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In this paper, we consider the eigensolutions of −�u + Vu = λu, where � is the

Laplacian on a non-compact complete Riemannian manifold. We develop Kato’s methods

on manifold and establish the growth of the eigensolutions as r goes to infinity based

on the asymptotical behaviors of �r and V (x), where r = r(x) is the distance function

on the manifold. As applications, we prove several criteria of absence of eigenvalues

of Laplacian, including a new proof of the absence of eigenvalues embedded into the

essential spectra of free Laplacian if the radial curvature of the manifold satisfies

Krad(r) = −1 + o(1)
r .

1 Introduction and Main Results

Let (M, g) be a connected n-dimensional non-compact complete Riemannian manifold

(n ≥ 2). The Laplace–Beltrami operator on (M, g) is essentially self-adjoint on C∞
0 (M).

We denote the self-adjoint extension by � (the Laplacian).

Assume there exists U ⊂ M such that M\U is connected and the induced outward

normal exponential map exp⊥
∂U : N+(∂U) → M −U is a diffeomorphism, where N+(∂U) =

{v ∈ T(∂U) | v is outward normal to ∂U}. As in [17, 19], let r be the distance function

from ∂U defined on M − U.
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2562 W. Liu

We are interested in the spectral theory of � and asymptotic behavior of the

eigensolutions of

− �u + Vu = λu (1)

as r(x) goes to infinity.

For Euclidean space R
n, that is M = R

n, there are rich results about spectral

theory of −� + V with decaying potential V. A typical application of Weyl’s theorem

states that the essential spectrum σess(−� + V) = [0, ∞) if lim sup |V(x)| = 0. It is inter-

esting to investigate if there exists eigenvalue embedded into the essential spectrum.

Kato [13] addressed this problem and showed that there is no eigenvalue λ > a2 if

lim sup |x||V(x)| = a. This implies there is no eigenvalue embedded into the essential

spectrum if V(x) = o(1)
1+|x| . There is an alternative proof similar to Kato’s by Vakulenko

[31]. By Neuman–Wigner type functions [32], V(x) = o(1)
1+|x| is optimal so that V(x) = o(1)

1+|x|
is a spectral transition for eigenvalue embedded into the essential spectrum. For more

examples about (finite or dense) eigenvalues embedded into essential spectrum, see

[15, 23, 29]. Under stronger assumption on the perturbation, for example V(x) = O(1)

(1+|x|)1+δ

for some δ > 0 or V ∈ L p(Rn) for proper p > 0, the limiting absorption principle holds,

originally from Agmon’s theory [2, 25]. Thus operator −�+V has no singular continuous

spectrum. See the survey paper [27] for more details. For one-dimensional case, there are

more results. For example, V(x) = O(1)
1+|x| is a spectral transition for singular continuous

spectrum embedded into the essential spectrum [3, 14]. Agmon [1] and Simon [28],

using Kato’s methods, independently obtained the quantitative bounds for a class of

potentials V(x) = V1(x) + V2(x), where lim sup |x||V1(x)| < ∞, lim sup V2(x) = 0, and

lim sup |x|| ∂V2
∂r | < ∞ ( ∂V2

∂r is the derivative with radial direction). We refer the readers

to Simon’s review [30] for the full details on Kato’s method, its applications, and

related topics.

There are a series of Kumura’s and Donnelly papers [4, 5, 16, 17, 19] studying

the eigenvalues embedded into essential spectrum of the Laplacian on manifolds. See

Donnelly review [6]. The results are based on construction of energy functions. However

they do not fully use Kato’s method. As a result, they need some geometric condition

that we have shown to be unnecessary.

Our goal is to develop Kato’s method (also Agmon’s and Simon’s generalizations)

on manifolds. This is the first of our series papers, which in particular implies sharp

bounds for asymptotically hyperbolic manifolds. Let us consider the eigensolution

−�u + Vu = λu. We show that under some weak convexity assumption on a manifold,

asymptotical behaviors of �r and potentials V can determine whether there is an

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/9/2561/4994771 by Texas A&M
 U

niversity user on 29 August 2020



Growth of the Eigensolutions of Laplacians 2563

eigenvalue embedded into essential spectrum, where �r is the Laplacian of distance

function r(x). �r comes from geometry and V comes from the Schödinger operator

on Euclidean space. The interesting thing is that �r is the only term involved in

the geometry, completely determining the threshold for embedded eigenvalue. For

example, even to obtain our Corollary 1.2, Kumura [17] needs an extra condition on Ricci

curvature of a manifold.

The original idea of Kato [13] to study the growth of eigensolutions on Euclidean

space contains four steps: construct energy function for eigen-equation; prove the

monotonicity of energy function with respect to r (r = |x| in the Schrödinger case); set

up the positivity of initial energy; and obtain the growth of eigensolution. The first

challenge is to construct the energy function since the simple sum of potential energy

and kinetic energy does not work well even for Euclidean space in higher dimensions.

We will give the general construction of energy functions on manifolds, which can be

adapted to various situations easily. During the process, we borrow some derivative

estimates from [17] to set up the monotonicity of energy function (see §2). However, we

improve the previous arguments significantly in several aspects, including the subtle

geometry analysis. Another main novelty here is that we give universal method to treat

all cases of manifolds and potentials. Here, we just fix some indices to make energy

functions work for this paper. We believe our method has a wider applicability. For

example, in the following [22], we give a new way to verify the positivity of initial energy,

which works well for the asymptotically flat manifolds.

The results of [8, 16] show that σess(−�) = [a2

4 , ∞) if lim �r = a.

In order to describe our results, some notations are necessary. Let g be the metric

and ∇ be the covariant derivative. Denote Hessian of r by ∇dr. For simplicity, let dx be

volume form (or restriction on sphere if necessary). Sometimes we also use |·| as the norm

of vector. All the functions f on the manifolds in this paper depend on x. For simplicity,

we ignore the dependence on sphere and use f (r) instead of f (x).

Let u be a nonzero real solution (Actually, all the results in the paper hold for

complex solution u. We give up it here because it is not our main goal.) of eigenequation

(1) and define

M(r) = M(r; u) =
(∫

|r(x)|=r
|u(x)|2 dx

) 1
2

,

N(r) = N(r; u) =
(∫

|r(x)|=r

∣∣∣∣∂u

∂r

∣∣∣∣
2

dx

) 1
2

.
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2564 W. Liu

Our first main result is

Theorem 1.1. [Basic version] Let the potential V(r) = V1(r) + V2(r). Assume

lim sup
r→∞

|rV1(r)| ≤ a1, lim sup
r→∞

|V2(r)| = 0, lim sup
r→∞

r
∣∣∣∂V2

∂r

∣∣∣ ≤ a2,

for some nonnegative constants a1, a2.

Assume

lim inf
r→∞ [r∇dr − a3ĝ] ≥ 0,

for some a3 > 0, where ĝ = g − dr ⊗ dr, and

lim sup
r→∞

r
∣∣∣�r − a4 − a5

r

∣∣∣ ≤ δ,

for some nonnegative constants a4, a5, δ.

Suppose

μ > δ, 2a3 > μ + δ, a3 > 1 + δ, (2)

and

λ > max

{
a2

4

4
+ a2

μ − δ
+ 1

4

(2a1 + δa4)2

μ2 − δ2 ,
a2

4

4
+ a2

2(a3 − δ)

}
. (3)

Then we have

lim inf
r→∞ rμ

[
M(r)2 + N(r)2] = ∞.

Based on Theorem 1.1 (By the fact that � + V is essentially self-adjoint, we have

∇u ∈ L2(M) if the eigensolution u ∈ L2(M).), we have several immediate corollaries.

Corollary 1.2. Let the potential V(r) = V1(r) + V2(r). Suppose

|V1(r)| = o(1)

r
, |V2(r)| = o(1),

∣∣∣∂V2

∂r

∣∣∣ = o(1)

r
,

as r goes to infinity.

Suppose

lim inf
r→∞ [r∇dr − (1 + ε))ĝ] ≥ 0,

for some ε > 0, and

�r = a + b

r
+ o(1)

r
.
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Growth of the Eigensolutions of Laplacians 2565

Then for any λ > a2

4 and μ > 0, we have

lim inf
r→∞ rμ

[
M(r)2 + N(r)2] = ∞.

In particular, −� admits no eigenvalue larger than a2

4 .

Corollary 1.3. Suppose

lim sup
r→∞

r|∇dr − ĝ| ≤ A,

and (n − 1)A < 1. Then −� does not have eigenvalue larger than (n−1)2

4 + (n−1)4A2

4(1−(n−1)2A2)
.

Remark 1.4. By some direct modifications, a similar result can also be obtained under

the assumption

−B

r
≤ ∇dr − ĝ ≤ A

r
,

as r goes to infinity. Thus the corollary improves Theorem 1.1 in [17] by removing extra

assumption on the Ricci curvature.

Corollary 1.5. Suppose there exists a r0 > 0 such that

∇dr ≥ 0

for r = r0, and

−1 − 2A

r
≤ Krad(r) ≤ −1 + 2A

r
< 0,

for r ≥ r0, where Krad(r) is the radial curvature (In Geometry, radial curvature is the

sectional curvature with one fixed direction ∂
∂r . We refer the reader to [10] for formal

definition and applications.). Suppose

(n − 1)A < 1.

Then −� does not have eigenvalues larger than (n−1)2

4 + (n−1)4A2

4(1−(n−1)2A2)
. In particular, −�

does not have eigenvalue larger than (n−1)2

4 if Krad(r) + 1 = o(1)
r .

Just we mentioned in the introduction, in Theorem 1.1 �r is from the geometry

and V is the potential from Schödinger operator on Euclidean space. For the potential

part, we develop Agmon–Simon’s generalization on manifolds. For the geometric part,
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2566 W. Liu

we just develop Kato’s method so that there is no derivative of �r involved in. Our

next two theorems are to develop Agmon–Simon’s generalization on geometric part of

manifolds. Namely, if we know the information of ∂�r
∂r (or gradient of �r), we can get

similar results to Theorem 1.1.

Theorem 1.6. [Gradient version] Let the potential V(r) = V1(r) + V2(r). Suppose

lim sup
r→∞

|rV1(r)| ≤ a1, lim sup
r→∞

|V2(r)| = 0, lim sup
r→∞

r
∣∣∣∂V2

∂r

∣∣∣ ≤ a2,

for some nonnegative constants a1, a2.

Suppose

lim inf
r→∞ [r∇dr − a3ĝ] ≥ 0,

for some a3 > 1. Suppose

�r = a4 + a5

r
+ δ̄(r)

r

and

lim sup
r→∞

∣∣∣∂δ̄(r)

∂r

∣∣∣ ≤ δ1, lim sup
r→∞

∣∣∣(∇ − ∂

∂r

)
δ̄(r)

∣∣∣ ≤ δ2, lim sup
r→∞

|δ̄(r)| ≤ δ,

for some nonnegative constants a4, a5, δ1, δ2, δ.

Suppose

2a3 > μ,

λ >
a2

4

4
+ 1

μ

[
a2 + (2a1 + δ1)2

4μ
+ δ2

2

8a3 − 4μ
+ a4δ1

2

]
, (4)

and

λ >
a2

4

4
+ min

2≤s0≤2a3

{
a2

s0
+ a4δ1

2s0
+ δ2

2

(8a3 − 4s0)s0

}
. (5)

Then we have

lim inf
r→∞ rμ

[
M(r)2 + N(r)2] = ∞.

Remark 1.7.

• The bounds on the right of (4) and (5) depend on δ1, not δ.

• We can also obtain some interesting corollaries like Corollaries 1.2 and 1.3.
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Growth of the Eigensolutions of Laplacians 2567

Theorem 1.8. [Mixed version] Let the potential V(r) = V1(r) + V2(r). Suppose

lim sup
r→∞

|rV1(r)| ≤ a1, lim sup
r→∞

|V2(r)| = 0, lim sup
r→∞

r
∣∣∣∂V2

∂r

∣∣∣ ≤ a2,

for nonnegative constants a1, a2.

Suppose

lim inf
r→∞ [r∇dr − a3ĝ] ≥ 0,

for some a3 > 1. Suppose

�r = a4 + a5

r
+ δ̄(r)

r

and

lim sup
r→∞

∣∣∣∂δ̄(r)

∂r

∣∣∣ ≤ δ1, lim sup
r→∞

|δ̄(r)| ≤ δ,

for some nonnegative constants a4, a5, δ1, δ.

Suppose

μ > δ, 2a3 > μ + δ, a3 > 1 + δ, (6)

and

λ > max

{
a2

4

4
+ a2

μ − δ
+ a4δ1

2(μ − δ)
+ a2

1

μ2 − δ2 ,
a2

4

4
+ 2a2 + a4δ1

4(a3 − δ)

}
. (7)

Then we have

lim inf
r→∞ rμ

[
M(r)2 + N(r)2] = ∞.

Corollary 1.9. Suppose there exists a r0 > 0 such that

∇dr ≥ 0

for r = r0, and

−1 − 2A

r
≤ Krad(r) ≤ −1 + 2A

r
< 0,

for r ≥ r0, where Krad(r) is the radial curvature. Suppose

(n − 1)A < 1.

Then −� does not have eigenvalue larger than (n−1)2

4 + 2(n−1)2A
1−(n−1)A .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/9/2561/4994771 by Texas A&M
 U

niversity user on 29 August 2020



2568 W. Liu

Remark 1.10. The lower bound (n−1)2

4 + 2(n−1)2A
1−(n−1)A is exactly the bound given in [17].

We should remind that Corollaries 1.5 and 1.9 gave different bounds, and n and

A will decide which one is better. However by the combination of energy functions

in Theorems 1.6 and 1.8, we can get a universal bound, which is better than that in

Corollaries 1.5 and 1.9.

Theorem 1.11. Suppose there exists a r0 > 0 such that

∇dr ≥ 0

for r = r0, and

−1 − 2A

r
≤ Krad(r) ≤ −1 + 2A

r
< 0,

for r ≥ r0, where Krad(r) is the radial curvature. Suppose

(n − 1)A < 1

and

λ >
(n − 1)2

4
+ min

σ∈[0,1]

{
σ 2 (n − 1)4A2

4(1 − (n − 1)2A2)
+ (1 − σ)

2(n − 1)2A

1 − (n − 1)A

}
,

then λ cannot be an eigenvalue of the free Laplacian.

Remark 1.12. Actually, by the combination of energy functions in Theorems 1.6

and 1.8, we can set up a generally stronger Theorem with more generality. We do

not want to explore the general case here, we just give a better bound than that in

Corollaries 1.5 and 1.9.

We want to see more about Corollaries 1.5 and 1.9 and Theorem 1.11. Radial

curvature Krad(r) is a feature of hyperbolic manifold and flat manifold.

For the asymptotically hyperbolic case, the sharp transition is given by Kumura

[17] by studying the eigensolutions directly. He excludes eigenvalues greater than (n−1)2

4

under the assumption that Krad(r) + 1 = o(r−1), and also constructs a manifold with

the radial curvature Krad(r) + 1 = O(r−1) and with an eigenvalue (n−1)2

4 + 1 embedding

into its essential spectrum [ (n−1)2

4 , ∞). Before that some partial results on the absence

of eigenvalues were obtained in papers [4, 24].
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Growth of the Eigensolutions of Laplacians 2569

For the asymptotically flat case, several authors [5, 7, 9, 19] showed the

absence of positive eigenvalues of free Laplacian under some assumptions on the radial

curvature. Roughly speaking, they assume |Krad(r)| ≤ δ
1+r2 for small δ. See Donnelly’s

review paper [6] for more results.

Jitomirskaya and Liu also constructed examples which show that dense eigen-

values and singular continuous spectrum can embed into essential spectrum of Lapla-

cian in both cases [11, 12]. We mentioned that Kumura also studied other related

topics in papers [18, 20, 21]. There are also other topics about asymptotically flat and

asymptotically hyperbolic manifolds. See [26] and the references therein.

The rest of the paper is organized as follows: in Section 2, we present some

basic knowledge. In §3, we will give the general construction of energy functions. In

Section 4, by fixing some indices in the energy functions, we prove Theorem 1.1 and

Corollaries 1.2, 1.3, and 1.5. In Section 5, by adapting the energy functions, we prove

Theorem 1.6. In Section 6, by adapting the energy functions, we prove Theorems 1.8

and 1.11 and Corollary 1.9. Our proof is self-contained except the unique continuation

theorem and some basic geometry results (Lemma 4.5).

2 Preliminaries and Derivative Lemma

Let St = {x ∈ M : r(x) = t}, ω ∈ Sr, and x ∈ M. Thus (r, ω) is a local coordinate system for

M (ω depends on r. We ignore the dependence for simplicity.). Let < ·, · > be the metric

on the Riemannian manifold.

Choose a function ρ(r), which will be specified later. Let L̂ = eρLe−ρ , where

L = −� + V. Then

Let

v = eρu.

Then, one has

∇u = −ρ′e−ρv∇r + e−ρ∇v,

and

�u = div∇u = e−ρ�v − 2ρ′e−ρ ∂v

∂r
+ (

ρ′2 − ρ′′ − ρ′�r
)
e−ρv.
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2570 W. Liu

So the eigen-equation (1) becomes

− �v + 2ρ′ ∂v

∂r
+ (V + V0)v = λv, (8)

where

V0 = ρ′�r + ρ′′ − ρ′2. (9)

Lemma 2.1. [17] Let X be a vector field. Then

∂

∂r

∫
Sr

< X, ∇r > e−2ρ dx =
∫

Sr

(div X − 2ρ′ < X, ∇r >)e−2ρ dx. (10)

Proof. First, one has

div
(
Xe−2ρ

) = e−2ρdiv(X) − 2ρ′e−2ρ < X, ∇r > .

Integration by part, we get

∫
St2

< X, ∇r > e−2ρ dx−
∫

St1

< X, ∇r > e−2ρ dx =
∫

t1≤|r(x)|≤t2

(divX−2ρ′ < X, ∇r >)e−2ρ dx,

which implies (10). �

Lemma 2.2. [17]

∂

∂r

∫
Sr

fe−2ρ dx =
∫

Sr

[
∂f

∂r
+ f (�r − 2ρ′)

]
e−2ρ dx.

Proof. Let X = f ∇r. By direct computation, one has

divX = div( f ∇r) = ∂f

∂r
+ f �r.

Putting X into Lemma 2.1, Lemma 2.2 follows. �

Now we always assume u is a nonzero solution of −�u + Vu = λu, where V =
V1 + V2. Let

vm = rmv
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Growth of the Eigensolutions of Laplacians 2571

with m ≥ 0. By (8), we get the equation of vm,

�vm −
(

2m

r
+ 2ρ′

)
∂vm

∂r
+

(
m(m + 1)

r2 + m

r
(2ρ′ − �r) − V0 − V1 − V2 + λ

)
vm = 0. (11)

3 Construction of the Energy Functions

In this section, we will give the general construction of energy functions and derive the

formulas for their derivatives.

Let Ar be the Laplacian on sphere r. Using �u = ∂2u
∂r2 + �r ∂u

∂r + Aru, (11) becomes

∂2vm

∂r2 −
(

−�r + 2m

r
+ 2ρ′

)
∂vm

∂r

+ Arvm +
(

m(m + 1)

r2 + m

r
(2ρ′ − �r) − V0 − V1 − V2 + λ

)
vm = 0. (12)

Let us mention our intuition to construct energy functions. We view (12) as one-

dimensional Schrödinger operator (r is the variable). (12) is not the normal form-−D2 +q

since −�r + 2m
r + 2ρ′ is not 0. So the first step we need to do is to choose ρ such that

−�r + 2m
r + 2ρ′ is smaller than O(1)

r . The energy function for equation u′′ + qu = 0 is
1
2 |u′|2 + 1

2qu2. Similarly, the usual energy functions of (12) are taken with the form as
1
2

∣∣ ∂vm
∂r

∣∣2 + 1
2qv2

m with average on the sphere. Since we cannot make −�r + 2m
r + 2ρ′ zero,

extra term q1
∂vm
∂r vm should be added into the energy functions. By the fact

∫
Sr

[
1

2

∣∣∣∂vm

∂r

∣∣∣2 + 1

2
(Arvm, vm)

]
dx =

∫
Sr

[∣∣∣∂vm

∂r

∣∣∣2 − 1

2
|∇vm|2

]
dx,

it is natural to construct

F(m, r, t, s) = rs
∫

Sr

1

2

[
q1

∂vm

∂r
vm +

(
m(m + 1)

r2 − t

r
+ q2 + λ

)
v2

m

]
e−2ρ dx

+ rs
∫

Sr

[∣∣∣∂vm

∂r

∣∣∣2 − 1

2
|∇vm|2

]
e−2ρ dx

= I + II + III,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/9/2561/4994771 by Texas A&M
 U

niversity user on 29 August 2020



2572 W. Liu

where

I = rs
∫

Sr

[∣∣∣∂vm

∂r

∣∣∣2 − 1

2
|∇vm|2

]
e−2ρ dx

= 1

2
rs

∫
Sr

[∣∣∣∂vm

∂r

∣∣∣2 − |∇ωvm|2
]

e−2ρ dx,

and

II = 1

2
rs

∫
Sr

[
m(m + 1)

r2 − t

r
+ q2 + λ

]
v2

me−2ρ dx,

and

III = 1

2
rs

∫
Sr

[
q1

∂vm

∂r
vm

]
e−2ρ dx.

We begin with the derivation of ∂
∂r I.

By Lemma 2.2, one has

∂

∂r
I = srs−1

∫
Sr

[
1

2

∣∣∣∂vm

∂r

∣∣∣2 − 1

2
|∇ωvm|2

]
e−2ρ dx

+ rs
∫

Sr

[
∂vm

∂r

∂2vm

∂r2 − 1

2

∂

∂r
< ∇ωvm, ∇ωvm >

]
e−2ρ dx

+ rs
∫

Sr

1

2
(�r − 2ρ′)

[∣∣∣∂vm

∂r

∣∣∣2 − |∇ωvm|2
]

e−2ρ dx.

Using �vm = ∂2vm
∂r2 + �r ∂vm

∂r + �ωvm, we get

∂

∂r
I =

∫
Sr

[
s

2
rs−1

∣∣∣∣∂vm

∂r

∣∣∣∣
2

− 2rsρ′
∣∣∣∣∂vm

∂r

∣∣∣∣
2

+ rs ∂vm

∂r
�vm + rs

2
(2ρ′ − �r)

∣∣∣∣∂vm

∂r

∣∣∣∣
2
]

e−2ρ dx

+ rs
∫

Sr

[(
− s

2r
+ 1

2
(2ρ′ − �r)

)
ĝ(∇vm, ∇vm)

]
e−2ρ dx

+ rs
∫

Sr

[〈
∇ω

∂vm

∂r
, ∇ωvm

〉
− 1

2

∂

∂r
< ∇ωvm, ∇ωvm >

]
e−2ρ dx.

By some basic computation, one has

〈
∇ω

∂vm

∂r
, ∇ωvm

〉
− 1

2

∂

∂r
< ∇ωvm, ∇ωvm >=

〈
∇ω

∂vm

∂r
, ∇ωvm

〉
−

〈
∇ ∂

∂r
∇ωvm, ∇ωvm

〉

= (∇dr)(∇ωvm, ∇ωvm).
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Finally we get

∂

∂r
I =

∫
Sr

[
s

2
rs−1

∣∣∣∂vm

∂r

∣∣∣2 − 2rsρ′
∣∣∣∂vm

∂r

∣∣∣2 + rs ∂vm

∂r
�vm + rs

2
(2ρ′ − �r)

∣∣∣∂vm

∂r

∣∣∣2]
e−2ρ dx

+ rs
∫

Sr

[(
∇dr +

(
− s

2r
+ 1

2
(2ρ′ − �r)

)
ĝ
)
(∇vm, ∇vm)

]
e−2ρ dx. (13)

Now we are in the position to obtain ∂
∂r II.

By Lemma 2.2 again, one has

∂

∂r
II =

∫
Sr

[
∂

∂r

rs

2

(
m(m + 1)

r2 − t

r
+ q2 + λ

)
v2

m

]
e−2ρ dx

+
∫

Sr

(�r − 2ρ′)rs

2

[
m(m + 1)

r2 − t

r
+ q2 + λ

]
v2

me−2ρ dx

=
∫

Sr

[
s − 2

2
rs−3m(m + 1) − s − 1

2
trs−2 + rs

2

∂q2

∂r
+ s

2
rs−1q2 + λ

s

2
rs−1

]
v2

me−2ρ dx

+ rs
∫

Sr

[
m(m + 1)

r2 − t

r
+ q2 + λ

]
vm

∂vm

∂r
e−2ρ dx

+ rs

2

∫
Sr

(�r − 2ρ′)
[

m(m + 1)

r2 − t

r
+ q2 + λ

]
v2

me−2ρ dx. (14)

Similarly, by Lemma 2.2 again, we have

∂

∂r
III =

∫
Sr

[
1

2
q1rsvm

∂vm

∂r
(�r − 2ρ′) + ∂

∂r

(
rs 1

2
q1

∂vm

∂r
vm

)]
e−2ρ dx

=
∫

Sr

[
rs

2
q1(�r − 2ρ′) + 1

2
srs−1q1 + 1

2
rs ∂q1

∂r

]
∂vm

∂r
vm

]
e−2ρ dx

+
∫

Sr

[
1

2
rsq1

∣∣∣∂vm

∂r

∣∣∣2 + 1

2
rsq1vm

∂2vm

∂2r

]
e−2ρ dx

=
∫

Sr

[
rs

2
q1(�r − 2ρ′) + s

2
rs−1q1 + rs

2

∂q1

∂r

]
∂vm

∂r
vme−2ρ dx

+
∫

Sr

[
rs

2
q1

∣∣∣∂vm

∂r

∣∣∣2 + rs

2
q1vm

(
�vm − �r

∂vm

∂r
− �ωvm

)]
e−2ρ dx. (15)
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Putting (13), (14), and (15) together and using (11), we conclude that

∂F(m, r, t, s)

∂r
= ∂I

∂r
+ ∂II

∂r
+ ∂III

∂r
(16)

=
∫

Sr

[
rs

(
(∇dr)−

( s

2r
− 1

2
(2ρ′−�r)

)
ĝ
)

(∇vm, ∇vm)+ 1

2
q1rsvm(−�ωvm)

]
e−2ρ dx

+
∫

Sr

[
2mrs−1 + rs

2
(2ρ′ − �r) + 1

2
q1rs + s

2
rs−1

] ∣∣∣∂vm

∂r

∣∣∣2e−2ρ dx

+
∫

Sr

[
rs

(
V0 + V1 + V2 + q2 − t

r

)
+ rs−1m(�r − 2ρ′)

]
∂vm

∂r
vme−2ρ dx

+
∫

Sr

[
1

2
srs−1q1 + mrs−1q1 + 1

2
rs ∂q1

∂r

]
∂vm

∂r
vme−2ρ dx

+
∫

Sr

[
s − 2

2
rs−3m(m+1)− s−1

2
trs−2+ rs

2

∂q2

∂r
+ s

2
rs−1q2+λ

s

2
rs−1

]
v2

me−2ρ dx

+
∫

Sr

rs

2
(�r − 2ρ′)

[
m(m + 1)

r2 − t

r
+ q2 + λ

]
v2

me−2ρ dx

+
∫

Sr

−rs

2
q1

[
m(m + 1)

r2 + m

r

(
2ρ′ − �r

) − V0 − V1 − V2 + λ

]
v2

me−2ρ dx.

4 Proof of Theorem 1.1 and Some Corollaries

Let

δ̄(r) = r
(
�r − a4 − a5

r

)
ā1(r) = rV1(r)

ā2(r) = r
∂V2

∂r
.

By the assumptions of Theorem 1.1,

lim sup
r→∞

|δ̄(r)| ≤ δ, lim sup
r→∞

|ā1(r)| ≤ a1, lim sup
r→∞

|ā2(r)| ≤ a2.

Let 0 < t < 1 be small enough, 2ρ′ = a4 + a5
r and q1 = 0. Direct computation of

(9) implies that

V0 = a2
4

4
+ a4a5

2r
+ a4δ̄

2r
+ O(1)

r2 .

We should mention that O(1) and o(1) only depend on constants in the assumptions of

Theorem 1.1, not depend on m, t.
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Let q2 = −a2
4

4 − a4a5
2r − V2. By (16), we have

∂F(m, r, t, s)

∂r
= rs−1

∫
Sr

[(
r(∇dr) −

(
s

2
+ 1

2
δ̄

)
ĝ
)

(∇vm, ∇vm)

]
e−2ρ dx (17)

+ rs−1
∫

Sr

[
2m − δ̄

2
+ s

2

] ∣∣∣∂vm

∂r

∣∣∣2e−2ρ dx (18)

+ rs−1
∫

Sr

[
ā1 + δ̄a4

2
− t + δ̄

m

r
+ o(1)

]
∂vm

∂r
vme−2ρ dx (19)

+ rs−1
∫

Sr

[(
λ − a2

4

4

)(
s

2
+ δ̄

2

)
− ā2

2
+ o(1)

]
v2

me−2ρ dx (20)

+ rs−1
∫

Sr

m(m + 1)

r2

[
s − 2

2
+ δ̄

2

]
v2

me−2ρ dx. (21)

Theorem 4.1. Under the assumptions of Theorem 1.1, there exist s0, R0, m0 > 0 such

that for m ≥ m0 and r ≥ R0,

∂F(m, r, t, s0)

∂r
> 0.

Proof. Let s0 be such that s0 < 2a3 − δ and sufficiently close to 2a3 − δ. By the

assumption a3 > 1 + δ (see (2)), one has

r(∇dr) −
(

s0

2
+ 1

2
δ̄

)
ĝ ≥ 0,

for large r, which implies

(17) > 0. (22)

By assumption a3 > 1 + δ (see (2)) again and λ >
a2

4
4 + a2

2(a3−δ)
(see (3)), one has

(
λ − a2

4

4

) (
s0

2
+ δ̄

2

)
− ā2

2
> 0,

and

s0 − 2

2
+ δ̄

2
> 0.
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By Cauchy–Schwartz inequality, one has

[
m(m + 1)

r2

(
s0 − 2

2
+ δ̄

2

)
+

(
λ − a2

4

4

) (
s0

2
+ δ̄

2

)
− ā2

2

]
v2

m +
[
2m − δ̄

2
+ s0

2

] ∣∣∣∣∂vm

∂r

∣∣∣∣
2

>

∣∣∣∣
[

ā1

2
+ δ̄a4

2
− t + δ̄

m

r

]
∂vm

∂r
vm

∣∣∣∣
for large m and r. Thus, one has

|(19)| < (18) + (20) + (21) (23)

for large m and r.

By (22) and (23), we obtain Theorem 4.1. �

Theorem 4.2. Let s < μ and s be sufficiently close to μ. Then under the conditions of

Theorem 1.1, we have

∂F(0, r, 0, s)

∂r
> 0,

for large r.

Proof. Let m = 0, t = 0 in (17)–(21), one has

∂F(0, r, 0, s)

∂r
=

∫
Sr

rs−1
[
r(∇dr) −

(
s

2
+ 1

2
δ̄

)
ĝ)(∇v, ∇v)

]
e−2ρ dx

+ rs−1
∫

Sr

[
− δ̄

2
+ s

2

] ∣∣∣∣∂v

∂r

∣∣∣∣
2

e−2ρ dx

+ rs−1
∫

Sr

[
ā1 + δ̄a4

2
+ o(1)

]
∂v

∂r
ve−2ρ dx

+ rs−1
∫

Sr

[(
λ − a2

4

4

)(
s

2
+ δ̄

2

)
− ā2

2
+ o(1)

]
v2e−2ρ dx.

We will show that for large r,

∂F(0, r, 0, s)

∂r
> 0.

By Cauchy–Schwartz inequality, it suffices to prove

4

[(
λ − a2

4

4

) (
s

2
+ δ̄

2

)
− ā2

2

][
− δ̄

2
+ s

2

]
>

∣∣∣∣ā1 + δ̄

2
a4

∣∣∣∣
2

. (24)
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Solving inequality (24), we get

λ >
a2

4

4
+ a2

s + δ̄
+ 1

4

(2ā1 + δ̄a4)2

s2 − δ̄2
. (25)

It is clear that (25) holds if

λ >
a2

4

4
+ a2

s − δ
+ 1

4

(2a1 + δa4)2

s2 − δ2 , (26)

which follows from the assumption (3) and the fact s is close to μ. �

Theorem 4.3. There exist m0 ≥ 0 and R0 > 0 such that

F(m0, r, t, 0) > 0

for all r ≥ R0.

Proof. It is easy to check that

F(m, r, t, 0) =
∫

Sr

[
1

2

(
m(m + 1)

r2 − t

r
+ q2 + λ

)
v2

m +
(∣∣∣∣∂vm

∂r

∣∣∣∣
2

− 1

2

∣∣∇vm

∣∣2)]
e−2ρ dx

= r2m

2

∫
Sr

[(
2m2 + m

r2 − t

r
+ q2 + λ

)
v2 +

∣∣∣∣∂v

∂r

∣∣∣∣
2

+ 2
m

r

∂v

∂r
v − |∇ωv|2

]
e−2ρ dx.

By unique continuation theorem and fact that u is nonzero, there exists large enough R0

such that
∫

SR0
v2e−2ρ dx 
= 0. Let m0 be large enough so that

F(m0, R0, t, 0) > 0.

By Theorem 4.1, we get

F(m0, r, t, 0) > 0,

for all r > R0. �

Theorem 4.4. Assume that
∫

Sr
v2e−2ρ dx is not monotone increasing (with respect to r)

in any semi-infinite interval r ≥ R. Then there exists a sequence rn goes to infinity such

that

F(0, 0, rn, 0) > 0.
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Proof. By the assumption, there exists a sequence rn goes to infinity and such that

∂

∂r

∫
Sr

v2e−2ρ dx < 0

for r = rn. By Lemma 2.2, one has

∫
Sr

[
2v

∂v

∂r
+ (�r − 2ρ′)v2

]
e−2ρ dx < 0 (27)

for r = rn. By some direct computation, we have

F(m0, r, t, 0) =
∫

Sr

[
1

2

(
m0(m0 + 1)

r2 − t

r
+ q2 + λ

)
v2

m0
+

(∣∣∣∣∂vm0

∂r

∣∣∣∣
2

− 1

2
|∇vm0

|2
)]

e−2ρ dx

= r2m0

2

∫
Sr

[(
m0(m0 + 1)

r2 − t

r
+ q2 + λ

)
v2 +

∣∣∣∣∂v

∂r
+ m0

r
v

∣∣∣∣
2

− |∇ωv|2
]

e−2ρ dx

= r2m0

2

∫
Sr

[
(q2 + λ)v2 +

∣∣∣∣∂v

∂r

∣∣∣∣
2

− |∇ωv|2
]

e−2ρ dx

+ r2m0

2

∫
Sr

[(
2m2

0 + m0

r2 − t

r

)
v2 + 2

m0

r

∂v

∂r
v

]
e−2ρ dx

= r2m0

2

∫
Sr

[
(q2 + λ)v2 +

∣∣∣∣∂v

∂r

∣∣∣∣
2

− |∇ωv|2
]

e−2ρ dx

+ m0r2m0

2r

∫
Sr

[
2v

∂v

∂r
+ (�r − 2ρ′)v2

]
e−2ρ dx

+ r2m0

2

∫
Sr

[
2m2

0 + m0

r2 − t

r
− m0

r
(�r − 2ρ′)

]
v2e−2ρ dx

= r2m0F(0, 0, r, 0) (28)

+ m0r2m0

2r

∫
Sr

[
2v

∂v

∂r
+ (�r − 2ρ′)v2

]
e−2ρ dx

+ r2m0

2

∫
Sr

[
2m2

0 + m0

r2 − t

r
− m0

r
(�r − 2ρ′)

]
v2e−2ρ dx.

For large r, one has

r2m0

2

∫
SR

[
2m2

0 + m0

r2 − t

r
− m0

r
(�r − 2ρ′)

]
v2e−2ρ dx < 0,
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since t > 0.

Combing with (27) and (28), one has

F(m0, rn, t, 0) < F(0, rn, 0, 0).

By Theorem 4.3, we have F(m0, rn, t, 0) > 0. Thus we get

F(0, 0, rn, 0) > 0.

�

Proof of Theorem 1.1.

Proof. It suffices to assume
∫

Sr
v2e−2ρ dx is not monotone increasing (with respect to r)

in any semi-infinite interval r ≥ R.

By Theorems 4.2 and 4.4, there exists γ > 0 such that

F(0, r, 0, s) ≥ γ ,

for large r. Thus

rs
∫

Sr

(
v2 +

∣∣∣∣∂v

∂r

∣∣∣∣
2
)

e−2ρ dx ≥ γ0

for some γ0 > 0.

By the fact v = eρu, we get that

lim inf
r→∞ rs[M(r)2 + N(r)2]

> 0.

Recalling that s < μ, we have

lim inf
r→∞ rμ

[
M(r)2 + N(r)2] = ∞.

�

Proof of Corollary 1.2.

Proof. The Corollary 1.2 follows from Theorem 1.1 directly. �
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Proof of Corollary 1.3.

Proof. The Corollary 1.3 follows from Theorem 1.1 and the fact that �r is the trace of

∇dr. �

Before we finish the proof of Corollary 1.5, a lemma is necessary.

Lemma 4.5. Suppose there exists a r0 > 0 such that

∇dr ≥ 0

for r = r0, and

−1 − 2A

r
≤ Krad(r) ≤ −1 + 2A

r
< 0,

for r ≥ r0, where Krad(r) is the radial curvature.

Then

|∇dr − ĝ| ≤ A + o(1)

r
, (29)

and

∣∣∣∣∂�r

∂r

∣∣∣∣ ≤ 4(n − 1)A + o(1)

r
. (30)

Proof. (29) and (30) can be proved by comparison theorem and Weitzenböck formula.

See [17] for details. �

Proof of Corollary 1.5.

Proof. Under the curvature condition of Corollary 1.5 and Lemma 4.5, one has

lim sup
r→∞

|∇dr − ĝ| ≤ A

r
.

Now Corollary 1.5 follows from Corollary 1.3 . �
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5 Proof of Theorem 1.6

Let q1 = �r − 2ρ′, q2 = −a2
4

4 − a4 δ̄
2r − a4a5

2r − V2 and the others as the same in §4. By (16)

and integration by part, one has

∂F(m, r, t, s)

∂r
= rs−1

∫
Sr

[(
r(∇dr) − s

2
ĝ
)

(∇vm, ∇vm) + 1

2
rsvm < ∇ωq1, ∇ωvm >

]
e−2ρ dx

+ rs−1
∫

Sr

[
2m + s

2

] ∣∣∣∣∂vm

∂r

∣∣∣∣
2

e−2ρ dx

+ rs−1
∫

Sr

r
[
q2 − t

r
+ V0 + V1 + V2

]
∂vm

∂r
vme−2ρ dx

+ rs−1
∫

Sr

[
s

2
q1 + 1

2
r
∂q1

∂r
+ 2mq1

]
∂vm

∂r
vme−2ρ dx

+
∫

Sr

[
s−2

2
rs−3m(m+1)− s−1

2
trs−2+ rs

2

∂q2

∂r
+ s

2
rs−1q2+λ

s

2
rs−1

]
v2

me−2ρ dx

+
∫

Sr

1

2
rsq1

[
− t

r
+ m

r
q1 + q2 + V0 + V1 + V2

]
v2

me−2ρ dx.

Let

∂δ̄(r)

∂r
= δ̄1,

(
∇ − ∂

∂r

)
δ̄(r) = δ̄2.

By the assumptions of Theorem 1.6, we get

∂F(m, r, t, s)

∂r
= rs−1

∫
Sr

[(
r(∇dr) −

( s

2

)
ĝ
)

(∇vm, ∇vm) + 1

2
rs−1vm < δ̄2, ∇ωvm >

]
e−2ρ dx

+ rs−1
∫

Sr

[
2m + s

2

] ∣∣∣∣∂vm

∂r

∣∣∣∣
2

e−2ρ dx

+ rs−1
∫

Sr

[
−t + ā1 + 1

2
δ̄1 + 2δ̄

m

r
+ o(1)

]
∂vm

∂r
vme−2ρ dx

+ rs−1
∫

Sr

[
−a4δ̄1

4
− s

8
a2

4 + s

2
λ − ā2

2
+ o(1)

]
v2

me−2ρ dx

+ rs−1
∫

Sr

[
s − 2

2

m(m + 1)

r2 + δ̄2

2

m

r2

]
v2

me−2ρ dx. (31)

Theorem 5.1. Under the conditions of Theorem 1.6, there exist s0, R0, m0 > 0 such that

for m ≥ m0 and r ≥ R0,

∂F(m, r, t, s0)

∂r
> 0.
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Proof. Let 2 < s0 < 2a3, which will be specified later. One has

∣∣∣∣1

2
vm < δ̄2, ∇ωvm >

∣∣∣∣ ≤ v2
m

σ
+

(
a3 − s0

2
+ ε(σ )

)
|∇ωvm|2,

where σ is any constant such that

σ <
16a3 − 8s0

|δ2|2 ,

and ε(σ ) > 0 is small. Let σ be close to 16a3−8s0
|δ2|2 . By assumption (5), there exists s0 with

2 < s0 < 2a3 such that

−a4δ̄1

4
− s0

8
a2

4 + s0

2
λ − ā2

2
− 1

σ
> 0.

By Cauchy–Schwartz inequality, we have

4
[

s0 − 2

2

m(m + 1)

r2 + δ̄2

2

m

r2 − a4δ̄1

4
− s0

8
a2

4 + s0

2
λ − ā2

2
− 1

σ

] [
2m + s0

2

]

>

[
−t + ā1 + 1

2
δ̄1 + 2δ̄

m

r

]2

(32)

for large m and large r. Putting all the estimates together, we obtain

∂F(m, r, t, s0)

∂r
> 0

for large m and r. �

Theorem 5.2. Under the assumptions of Theorem 1.6, we have

∂F(0, r, 0, s)

∂r
> 0,

for large r.
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Proof. Let m, t = 0 in (31), one has

∂F(0, r, 0, s)

∂r
= rs−1

∫
Sr

[(
r(∇dr) − s

2
ĝ
)

(∇v, ∇v) + 1

2
rs−1v < δ̄2, ∇ωv >

]
e−2ρ dx

+ rs−1
∫

Sr

[ s

2

] ∣∣∣∣∂v

∂r

∣∣∣∣
2

e−2ρ dx

+ rs−1
∫

Sr

[
ā1 + 1

2
δ̄1 + o(1)

]
∂v

∂r
ve−2ρ dx

+ rs−1
∫

Sr

[
−a4δ̄1

4
− s

8
a2

4 + s

2
λ − ā2

2
+ o(1)

]
v2e−2ρ dx.

By the proof of (32), it suffices to show that

4
[
−a4δ̄1

4
− s

8
a2

4 + s

2
λ − ā2

2
− 1

σ

] [ s

2

]
>

[
ā1 + 1

2
δ̄1

]2

.

This holds by assumption (4). �

Proof of Theorem 1.6.

Proof. The proof follows from the proof of Theorem 1.1. We only need to replace

Theorems 4.1 and 4.2, with Theorems 5.1 and 5.2. �

6 Proof of Theorems 1.8 and 1.11 and Corollary 1.9

Let q1 = 0, q2 = −a2
4

4 − a4 δ̄
2r − a4a5

2r − V2 and the others as before. By (16), we have

∂F(m, r, t, s)

∂r
= rs−1

∫
Sr

[
r(∇dr) −

(
s

2
+ 1

2
δ̄

)
ĝ)(∇vm, ∇vm)

]
e−2ρ dx (33)

+ rs−1
∫

Sr

[
2m − δ̄

2
+ s

2

] ∣∣∣∣∂vm

∂r

∣∣∣∣
2

e−2ρ dx (34)

+ rs−1
∫

Sr

[
ā1 − t + δ̄

m

r
+ o(1)

] ∂vm

∂r
vme−2ρ dx (35)

+ rs−1
∫

Sr

[(
λ − a2

4

4

) (
s

2
+ δ̄

2

)
− ā2

2
− 1

4
a4δ̄1 + o(1)

]
v2

me−2ρ dx (36)

+ rs−1
∫

Sr

m(m + 1)

r2

[
s − 2

2
+ δ̄

2

]
v2

me−2ρ dx. (37)
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Theorem 6.1. Under the conditions of Theorem 1.8, there exist s0, R0, m0 > 0 such that

for m ≥ m0 and r ≥ R0,

∂F(m, r, t, s0)

∂r
> 0.

Proof. Let s0 be such that s0 < 2a3 − δ and sufficiently close to 2a3 − δ. By the

assumption a3 > 1 + δ (see (6)), one has

r(∇dr) −
(

s0

2
+ 1

2
δ̄

)
ĝ ≥ 0,

for large r, which implies

(33) > 0. (38)

By assumption a3 > 1 + δ (see (6)) and λ >
a2

4
4 + 2a2+a4δ1

4(a3−δ)
(see (7)), one has

(
λ − a2

4

4

)(
s0

2
+ δ̄

2

)
− ā2

2
− a4

4
δ̄1 > 0,

and

s0 − 2

2
+ δ̄

2
> 0.

By Cauchy–Schwartz inequality again, one has

[
m(m + 1)

r2

(
s0 − 2

2
+ δ̄

2

)
+

(
λ − a2

4

4

) (
s0

2
+ δ̄

2

)
− ā2

2
− a4

4
δ̄1

]
v2

m

+
[
2m − δ̄

2
+ s0

2

] ∣∣∣∣∂vm

∂r

∣∣∣∣
2

>

∣∣∣∣
[

ā1

2
− t + δ̄

m

r

]
∂vm

∂r
vm

∣∣∣∣
for large m and r. Thus, one has

|(35)| < (34) + (36) + (37) (39)

for large m and r.

Now Theorem 6.1 follows from (38) and (39). �

Theorem 6.2. Let s < μ and s be sufficiently close to μ. Then under the conditions of

Theorem 1.8, we have

∂F(0, r, 0, s)

∂r
> 0,
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for large r.

Proof. Let m = 0, t = 0 in (33), one has

∂F(0, r, 0, s)

∂r
=

∫
Sr

rs−1
[
r(∇dr) −

(
s

2
+ 1

2
δ̄

)
ĝ)(∇v, ∇v)

]
e−2ρ dx

+ rs−1
∫

Sr

[
− δ̄

2
+ s

2

] ∣∣∣∣∂v

∂r

∣∣∣∣
2

e−2ρ dx

+ rs−1
∫

Sr

[ā1 + o(1)]
∂v

∂r
ve−2ρ dx

+ rs−1
∫

Sr

[(
λ − a2

4

4

)(
s

2
+ δ̄

2

)
− ā2

2
− a4

4
δ̄1 + o(1)

]
v2.

We will show that for large r,

∂F(0, r, 0, s)

∂r
> 0.

By Cauchy–Schwartz inequality, it suffices to prove

4

[(
λ − a2

4

4

)(
s

2
+ δ̄

2

)
− ā2

2
− a4

4
δ̄1

] [
− δ̄

2
+ s

2

]
> |ā1|2, (40)

which holds by assumption (3) and s is close to μ. �

Proof of Theorem 1.6.

Proof. The proof follows from the proof of Theorems 1.1 and 1.6. We only need to

replace Theorems 4.1 and 4.2, with Theorems 6.1 and 6.2. �

Proof of Corollary 1.9.

Proof. The proof follows from Theorem 1.6 and Lemma 4.5. �

Proof of Theorem 1.11. In the proof Theorems 1.1 and 1.8, we let q2 = −a2
4

4 − a4a5
2r − V2

and q2 = −a2
4

4 − a4a5
2r −V2− a4 δ̄

2r , respectively. Now we only need to let q2 = −a2
4

4 − a4a5
2r −V2−

(1 − σ)a4 δ̄
2r , and following the proof of Theorems 1.1 and 1.8, we can prove Theorem 1.11.

We omit the details. �
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