ——F— (1.1)
ay + 7‘1%@3:#
where ag € Z and a; € Nt 4 =1,2,---. A continued fraction may be finite or infinite. If (1.1) is a finite
continued fraction, we denote it by [ag; a1, a2, -+ ,a,]; if (1.1) is infinite, then we denote it by [ag;a1,as,---].

We call a; the jth partial quotient. It is a well known fact that the continued fraction of x is infinite if and

only if x is irrational.

Given a nondegenerate 2 x 2 matrix M with integer entries, that is M = < (Cl Z ) , where a,b,c,d € Z

and the determinant ad — bc # 0, we can define the associated M&bius transformation h: x +— Zij-_g . We also

a b ar +b
h(x)—(c d>~x—cx+d.

Irrational numbers with bounded quotients, usually referred as badly approximable numbers, are a subset of

denote by

real numbers with zero Lebesgue measure. Those numbers play an important role in several topics in dynamical

systems, number theory, and the spectral theory of quasiperiodic Schrédinger operators [1, 2, 4, 6, 8, 13].

It is an old result that a real number Zﬂfig has bounded partial quotients if = does [5, 11, 12]. Thus, the

quantitative bound becomes an interesting question. Based on Cusick-France [3], Lagarias-Shallit [7] obtained
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a quantitative bound, which stated that if  has bounded partial quotients with a; < K eventually, then the

associated partial quotients a} of ‘c’;”is satisfy af < D(K +2) eventually.

Using an algorithm developed by Liardet-Stambul [9] to calculate the partial quotients of h(x), Stambul
gave a better upper bound aj < D—1+ {Dmi V12(2+4KJ [14]. In this paper, we study partial quotients with lower

and upper bounds at the same time. Denote by |z]| the integer part of x, namely, |z] = max{j € Z:j < z}.

Our main result is

b L L .
Theorem 1.1 Let M = ( Z d ) be a nondegenerate matrix with entries in Z and h be the associated
Mbébius transformation. Let x = [ap; a1, az,---] be a real number such that By < a; < By for j large enough.
— 2 2 . .
Let h(z) = [af;a7,a3,---]. Then aj < {DBillJ + {DBIBQJF‘ I;};ZHBIBQ for sufficiently large j, where

D = |det(M)].

Remark: If By =1, Theorem 1.1 gives the bound D — 1+ LD@J , which is exact the same bound as
in Stambul [14].

This paper is entirely self-contained. Although our proof follows the scheme of [9, 14], the details are
much more dedicate since we need to handle lower and upper bounds of partial quotients at the same.

Finally, we remark that the determinant of M6bius transformation can also be used to characterize upper

and lower bounds of the ratio between the period of h(z) and that of x [10].

2. Algorithm for partial quotients

Z;tjr-s = [ag; a}, a5, ---] with D = |ad —bc| > 1. Set

In the following, we always assume = = [ag; a1, as,---| and

a b az
M:(C d) and h(m):cwis.

At the beginning of this section, we will introduce some notations and the algorithm developed by Liardet-

Stambul [9] and Stambul [14] to calculate the partial quotients of h(z). Let My be the set of all matrices

M = ( Z Z ) (a,b,c,d € N) such that ad —bc # 0. M is said to be in Dy when a > ¢ and b > d, in D)

when a < ¢ and b <d, and in €3 when (a —¢)(b—d) < 0. {Ds,Dj, ez} is a partition of My .
It is easy to see that M € e5 satisfies

max{|a| + [b],|c| + |d|} < |detM| = D. (2.1)

For all matrices M € Dy U D}, there exists a unique factorization

w-(3 (7 ) (5 )

such that ¢p €N, ¢1, -+ ,¢, € Nt and M’ € e5 [9]. This factorization will be denoted by M = Il ., ... ., M.

Moreover, [cg;c1,ca, - ,cn—1] is the common sequence of partial quotients of 2 and g if n#41. ¢, can be

determined by the following several cases [9]:
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o

Case 1 : If ¢ = [cp;c1,¢2,7 - ,cn1], then ¢, is the nth partial quotient of

Case 2 : If 2 =|co;c1,¢2, + ,Cn_1], then ¢, is the nth partial quotient of

ol

Qo

Case 3 : Otherwise, ¢, is the smaller one of nth partial quotients of ¢ and %.

Assume M € g5 and h is the associated Mébius transformation. Let @ = [ag; a1, az,--+] > 1. After the
preparations, we are ready to recall the algorithm in [9, 14] to compute the partial quotients of h(z).

Step 0: My=M €¢5,j=0,n=0.

Let ji be the smallest positive integer (see [9] for the existence) such that Mollsea,..a;, , € €2 and
Mollgpa, - a

. € Do UDy. Factorizing Mollaga,..a;, as (2.2), we get

1

co 1 c 1 c 1
Mollagay-a;, = ( 10 0 ) ( 11 0 )( 71“ 0 )M1 (Output-0)

J

with M7 € 5.
Step 1: My €es,j=j1+1,n=n1+1.
Let jo > j1+1 be the smallest positive integer such that MlHaj1+1aj1+2--~an—1 € €9 and Mlﬂajﬁlajﬁz---% €

Dy U D). Factorizing M;1I as (2.2), we get

Aj1+1051 42 Ajn

Cn ]- C'n, 1 Cn ].
M1H011+1a11+2~~~aj2 = ( 11+1 0 ) < 11+2 0 ) < 12 0 >M2 (Output-1)

with Ms € e5.
Step 2: My €e9,j=jo+1,n=ny+1.
Let j3 > jo+1 be the smallest positive integer such that Molla,,y1ay0ma5, 1 € €2 and Mol yajy 000y, €

Dy U D). Factorizing M,II as (2.2), we get

Ajo+105542"Ajg

Cn, 1 Cn 1 Cn. 1
MQHaj2+1aj2+2-~~aj3 = ( 21+1 O ) ( 21+2 0 ) Tt ( 13 0 ) M3 (Output—2)

with M3 € 5.

Step k: My €eo,j=Jx+1,n=n;+1.

Let jr4+1 > jr+1 be the smallest positive integer such that M1 € g9 and MII S

Ajp+105p+2° Qg g —1 Ajp+105p+27 Qg 1y

Dy U D). Factorizing M1l as (2.2), we get

Ajp+105+2° Qg 1y

Cn,, 1 Cn 1 Cn,, 1
MkHajk+1ajk+2'~~ajk+1 = < ,i-H 0 ) ( k1+2 0 )( i“ 0 )Mk+1 (Output-k)

with Mgyq € 5.
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Putting all the Output (Output-k) together, we get a sequence

COC1C2C3 *  * Cpy - (2.3)

Unfortunately, many ¢; maybe zero; thus, we must introduce the contraction map p. For any word cocicacs -+ - ¢, €
N™ let u be the contraction map which transforms a word into a word where all letters are positive integers

(except perhaps the first one), replacing from left to right factors a0b by the letter a + b.

By the fact
a 1 b 1\ [(a+b 1
10 10/ 1 0 )’
we have
H#(60616203“'Cn) = H00616263“'Cn' (24)
Let 1 act on (2.3), then we get
chereses - Cpy = Hlcoc1cacs -+~ Cpy). (2.5)

By the arguments in [9], n) goes to infinity as k does, moreover,

ar +b

crtd [cgs ety 702;6717 -] (2.6)

and the nj th partial quotient following c;‘% _4 is no less than c;‘% .

Now, we give a quantitative estimate about ¢; in (2.3).

Lemma 2.1 Assume M € e and x = [ag;a1,az2, -] > 1. Let h be the associated Mobius transformation and
D = |detM| > 1. Suppose a; < K for some K € NT. We do the algorithm as above, then the following three

claims hold,
(i) Forany ngy <j<ngy1—1, ¢, <D—1.
(ii) For any k, cp,, < DK.

(iii) If for some k, cy,., > D, then the right upper entry of Myy1 must be zero, that is M1 has the form

My = < x 0 ) (2.7)

*x ok

Proof The three claims are from [14]. We rewrite the proof here to make the paper more readable. By the

algorithm, we already have MII € g9 and Ml €Dy UD,.

Ajp+105p+2 Qg 1 Ajp+105p+27 A 1y

. .. a
For simplicity, let M’ = (’y 5 ) = MkHaJ.kHaij.i.ajHl_l € g2 and f = aj,, < K. Then

M'Tl; € DU D).
If v =0, then

M’Hf:(af;ﬂ g)EDQUDé
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and we must have af + 3 > §. Thus,

i (af+B a2 1 5 0
MHf_< 0 0)_< i 0)<(af+ﬁ)mod5 a>'

In this case, in order to prove the Lemma, it suffices to show that

{O‘f;ﬂJ < DK. (2.8)
Otherwise, one has
DK+1§{af;6JLOg+§J§LO§(+§J, (2.9)

since f < K.

By the fact M’ = ( g ) € g9, we have 8 < 4§, |a| + |B] < D. This is contradicted to (2.9).

@
0
If a =0, then

—_— B 0 /
MHf(’Yf+5 7)6D2UD2

and we must have vf 4+ 0 > . Thus,

o= () (59 0) (s 1)

In this case, we can still prove the Lemma like the case v = 0.
If o,y > 1, then

/ _ af +5 « ’
MHf_(’yf—i—(S 'Y)GDQUD?

af+p
Yf+6 "

By the algorithm, n, < j <ngy1 — 1, ¢; is the common partial quotient of % and

We start with the proof of claim 1. Indeed, « < D and v > 1. If « = D and v = 1, we must have
B =0 and § = 1. This implies claim 1 when we consider the partial quotient of %. Otherwise (« = D and
~ =1 do not hold) claim 1 holds if we consider the partial quotient of %

Suppose the last letter, i.e. ¢y, ., > D, then we must have

a
E = [cijrl; Cje+25 Cjr+2," "~ ’Cjk+1*1]

[0}

A{J;ig . This implies claims 2

by the (Casel-Case3) and ¢y, , > D is the ngi1 — ny + 1th partial quotient of

and 3 if we can show

L S
DK = vf+4d —
We only prove the fact % < DK, the proof of lower bound ﬁ < ‘,ﬁi’g is the same.
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If vf 40 > 2, then ﬁﬁi’g SWSDK. If vf4 6 <1, then we have § =0 and vy = K = 1. This

implies 5 =D and a = 0. We still have % < DK.

3. Technical lemmas
We say a Mobius transformation h(-) = M- cannot change the continued fraction eventually, if for any x,

partial quotients of h(z) and x are eventually equal.

Lemma 3.1 The following forms of Mébius transformations cannot change the continued fraction eventually,

_ 1 Kk ky 1 1 0 ~-1 0 1 0 0 1
(G DD D)) e
where k1,ka, ks € Z.

Proof The proof is based on direct computation. O

Remark: The determinant of each matrix in S is +1.

Lemma 3.2 Assume a,b,c,d € Z and ad — bc # 0, then M = ( CCL Z ) can be rewritten in the following
form
M =SSy S, M’ (3.2)

with M’ € eo. Moreover, if D = detM = 1, then M’ can be (1) (1) > :

0 1 0 )GS,Wecanassume a,c>0.

Proof Using Mo6bius transformations ( -0 > € S and <
1
k

Using Mobius transformations < ? ) € S and é ) € S, M can be changed to M; =

ay bl .
< 0 d1>W1tha1>1.

Using Mobius transformations < L0

0 -1
al b1 mod |d1|
( 0 ‘d1| [SESN

>€Sand((1) ?)65, M; can be changed to M’ =

Moreover, if D =1, we must have a; =1, |b;| =1 and b; mod |d;]| = 0.
O
Remark: If |detM| = 1, then the associated Mobius transformations cannot change the continued

fraction eventually.

Lemma 3.3 Let M € ey and D = |detM| > 2. Let x = [ap; a1, a2, -] such that By < aj; < By forall 5 >0.

Using the Algorithm in Section 2, we get a sequence c§cicsch--- by (2.5). If ¢ =0, then
i < [Dyol, (3.3)
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Moreover, the equality in (3.3) holds iff

where yo = [B2; B1, B2, B1,--] £ By, B
a=0,b=1,¢=D and d=0.

2B

In addition, assume M # < 10) é ), then
N D
¢} < max Zyo +1|,D-1 (3.4)
if ¢g=0.
Proof Let
Pn
 — [a’o;a’lva’Qv 7Cn]a
qn
then
Pn  Pn-1
Moyayoa, = .
aodran ( qn  Q4n-1 >
Thus, we have the following simple facts
apn +bgn - apn—1 + bgn—1
Mg, .a, = 3.5
aoarln < CPn + dqn CPn—1 + dQn—l ’ ( )
and
lim apy + bgy, _ app—1 + bgn_1 _ axr +b
n—oo pp +dgn,  pno1+dgn1  cx+d
If ¢ =0, then ¢} is the second common partial quotient of ‘c‘[’,’:_‘tsgz and ‘j;’ ::Igg:: for any large n.

Combining with (3.5), we must have
cx +

d

r = . 3.6
i = | 2] (36)
Now we are in a position to prove the Lemma, based on (3.6).
Casel: a>1
Using z > 1, one has
cx+d cx+d
ar+b ax
c+d
<
a
< D,
where the third inequality holds by (2.1). This implies ¢§ < D — 1.
Case 2: a=0
In this case, we have b > d, bc =D and c+d < D by M € &5, and
N D d
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If b>2, by (3.?), one has
A<l |—z+1
1 1 :

Notice that if a real number with bounded partial quotients in [By, B3] NZ is such that = < yo, then
D
cf < Llyo + 1J < [Dyo] — 1,

since o > ‘/52“ and D > 2.

If b=1, we must have ¢ =D and d =0.

Putting all the cases together, we complete the proof. O

Lemma 3.4 Let M € ey with the form ( Z 0 ) and D = |detM| > 1. Let x = [ag;a1,az,---| such that

d
* ok ok ok

By <a; < By forall j > 0. Applying the Algorithm in Section 2 to M -z, we get a sequence cjcicscs -+ by
(2.5). If ¢§ = 0, we must have
a<|2],
=

A TR D B2B1++/B?B2+4B1 B>
where To = [Bl;BQ,BLBQ,“-] = [Bl,Bg] = 2;322 .

Proof Let b=0 in (3.6), then we get

¢t = rxa;‘ dJ . (3.8)

Notice that if a real number with bounded partial quotients in [By, Ba] NZ is such that = > z, then

N cro+d
< . 3.9
it < |t (39

Thus, in order to prove this Lemma, it suffices to show

ctotd D (3.10)
axg o

If a =1, we must have ¢ =0 and d = D, this implies (3.10).
If a > 2, we already have ad=D and ¢ <a—1.
Case 1: D > 2xg > 2

One has
D
cxo+d < (a—l)xo—i—g
D(a—1) D
< 5y
< Da.
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This implies (3.10).
Case 2: 29 < D < 2x
It suffices to show
cxrg+d
— <

2. 3.11
= (3.11)

This is obvious by the following computation,

cro+d < (a—1)zo+ D

< axg+ 2z
< 2axy.
This implies (4.4).
Case 3: D < xg
By direct computation,
cxo+d ¢ D
axo T a a?xo
< a—1 1
a a?
< 1
This also implies (3.10).
O
4. Proof of Theorem 1.1
Proof Suppose z = [ag;a1,az, -] is such that By < a; < By for j > jo, and M = ( CCL Z ) is such that
D = |detM| > 1. By Lemmas 3.1 and 3.2, we may assume M € e5. By the fact
h(x) =M-z= MHaoal"'ajo : [ajo-i-l; Ajo+25 - ] (41)

and (2.2), in order to prove Theorem 1.1, we only need to prove the case when all the partial quotients of x
satisfy By < a; < Bs.
By the Algorithm, it suffices to show that for any word ki0k20---0k, in (2.3) with k; € Nt i =

1,2,---,p, we have

(4.2)

D-1 BB B?B3 + 4B, B
k1+k2+...+kp§{ J-l—\‘D 152 + 155 + 45,55

1 2B,

Assume k; is the last letter of kth step (2.3). Then the output of k + 1th step is Oks, k + 2th step is
Oks, «--.

Case 1: k; > D

By (iii) of Lemma 2.1, My41 has the form

a 0
Mk+1 = ( C: dy ) € E9g.
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By Lemma 3.4, we have

>us[2]

j=2
By (ii) of Lemma 2.1, k1 < DBy, then
P
D
kj < J + DB>
. Lo
Jj=1 -
< DBgBl +\/BiB3 + 4B Bs
= 2B,
< D-1 n DBlBQ—k\/B%B%—HlBlBQ .
B 2B,

This implies Theorem 1.1 in this case.
By the Remark following Lemma 3.2, we can assume D > 2.
Case 2: k1 <D -1

If M1 # ( 10) é >, by (3.5) one has

P
ij Smax{\‘i)yo—i-lJ 7D—l}.
j=2

Direct computation (spliting the computation into B; =1 or By > 2),

(]
&
A

D—1+maxﬂl4)yo+1J ,D—l}

Bl 2-Bl

This implies Theorem 1.1 in this case.

If Mygy1= ( 10) é >, by (4.2) one has

el < [Dyol.
Thus, in order to prove Theorem 1.1 in this case, it suffices to show

D—-1
k1 < .
1S 7q

By the Algorithm of kth step, we have

Ky

1 0 1
MknalaT“@N :H0102“'CN/71 ( 1 0 ) ( D 0 ) © DQUDév

822
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and MiIly a0y, € €2.
This implies

By direct computation, one has

Myl ayan 2 = oreyens < ’“11 _klng+D ) (4.6)
Since all entries of MyIl,;, q,...ay_, are nonnegative, we must have
—kian +D > 1. (4.7
This implies
D-1
= L By J ’
since ay > B;. We complete the proof.
O
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