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1. Introduction

Let ¢ : N — RT and o € R\Q, v # 0. A classical Diophantine approximation problem
studies the existence of infinitely many pairs (p, ¢) of integers such that

Iy — g+ p| < 9Y(q). (1)

It is referred to as homogeneous if ¥ = 0 and inhomogeneous if v # 0. See [3] for the
discussion of known results and references.

Questions of this type have applications, among other things, to several areas of
dynamical systems and to the spectral theory of quasiperiodic Schrodinger operators
(e.g. [1,2,12,13]). The inhomogeneous problem above can be understood in the metric
sense: a.e. 7y, and in the uniform sense: all ~.

Coprime inhomogeneous approximation asks the same questions about infinitely many
coprime pairs (p,q). This question has been linked to the density exponents of lattice
orbits in R?, in [15].

For the classical uniform setting, Minkowski Theorem guarantees that for any irra-
tional &« € R and v ¢ aZ + Z, there are infinitely many pairs (p,q) of integers such
that

1
Y—qa+pl < . 2
| < ®
Grace [10] showed that 1/4 in (2) is sharp, and Khintchine [6] showed that

1
liminf |g| ||ga — || < 1(1 —4)\(04)2)%,
q

|g|—o0

where

Aa) = liminf[q] [[ga],
lg|—o0

and ||z|| = dist(x, Z).

Uniform inhomogeneous coprime approximation was studied by Chalk and Erdés who
proved [5] that for any irrational & € R and for any v there are infinitely many pairs of
coprime integers (p, ¢) such that (1) holds with ¢(q) = (logigq)zé.

Laurent and Nogueira [15] conjectured that a result similar to Minkowski’s theorem

holds also for the inhomogeneous coprime approximation, namely that there exists C' > 0
such that for any irrational o € R and for any y there are infinitely many pairs of coprime
integers (p, ¢) with

C
|y —qa+p| < —.

lq

In other words the conjecture is that (—252-)2 in Chalk-Erd8s can be replaced by C.

log log q
Such a result would clearly be optimal up to determining the optimal C.
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The work of Chalk and Erdds was forgotten by the community until recently and the
problem was studied in several papers (e.g. [11]), where results somewhat weaker than in
[5] were obtained by different methods. The best positive result towards this conjecture
remains the one in [5].

Our first result in the present paper is to show that such C' does not exist. This
shows that the coprime requirement leads to fundamental differences in the quality of
approximation for the inhomogeneous setting.

Theorem 1.1. For any constant C, there exists (a,7) € [0,1)% with o € R\Q and v ¢
aZ + 7. such that the inequality

c
|y —qa+p| < PL

only has finitely many coprime solutions (p,q) € N2.

Remark 1.2. Actually, for both o and 7 corresponding bad sets can be shown to be dense
and uncountable, see Theorem 4.8.

Given n € N and = € R, define
||z — nal| = min{|x — na —m| : m € Z, (n,m) = 1},

where (n,m) is the largest positive common divisor of n and m.

Addressing the inhomogeneous coprime approximation problem from the metric point,
Laurent and Nogueira proved that (1) has infinitely many coprime solutions (p,q) for
almost every (a,v) € R? provided 3_ 1(n) = co. In particular, there are infinitely many
coprime solutions for almost every (a,v) € R? for 1(n) = ¢/n. Laurent and Nougeira
[15] conjectured that the same is true on each fiber for a fixed «, and they proved that

liminf [n|ly — nal|" < 2 (3)
n—o0

for o such that >, -, max(ll = 00, where ¢ are denominators of continued fraction

approximants of a, and a.eilo'i.qgondition (3) is essential for the proof of [15] because it
requires an application of Gallaher’s theorem.

Our second result in this paper is a proof of (a stronger version of) the above conjecture
for all irrational c.

We prove
Theorem 1.3. For any irrational number a,
lim inf n||y — nal|" = 0
n—oo

holds for almost every v € R.
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Remark 1.4.

e Since ||y — nal||’ is 1-periodic with respect to «, we always assume « € (0,1) in this

paper.
o It is known [14] that for almost every ~,

lim inf n[[y — nal| = 0. (4)
n—oo

However, the exceptional set of v of (4) has full Hausdorff measure [4]. A necessary
and sufficient condition on ¢ and « so that lim inf,,_, ¥(n)||y — na|| = 0 holds for
a.e. y was given in [9].

Except the generalized Borel-Cantelli lemma, basic facts on the distribution of prime
numbers and some basic ergodic arguments, the present paper is self-contained.

The rest of the paper is organized as follows: In §2, we obtain the asymptotics of
coprime pairs. In §3, we will give the proof of Theorem 1.3. In §4, we will give the proof
of Theorem 1.1.

The following standard notations will be used. Let (n,m) be the largest common
divisor of n and m, and {x} = x — |z], the fractional part of z. Denote by |A| the
Lebesgue measure of A and by #.S5 the number of elements in S. Let T = R/Z. Without
loss of generality, we always assume « € (0, 1) is irrational.

2. The asymptotics of coprime pairs

For n € N, let m(n) be the number of prime number less than n. It is well known that
the prime numbers satisfy the following asymptotics [17]

n 1

m(n) = — 1+ 0( ) (5)

:lnn

By the distribution of prime numbers, we also have the following well known results: a
weaker version of Mertens’ second theorem,

S Lot o), (6)

2<p<n p
p is prime

and a weaker version of Rosser’s theorem (see [16]),

> L o (7)

In
p is prime pnp
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For any a € [0,1)\Q, we denote its continued fraction expansion by

1
a=[a1,a2,-~-,an,--~]= 1
a1+a+71
2 az+ -
Let
Dn = [a1,a ap) = !
— — 01,082, ,Up| — 1 )
qTL a1+71
PPES—— —
a3+..+71

where (pn,qn) = 1.
By the properties of continued fraction expansion (see [8] for example), one has

min |[ka — p| > |gne — py| (8)
pEZ
for any 1 < k < g1, and
Sy < 9)
— > |[qn — Pn| > .
dn + Qn+1 " " QnJrl
Moreover,
gnQ — Pn = (_1)H‘Qna _pnl' (10)

In the following Sections 2 and 3, C' is a large absolute constant. Let

It is well known that

Set
In=Ak€[l,gnt1 —1NZ: (lka], k) =1}, (11)

where |z] is the largest integer less or equal than z.
For an interval I C [0,1), let

Jp={k:keJ, {ka} eI}

The following Theorem is crucial in our proof.



[ S. Jitomirskaya, W. Liu / Advances in Mathematics 355 (2019) 106773

Theorem 2.1. There exists a sequence {ny} (independent of I) such that the following
asymptotics hold as k — 00,

N

#n = (B[] + o(1))qny41- (12)
Proof. Set J,(p),
In(p) ={k € [1,gn1 — 1N Z: p|(|kal, k)],
and
Jn(p) = {k € [1,qn1 — N Z: p|(kal, k), {ka} € I}.

Claim 1: k € J,,(p) if and only if there exists some k; € N such that

k = pki (13)
and
{k1a} € { (14)
1 pa
where
I T
—={—-:zel}.
p {p }

See a proof of the Claim 1 at the end of this Section.

Fix £ > 0 (small enough). Let £ > 0 be sufficiently small. Now we distinguish the
cases p < % and p > %

By ergodic theorem, for large n (depending on &, ¢) one has

n n I n
me;l —&nt1 < F#{k1:1 <k < qpﬂa{kla} € ]_)} S me;l + et (15)

for all p < % By Claim 1, one has

11550 = cauan < #Ja(0) < 1175+ g

By the definition of .J,,(p), we have for any prime numbers py, pa,- - - , Ds,

A A A ~

Jn(pl) N Jn(pQ) n---N Jn(ps) = Jn(plpZ e 'ps)-

Thus by the inclusion-exclusion principle, we have
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1 A 1
))qn+1 <# U Jn(p) < ‘I|(1+5_ H (1_E))qn+1'

a-c— ] (1—]§

PS% p<l p<i

p is prime p is prime p is prime

This implies (letting € go to zero) that as n — oo,

1
#{k:1 <k < @gny1, there exists some prime number 2 < p < ¢ such that p|(|ka], k),

and ko € I}

— lgull+o() = ] (1—%)1. (16)

<1
P>t

p is prime

Now we are in a position to study the case p > % We will prove that there exists a
sequence {ny} such that

# U T = e(©)dnin (17)

p is prime

as k — oo, where ¢(&) goes to 0 as £ — 0.
We will split all primes p into the cases 4+ < p < grq1, Cgp <p < L8, &2 <p <

Cq, and % <p < %, where C is a large constant.
Case 1: L1 < p < 1.
By (13), one has

by < Il (18)
p

This leads to k1 < C in the current case. By (5), we have

# U Jn(p) < C#{p: qngl < p < qny1 and p is prime}
dni1
C

<p<dn41
p is prime

dn+1
o In dn+1

= 0(1)qn+1

Case 2: % <p<Cqy.
By (5) and (18) again, one has

7 U Jn(p) < ¢l #{p: in <p < Cgq, and p is prime}

9 <p<Can n ¢
p is prime
dn+1 4n
<C—— = o(1)gn41.
gn Ing, ( ) "

Case 3: Cq,, <p < q%
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If gnt+1 < Cqy, there is no such p. We are done. Thus, we assume

Gn+1 = Can. (19)

In this case, one has

]{?1 = fqn (20)

for some ¢ € N. Indeed, suppose k1 = {q, + jr with 1 < ji < ¢,. By (8), (9) and
(< qc”’;; , one has

{kro} = {lgna + jra}

> ||jral| = llgnall

> 1 g 1
20, Cq2 qnia
1

~ dgn

This contradicts (14).
If n is odd, by (9) and (10), we have

{k1a} =1 —|[k1q]

=1—[|lgna|
> o 1
Pdn Gn+1
1
> a7
-2

which is impossible since {k1a} < %. This means there is no such k in the current case.
Assume n is even. Suppose k € J,(p) and k ¢ J,,(p') for prime p’ < p.

Claim 2:
k = lpq,, and p’ 1 ¢.

See a proof at the end of this Section.
Thus for any prime p in this case, we have

#(Jn(p)\ U Jo(p)) < #{: 0 < (?;H,E does not have any divisor p’

n
Cqn<p’'<p
p’/ is prime

with Cgq, < p’ < p}
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e | B

Pin Can<p’'<p

p’ is prime

nt1 0 gn

Pgn Inp

Gnt1lng, 1
¢ plnp’

<C
<C

where the third inequality holds by (6).
Thus by (7), we have

# U Jn(p) < Cw Z 1

n plnp
Can <p< Inf1 Can<p<InfL
p is prime p is prime
= 0(1)qn+1~

Case 4: % <p< .
For each k1 < q"%, rewrite k1 = £g, + £, with 1 < /¢, < g,. Then by (9), one has

1
[1egnall = flgnal] < -

In this case, we must have

Q

lryaf] < —. (21)

bS]

Indeed, if |4k, || > %, by (9), one has

{k1a} = {lgna + Ly, a}

2 [|lky el | = |[€gne]
1
2 kalaH - 5
C
> =
p
This is impossible since {k1a} < %.
Also, by (8) and (9), one has
. . . C
#{J:133<qn,||aa|\<5}sc‘%+1sc%. (22)

By (21) and (22), we have
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# U s ¥ oten®

pan
F<p<E $<r<P
p is prime p is prime
n+1\ qn qn
< ¥ ol oy I
P4n D p
$<r<P F<p<
p is prime p is prime

90<£)qn+1 + Cqnlnlng,,

where p(§) = 0 as £ — 0.
Suppose there exists an infinite sequence {ny} such that

Qg1 > qny (InIn gy, )?.

Then by (23), we have

# U T =0(©an11-

1 ang
3 <p<-—@z*
p is prime

Putting the other cases together, this completes the proof of (17).
Otherwise for all large s, we have

gst1 < gs(Inlng,)?.
For any p, let s be the unique positive integer such that
qs <P < Gst1-
Suppose k1, k] € J,(p). We must have
k1 — K1 > gs—2.

Otherwise, by (8) and (9), one has

1
ko — K ol > .
e K > 52—

This is impossible since {k1a} < %, {kja} < % and p > q,.
By (25), (26) and (27), for any k1, k] € J,(p), one has

ki — k| > p=.

Thus

(25)

(27)
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4 U Ju(p) < Z oI+l

1
2
<< p>1 pp
p is prime p is prime
= ¢(E)dnt1-

Putting the other cases together, we finish the proof of (17).
Now the Theorem follows from (16) and (17) by letting € — 0. O

Proof of Claim 1. Suppose k € J,, (p). Then there exist k1,q1 € N such that
k = pkq
and
Lka] = pas.
Using k1o = |k1a) + {k1a}, one has
lka] = [pkie] = plkia] + [p{kia}].
This implies
pllp{kia}].
Noting that 0 < [p{ki1a}] < p —1, one has
[p{kra}] = 0.
Thus
1
{k1a} < .
Combining with the assumption that {ka} € I, one has
plkia} = {ka} € I.
This yields that
I
{kia} € .

The proof of the other side is similar. We omit the details. O

11

(28)
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Proof of Claim 2. Otherwise, k = p’pmg,, for some p’ < p. Since n is even, by (10), one
has

1
llgnal| = {gna} < q

n+

Thus

{pmana} = pml|gnall
gn+1 1 _ 1
Pn Gny1r P'an

This implies

lka] = [p'pmgnal
= p'lpmgnal + [p'{pmanal]
=p'[pmynpa].

Thus
Pl([kal, k).
We get a contradiction since (|ka], k) ¢ J(p'). O
Remark 2.2. We should mention that the sequence {nj} in Theorem 2.1 is either defined

by (24) or is the entire sequence n € N in case (25). So it does not depend on the
interval I.

3. Proof of Theorem 1.3

We present the general form of the Borel-Cantelli Lemma first, which is the key
technique in this part of the argument. See [7,18] for details.

Lemma 3.1. Let Ey, k =1,2,---, be a sequence of Lebesque measurable sets in [0,1] and
suppose that

D 1 Ek| = oo (29)
k=1

Then the Lebesgue measure of E :=limsupy_, .o En = (\xo1 Uren Ex satisfies

N 2
> E
|E| > lim sup N( k?\fl‘ &) .
N—oo D p_q > = Bk N Ey
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Lemma 3.1 immediately implies

Corollary 3.2. Suppose the sets {Ey} are pairwise quasi-independent with respect to con-
stant A > 0, that is

|Ek n El| < A‘Ek||El| + 02_(k+l),

for all k #1, and >, |Ex| = co. Let E :=limsupy_, . En := =1 Uren Ek- Then

1
> —.
B> &
Define
T T
I, = ka} — Aka} + , 30
U ({ho} Gn+1 {ka} Qn+1) (30)

k€ Jn

where 0 < 7 < %, and J, is given by (11).

By (8) and (9), we have I,, C [0, 1] and I,, contains exactly #.J,, intervals.

Letting I = [0,1) in Theorem 2.1, we have
Lemma 3.3. Let sequence {ny} be given by Theorem 2.1. Then we have

#Ini = (£ + 0(1))gn 1
and
|In, | = 27K + o(1).

Now we want to show the quasi-independence of a subsequence of {I,,, }.

Theorem 3.4. Fizing n;, € {ny}, we have
Ly, N Iy | = [Ty, | gy | +0(1), (31)

as ng, € {ni} goes to infinity.

Proof. Recall that I,, contains #.J,, intervals. Let I,, = JI, i = 1,2, - ,#J,. Fix one
interval If”l with 1 <@ < #Jp, . Now let I go to infinity. By Theorem 2.1, one has

#{k 1<k< An,,+1* {ka} € Ijzll ’ (LkaJa k) = 1} = in2+1/€|]’f”1 | + 0(1)qn12+1'
By (30), one has

Iy, O 1y, | = 2761, |+ o(1).
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By Lemma 3.3, we have
Ly N1, | = g, 11, [+ 0(1).
Summing up all the i € #.J,,, , we obtain the Theorem. O

Proof of Theorem 1.3. We give the proof of v € [0, 1) first. Applying Theorem 3.4, there
exists a sequence {ny, } such that

o)
2i+j °

Ty, O Ty, | = [Ty, | 1Ty, | +
Letting E; = Inkl, by Lemma 3.3, one has
|Ei| = 27K + o(1).
Applying Corollary 3.2 with A = 1, we get |limsup E;| = 1.

By the definition of I,,, we have for any v € I, there exists some 1 < k < gy,4+1 such
that (|ka),k) =1 and

T

Iy = {ka}| = |y — ko + [ka]| < :
qn+1

This implies for any nyg,, there exists some 1 < j < gn, +1 such that

. ’ T T
Iy —jal|" < < -
qni+1 J

Since 7 is arbitrary, we have for almost every v € [0, 1),
lim inf ||y — kal|” = 0.
k—o0
Let us now consider vy € [m, m+1) for some m € Z. In this case, we only need to modify

the definition of I,, in (30) as

T T
,m+ {ka} +
dn+1 dn+1

= (m+{ka} -

ke€Jn

).

By the same proof as for v € [0,1), we have for almost every v € [m,m + 1),
liminf ||y — ka||’ = 0.
k—o0

This completes the proof. O
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4. Proof of Theorem 1.1

In this section, we will prove the following theorem, which is a finer version of Theo-
rem 1.1.

Theorem 4.1. For any positive constant M, there exist « € R\Q and an uncountable set
Q C R (depending on «) such that for all v € Q, the inequality

M
v —qa+p| < Py (32)

only has finitely many coprime solutions (p,q) € N2.

We need some preparations first. In this section, all the large constants C, C; and Cs
only depend on M. In the following arguments, we assume Cs, C1,C € N and

Cy>>C1>>C.

Let p* = 2,p?,p%,--- ,p" be the successive prime numbers with some n = (2C; + 1)2
and let
P=pp* ..pn
Define aj, = [, P for ), € N, k=1,2,---. In the following construction, we need that
I > Cy. Let a = [a1,a9, -+ ,ag, -] and 2’—’; = [a1,az2, - ,ax]. Then pg = 0,p1 = 1,qp =

1,1 = a1 and

Pk = QkPr—1 + Pr—2, (33)
and
Gk = OkQr—1 + qr—2- (34)
Thus, we have
gr =1 mod P, (35)
and
por =0 mod P, (36)
and

Pok+1 =1 mod P. (37)
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Since Zk > (5, we have

qr+1 = Cogg. (38)

We assign each pair (t, j), [t| < C1,|j| < Oy a different prime number p*7. We can ran-
domly choose p'7 so that p*7 is a permutation of a subset of prime numbers p!, p?, - -, p"
with n = (207 + 1)2. We also assume « is given by (33)-(38).

The plan is to construct a sequence {by } such that for all k, by, =t mod p™J, |bra| = j
mod p™J, for all |t| < C1,|j| < C;. This will be done by induction. We then construct
nested intervals {I;} C [0,1) centered at bya mod Z and lim |I;| = 0. We will show that
for v = NI}, there are only finitely many coprime solutions to (32). Here is the sketch of
the argument.

Suppose (32) has infinitely many coprime solutions. We will show (Theorem 4.7) that
solutions (p, ¢) must have the structure p = |qa| and g = by +dpqr+7rEqr—1 With |dg| < C
and |rg| < C for some k. By (35)-(37), the remainders of dpqr+7£qk—1, | (drqp+7rqp—1)]
mod p*J for all [t|,|j| < C; are bounded by (2C + 1)2. It will imply that for some
(to,jo) € [-C1,C4] x [-C1,C1], both [ga| mod p'odo and ¢ mod ptodo are zero. This
is a contradiction.

To start with the construction of by, clearly, we can find b, = ¢t mod pJ by the
Chinese Remainder Theorem. Simultaneously achieving |bja| = j mod p* requires
bia/p* mod Z belonging to a certain interval of length 1/p%4. In fact, in order to pro-
ceed with inductive construction of by, we will need a little more: that we can guarantee
bia/p mod Z in slightly shrunk intervals. The following lemma is a preparation for
that.

Lemma 4.2. Suppose p*, p2, - --p* are distinct prime numbers. Let P= prp?---pF. Then
there exists a small § > 0 and a large constant L > 0 (both depending on p*,p?, ---p*)
such that for any o with a; > E, any given bor I = I X Iy X --- x I, C Tk with
|I;| > % -4 fori=1,2,---,k, any L > ay + 1 and any Lo, there exists some j €
{Lo,Lo+1,---,Lo+ L} such that

(j]ga,jgm e ,jlga) el mod Z*.

Proof. Let us consider the map vy, : R — TF,

Ur(t) = (t ﬁ—lt Et) d zk (39)
k — \u ﬁg ) ’ ﬁk mo .

See Fig. 1. Since ¢ (p*p° - --p¥) = 0 mod ZF, identifying T* with [0,1)*, we have that
there exists some N = N (p',p?, - ,p*) such that the image of 1, C [0,1)* consists of
at most N segments.
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Fig. 1. Two prime numbers.

Claim 3: For any closed box I* = I} x Iy x - - x I), with |IAZ| = 1% fori=1,2,--- ,k, and

for any t; € fl, there exists some ¢t =t; mod Z such that ¥ (¢t) € I* mod Z.

We will prove Claim 3 by induction. For k£ = 1, it is trivial. Suppose it holds for k.
Thus for any ¢, € I, there exists some t, such that to = t; mod Z and Pr(t) € I*.
Since all the p* are prime numbers, there exists ¢ such that gp'p?---p* =1 mod pFte.

Then there exists some 0 < j < pF+1 — 1 such that

Al

CIR % 1 P -
Japp* - -p’“w + St € I mod Z,

since |Ijq1| = # and Ij4 1 is closed. Let t3 = jgp? - - - p¥ + t5. Then ﬁf—;tg € Ij41 and
Yr(ts) € I since t3 = t5 mod Z. Thus Yra1(ts) € I*+1. g

Thus by Claim 3 and the fact that the image of ¥, C [0,1)* consists of at most N
segments, for any closed interval I¥ = I} x I x - - - x I, with |IAZ| = 1% fori=1,2,--- k,
there exists some I; C [0,1) with |[[;| > ﬁ and 0 < jo < pp®---p* such that 1y (t)

mod Z* € I* for all ¢ € I; + jo. We mention that we use the fact that ¢ is a map with

period pZp3 - - pF.

Let L = 3NP and take o with a; > L. By the continued fraction expansion the set

| ST i 1
{a,2a, -+, La} is NP dense on the torus T if L > a1 + 1. Let 0 < § << Snp- Now

we will show that L and § satisfy the requirements of Lemma 4.2.
Indeed, suppose box I = I X I3 X -+ x Ij; has |I;| > % —0d0fori=1,2--- k. Then,

since the slopes of components of i, are bounded from below by min{g—;} > %, there

exists some I; C I, with |I;] > ﬁ such that for any m € Z, ¢y (t) € I mod Z* for

all t € mp?p® - - - p* + jo + I;. We mention that we use again the fact that v, is a map

with period p%p®---p*. By the fact that the set {a,2a,---, La} is 31\1,p dense on torus

T, we have that there exists some j € {Lo, Lo+ 1,--+, Lo+ L} and mg € Z such that

Jo I
Ak A

ja € my + ==
P2p3 - p
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This implies

P o . ] -
Q=Jﬁu€wmﬁﬁ-~ﬁﬂﬂo+h7
and then
PP P
Yi(ty) = (]ﬁa’j}?a’.” ,]ﬁa) el modZ'. O
Lemma 4.3. Let p be a prime number. Suppose

b=t mod p.

Then |ba+ ;| =j mod p iff

(b—t)ae[j—ta—vj’j—i-l—ta—vj)

b b p

mod Z.

Proof. Let b = kp+t. Suppose |ba+ ;] =j mod p. Using ka = |ka| + {ka}, one has
|ba+ ;| = plka] + [p{ka} +ta+ ;] =j mod p

This implies

| —ta—; j+1—ta—7,
[] - %7‘7+ a %) mod Z.
p p

ka €
The proof of the other side is similar. We omit the details. O

In the following, we always assume a; > L.

Lemma 4.4. There exist a small § > 0 (independent of ) and by € N such that for all
|t|) ‘]‘ < Ch,

by =t mod p"’ (40)
and
(by — 1) jJ+o—ta j+1-6—to
e ac( AR P ) mod Z. (41)

Proof. By the Chinese remainder theorem, there exists b such that
bp =t mod pt’

for all [¢],]j] < Ch.
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If by = by + IP, we also have
by =t mod pt‘j

for all |¢],|j] < Ch.
Suppose ¢ > 0 is small enough (only depends on p%7). We only need to choose proper
I € N such that for all £ and j,

(b — 1) j+o—ta j+1-6—to
x ac( AR P ) mod Z. (42)
Let Pt = 1%. Thus (42) is equivalent to
- j+6—ta jH+H1—-0—1
Phila e (L0t I %) mod Z.

t,g t,7
p"j p7]

The existence of such [ is guaranteed by Lemma 4.2. O

Now we will construct nested intervals {I} C [0,1) such that I41 C Ij and lim |I};| =
0. Here is the detail. Below, [ is always in N.

Let by be given by Lemma 4.4. Using the fact that In > Cs, one has & > by. Thus we
can define

by =b1 + L Pq1
such that
by — £ < CPg..

Inductively, for k > 2, define

bry1 = b + [ Py (43)
such that
bt — L5 < CPa. (44)
Let us define
I ={r:7 € 0.1) |1y = beall < -}, (15)

where by, is given by (43).
Let

v = Nlg. (46)
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Remark 4.5. By modifying b; and [l in construction of byy1, we can get a dense and
uncountable set of .

Lemma 4.6. Under the construction of (43), we have that for all t,j,

bpr1 =t mod pt’ (47)
and
b1 —t j+ 3 —ta j+1-3—t
(’”1, Joedtzzta stl-g-tay iz, (48)
pa] pt:] ptd

Proof. The proof of (47) follows from the definition of (40) and (43).
We will give the proof of (48) by induction. The base case holds by Lemma 4.4.

Suppose
by —t j+ S+ 2725 —ta j+1 -5 —27k+2D§5 _ta
(ktj )ae(‘7 2 3 7‘7 2 X ) mod Z. (49)
P p" p"
By (8) and (9), one has
br+1 — b ;
12l = P g
< W1 1
2qr qr+1
1 1
— <
T 2qr T Cé“

where the last inequality holds by (38). By (49), for appropriately large Cy, we have

JHLI4+27F 35 —ta j+1-35—27F36 — ta

b _
(bry1 t)a ' 7 4
pt,J pta]

T
p7.7

€ ( ) mod Z.

Then by induction, we finish the proof. O

Thus in order to prove Theorem 4.1, we only need to show that for the + given by
(46), the inequality

M

|y = qa+p| < Py

only has finitely coprime solutions (p,q) € N2.
Before, we give the proof, we need another theorem.
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Theorem 4.7. Suppose 7 is given by (46). Suppose by < g < bi11 and

M
v —qall < —.
q
Then q must have the following form

e Case I: g =bpy1 —aqr with 0 <a < C.
o Case II: ¢ =b + aqx + bgr—1 with 0 <a < C and |b] < C.

Proof. Suppose by < q < bgy1 and

M
v —qal| < —. (50)
q
Case I: ¢ > Cq.
In this case, we claim that ¢ = bx11 — agy for some a > 0. Otherwise ¢ = by11 —aqx +1
for some 1 <[ < gg. Thus

Iy = qall = |y = bry1a + agra — laf|
> [|la]| = [lageal| = [|v — br41¢|
1 b 1 1
qQr + Qr—1 qr qQk+1  Gk+1

1
Z R
4qx,

>

where the second inequality holds by (8), (9) and (45), and the third inequality holds by
0) since ¢ > Cqy.

(5
Now we are in a position to show 0 < a < C. Suppose a > C. By (44) and ¢ =

the fact qx4+1 > Caqg. This contradicts

bi+1 — aqg, one has

gk+1
a< ——+CP. 51
2qx (51
By (50), we have
M
I —gall < ;0
k+1 — aqk

and also, using (51),

Iy = qall = [lagral] = [l = brtaed|

a 1
2 _
Gk+1 + Q. Qr+1

a

> .
2q111
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Thus we have

a M
<

. 52
2qk+1 ~ brt+1 —agy (52)
Solving quadratic inequality (52), we have by (44),
b1 +4/0hy — SMarari1 g
a> 0 = 24 0(), (53)
2qy, k
or
bt = VR4t — 8Mauaiia
a< =O0(1). (54)

2q

Inequality (53) can not happen since ¢ = bgy1 — agr > Cqg. Inequality (54) does not
hold since we assume a > C. This implies Case I.

Case II: b, < g < Cqg. Rewrite q as ¢ = by, + agi + bgr—1 + 1, where |bgr—1 +1] < %qk
and [I| < ge—1. Notice that [b] < 51—

We claim that [ = 0. Indeed, assume |I| > 0. Then

Iy = qall = [l — bra — agra — bgp—10 — la|

> [|laf| = [y = bral| = [lagral| — [[bgr—1¢|

> 1 7i7 a G i
Q-1+ qk—2 Q& Qe+l 2qr—1 Gk
1

>

3qk—1

where the second inequality holds by (8), (9) and (45), and the third inequality holds by
the fact gi4+1 > Caqg. This contradicts (50) since g > by.

In this case (¢ < Cqg), it is immediate that 0 < a < C. Thus we only need to prove
|b] < C. Since ¢ = by, + agy, + bgr—1 and q > by, we have using also (44) that

M  3M
= goll < 3 < ==
k qk
and also have
v = qall > [[bgr—1af| — ||y — bra|| — [lagral|
S /I W

dk—1 + 9k qr+1 Gk

Thus we have

bl <C. O
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Proof of Theorem 4.1. Let  be given by (46). Suppose by < g < by1 is such that (p, q)
are coprime and

M

|y —qa+p| < —.
q

Since v # 0, this implies p = |[ga] and ||y — gaf| < %. By Theorem 4.7, we have

q=bryr1 —aqr with 0 < a < C or g =bg + aqr + bgp—1 with 0 < a < C and || < C.
We will show that (g, [gar]) is not coprime for all such q.
Without loss of generality, assume g = bi+1 — aqr and 0 < a < (|, the other part of
the argument being similar.
Suppose [ > 0 and | < C. By (36), (37) and (10), we have for odd &
llgra| =lpr —1=1—1 mod P (55)
and for even k
llgree] =1lpr, =0 mod P. (56)
Suppose I < 0 and |I| < C. Similarly, we have for odd k
llgra| =lpr, =1 mod P (57)
and for even k
llgra| =1lpr, —1=—-1 mod P. (58)
Let (x) be the unique number in [—1/2,1/2) such that  — (x) is an integer. Let t = a.
Let 0 < —j < P be such that —j = —agye — (—agra) mod P and v; = (—agrc).

By (55)-(58), we have 0 < |¢], |j| < C.
By (8) and (9), one has

sl = I — aggal] < -~ (59)
dk+1
By (47), we have for all |t| < C,
bipt1 =t mod phd,
which implies for some ¢ € [-C, C] (using t = a and (35))
bps1 —agqr =0 mod p™. (60)

Applying Lemma 4.6 and (59), one has for large k,
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(bk+17t) j+’7j*t0[j+1*’)/j7t()é

i a € ( P i ) mod Z.
By Lemma 4.3, one has for all |j| < C;
|brr1cr+ ;] =j mod p™.
This implies for some j € [-C, C],
[brr1o — agra) = [byyra+7;] —j =0 mod p. (61)

Thus by (60) and (61), we have that (b1 — agg, |bk+1 — aqx|) is not coprime. This
implies for such 7 given by (46), the inequality

M
Iy —qa+p| < Py

only has finitely many coprime solutions (p, ¢) € N2. By Remark 4.5, this completes the
proof. O

Actually, we have proved the following more general result.

Theorem 4.8. For any positive constant M, there exist large constants Cy and Cy (de-
pending on M) such that the following statement holds: Let P = p'p?---p", where
n = C_’f’ + 1. Let Z—: be the continued fraction expansion to «. Let

A= {a: there exists some S = {ay,a2, - ,a,} C N N[0, P] with m < Cy such that,

eventually for all k, qx,pr € S mod P and qx+1 > CQqu}.

Then for any o € A, there exists a dense uncountable set Q(«) C [0,1) such that for all
v € Q(a), inequality

M
Iy —gqa+p|l < —,
q
only has finitely many coprime solutions (p,q) € N2.
Remark 4.9. A is a dense uncountable set.
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