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In this paper, we consider the eigensolutions of —Au + Vu = Au, where A is the
Laplacian on a non-compact complete Riemannian manifold. We develop Kato’s methods
on manifold and establish the growth of the eigensolutions as r goes to infinity based
on the asymptotical behaviors of Ar and V (x), where r = r(x) is the distance function
on the manifold. As applications, we prove several criteria of absence of eigenvalues
of Laplacian, including a new proof of the absence of eigenvalues embedded into the
essential spectra of free Laplacian if the radial curvature of the manifold satisfies
Kpaq(r) = =1+ 20,

1 Introduction and Main Results

Let (M, g) be a connected n-dimensional non-compact complete Riemannian manifold
(n > 2). The Laplace-Beltrami operator on (M, g) is essentially self-adjoint on C3°(M).
We denote the self-adjoint extension by A (the Laplacian).

Assume there exists U C M such that M\U is connected and the induced outward
normal exponential map exps; : NT(3U) — M — U is a diffeomorphism, where N*(3U) =
{v € T(dU) | v is outward normal to dU}. As in [17, 19], let r be the distance function
from dU defined on M — U.
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2562 W. Liu

We are interested in the spectral theory of A and asymptotic behavior of the

eigensolutions of
—Au+TVu=2Aiu (1)

as r(x) goes to infinity.

For Euclidean space R", that is M = R", there are rich results about spectral
theory of —A + V with decaying potential V. A typical application of Weyl's theorem
states that the essential spectrum o . (—A + V) = [0, 00) if lim sup |V(x)| = 0. It is inter-
esting to investigate if there exists eigenvalue embedded into the essential spectrum.
Kato [13] addressed this problem and showed that there is no eigenvalue 1 > a? if

lim sup |x||V(x)| = a. This implies there is no eigenvalue embedded into the essential

o(1)
1+[x]*

[31]. By Neuman-Wigner type functions [32], V(x) =

spectrum if V(x) = There is an alternative proof similar to Kato’s by Vakulenko

o(1) o(1)
1+x| 1+x]

is a spectral transition for eigenvalue embedded into the essential spectrum. For more

is optimal so that V(x) =

examples about (finite or dense) eigenvalues embedded into essential spectrum, see

0(1)
(14|x])1+9

for some § > 0 or V € LP(R"™) for proper p > 0, the limiting absorption principle holds,

[15, 23, 29]. Under stronger assumption on the perturbation, for example V(x) =

originally from Agmon's theory [2, 25]. Thus operator —A+ V has no singular continuous

spectrum. See the survey paper [27] for more details. For one-dimensional case, there are

more results. For example, V(x) = % is a spectral transition for singular continuous

spectrum embedded into the essential spectrum [3, 14]. Agmon [1] and Simon [28],
using Kato’'s methods, independently obtained the quantitative bounds for a class of

potentials V(x) = V;(x) + V,(x), where lim sup |x||V;(x)| < oo, limsup V,(x) = 0, and

Vs Vo
ar ar

to Simon's review [30] for the full details on Kato’s method, its applications, and

lim sup |x|| 52| < oo ( is the derivative with radial direction). We refer the readers
related topics.

There are a series of Kumura’s and Donnelly papers [4, 5, 16, 17, 19] studying
the eigenvalues embedded into essential spectrum of the Laplacian on manifolds. See
Donnelly review [6]. The results are based on construction of energy functions. However
they do not fully use Kato’s method. As a result, they need some geometric condition
that we have shown to be unnecessary.

Our goal is to develop Kato's method (also Agmon’s and Simon'’s generalizations)
on manifolds. This is the first of our series papers, which in particular implies sharp
bounds for asymptotically hyperbolic manifolds. Let us consider the eigensolution
—Au + Vu = Au. We show that under some weak convexity assumption on a manifold,

asymptotical behaviors of Ar and potentials V can determine whether there is an
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eigenvalue embedded into essential spectrum, where Ar is the Laplacian of distance
function r(x). Ar comes from geometry and V comes from the Schodinger operator
on Euclidean space. The interesting thing is that Ar is the only term involved in
the geometry, completely determining the threshold for embedded eigenvalue. For
example, even to obtain our Corollary 1.2, Kumura [17] needs an extra condition on Ricci
curvature of a manifold.

The original idea of Kato [13] to study the growth of eigensolutions on Euclidean
space contains four steps: construct energy function for eigen-equation; prove the
monotonicity of energy function with respect to r (r = |x| in the Schrédinger case); set
up the positivity of initial energy; and obtain the growth of eigensolution. The first
challenge is to construct the energy function since the simple sum of potential energy
and kinetic energy does not work well even for Euclidean space in higher dimensions.
We will give the general construction of energy functions on manifolds, which can be
adapted to various situations easily. During the process, we borrow some derivative
estimates from [17] to set up the monotonicity of energy function (see §2). However, we
improve the previous arguments significantly in several aspects, including the subtle
geometry analysis. Another main novelty here is that we give universal method to treat
all cases of manifolds and potentials. Here, we just fix some indices to make energy
functions work for this paper. We believe our method has a wider applicability. For
example, in the following [22], we give a new way to verify the positivity of initial energy,
which works well for the asymptotically flat manifolds.

The results of [8, 16] show that o, (—A) = (22, 00) if lim Ar = a.

In order to describe our results, some notations are necessary. Let g be the metric
and V be the covariant derivative. Denote Hessian of r by Vdr. For simplicity, let dx be
volume form (or restriction on sphere if necessary). Sometimes we also use |-| as the norm
of vector. All the functions f on the manifolds in this paper depend on x. For simplicity,
we ignore the dependence on sphere and use f(r) instead of f(x).

Let u be a nonzero real solution (Actually, all the results in the paper hold for
complex solution u. We give up it here because it is not our main goal.) of eigenequation
(1) and define

M(r) = M(r; u) = ( / u(x)[? dx)z,
[r(x)|=r

2 z
N(r):N(r;u):(/ dX) .
[r(x)|=r

ou
or
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Our first main result is

Theorem 1.1. [Basic version] Let the potential V(r) = V,(r) + V,(r). Assume

. . . v,
lim sup [rV; ()| < a;,limsup |V,(r)| = 0,lim sup r‘—‘ <a,,
r— 00 r—00 r—00 ar
for some nonnegative constants a,, a,.
Assume
liminf [rVdr — a;gl > 0,
r— 00
for some a5 > 0, where g = g — dr ® dr, and
. as
limsup r|Ar —a, — —| <,
r—o00 r
for some nonnegative constants ay, as, §.
Suppose
w>38,2a3>p+8,a3>1+36, (2)
and
2 2 2
a a 1 (2a éa a a
A > max{ 2+ 2 —( 1+ 4),—4 2 U (3)
4 w—=58 4 u?-452 4 2(az —98)

Then we have

liminf r*[M(r)? + N(r)*] = .
r— o0
Based on Theorem 1.1 (By the fact that A + V is essentially self-adjoint, we have

Vu € L?(M) if the eigensolution u € L?(M).), we have several immediate corollaries.

Corollary 1.2. Let the potential V(r) = V,(r) + V,(r). Suppose

o(l)

_om Wy _ o)
Vi) ===, 2| =

Vo (M) = o(1), -

’

as r goes to infinity.

Suppose
liminf[rvdr — (1 +€))gl > 0,
r—o0

for some ¢ > 0, and
b o)
Ar=a+ -+ —.
r r
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Then for any A > %2 and u > 0, we have

liminf r*[M(r)? + N(r)*] = cc.
r— 00
In particular, —A admits no eigenvalue larger than %.

Corollary 1.3. Suppose

limsupr|Vdr—g| <A,
r— 00

_1)2

and (n — 1)A < 1. Then —A does not have eigenvalue larger than & i+ (n—1)°A”

11— (n—1)24%)"

Remark 1.4. By some direct modifications, a similar result can also be obtained under

the assumption
B . A
——<Vdr—-g=<-—,
r r

as r goes to infinity. Thus the corollary improves Theorem 1.1 in [17] by removing extra

assumption on the Ricci curvature.
Corollary 1.5. Suppose there exists a ry > 0 such that
vdr >0

for r =rgy, and

24 24
—1- = <K <-1+2= <0,
r r

for r > ry, where K, 4(r) is the radial curvature (In Geometry, radial curvature is the

sectional curvature with one fixed direction % We refer the reader to [10] for formal

definition and applications.). Suppose

(n—1A < 1.

_1)2

Then —A does not have eigenvalues larger than (n 7 T (n-1)°4°

4(1-(n—1)242%)"
. —1)? . 1
does not have eigenvalue larger than & 7 i Kpgq () +1 = &r)

In particular, —A

Just we mentioned in the introduction, in Theorem 1.1 Ar is from the geometry
and V is the potential from Schédinger operator on Euclidean space. For the potential

part, we develop Agmon-Simon’s generalization on manifolds. For the geometric part,
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2566 W. Liu

we just develop Kato's method so that there is no derivative of Ar involved in. Our
next two theorems are to develop Agmon-Simon's generalization on geometric part of
manifolds. Namely, if we know the information of % (or gradient of Ar), we can get

similar results to Theorem 1.1.

Theorem 1.6. [Gradient version] Let the potential V(r) = V,(r) 4+ V,(r). Suppose

v,
lim sup [rV;(r)| < a;,limsup |V,(r)| = 0,lim sup r’—z‘ <a,,
r—00 r—00 r—00 or

for some nonnegative constants a;, a,.

Suppose
lim inf[rVdr — a;g] > 0,
r—o00

for some a5 > 1. Suppose

a- 8(r
Ar=a,+— + b
r r
and
as(r 9N - _
lim sup ‘ @) < é;,limsup ‘(V — —)8(7‘)‘ <8, limsup |8(r)| <6,
r—00 ar r— 00 or r— 00
for some nonnegative constants ay, as, 81,6, 8.
Suppose
2a; > [,
2 2 2
a 1 2a, +6 1) a,d
Py S a2+( L TO)T L % Gad (4)
4 w 4 8a; —4pu 2
and
2 2
a a a,o 1)
A>-—24+ min {24214 2 ) (5)
4  2<so<2a3 | S5 2S5  (8az —4sy)sy

Then we have

liminf r*[M(r)? + N(r)?] = cc.

r—oo

Remark 1.7.

e The bounds on the right of (4) and (5) depend on §,, not 8.

e We can also obtain some interesting corollaries like Corollaries 1.2 and 1.3.
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Theorem 1.8. [Mixed version] Let the potential V(r) = V,(r) + V,(r). Suppose

AV,
11m sup [rV, ()] < a;,lim sup |Vy(r)| = 0,1lim sup r‘ ‘ <a,,
r— r—00 ar

for nonnegative constants a,, a,.

Suppose
lim inf[rVdr — a;g] > 0,
r—-oo

for some a5 > 1. Suppose

a S(r
Ar +—§+()
r
and
lim sup ‘— <6, limsup 18(r)| <8,
r—o00 r—00
for some nonnegative constants ay, as, §;,9.
Suppose
w>38,2a3>p+8,a3>1+36, (6)
and
2 2 2
a a a,é a a 2a, +a,é
> max| % % 4% 1% 2+ @40 | 7)
4 20 —8)  u2—82" 4 ' 4(az—9)

Then we have

liminf r*[M(r)? + N(r)*] = 0o
r— o0
Corollary 1.9. Suppose there exists a ry > 0 such that
vdr >0

forr =ry, and
2A 2A
-1—-— <K 4 =-14+—<0,
r r

for r > ry, where K, 4(r) is the radial curvature. Suppose

n—1DA < 1.

2(n—1)%2A
+ I-n—-1DA"

2
Then —A does not have eigenvalue larger than (nzl)
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2(n—1)%2A
I-(n—1A

Remark 1.10. The lower bound (n;”z + is exactly the bound given in [17].

We should remind that Corollaries 1.5 and 1.9 gave different bounds, and n and
A will decide which one is better. However by the combination of energy functions
in Theorems 1.6 and 1.8, we can get a universal bound, which is better than that in

Corollaries 1.5 and 1.9.

Theorem 1.11. Suppose there exists a ry > 0 such that
vdr >0

forr =ry, and
2A 2A
_1__§Krad(r)§_1+_ <Or
r r

for r > ry, where K, 4(r) is the radial curvature. Suppose

Mm—1A <1
and
(n—1)2 , (n—1)%A2 2(n —1)2A
b T min [U 10— m-12az T AT l)A]'

then A cannot be an eigenvalue of the free Laplacian.

Remark 1.12. Actually, by the combination of energy functions in Theorems 1.6
and 1.8, we can set up a generally stronger Theorem with more generality. We do
not want to explore the general case here, we just give a better bound than that in

Corollaries 1.5 and 1.9.

We want to see more about Corollaries 1.5 and 1.9 and Theorem 1.11. Radial
curvature K, 4(r) is a feature of hyperbolic manifold and flat manifold.

For the asymptotically hyperbolic case, the sharp transition is given by Kumura

. . . . . (n-1)*
[17] by studying the eigensolutions directly. He excludes eigenvalues greater than ~=——

under the assumption that K 4(r) + 1 = o(r~1), and also constructs a manifold with

the radial curvature K,,4(r) + 1 = O(r~1) and with an eigenvalue % + 1 embedding

(n—1)?
4

of eigenvalues were obtained in papers [4, 24].

into its essential spectrum [

,00). Before that some partial results on the absence
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For the asymptotically flat case, several authors [5, 7, 9, 19] showed the

absence of positive eigenvalues of free Laplacian under some assumptions on the radial

3

curvature. Roughly speaking, they assume |K4(")| = 12z

for small §. See Donnelly’s
review paper [6] for more results.

Jitomirskaya and Liu also constructed examples which show that dense eigen-
values and singular continuous spectrum can embed into essential spectrum of Lapla-
cian in both cases [11, 12]. We mentioned that Kumura also studied other related
topics in papers [18, 20, 21]. There are also other topics about asymptotically flat and
asymptotically hyperbolic manifolds. See [26] and the references therein.

The rest of the paper is organized as follows: in Section 2, we present some
basic knowledge. In §3, we will give the general construction of energy functions. In
Section 4, by fixing some indices in the energy functions, we prove Theorem 1.1 and
Corollaries 1.2, 1.3, and 1.5. In Section 5, by adapting the energy functions, we prove
Theorem 1.6. In Section 6, by adapting the energy functions, we prove Theorems 1.8
and 1.11 and Corollary 1.9. Our proof is self-contained except the unique continuation

theorem and some basic geometry results (Lemma 4.5).

2 Preliminaries and Derivative Lemma

LetS;,={xeM:r(x)=t}, w € S,, and x € M. Thus (r, ») is a local coordinate system for
M (w depends on r. We ignore the dependence for simplicity.). Let < -, - > be the metric
on the Riemannian manifold.

Choose a function p(r), which will be specified later. Let L = e’Le~?, where
L=—-A+V.Then

2M,dgy =% 12, dg)

| L

L2(M,e"?’dg) —— L*(M, e 2°dg)

Let

Then, one has
Vu=—p'e’vVr4+e Vv,
and

av
Au =divVu =e PAv — 2p’e“’5 +(p* = p" = p'Ar)e V.
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So the eigen-equation (1) becomes
- Av+2p’g—:+(v+ Vv = Av, (8)
where
Vo=p Ar+p" — p2. (9)
Lemma 2.1. [17] Let X be a vector field. Then

< X, Vr>e % dx= [ (divX —2p <X, Vr>)e 2" dx. (10)
rJs, S,

Proof. First, one has
div(Xe %) = e * div(X) — 2p'e *" < X,Vr > .
Integration by part, we get

/ <X,Vr>e 2’ dx— <X, Vr>e 2P dx = (divX—2p' < X,Vr >)e 2" dx,
S

to St; i =[r()|<t2
which implies (10). n

Lemma 2.2. [17]

i —2p — alc —_ 2,V | e 2P
oy Srfe dX_/Sr[ar~|—f(Ar 2p)]e dx.

Proof. LetX = fVr. By direct computation, one has

divX = div(fVr) = gi: + fAr.

Putting X into Lemma 2.1, Lemma 2.2 follows. [ |

Now we always assume u is a nonzero solution of —Au + Vu = Au, where V =
Vi +V,. Let
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with m > 0. By (8), we get the equation of v,,,

2m v, m(m +1 m
Avm—(7+2p’) a;"+( (rz )+?(2p’—Ar)—V0—V1—V2-|-/\)vm=0. (11)

3 Construction of the Energy Functions

In this section, we will give the general construction of energy functions and derive the

formulas for their derivatives.

Let A, be the Laplacian on sphere r. Using Au = 22712‘ + Ar%—lr‘ + A, u, (11) becomes

32v,, 2m v,
—(=A a9 )
ar? ( Tt r + p) or

mm+1) m

+Arvm+(r—2+ 2p'— AP =V, -1, —V2+)\) v, =0. (12)

r

Let us mention our intuition to construct energy functions. We view (12) as one-
dimensional Schrédinger operator (r is the variable). (12) is not the normal form-—D? +q
since —Ar + 27'” + 2p’ is not 0. So the first step we need to do is to choose p such that
—Ar + 27'" + 20’ is smaller than @. The energy function for equation u” + qu = 0 is
%|u’|2 + %quz. Similarly, the usual energy functions of (12) are taken with the form as
%|"(‘;—;" 2y %qv,zn with average on the sphere. Since we cannot make —Ar + 27’” + 20’ zero,

extra term g, 8E')’—;"Vm should be added into the energy functions. By the fact

1jov,, 12 1 0,12 1
|5+ @ v [ax = [ ][5 v, ? | ax,
o Lal 5T gt ax= | [52[ =grew

it is natural to construct

1 v mm+1) ¢t _
F(m,r, t,s) =r" | = My _— L) vE | e % dx
( ) /S 2 [QI or m+( rz r+q2+ ) mi|

r

ov, 12 1
o [ e
S

=14 1II +III,
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where
0 2 1
- rs/ Uﬁ] - —|va|2] e 2 dx
Sy ar 2
1 0 2
= —rs/ ‘h’ — |V, vnl* |e7% dx,
2 Sr ar
and
1 mm+1) t 2 _9
IIZETS Sr[r—z—;+q2+)»:|vme de,
and

We begin with the derivation of E%I

By Lemma 2.2, one has

0 19
—I:srs_l/ Vm | _ —|V V|2 e dx
or S, 21 or
v, 3%v,, 19 )
—i—rs/ [a—;" 87'2m_§8 <V, Vm VoV >i|e P dx

+r5/ Z (A7 —2p )U m( v, v |] e~2 dx.

Using Av,, d 3+ Ar%m 4 A v, we get

w’ m’
i]::/ |:§rs—1
or | 2
—H‘S/ |:<——+ (2,0—Ar)) (Vv,,, Vv, ] 20 dx
Sy 2r

d 10
”S/s [<Vw%'vwvm>‘za— = Volm: VoVm >]e Y dx.

2
ov rs ov
+T'Sa—;nAVm+ E(Zp’— Ar) —n

ov.

—_m

ar

2
ov,,

—2rp’
ar P

2
j| e % dx

By some basic computation, one has

ov,, 19 vy,
VoS V) = 55 < VoV VoV ==V, 5V, i, <VaVV VV>

w’m’ w’m’

=(Van(V,v,,,V,v,).
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Finally we get

% :/S[%r“’aal:l) —2ry m) +r amAV +—(2p —A)‘ ”ezf’dx
+ rS/ [(Vdr+ (— % + %(2;/ - Ar))g)(VVm,VVm)} e 2 dx. (13)

Now we are in the position to obtain %H.

By Lemma 2.2 again, one has

9 o1 (mm+1) t 21 s
1= A A A ? dx
ar / |:8r2 ( r2 Pt )Vm €

1 t
(Ar—2p ) |:m(m—2+)——+q2+)nj|vrzne_2de
Sy r r

s—2 -1 rs o s s
:/[ 5 P 3mm+ 1) - >~ 5 —tr- 2+—ﬂ+§r“q2+xzr“]vfne2/’dx
Sy

2 or
mm+1) t v, _o
+rs/r|:T—;+q2+)\,:|V a—e P dx
s 1 t
+r—/ ar—2p) | TED L ] v2e? ax. (14)
2 Js, r2 r

Similarly, by Lemma 2.2 again, we have

1 (dq,;

rs , 1 ov
qu(Ar— 2p") + 25T @ +or——

m —2p
—Vmi| e “’ dx

2 or ar

d 1 av. ad 1 ov
—III = —q,r’v,, —(Ar —2p") + — (1 =q, =2 —2r dx
or /Sr[qur Vm oy (AT '0)+8r( 2N V’”)}e
A
1 5 |3V 1 3%v,, o2 dx
+ S, Er ql | +§ qlvm 92r

rs raq
- Ar—2p) + S5 1| Wiy, o2 gy
/S[ Q(Ar =200 + 51 gy + 5 ar} ar  m®

8 —2p
+/Sr|: ‘87'} + qlm(AV —Arw AV)]e dx. (15)
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2574 W. Liu
Putting (13), (14), and (15) together and using (11), we conclude that

BF(m,r,t,s) 0l 09I OIII
or or 8r

:/[ ((Vdr) ———(2p Ar)) )(va,va)+lq1rsvm(—Ame)]eZde
S, 2r 2

(16)

+/ omrs! 4 (2p — AP+ qlr +2r5 IN

b

vy,

’ e 2’ dx
or

2]

<V0+ Vi+Vy,+q, - —) +rIm(ar — 20/ )} —rv e % dx

(%)

r L

1 1 ;0q; | dv 9

—sr¥” mrs” —r—| L2y e dx
+/s,_2 atmrTia ar} or 'm

[s—2 s—1, 5 170G, 9 9
+/Sr 2 rE3mm+1) - 5 —tr’ +to o + q2+k2r vi,e " dx

rs mm+1) ¢ 9 _o

—(A —— - s P dx
+ [ G- 20) | ™, r+‘12+i|Vme

rs m(m + 1 m _
+/ ! [%4-7(2/0/—&')_‘/0_‘/1_V2+)*:|Vr2ne 2 dx.
Sr

4 Proof of Theorem 1.1 and Some Corollaries

Let

s(r) = r(Ar —a, — a—:’)

a,(r)=rvy

a (r)—raV2
207

By the assumptions of Theorem 1.1,

limsup |86(r)| < §,lim sup la,(r)| < ay,limsup|a,(r)| < a,.
r—0o0 r—0o0 r—o0
Let 0 < t < 1 be small enough, 2o’ = a, + % and g, = 0. Direct computation of
(9) implies that
ai  ajsas a8 0(Q)
4 2r 2r rz -’

We should mention that O(1) and o(1) only depend on constants in the assumptions of

VO =

Theorem 1.1, not depend on m, t.
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2
Let g, = —2& — %495 _ 7, By (16), we have

4 2r
dF(m,,t, - 1) 5 -
HOULLD) _ oo | [(r(Vdr)— (§+§5) g) (va,wm)}e ax o (17)
i § sljov, |2
s—1 m|” =2
o2m— — + 2| |Z2m P dx 18
+r /sr_m 2+21| 3r‘€ (18)
+P4/‘ﬁ-+§g—t+ﬂz+db Wy, €2 dx (19)
SrL ' 2 r or ™
+ rs—l/ _ a_‘zl E + é — @ + o(1) V2 e—2p dx (20)
s, 4 J\2"2) 2 "
G mm+D[s—2 §] ,
tr / r2 7 Tz|vme A 2y

Theorem 4.1. Under the assumptions of Theorem 1.1, there exist sy, Ry, my > 0 such

that for m > my and r > R,

oF(m,r,t,sg)
—_— >
ar

0.

Proof. Let sy be such that s; < 2a; — é and sufficiently close to 2a; — §. By the

aSSumptiOn a3 > 1 + (S (See (2)), one haS
I(Cd7)— —SO+—15 gA>li
2 2 -

for large r, which implies
(17) > 0. (22)

2
By assumption a; > 1+ § (see (2)) again and A > % + % (see (3)), one has

2 = -
a 8
a-la) (S0 %) %2
4 J\2 "2 2

and

—2+S 0
2 2>.
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By Cauchy-Schwartz inequality, one has

mm+1) (sp—2 & ai\(so 8\ a,| 5 s
2 _ a0 %) 22 om— 2 120
[ rz ( 2 T2)7* s \2T2) 2|t |2t

for large m and r. Thus, one has

[(19)] < (18) + (20) + (21)

for large m and r.
By (22) and (23), we obtain Theorem 4.1.

Theorem 4.2. Let s < u and s be sufficiently close to x. Then under the conditions of

Theorem 1.1, we have
0F(0,r,0,s)
— >0
or

’

for large r.

Proof. Letm =0,t=01in (17)-(21), one has

0, - 15) 5 -
0F(0,7.0.5) :/ rs1 [r(Vdr) -~ (E - —8) g)(Vv,VV)] e” % dx
or ' 22
+rs—1 __§+£ a_V 2e_2de
ssL 2 2]f|or

[ ba v
+ T'S_l (,ll + 74 =+ 0(1):| Eve_z" d.X
Sr L

_ ) B )
-1 (s 0 _ % 2¢-20
+7rs S, ( 4)(2+2) 5 ~|—o(1)]ve dx.

We will show that for large r,
d0F(0,r,0,5s)
—— >0
ar
By Cauchy-Schwartz inequality, it suffices to prove

(9G]l

2

_ 8
a, + 5(14

(23)

(24)
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Solving inequality (24), we get

2 = SN2
1o e o L
It is clear that (25) holds if
- a_§+ a, | 1(Qa, ~|—8a4)2, (26)
4 s—8§ 4 s2-§2
which follows from the assumption (3) and the fact s is close to u. ]

Theorem 4.3. There exist my > 0 and R > 0 such that
F(mg,7,t,0) > 0
for all r > Ry,

Proof. Itis easy to check that

1 (mm+1) t ) v, > 1 AV
F(m,r,t,0) = —N— - A — — |V e “’ dx
( ) ~/Sr|:2( r2 r+q2+ )Vm+ or 2| Vm|
2m 2 2
r 2m*+m t 5 |0V m ov 2| o
=— —_— == M vi+ | —| +2——v— |V, v|*|e* dx.
2 5r|:( r2 r+q2+) +8r + r or |‘”|]

By unique continuation theorem and fact that u is nonzero, there exists large enough R
such that [; v?e?’ dx # 0. Let m, be large enough so that
0

F(mg, Ry, t,0) > 0.

By Theorem 4.1, we get

F(mg,r,t,0) >0,
for all r > Ry, n
Theorem 4.4. Assume that fSr v?e~%¢ dx is not monotone increasing (with respect to )

in any semi-infinite interval r > R. Then there exists a sequence r,, goes to infinity such
that

F(0,0,7,,0) > 0.
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Proof. By the assumption, there exists a sequence r,, goes to infinity and such that

ad

— v2e ?? dx <0
or Sy

for r =r,. By Lemma 2.2, one has

/ |:2V3—‘; + (Ar — 2,0/)V2:| e 2’ dx <0 (27)

r

for r = r,,. By some direct computation, we have

2

1 (mg(my+1) ¢t v 1 -
F(my,r,t,0) =/ [5 (% — -+ +A) Ving +(‘Wm° - EIVVmOIZ)} e % dx
2mo 2
r mo(my+1) ¢t 5 |0V My 2| o
= 5 Ar[(r—z—;+q2+A V+¥+TV —|VwV| e “P dx
2mo 2
r ov
= W+ | —| — |V v]?|e % dx
2mo 2mé+m, t 9
+r / otMo 1 V2+2—m0—VV e 2 dx
2 Js, r2 r r or
2mg 2
r av
= W2+ |—| — |V v?|e % dx
; /Sr|:(Q2+) +'3r |w|}
2mg 9
+ M/ |:2V—V + (Ar — 2,0/)V2:| e % dx
2r S, ar
2mo 2m3+my t
+ ! / 0 0o_!_To (Ar —2p") | v?e 20 dx
2 Js, r? ror
=r?™F(0,0,r,0) (28)
2mg 9
+ M/ 2V—V + (Ar—2p")v? | e %" dx
2r . or
rémo 2mg+my t  mg N o2-2
+ — —— —(Ar—2p") | vee ** dx.
2 Js, r? roor

For large r, one has

2mg 2 2
r ms—+m t m
/ 0 0 29 Ar—2p)|v?e? dx <0,
2 Jsp r2 r r
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since t > 0.
Combing with (27) and (28), one has

F(mg,7,,t,0) < F(0,1,,0,0).
By Theorem 4.3, we have F(m,, r,,t,0) > 0. Thus we get

F(0,0,7,,0) > 0.

Proof of Theorem 1.1.

Proof. It sufficesto assume fSr v?e~?/ dx is not monotone increasing (with respect to )
in any semi-infinite interval r > R.

By Theorems 4.2 and 4.4, there exists y > 0 such that
F@,r,0,5) > vy,

for large r. Thus
Jv |2
: ar

By the fact v = e?u, we get that

for some yy > 0.

liminf r[M(r)? + N(r)?] > 0.
r— 00
Recalling that s < u, we have

liminf r*[M(r)? + N(r)*] = cc.
r—00

Proof of Corollary 1.2.

Proof. The Corollary 1.2 follows from Theorem 1.1 directly. |
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Proof of Corollary 1.3.

Proof. The Corollary 1.3 follows from Theorem 1.1 and the fact that Ar is the trace of
vdr. |

Before we finish the proof of Corollary 1.5, a lemma is necessary.

Lemma 4.5. Suppose there exists a ry > 0 such that
vdr >0

forr =ry, and
2A 2A
r r

for r > ry, where K, 4(r) is the radial curvature.

Then
|Vdr — g| < A—+ro(1), (29)
and
‘aAr - 4(n — 1)A+o(1)' (30)
or r

Proof. (29) and (30) can be proved by comparison theorem and Weitzenb&ck formula.
See [17] for details. |

Proof of Corollary 1.5.

Proof. Under the curvature condition of Corollary 1.5 and Lemma 4.5, one has

. A
limsup |Vdr — g| < —.

r—00 r

Now Corollary 1.5 follows from Corollary 1.3 . |
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5 Proof of Theorem 1.6

2 -
Let g, = Ar—2p/, g, = — % — %% _ %% _ y, and the others as the same in §4. By (16)

and integration by part, one has

oF(m,r,t,s)

_ s, 1 B
oy =r’ 1/ [(r(Vdr) - Eg) Vv, Vv,) + Ersvm <V,q1, VoV >] e % dx

r

2
+ rs—l/ [zm n E:I ov,, e 2 dx
; 21| or

t av,
+ rsfl/ r |:q2 -+ Vo+V, + V2:| 8—;"Vme*2'0 dx
Sr

s 10 av,
+ rS_l/S [qu + Er% + 2mq1} a—;”vme_z" dx

s—2 s—1 r$o s s
+/ |:Trs_3m(m+l)—Ttrs_2~|—5%+§rs_lqz+kzrs_l]V,%,e_z'o dx

1 t m
—i—/s ET‘S% [—; T O+ @at+Vt+Vi+ Vz} vme 2 dx.

Let

B0 5 (v-LYsw) =5
ar 1'( _5) (r) =0

By the assumptions of Theorem 1.6, we get

oF(m,r,t,s)

_s—1 _ E A l 71 _ o
ar = /Sr[(r(Vdr) (z)g)(va,va)+2rs Vm<5z,Vme>]e dx

m

+r5—1/ _2m+s] ov
1T

or
+ rs—l /
a4f§1

s S a
+ rs_l/ —— - gai + ok 72 + o(l)] vie 2P dx

2
e 2 dx

i 1- -m ov.
—t+a, + -8, +25— )| —2v,_e 2 dx
I + a + 2 1 + » + 0( ):| or V€

[s—2mm+1) §m
+rs’1/ (m + )+
S

2 T ?ﬁ:| aneizp dx. (31)

Theorem 5.1. Under the conditions of Theorem 1.6, there exist s, Ry, my > 0 such that
form > my and r > R,

dF(m,r,t,8g)
or

> 0.
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Proof. Let2 < s, < 2a4, which will be specified later. One has

1 < Vin So 2
SV < 82, VU >| < 2+ (as - 2 +€0)) IV, vl
where o is any constant such that
o < 16a4 — 8s
18,12
and €(o) > 0 is small. Let o be close to %. By assumption (5), there exists s, with

2 < sy < 2a3 such that

as8; s s a 1
41 04,2, 70, 2 > 0.

4 84+ 2 2 o

By Cauchy-Schwartz inequality, we have

so—2mm+1) §m a8, Sy o, Sy. Qy So
4 S - 0af 022~ om0
[2 R R gt 2 o 3
- 1. -m7?
> [—t—i—al + =8, +28—} (32)
2 r
for large m and large r. Putting all the estimates together, we obtain
oF
(m,r,t,sq) -0
ar
for large m and r. u

Theorem 5.2. Under the assumptions of Theorem 1.6, we have

0F(0,r,0,s)
— >0
or

’

for large r.
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Proof. Letm,t=01in (31), one has

d0F(0,r,0,5s) sl

1 _
or /r [(r(Vdr) — %g) (Vv,Vv) + Ers_lv <89, V,V >i| e % dx

e

1. a
+ rs_l/ [dl + 581 + 0(1)} a—‘;ve_zp dx

2

d
v e % dx

or

a,s s s a
+ T'S_l/ I:—% — gai + E)x — ?2 -+ O(].)i| V2€_2p dx.
s

By the proof of (32), it suffices to show that

N = 2
ad; S 5 S a, 1[5] _ 1.
Y i R S W B | D) S S N
[ s g%t T TSl [ty

This holds by assumption (4). |
Proof of Theorem 1.6.

Proof. The proof follows from the proof of Theorem 1.1. We only need to replace
Theorems 4.1 and 4.2, with Theorems 5.1 and 5.2. [ |

6 Proof of Theorems 1.8 and 1.11 and Corollary 1.9

2 _
ay [22%) aaas

Letq; =0, g, = —3 — 5= — =5,> — V, and the others as before. By (16), we have
OF(m.7.t.5) _ S_l/ |:r(Vdr) — (E + 15) Q)(va,VVm)] e % dx (33)
ar S, 2 2
+rs_1/r |:2m—§+%i| aaL:zze_Zde (34)
+r5—1/sr &) —t—l—S?—i—o(l)] BBL;"Vme_Z'O dx (35)
+ 7571 /S |:(A — %‘21) (% + %) - % - ;La‘,jl + 0(1):| vie 2 dx (36)
s [ m(rr:;r 1) [s;Z N g} 2 -2 gy, (37)
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Theorem 6.1. Under the conditions of Theorem 1.8, there exist s,, Ry, my > 0 such that
for m > my and r > R,

oF
(mr r, tl SO) - O
ar

Proof. Let sy be such that s; < 2a; — é and sufficiently close to 2a; — §. By the

assumption a; > 1 + § (see (6)), one has

1-_
r(vdr) — (SEO + 55) g>0,

for large r, which implies

(33) > 0. (38)
By assumption a; > 1+ 8 (see (6)) and A > %‘2* + % (see (7)), one has
()L_a_i)(s_o_'_ﬁ)_@_ﬂgl >0,
4 2 2 2 4
and ]
%;2+%>Q

By Cauchy-Schwartz inequality again, one has

mm+1) (sg—2 & ai\(so 8\ @ as: | o
b S Y ey I Y
[ r2 ( 2 T3)7 2 J\2 72 R

§  so||ov a -m
2m — - + 2| | =2 A _t45—| =
+[m 2+2]8r [2 + J 9 A
for large m and r. Thus, one has
[(35)] < (34) + (36) + (37) (39)
for large m and r.
Now Theorem 6.1 follows from (38) and (39). [ |

Theorem 6.2. Let s < u and s be sufficiently close to x. Then under the conditions of

Theorem 1.8, we have
0F(0,r,0,5s)
— >0
or

’
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for large r.

Proof. Letm =0,t=0in (33), one has

0, - 15) 5 -
FO109 _ / po! [r(Vdr) - (g + 58) g)(vV,vw} e % dx
_I_rs—l/ _§+i a_Vze_z'ng
. 2 2]|or

0
+r7 [ 1ay + oIS ive ™ dx

S
2 = -

s—1 ay s ¢ Ay  Gyc 2

) I (A O B 1) | v2.

+r /r|:( 4)(2+2) 5 2 1+o():|v

We will show that for large r,

0F(0,r,0,5s)
— >0
or

By Cauchy-Schwartz inequality, it suffices to prove

at\(s 3§ a, Q- 5§ s _
4{( S (G3) -2 |5 s 4o

which holds by assumption (3) and s is close to u. |
Proof of Theorem 1.6.

Proof. The proof follows from the proof of Theorems 1.1 and 1.6. We only need to
replace Theorems 4.1 and 4.2, with Theorems 6.1 and 6.2. [ |

Proof of Corollary 1.9.

Proof. The proof follows from Theorem 1.6 and Lemma 4.5. |
2
Proof of Theorem 1.11. In the proof Theorems 1.1 and 1.8, we let g, = — % — %% — 7,
2 < 2
and g, = —%4 — 5V, — “z;‘f respectively. Now we only need to let g, = —%4 — 5V, —

a- cr)“zirg, and following the proof of Theorems 1.1 and 1.8, we can prove Theorem 1.11.

We omit the details. [ |
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