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Abstract: Let h : x 7→ ax+b
cx+d
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continued fraction of h(x) by upper and lower bounds of the continued fraction of x .
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1. Introduction
A continued fraction representation of a number x ∈ R is an expansion of the form

x = a0 +
1

a1 +
1

a2+
1

a3+ 1

...

(1.1)

where a0 ∈ Z and ai ∈ N+ , i = 1, 2, · · · . A continued fraction may be finite or infinite. If (1.1) is a finite
continued fraction, we denote it by [a0; a1, a2, · · · , an] ; if (1.1) is infinite, then we denote it by [a0; a1, a2, · · · ] .
We call aj the j th partial quotient. It is a well known fact that the continued fraction of x is infinite if and
only if x is irrational.

Given a nondegenerate 2× 2 matrix M with integer entries, that is M =

(
a b
c d

)
, where a, b, c, d ∈ Z

and the determinant ad− bc 6= 0 , we can define the associated Möbius transformation h : x 7→ ax+b
cx+d . We also

denote by

h(x) =

(
a b
c d

)
· x =

ax+ b

cx+ d
.

Irrational numbers with bounded quotients, usually referred as badly approximable numbers, are a subset of
real numbers with zero Lebesgue measure. Those numbers play an important role in several topics in dynamical
systems, number theory, and the spectral theory of quasiperiodic Schrödinger operators [1, 2, 4, 6, 8, 13].

It is an old result that a real number ax+b
cx+d has bounded partial quotients if x does [5, 11, 12]. Thus, the

quantitative bound becomes an interesting question. Based on Cusick-France [3], Lagarias-Shallit [7] obtained
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a quantitative bound, which stated that if x has bounded partial quotients with aj ≤ K eventually, then the
associated partial quotients a⋆j of ax+b

cx+d satisfy a⋆j ≤ D(K + 2) eventually.

Using an algorithm developed by Liardet-Stambul [9] to calculate the partial quotients of h(x) , Stambul

gave a better upper bound a⋆j ≤ D−1+
⌊
DK+

√
K2+4K
2

⌋
[14]. In this paper, we study partial quotients with lower

and upper bounds at the same time. Denote by bxc the integer part of x , namely, bxc = max{j ∈ Z : j ≤ x} .
Our main result is

Theorem 1.1 Let M =

(
a b
c d

)
be a nondegenerate matrix with entries in Z and h be the associated

Möbius transformation. Let x = [a0; a1, a2, · · · ] be a real number such that B1 ≤ aj ≤ B2 for j large enough.

Let h(x) = [a⋆0; a
⋆
1, a

⋆
2, · · · ] . Then a⋆j ≤

⌊
D−1
B1

⌋
+

⌊
D

B1B2+
√

B2
1B

2
2+4B1B2

2B1

⌋
for sufficiently large j , where

D = |det(M)| .

Remark: If B1 = 1 , Theorem 1.1 gives the bound D− 1+ bDK+
√
K2+4K
2 c , which is exact the same bound as

in Stambul [14].
This paper is entirely self-contained. Although our proof follows the scheme of [9, 14], the details are

much more dedicate since we need to handle lower and upper bounds of partial quotients at the same.
Finally, we remark that the determinant of Möbius transformation can also be used to characterize upper

and lower bounds of the ratio between the period of h(x) and that of x [10].

2. Algorithm for partial quotients

In the following, we always assume x = [a0; a1, a2, · · · ] and ax+b
cx+d = [a⋆0; a

⋆
1, a

⋆
2, · · · ] with D = |ad− bc| ≥ 1 . Set

M =

(
a b
c d

)
and h(x) = ax+b

cx+d .

At the beginning of this section, we will introduce some notations and the algorithm developed by Liardet-
Stambul [9] and Stambul [14] to calculate the partial quotients of h(x) . Let M2,N be the set of all matrices

M =

(
a b
c d

)
(a, b, c, d ∈ N) such that ad − bc 6= 0 . M is said to be in D2 when a ≥ c and b ≥ d , in D′

2

when a ≤ c and b ≤ d , and in ε2 when (a− c)(b− d) < 0 . {D2,D′
2, ε2} is a partition of M2,N .

It is easy to see that M ∈ ε2 satisfies

max{|a|+ |b|, |c|+ |d|} ≤ |detM | = D. (2.1)

For all matrices M ∈ D2 ∪ D′
2 , there exists a unique factorization

M =

(
c0 1
1 0

)(
c1 1
1 0

)
· · ·

(
cn 1
1 0

)
M ′ (2.2)

such that c0 ∈ N , c1, · · · , cn ∈ N+ and M ′ ∈ ε2 [9]. This factorization will be denoted by M = Πc0c1,··· ,cnM
′ .

Moreover, [c0; c1, c2, · · · , cn−1] is the common sequence of partial quotients of a
c and b

d if n 6= 1 . cn can be
determined by the following several cases [9]:
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Case 1 : If a
c = [c0; c1, c2, · · · , cn−1] , then cn is the nth partial quotient of b

d .

Case 2 : If b
d = [c0; c1, c2, · · · , cn−1] , then cn is the nth partial quotient of a

c .

Case 3 : Otherwise, cn is the smaller one of nth partial quotients of a
c and b

d .

Assume M ∈ ε2 and h is the associated Möbius transformation. Let x = [a0; a1, a2, · · · ] > 1 . After the
preparations, we are ready to recall the algorithm in [9, 14] to compute the partial quotients of h(x) .

Step 0: M0 = M ∈ ε2, j = 0, n = 0 .
Let j1 be the smallest positive integer (see [9] for the existence) such that M0Πa0a1···aj1−1

∈ ε2 and
M0Πa0a1···aj1

∈ D2 ∪ D′
2 . Factorizing M0Πa0a1···aj1

as (2.2), we get

M0Πa0a1···aj1
=

(
c0 1
1 0

)(
c1 1
1 0

)
· · ·

(
cn1 1
1 0

)
M1 (Output-0)

with M1 ∈ ε2 .
Step 1: M1 ∈ ε2, j = j1 + 1, n = n1 + 1 .
Let j2 ≥ j1+1 be the smallest positive integer such that M1Πaj1+1aj1+2···aj2−1

∈ ε2 and M1Πaj1+1aj1+2···aj2
∈

D2 ∪ D′
2 . Factorizing M1Πaj1+1aj1+2···aj2

as (2.2), we get

M1Πaj1+1aj1+2···aj2
=

(
cn1+1 1
1 0

)(
cn1+2 1
1 0

)
· · ·

(
cn2 1
1 0

)
M2 (Output-1)

with M2 ∈ ε2 .
Step 2: M2 ∈ ε2, j = j2 + 1, n = n2 + 1 .
Let j3 ≥ j2+1 be the smallest positive integer such that M2Πaj2+1aj2+2···aj3−1

∈ ε2 and M2Πaj2+1aj2+2···aj3
∈

D2 ∪ D′
2 . Factorizing M2Πaj2+1aj2+2···aj3

as (2.2), we get

M2Πaj2+1aj2+2···aj3
=

(
cn2+1 1
1 0

)(
cn2+2 1
1 0

)
· · ·

(
cn3 1
1 0

)
M3 (Output-2)

with M3 ∈ ε2 .

· · · · · · · · ·

· · · · · · · · ·

Step k: Mk ∈ ε2, j = jk + 1, n = nk + 1 .
Let jk+1 ≥ jk+1 be the smallest positive integer such that MkΠajk+1ajk+2···ajk+1−1

∈ ε2 and MkΠajk+1ajk+2···ajk+1
∈

D2 ∪ D′
2 . Factorizing MkΠajk+1ajk+2···ajk+1

as (2.2), we get

MkΠajk+1ajk+2···ajk+1
=

(
cnk+1 1
1 0

)(
cnk+2 1
1 0

)
· · ·

(
cnk+1

1
1 0

)
Mk+1 (Output-k)

with Mk+1 ∈ ε2 .
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Putting all the Output (Output-k) together, we get a sequence

c0c1c2c3 · · · cnk
. (2.3)

Unfortunately, many ci maybe zero; thus, we must introduce the contraction map µ . For any word c0c1c2c3 · · · cn ∈
Nn , let µ be the contraction map which transforms a word into a word where all letters are positive integers
(except perhaps the first one), replacing from left to right factors a0b by the letter a+ b .

By the fact (
a 1
1 0

)(
b 1
1 0

)
=

(
a+ b 1
1 0

)
,

we have
Πµ(c0c1c2c3···cn) = Πc0c1c2c3···cn . (2.4)

Let µ act on (2.3), then we get

c⋆0c
⋆
1c

⋆
2c

⋆
3 · · · c⋆n′

k
= µ(c0c1c2c3 · · · cnk

). (2.5)

By the arguments in [9], n′
k goes to infinity as k does, moreover,

ax+ b

cx+ d
= [c⋆0; c

⋆
1, · · · , c⋆n′

k−1, · · · ] (2.6)

and the n′
k th partial quotient following c⋆n′

k−1 is no less than c⋆n′
k

.

Now, we give a quantitative estimate about ci in (2.3).

Lemma 2.1 Assume M ∈ ε2 and x = [a0; a1, a2, · · · ] > 1 . Let h be the associated Möbius transformation and
D = |detM | ≥ 1 . Suppose aj ≤ K for some K ∈ N+ . We do the algorithm as above, then the following three
claims hold,

(i) For any nk < j ≤ nk+1 − 1 , cj ≤ D − 1 .

(ii) For any k , cnk+1
≤ DK .

(iii) If for some k , cnk+1
≥ D , then the right upper entry of Mk+1 must be zero, that is Mk+1 has the form

Mk+1 =

(
⋆ 0
⋆ ⋆

)
. (2.7)

Proof The three claims are from [14]. We rewrite the proof here to make the paper more readable. By the
algorithm, we already have MkΠajk+1ajk+2···ajk+1−1

∈ ε2 and MkΠajk+1ajk+2···ajk+1
∈ D2 ∪ D′

2 .

For simplicity, let M ′ =

(
α β
γ δ

)
= MkΠajk+1ajk+2···ajk+1−1 ∈ ε2 and f = ajk+1

≤ K . Then

M ′Πf ∈ D2 ∪ D′
2 .

If γ = 0 , then

M ′Πf =

(
αf + β α

δ 0

)
∈ D2 ∪ D′

2
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and we must have αf + β ≥ δ . Thus,

M ′Πf =

(
αf + β α

δ 0

)
=

(
bαf+β

δ c 1
1 0

)(
δ 0

(αf + β) mod δ α

)
.

In this case, in order to prove the Lemma, it suffices to show that⌊
αf + β

δ

⌋
≤ DK. (2.8)

Otherwise, one has

DK + 1 ≤
⌊
αf + β

δ

⌋
=

⌊
αf

δ
+

β

δ

⌋
≤

⌊
αK

δ
+

β

δ

⌋
, (2.9)

since f ≤ K .

By the fact M ′ =

(
α β
0 δ

)
∈ ε2 , we have β < δ , |α|+ |β| ≤ D . This is contradicted to (2.9).

If α = 0 , then

M ′Πf =

(
β 0

γf + δ γ

)
∈ D2 ∪ D′

2

and we must have γf + δ ≥ β . Thus,

M ′Πf =

(
0 1
1 0

)(
bγf+δ

β c 1

1 0

)(
β 0

(γf + δ) mod δ γ

)
.

In this case, we can still prove the Lemma like the case γ = 0 .
If α, γ ≥ 1 , then

M ′Πf =

(
αf + β α
γf + δ γ

)
∈ D2 ∪ D′

2.

By the algorithm, nk ≤ j ≤ nk+1 − 1 , cj is the common partial quotient of α
γ and αf+β

γf+δ .

We start with the proof of claim 1. Indeed, α ≤ D and γ ≥ 1 . If α = D and γ = 1 , we must have
β = 0 and δ = 1 . This implies claim 1 when we consider the partial quotient of αf+β

γf+δ . Otherwise (α = D and

γ = 1 do not hold) claim 1 holds if we consider the partial quotient of α
γ .

Suppose the last letter, i.e. cnk+1
≥ D , then we must have

a

c
= [cjk+1; cjk+2, cjk+2, · · · , cjk+1−1]

by the (Case1-Case3) and cnk+1
≥ D is the nk+1 − nk + 1th partial quotient of αf+β

γf+δ . This implies claims 2
and 3 if we can show

1

DK
≤ αf + β

γf + δ
≤ DK.

We only prove the fact αf+β
γf+δ ≤ DK , the proof of lower bound 1

DK ≤ αf+β
γf+δ is the same.
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If γf + δ ≥ 2 , then αf+β
γf+δ ≤ DK+D

2 ≤ DK . If γf + δ ≤ 1 , then we have δ = 0 and γ = K = 1 . This

implies β = D and α = 0 . We still have αf+β
γf+δ ≤ DK .

2

3. Technical lemmas
We say a Möbius transformation h(·) = M · cannot change the continued fraction eventually, if for any x ,
partial quotients of h(x) and x are eventually equal.

Lemma 3.1 The following forms of Möbius transformations cannot change the continued fraction eventually,

S =

{(
1 k1
0 1

)
,

(
k2 1
1 0

)
,

(
1 0
k3 1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)}
, (3.1)

where k1, k2, k3 ∈ Z .

Proof The proof is based on direct computation. 2

Remark: The determinant of each matrix in S is ±1 .

Lemma 3.2 Assume a, b, c, d ∈ Z and ad − bc 6= 0 , then M =

(
a b
c d

)
can be rewritten in the following

form
M = S1S2 · · ·SnM

′ (3.2)

with M ′ ∈ ε2 . Moreover, if D = detM = 1 , then M ′ can be
(

1 0
0 1

)
.

Proof Using Möbius transformations
(

−1 0
0 1

)
∈ S and

(
1 0
0 −1

)
∈ S , we can assume a, c ≥ 0 .

Using Möbius transformations
(

1 0
k 1

)
∈ S and

(
0 1
1 0

)
∈ S , M can be changed to M1 =(

a1 b1
0 d1

)
with a1 ≥ 1.

Using Möbius transformations
(

1 0
0 −1

)
∈ S and

(
1 k
0 1

)
∈ S , M1 can be changed to M ′ =(

a1 b1 mod |d1|
0 |d1|

)
∈ ε2 .

Moreover, if D = 1 , we must have a1 = 1, |b1| = 1 and b1 mod |d1| = 0 .
2

Remark: If |detM | = 1 , then the associated Möbius transformations cannot change the continued
fraction eventually.

Lemma 3.3 Let M ∈ ε2 and D = |detM | ≥ 2 . Let x = [a0; a1, a2, · · · ] such that B1 ≤ aj ≤ B2 for all j ≥ 0 .
Using the Algorithm in Section 2, we get a sequence c⋆0c

⋆
1c

⋆
2c

⋆
3 · · · by (2.5). If c⋆0 = 0 , then

c⋆1 ≤ bDy0c, (3.3)
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where y0 = [B2;B1, B2, B1, · · · ] ≜ [B2, B1] =
B1B2+

√
B2

1B
2
2+4B1B2

2B1
. Moreover, the equality in (3.3) holds iff

a = 0, b = 1, c = D and d = 0 .

In addition, assume M 6=
(

0 1
D 0

)
, then

c⋆1 ≤ max

{⌊
D

4
y0 + 1

⌋
, D − 1

}
(3.4)

if c⋆0 = 0 .

Proof Let
pn
qn

= [a0; a1, a2, · · · , cn],

then

Πa0a1···an
=

(
pn pn−1

qn qn−1

)
.

Thus, we have the following simple facts

MΠa0a1···an
=

(
apn + bqn apn−1 + bqn−1

cpn + dqn cpn−1 + dqn−1

)
, (3.5)

and

lim
n→∞

apn + bqn
cpn + dqn

=
apn−1 + bqn−1

cpn−1 + dqn−1
=

ax+ b

cx+ d
.

If c⋆0 = 0 , then c⋆1 is the second common partial quotient of apn+bqn
cpn+dqn

and apn−1+bqn−1

cpn−1+dqn−1
for any large n .

Combining with (3.5), we must have

c⋆1 =

⌊
cx+ d

ax+ b

⌋
. (3.6)

Now we are in a position to prove the Lemma, based on (3.6).
Case 1: a ≥ 1

Using x > 1 , one has

cx+ d

ax+ b
≤ cx+ d

ax

<
c+ d

a

≤ D,

where the third inequality holds by (2.1). This implies c⋆1 ≤ D − 1 .
Case 2: a = 0

In this case, we have b > d , bc = D and c+ d ≤ D by M ∈ ε2 , and

c⋆1 =

⌊
D

b2
x+

d

b

⌋
. (3.7)

819



LIU et al./Turk J Math

If b ≥ 2 , by (3.7), one has

c⋆1 ≤
⌊
D

4
x+ 1

⌋
.

Notice that if a real number with bounded partial quotients in [B1, B2] ∩ Z is such that x ≤ y0 , then

c⋆1 ≤
⌊
D

4
y0 + 1

⌋
≤ bDy0c − 1,

since y0 ≥
√
5+1
2 and D ≥ 2 .

If b = 1 , we must have c = D and d = 0 .
Putting all the cases together, we complete the proof. 2

Lemma 3.4 Let M ∈ ε2 with the form
(

a 0
c d

)
and D = |detM | ≥ 1 . Let x = [a0; a1, a2, · · · ] such that

B1 ≤ aj ≤ B2 for all j ≥ 0 . Applying the Algorithm in Section 2 to M · x , we get a sequence c⋆0c
⋆
1c

⋆
2c

⋆
3 · · · by

(2.5). If c⋆0 = 0 , we must have

c⋆1 ≤
⌊
D

x0

⌋
,

where x0 = [B1;B2, B1, B2, · · · ] ≜ [B1, B2] =
B2B1+

√
B2

1B
2
2+4B1B2

2B2
.

Proof Let b = 0 in (3.6), then we get

c⋆1 =

⌊
cx+ d

ax

⌋
. (3.8)

Notice that if a real number with bounded partial quotients in [B1, B2] ∩ Z is such that x ≥ x0 , then

c⋆1 ≤
⌊
cx0 + d

ax0

⌋
. (3.9)

Thus, in order to prove this Lemma, it suffices to show

cx0 + d

ax0
≤ D

x0
. (3.10)

.
If a = 1 , we must have c = 0 and d = D , this implies (3.10).
If a ≥ 2 , we already have ad = D and c ≤ a− 1 .
Case 1: D ≥ 2x0 > 2

One has

cx0 + d ≤ (a− 1)x0 +
D

2

≤ D(a− 1)

2
+

D

2

≤ Da.
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This implies (3.10).
Case 2: x0 ≤ D < 2x0

It suffices to show
cx0 + d

ax0
< 2. (3.11)

This is obvious by the following computation,

cx0 + d ≤ (a− 1)x0 +D

< ax0 + 2x0

≤ 2ax0.

This implies (4.4).
Case 3: D < x0

By direct computation,

cx0 + d

ax0
=

c

a
+

D

a2x0

<
a− 1

a
+

1

a2

< 1.

This also implies (3.10).
2

4. Proof of Theorem 1.1

Proof Suppose x = [a0; a1, a2, · · · ] is such that B1 ≤ aj ≤ B2 for j ≥ j0 , and M =

(
a b
c d

)
is such that

D = |detM | ≥ 1 . By Lemmas 3.1 and 3.2, we may assume M ∈ ε2 . By the fact

h(x) = M · x = MΠa0a1···aj0
· [aj0+1; aj0+2, · · · ] (4.1)

and (2.2), in order to prove Theorem 1.1, we only need to prove the case when all the partial quotients of x

satisfy B1 ≤ ai ≤ B2 .
By the Algorithm, it suffices to show that for any word k10k20 · · · 0kp in (2.3) with ki ∈ N+, i =

1, 2, · · · , p , we have

k1 + k2 + · · ·+ kp ≤
⌊
D − 1

B1

⌋
+

⌊
D
B1B2 +

√
B2

1B
2
2 + 4B1B2

2B1

⌋
. (4.2)

Assume k1 is the last letter of k th step (2.3). Then the output of k + 1th step is 0k2 , k + 2th step is
0k3 , · · · .

Case 1: k1 ≥ D

By (iii) of Lemma 2.1, Mk+1 has the form

Mk+1 =

(
ak 0
ck dk

)
∈ ε2.
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By Lemma 3.4, we have
p∑

j=2

kj ≤
⌊
D

x0

⌋
.

By (ii) of Lemma 2.1, k1 ≤ DB2 , then

p∑
j=1

kj ≤
⌊
D

x0

⌋
+DB2

≤

⌊
D
B2B1 +

√
B2

1B
2
2 + 4B1B2

2B1

⌋

≤
⌊
D − 1

B1

⌋
+

⌊
D
B1B2 +

√
B2

1B
2
2 + 4B1B2

2B1

⌋
.

This implies Theorem 1.1 in this case.
By the Remark following Lemma 3.2, we can assume D ≥ 2 .
Case 2: k1 ≤ D − 1

If Mk+1 6=
(

0 1
D 0

)
, by (3.5) one has

p∑
j=2

kj ≤ max

{⌊
D

4
y0 + 1

⌋
, D − 1

}
.

Direct computation (spliting the computation into B1 = 1 or B1 ≥ 2),

p∑
j=1

kj ≤ D − 1 + max

{⌊
D

4
y0 + 1

⌋
, D − 1

}

≤
⌊
D − 1

B1

⌋
+

⌊
D
B1B2 +

√
B2

1B
2
2 + 4B1B2

2B1

⌋
.

This implies Theorem 1.1 in this case.

If Mk+1 =

(
0 1
D 0

)
, by (4.2) one has

c⋆1 ≤ bDy0c.

Thus, in order to prove Theorem 1.1 in this case, it suffices to show

k1 ≤ D − 1

B1
. (4.3)

By the Algorithm of k th step, we have

MkΠa1a2···aN
= Πc1c2···cN′−1

(
k1 1
1 0

)(
0 1
D 0

)
∈ D2 ∪ D′

2, (4.4)
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and MkΠa1a2···aN−1
∈ ε2 .

This implies

MkΠa1a2···aN−1
= Πc1c2···cN′−1

(
k1 1
1 0

)(
0 1
D 0

)(
aN 1
1 0

)−1

. (4.5)

By direct computation, one has

MkΠa1a2···aN−1
= Πc1c2···cN′−1

(
k1 −k1aN +D
1 −aN

)
. (4.6)

Since all entries of MkΠa1a2···aN−1
are nonnegative, we must have

−k1aN +D ≥ 1. (4.7)

This implies

k1 ≤
⌊
D − 1

B1

⌋
,

since aN ≥ B1 . We complete the proof.
2
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