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1. Introduction

Let ψ : N → R+ and α ∈ R\Q, γ �= 0. A classical Diophantine approximation problem 
studies the existence of infinitely many pairs (p, q) of integers such that

|γ − qα + p| ≤ ψ(q). (1)

It is referred to as homogeneous if γ = 0 and inhomogeneous if γ �= 0. See [3] for the 
discussion of known results and references.

Questions of this type have applications, among other things, to several areas of 
dynamical systems and to the spectral theory of quasiperiodic Schrödinger operators 
(e.g. [1,2,12,13]). The inhomogeneous problem above can be understood in the metric 
sense: a.e. γ, and in the uniform sense: all γ.

Coprime inhomogeneous approximation asks the same questions about infinitely many 
coprime pairs (p, q). This question has been linked to the density exponents of lattice 
orbits in R2, in [15].

For the classical uniform setting, Minkowski Theorem guarantees that for any irra-
tional α ∈ R and γ /∈ αZ + Z, there are infinitely many pairs (p, q) of integers such 
that

|γ − qα + p| ≤ 1
4|q| . (2)

Grace [10] showed that 1/4 in (2) is sharp, and Khintchine [6] showed that

lim inf
|q|→∞

|q| ||qα− γ|| ≤ 1
4(1 − 4λ(α)2) 1

2 ,

where

λ(α) = lim inf
|q|→∞

|q| ||qα||,

and ||x|| = dist(x, Z).
Uniform inhomogeneous coprime approximation was studied by Chalk and Erdós who 

proved [5] that for any irrational α ∈ R and for any γ there are infinitely many pairs of 
coprime integers (p, q) such that (1) holds with ψ(q) = ( log q

log log q )2 1
q .

Laurent and Nogueira [15] conjectured that a result similar to Minkowski’s theorem 
holds also for the inhomogeneous coprime approximation, namely that there exists C > 0
such that for any irrational α ∈ R and for any γ there are infinitely many pairs of coprime 
integers (p, q) with

|γ − qα + p| ≤ C

|q| .

In other words the conjecture is that ( log q
log log q )2 in Chalk-Erdős can be replaced by C. 

Such a result would clearly be optimal up to determining the optimal C.
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The work of Chalk and Erdős was forgotten by the community until recently and the 
problem was studied in several papers (e.g. [11]), where results somewhat weaker than in 
[5] were obtained by different methods. The best positive result towards this conjecture 
remains the one in [5].

Our first result in the present paper is to show that such C does not exist. This 
shows that the coprime requirement leads to fundamental differences in the quality of 
approximation for the inhomogeneous setting.

Theorem 1.1. For any constant C, there exists (α, γ) ∈ [0, 1)2 with α ∈ R\Q and γ /∈
αZ + Z such that the inequality

|γ − qα + p| ≤ C

q
,

only has finitely many coprime solutions (p, q) ∈ N2.

Remark 1.2. Actually, for both α and γ corresponding bad sets can be shown to be dense 
and uncountable, see Theorem 4.8.

Given n ∈ N and x ∈ R, define

||x− nα||′ = min{|x− nα−m| : m ∈ Z, (n,m) = 1},

where (n, m) is the largest positive common divisor of n and m.
Addressing the inhomogeneous coprime approximation problem from the metric point, 

Laurent and Nogueira proved that (1) has infinitely many coprime solutions (p, q) for 
almost every (α, γ) ∈ R2 provided 

∑
ψ(n) = ∞. In particular, there are infinitely many 

coprime solutions for almost every (α, γ) ∈ R2 for ψ(n) = c/n. Laurent and Nougeira 
[15] conjectured that the same is true on each fiber for a fixed α, and they proved that

lim inf
n→∞

|n||γ − nα||′ ≤ 2 (3)

for α such that 
∑

k≥0
1

max(1,log qk) = ∞, where qk are denominators of continued fraction 
approximants of α, and a.e. γ. Condition (3) is essential for the proof of [15] because it 
requires an application of Gallaher’s theorem.

Our second result in this paper is a proof of (a stronger version of) the above conjecture 
for all irrational α.

We prove

Theorem 1.3. For any irrational number α,

lim inf
n→∞

n||γ − nα||′ = 0

holds for almost every γ ∈ R.
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Remark 1.4.

• Since ||γ − nα||′ is 1-periodic with respect to α, we always assume α ∈ (0, 1) in this 
paper.

• It is known [14] that for almost every γ,

lim inf
n→∞

n||γ − nα|| = 0. (4)

However, the exceptional set of γ of (4) has full Hausdorff measure [4]. A necessary 
and sufficient condition on ψ and α so that lim infn→∞ ψ(n)||γ − nα|| = 0 holds for 
a.e. γ was given in [9].

Except the generalized Borel-Cantelli lemma, basic facts on the distribution of prime 
numbers and some basic ergodic arguments, the present paper is self-contained.

The rest of the paper is organized as follows: In §2, we obtain the asymptotics of 
coprime pairs. In §3, we will give the proof of Theorem 1.3. In §4, we will give the proof 
of Theorem 1.1.

The following standard notations will be used. Let (n, m) be the largest common 
divisor of n and m, and {x} = x − �x�, the fractional part of x. Denote by |A| the 
Lebesgue measure of A and by #S the number of elements in S. Let T = R/Z. Without 
loss of generality, we always assume α ∈ (0, 1) is irrational.

2. The asymptotics of coprime pairs

For n ∈ N, let π(n) be the number of prime number less than n. It is well known that 
the prime numbers satisfy the following asymptotics [17]

π(n) = n

lnn
(1 + O( 1

lnn
)). (5)

By the distribution of prime numbers, we also have the following well known results: a 
weaker version of Mertens’ second theorem,

∑
2≤p<n

p is prime

1
p

= ln lnn + O(1), (6)

and a weaker version of Rosser’s theorem (see [16]),

∑ 1
p ln p

< ∞. (7)

p is prime
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For any α ∈ [0, 1)\Q, we denote its continued fraction expansion by

α = [a1, a2, · · · , an, · · · ] = 1
a1 + 1

a2+ 1
a3+ 1

···

.

Let

pn
qn

= [a1, a2, · · · , an] = 1
a1 + 1

a2+ 1
a3+ 1

···+ 1
an

,

where (pn, qn) = 1.
By the properties of continued fraction expansion (see [8] for example), one has

min
p∈Z

|kα− p| ≥ |qnα− pn| (8)

for any 1 ≤ k < qn+1, and

1
qn + qn+1

≤ |qnα− pn| ≤
1

qn+1
. (9)

Moreover,

qnα− pn = (−1)n|qnα− pn|. (10)

In the following Sections 2 and 3, C is a large absolute constant. Let

κ =
∏

p is prime
(1 − 1

p2 ).

It is well known that

κ = 6
π2 .

Set

Jn = {k ∈ [1, qn+1 − 1] ∩ Z : (�kα�, k) = 1}, (11)

where �x� is the largest integer less or equal than x.
For an interval I ⊂ [0, 1), let

Ĵn = {k : k ∈ Jn, {kα} ∈ I}.

The following Theorem is crucial in our proof.
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Theorem 2.1. There exists a sequence {nk} (independent of I) such that the following 
asymptotics hold as k → ∞,

#Ĵnk
= (κ|I| + o(1))qnk+1. (12)

Proof. Set Jn(p),

Jn(p) = {k ∈ [1, qn+1 − 1] ∩ Z : p|(�kα�, k)},

and

Ĵn(p) = {k ∈ [1, qn+1 − 1] ∩ Z : p|(�kα�, k), {kα} ∈ I}.

Claim 1: k ∈ Ĵn(p) if and only if there exists some k1 ∈ N such that

k = pk1 (13)

and

{k1α} ∈ I

p
, (14)

where

I

p
= {x

p
: x ∈ I}.

See a proof of the Claim 1 at the end of this Section.
Fix ξ > 0 (small enough). Let ε > 0 be sufficiently small. Now we distinguish the 

cases p ≤ 1
ξ and p > 1

ξ .
By ergodic theorem, for large n (depending on ξ, ε) one has

|I|qn+1

p2 − εqn+1 ≤ #{k1 : 1 ≤ k1 <
qn+1

p
, {k1α} ∈ I

p
} ≤ |I|qn+1

p2 + εqn+1 (15)

for all p ≤ 1
ξ . By Claim 1, one has

|I|qn+1

p2 − εqn+1 ≤ #Ĵn(p) ≤ |I|qn+1

p2 + εqn+1.

By the definition of Jn(p), we have for any prime numbers p1, p2, · · · , ps,

Ĵn(p1) ∩ Ĵn(p2) ∩ · · · ∩ Ĵn(ps) = Ĵn(p1p2 · · · ps).

Thus by the inclusion-exclusion principle, we have
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|I|(1 − ε−
∏
p≤ 1

ξ
p is prime

(1 − 1
p2 ))qn+1 ≤ #

⋃
p≤ 1

ξ
p is prime

Ĵn(p) ≤ |I|(1 + ε−
∏
p≤ 1

ξ
p is prime

(1 − 1
p2 ))qn+1.

This implies (letting ε go to zero) that as n → ∞,

#{k : 1 ≤ k < qn+1, there exists some prime number 2 ≤ p ≤ 1
ξ

such that p|(�kα�, k),

and kα ∈ I}

= |I|qn+1[1 + o(1) −
∏
p≤ 1

ξ
p is prime

(1 − 1
p2 )]. (16)

Now we are in a position to study the case p > 1
ξ . We will prove that there exists a 

sequence {nk} such that

#
⋃
p> 1

ξ
p is prime

Jnk
(p) = ϕ(ξ)qnk+1 (17)

as k → ∞, where ϕ(ξ) goes to 0 as ξ → 0.
We will split all primes p into the cases qn+1

C < p < qn+1, Cqn ≤ p ≤ qn+1
C , qnC ≤ p ≤

Cqn and 1
ξ < p ≤ qn

C , where C is a large constant.
Case 1: qn+1

C < p < qn+1.
By (13), one has

k1 ≤ qn+1

p
. (18)

This leads to k1 ≤ C in the current case. By (5), we have

#
⋃

qn+1
C

<p<qn+1
p is prime

Jn(p) ≤ C#{p : qn+1

C
< p < qn+1 and p is prime}

≤ C
qn+1

ln qn+1
= o(1)qn+1.

Case 2: qn
C ≤ p ≤ Cqn.

By (5) and (18) again, one has

#
⋃

qn
C

≤p≤Cqn
p is prime

Jn(p) ≤ C
qn+1

qn
#{p : qn

C
≤ p ≤ Cqn and p is prime}

≤ C
qn+1

qn

qn
ln qn

= o(1)qn+1.

Case 3: Cqn ≤ p ≤ qn+1 .
C
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If qn+1 ≤ Cqn, there is no such p. We are done. Thus, we assume

qn+1 ≥ Cqn. (19)

In this case, one has

k1 = �qn (20)

for some � ∈ N. Indeed, suppose k1 = �qn + jk with 1 ≤ jk < qn. By (8), (9) and 
� ≤ qn+1

Cq2
n

, one has

{k1α} = {�qnα + jkα}

≥ ||jkα|| − �||qnα||

≥ 1
2qn

− qn+1

Cq2
n

1
qn+1

≥ 1
4qn

.

This contradicts (14).
If n is odd, by (9) and (10), we have

{k1α} = 1 − ||k1α||

= 1 − ||�qnα||

≥ 1 − qn+1

pqn

1
qn+1

≥ 1
2 ,

which is impossible since {k1α} < 1
p . This means there is no such k in the current case.

Assume n is even. Suppose k ∈ Jn(p) and k /∈ Jn(p′) for prime p′ < p.

Claim 2:

k = �pqn, and p′ � �.

See a proof at the end of this Section.
Thus for any prime p in this case, we have

#(Jn(p)\
⋃

Cqn<p′<p
p′ is prime

Jn(p′)) ≤ #{� : � ≤ qn+1

pqn
, � does not have any divisor p′

with Cqn < p′ < p}
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≤ qn+1

pqn

∏
Cqn<p′<p
p′ is prime

(1 − 1
p′

)

≤ C
qn+1

pqn

ln qn
ln p

≤ C
qn+1 ln qn

qn

1
p ln p

,

where the third inequality holds by (6).
Thus by (7), we have

#
⋃

Cqn<p<
qn+1

C
p is prime

Jn(p) ≤ C
qn+1 ln qn

qn

∑

Cqn<p<
qn+1

C
p is prime

1
p ln p

= o(1)qn+1.

Case 4: 1
ξ ≤ p ≤ qn

C .
For each k1 < qn+1

p , rewrite k1 = �qn + �k1 with 1 ≤ �k1 < qn. Then by (9), one has

||�qnα|| = �||qnα|| <
1
p
.

In this case, we must have

||�k1α|| ≤
C

p
. (21)

Indeed, if ||�k1α|| ≥ C
p , by (9), one has

{k1α} = {�qnα + �k1α}

≥ ||�k1α|| − ||�qnα||

≥ ||�k1α|| −
1
p

≥ C

p
.

This is impossible since {k1α} < 1
p .

Also, by (8) and (9), one has

#{j : 1 ≤ j < qn, ||jα|| <
C

p
} ≤ C

qn
p

+ 1 ≤ C
qn
p
. (22)

By (21) and (22), we have
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#
⋃

1
ξ
<p<

qn
C

p is prime

Jn(p) ≤
∑

1
ξ
<p<

qn
C

p is prime

C(qn+1

pqn
+ 1)qn

p

≤
∑

1
ξ
<p<

qn
C

p is prime

C(qn+1

pqn
)qn
p

+ C
∑

1
ξ
<p<

qn
C

p is prime

qn
p

= ϕ(ξ)qn+1 + Cqn ln ln qn, (23)

where ϕ(ξ) → 0 as ξ → 0.
Suppose there exists an infinite sequence {nk} such that

qnk+1 ≥ qnk
(ln ln qnk

)2. (24)

Then by (23), we have

#
⋃

1
ξ
<p<

qnk
C

p is prime

Jnk
(p) = ϕ(ξ)qnk+1.

Putting the other cases together, this completes the proof of (17).
Otherwise for all large s, we have

qs+1 ≤ qs(ln ln qs)2. (25)

For any p, let s be the unique positive integer such that

qs ≤ p < qs+1. (26)

Suppose k1, k′1 ∈ Jn(p). We must have

|k1 − k′1| ≥ qs−2. (27)

Otherwise, by (8) and (9), one has

||k1α− k′1α|| >
1

2qs−2
.

This is impossible since {k1α} < 1
p , {k′1α} < 1

p and p ≥ qs.
By (25), (26) and (27), for any k1, k′1 ∈ Jn(p), one has

|k1 − k′1| ≥ p
1
2 .

Thus
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#
⋃

1
ξ
<p<

qn
C

p is prime

Jn(p) ≤
∑
p> 1

ξ
p is prime

C
qn+1

pp
1
2

= ϕ(ξ)qn+1.

Putting the other cases together, we finish the proof of (17).
Now the Theorem follows from (16) and (17) by letting ξ → 0. �

Proof of Claim 1. Suppose k ∈ Ĵn(p). Then there exist k1, q1 ∈ N such that

k = pk1

and

�kα� = pq1.

Using k1α = �k1α� + {k1α}, one has

�kα� = �pk1α� = p�k1α� + �p{k1α}�.

This implies

p|�p{k1α}�.

Noting that 0 ≤ �p{k1α}� ≤ p − 1, one has

�p{k1α}� = 0. (28)

Thus

{k1α} <
1
p
.

Combining with the assumption that {kα} ∈ I, one has

p{k1α} = {kα} ∈ I.

This yields that

{k1α} ∈ I

p
.

The proof of the other side is similar. We omit the details. �
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Proof of Claim 2. Otherwise, k = p′pmqn for some p′ < p. Since n is even, by (10), one 
has

||qnα|| = {qnα} <
1

qn+1
.

Thus

{pmqnα} = pm||qnα||

<
qn+1

p′qn

1
qn+1

= 1
p′qn

.

This implies

�kα� = �p′pmqnα�
= p′�pmqnα� + �p′{pmqnα}�
= p′�pmqnα�.

Thus

p′|(�kα�, k).

We get a contradiction since (�kα�, k) /∈ J(p′). �
Remark 2.2. We should mention that the sequence {nk} in Theorem 2.1 is either defined 
by (24) or is the entire sequence n ∈ N in case (25). So it does not depend on the 
interval I.

3. Proof of Theorem 1.3

We present the general form of the Borel-Cantelli Lemma first, which is the key 
technique in this part of the argument. See [7,18] for details.

Lemma 3.1. Let Ek, k = 1, 2, · · · , be a sequence of Lebesgue measurable sets in [0, 1] and 
suppose that

∞∑
k=1

|Ek| = ∞. (29)

Then the Lebesgue measure of E := lim supN→∞ EN :=
⋂∞

N=1
⋃∞

k=N Ek satisfies

|E| ≥ lim sup
N→∞

(
∑N

k=1 |Ek|)2∑N
k=1

∑N
l=1 |Ek ∩ El|

.
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Lemma 3.1 immediately implies

Corollary 3.2. Suppose the sets {Ek} are pairwise quasi-independent with respect to con-
stant A > 0, that is

|Ek ∩ El| ≤ A|Ek||El| + C2−(k+l),

for all k �= l, and 
∑∞

k=1 |Ek| = ∞. Let E := lim supN→∞ EN :=
⋂∞

N=1
⋃∞

k=N Ek. Then

|E| ≥ 1
A
.

Define

In =
⋃

k∈Jn

({kα} − τ

qn+1
, {kα} + τ

qn+1
), (30)

where 0 < τ < 1
3 , and Jn is given by (11).

By (8) and (9), we have In ⊂ [0, 1] and In contains exactly #Jn intervals.
Letting I = [0, 1) in Theorem 2.1, we have

Lemma 3.3. Let sequence {nk} be given by Theorem 2.1. Then we have

#Jnk
= (κ + o(1))qnk+1

and

|Ink
| = 2τκ + o(1).

Now we want to show the quasi-independence of a subsequence of {Ink
}.

Theorem 3.4. Fixing nl1 ∈ {nk}, we have

|Inl1
∩ Inl2

| = |Inl1
| |Inl2

| + o(1), (31)

as nl2 ∈ {nk} goes to infinity.

Proof. Recall that In contains #Jn intervals. Let In =
⋃
Iin, i = 1, 2, · · · , #Jn. Fix one 

interval Iinl1
with 1 ≤ i ≤ #Jnl1

. Now let l2 go to infinity. By Theorem 2.1, one has

#{k : 1 ≤ k < qnl2+1 : {kα} ∈ Iinl1
, (�kα�, k) = 1} = qnl2+1κ|Iinl1

| + o(1)qnl2+1.

By (30), one has

|Inl
∩ Iin | = 2τκ|Iin | + o(1).
2 l1 l1
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By Lemma 3.3, we have

|Inl2
∩ Iinl1

| = |Inl2
| |Iinl1

| + o(1).

Summing up all the i ∈ #Jnl1
, we obtain the Theorem. �

Proof of Theorem 1.3. We give the proof of γ ∈ [0, 1) first. Applying Theorem 3.4, there 
exists a sequence {nkl

} such that

|Inki
∩ Inkj

| = |Inki
| |Inkj

| + O(1)
2i+j

.

Letting El = Inkl
, by Lemma 3.3, one has

|El| = 2τκ + o(1).

Applying Corollary 3.2 with A = 1, we get | lim supEl| = 1.
By the definition of In, we have for any γ ∈ In, there exists some 1 ≤ k < qn+1 such 

that (�kα�, k) = 1 and

|γ − {kα}| = |γ − kα + �kα�| ≤ τ

qn+1
.

This implies for any nkl
, there exists some 1 ≤ j < qnkl

+1 such that

||γ − jα||′ ≤ τ

qnk+1
≤ τ

j
.

Since τ is arbitrary, we have for almost every γ ∈ [0, 1),

lim inf
k→∞

k||γ − kα||′ = 0.

Let us now consider γ ∈ [m, m +1) for some m ∈ Z. In this case, we only need to modify 
the definition of In in (30) as

Imn =
⋃

k∈Jn

(m + {kα} − τ

qn+1
,m + {kα} + τ

qn+1
).

By the same proof as for γ ∈ [0, 1), we have for almost every γ ∈ [m, m + 1),

lim inf
k→∞

k||γ − kα||′ = 0.

This completes the proof. �
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4. Proof of Theorem 1.1

In this section, we will prove the following theorem, which is a finer version of Theo-
rem 1.1.

Theorem 4.1. For any positive constant M , there exist α ∈ R\Q and an uncountable set 
Ω ⊂ R (depending on α) such that for all γ ∈ Ω, the inequality

|γ − qα + p| ≤ M

q
, (32)

only has finitely many coprime solutions (p, q) ∈ N2.

We need some preparations first. In this section, all the large constants C, C1 and C2
only depend on M . In the following arguments, we assume C2, C1, C ∈ N and

C2 >> C1 >> C.

Let p1 = 2, p2, p3, · · · , pn be the successive prime numbers with some n = (2C1 + 1)2
and let

P = p1p2 · · · pn.

Define ak = l̂kP for l̂k ∈ N, k = 1, 2, · · · . In the following construction, we need that 
l̂k > C2. Let α = [a1, a2, · · · , ak, · · · ] and pk

qk
= [a1, a2, · · · , ak]. Then p0 = 0, p1 = 1, q0 =

1, q1 = a1 and

pk = akpk−1 + pk−2, (33)

and

qk = akqk−1 + qk−2. (34)

Thus, we have

qk ≡ 1 mod P, (35)

and

p2k ≡ 0 mod P, (36)

and

p2k+1 ≡ 1 mod P. (37)
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Since l̂k > C2, we have

qk+1 ≥ C2qk. (38)

We assign each pair (t, j), |t| ≤ C1, |j| ≤ C1 a different prime number pt,j. We can ran-
domly choose pt,j so that pt,j is a permutation of a subset of prime numbers p1, p2, · · · , pn
with n = (2C1 + 1)2. We also assume α is given by (33)-(38).

The plan is to construct a sequence {bk} such that for all k, bk ≡ t mod pt,j , �bkα� ≡ j

mod pt,j , for all |t| ≤ C1, |j| ≤ C1. This will be done by induction. We then construct 
nested intervals {Ik} ⊂ [0, 1) centered at bkα mod Z and lim |Ik| = 0. We will show that 
for γ = ∩Ik there are only finitely many coprime solutions to (32). Here is the sketch of 
the argument.

Suppose (32) has infinitely many coprime solutions. We will show (Theorem 4.7) that 
solutions (p, q) must have the structure p = �qα� and q = bk+dkqk+rkqk−1 with |dk| ≤ C

and |rk| ≤ C for some k. By (35)-(37), the remainders of dkqk+rkqk−1, �(dkqk+rkqk−1)α�
mod pt,j for all |t|, |j| ≤ C1 are bounded by (2C + 1)2. It will imply that for some 
(t0, j0) ∈ [−C1, C1] × [−C1, C1], both �qα� mod pt0,j0 and q mod pt0,j0 are zero. This 
is a contradiction.

To start with the construction of bk, clearly, we can find b1 ≡ t mod pt,j by the 
Chinese Remainder Theorem. Simultaneously achieving �b1α� ≡ j mod pt,j requires 
b1α/p

t,j mod Z belonging to a certain interval of length 1/pt,j. In fact, in order to pro-
ceed with inductive construction of bk, we will need a little more: that we can guarantee 
b1α/p

t,j mod Z in slightly shrunk intervals. The following lemma is a preparation for 
that.

Lemma 4.2. Suppose p̂1, p̂2, · · · p̂k are distinct prime numbers. Let P̂ = p̂1p̂2 · · · p̂k. Then 
there exists a small δ > 0 and a large constant L̄ > 0 (both depending on p̂1, p̂2, · · · p̂k) 
such that for any α with a1 ≥ L̄, any given box I = I1 × I2 × · · · × Ik ⊂ Tk with 
|Ii| ≥ 1

p̂i − δ for i = 1, 2, · · · , k, any L ≥ a1 + 1 and any L0, there exists some j ∈
{L0, L0 + 1, · · · , L0 + L} such that

(j P̂
p̂1α, j

P̂

p̂2α, · · · , j
P̂

p̂k
α) ∈ I mod Zk.

Proof. Let us consider the map ψk : R → Tk,

ψk(t) = (t, p̂
1

p̂2 t, · · · ,
p̂1

p̂k
t) mod Zk. (39)

See Fig. 1. Since ψk(p̂2p̂3 · · · p̂k) = 0 mod Zk, identifying Tk with [0, 1)k, we have that 
there exists some N = N(p̂1, p̂2, · · · , p̂k) such that the image of ψk ⊂ [0, 1)k consists of 
at most N segments.
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Fig. 1. Two prime numbers.

Claim 3: For any closed box Îk = Î1 × Î2 × · · · × Îk with |Îi| = 1
p̂i for i = 1, 2, · · · , k, and 

for any t1 ∈ Î1, there exists some t ≡ t1 mod Z such that ψk(t) ∈ Îk mod Z.

We will prove Claim 3 by induction. For k = 1, it is trivial. Suppose it holds for k. 
Thus for any t1 ∈ Î1, there exists some t2 such that t2 ≡ t1 mod Z and ψk(t) ∈ Îk. 
Since all the p̂i are prime numbers, there exists q such that qp̂1p̂2 · · · p̂k ≡ 1 mod p̂k+1. 
Then there exists some 0 ≤ j ≤ p̂k+1 − 1 such that

jqp̂1p̂2 · · · p̂k 1
p̂k+1 + p̂1

p̂k+1 t2 ∈ Îk+1 mod Z,

since |Îk+1| = 1
p̂k+1 and Îk+1 is closed. Let t3 = jqp̂2 · · · p̂k + t2. Then p̂1

p̂k+1 t3 ∈ Îk+1 and 

ψk(t3) ∈ Îk since t3 ≡ t2 mod Z. Thus ψk+1(t3) ∈ Îk+1. �
Thus by Claim 3 and the fact that the image of ψk ⊂ [0, 1)k consists of at most N

segments, for any closed interval Îk = Î1 × Î2 × · · ·× Îk with |Îi| = 1
p̂i for i = 1, 2, · · · , k, 

there exists some ˆ̂
I1 ⊂ [0, 1) with | ˆ̂I1| ≥ 1

2Np̂1 and 0 ≤ ĵ0 < p̂2p̂3 · · · p̂k such that ψk(t)

mod Zk ∈ Îk for all t ∈ ˆ̂
I1 + ĵ0. We mention that we use the fact that ψk is a map with 

period p̂2p̂3 · · · p̂k.
Let L̄ = 3NP̂ and take α with a1 ≥ L. By the continued fraction expansion the set 

{α, 2α, · · · , Lα} is 1
3NP̂

dense on the torus T if L ≥ a1 + 1. Let 0 < δ << 1
12NP̂

. Now 
we will show that L and δ satisfy the requirements of Lemma 4.2.

Indeed, suppose box I = I1 × I2 × · · · × Ik has |Ii| ≥ 1
p̂i − δ for i = 1, 2, · · · , k. Then, 

since the slopes of components of ψk are bounded from below by min{ p̂1

p̂k } ≥ p̂1

P̂
, there 

exists some Ĩ1 ⊂ ˆ̂
I1 with |Ĩ1| ≥ 1

3Np̂1 such that for any m ∈ Z, ψk(t) ∈ I mod Zk for 
all t ∈ mp̂2p̂3 · · · p̂k + j0 + Ĩ1. We mention that we use again the fact that ψk is a map 
with period p̂2p̂3 · · · p̂k. By the fact that the set {α, 2α, · · · , Lα} is 1

3NP̂
dense on torus 

T , we have that there exists some j ∈ {L0, L0 + 1, · · · , L0 + L} and m0 ∈ Z such that

jα ∈ m0 + j0
2 3 k

+ Ĩ1
2 3 k

.

p̂ p̂ · · · p̂ p̂ p̂ · · · p̂
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This implies

tj = j
P̂

p̂1α ∈ m0p̂
2p̂3 · · · p̂k + j0 + Ĩ1,

and then

ψk(tj) = (j P̂
p̂1α, j

P̂

p̂2α, · · · , j
P̂

p̂k
α) ∈ I mod Zk. �

Lemma 4.3. Let p be a prime number. Suppose

b ≡ t mod p.

Then �bα + γj� ≡ j mod p iff

(b− t)
p

α ∈ [j − tα− γj
p

,
j + 1 − tα− γj

p
) mod Z.

Proof. Let b = kp + t. Suppose �bα+ γj� ≡ j mod p. Using kα = �kα� + {kα}, one has

�bα + γj� = p�kα� + �p{kα} + tα + γj� ≡ j mod p

This implies

kα ∈ [j − tα− γj
p

,
j + 1 − tα− γj

p
) mod Z.

The proof of the other side is similar. We omit the details. �
In the following, we always assume a1 ≥ L̄.

Lemma 4.4. There exist a small δ > 0 (independent of α) and b1 ∈ N such that for all 
|t|, |j| ≤ C1,

b1 ≡ t mod pt,j (40)

and

(b1 − t)
pt,j

α ∈ (j + δ − tα

pt,j
,
j + 1 − δ − tα

pt,j
) mod Z. (41)

Proof. By the Chinese remainder theorem, there exists b such that

b0 ≡ t mod pt,j

for all |t|, |j| ≤ C1.
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If b1 = b0 + lP , we also have

b1 ≡ t mod pt,j

for all |t|, |j| ≤ C1.
Suppose δ > 0 is small enough (only depends on pt,j). We only need to choose proper 

l ∈ N such that for all t and j,

(b1 − t)
pt,j

α ∈ (j + δ − tα

pt,j
,
j + 1 − δ − tα

pt,j
) mod Z. (42)

Let P t,j = P
pt,j . Thus (42) is equivalent to

P t,jlα ∈ (j + δ − tα

pt,j
,
j + 1 − δ − tα

pt,j
) mod Z.

The existence of such l is guaranteed by Lemma 4.2. �
Now we will construct nested intervals {Ik} ⊂ [0, 1) such that Ik+1 ⊂ Ik and lim |Ik| =

0. Here is the detail. Below, lk is always in N.
Let b1 be given by Lemma 4.4. Using the fact that l̂k > C2, one has q22 > b1. Thus we 

can define

b2 = b1 + l1Pq1

such that

|b2 −
q2
2 | ≤ CPq1.

Inductively, for k ≥ 2, define

bk+1 = bk + lkPqk (43)

such that

|bk+1 −
qk+1

2 | ≤ CPqk. (44)

Let us define

Ik = {γ : γ ∈ [0, 1), ||γ − bkα|| ≤
1
qk

}, (45)

where bk is given by (43).
Let

γ = ∩Ik. (46)



20 S. Jitomirskaya, W. Liu / Advances in Mathematics 355 (2019) 106773
Remark 4.5. By modifying b1 and lk in construction of bk+1, we can get a dense and 
uncountable set of γ.

Lemma 4.6. Under the construction of (43), we have that for all t, j,

bk+1 ≡ t mod pt,j (47)

and

(bk+1 − t)
pt,j

α ∈ (
j + δ

2 − tα

pt,j
,
j + 1 − δ

2 − tα

pt,j
) mod Z. (48)

Proof. The proof of (47) follows from the definition of (40) and (43).
We will give the proof of (48) by induction. The base case holds by Lemma 4.4. 

Suppose

(bk − t)
pt,j

α ∈ (
j + δ

2 + 2−(k+2)δ − tα

pt,j
,
j + 1 − δ

2 − 2−(k+2)δ − tα

pt,j
) mod Z. (49)

By (8) and (9), one has

||bk+1 − bk
pt,j

α|| = ||lkP t,jqkα||

≤ qk+1

2qk
1

qk+1

≤ 1
2qk

≤ 1
Ck

2
,

where the last inequality holds by (38). By (49), for appropriately large C1, we have

(bk+1 − t)
pt,j

α ∈ (
j + δ

2 + 2−k−3δ − tα

pt,j
,
j + 1 − δ

2 − 2−k−3δ − tα

pt,j
) mod Z.

Then by induction, we finish the proof. �
Thus in order to prove Theorem 4.1, we only need to show that for the γ given by 

(46), the inequality

|γ − qα + p| ≤ M

q
,

only has finitely coprime solutions (p, q) ∈ N2.
Before, we give the proof, we need another theorem.
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Theorem 4.7. Suppose γ is given by (46). Suppose bk ≤ q < bk+1 and

||γ − qα|| ≤ M

q
.

Then q must have the following form

• Case I: q = bk+1 − aqk with 0 ≤ a ≤ C.
• Case II: q = bk + aqk + bqk−1 with 0 ≤ a ≤ C and |b| ≤ C.

Proof. Suppose bk ≤ q < bk+1 and

||γ − qα|| ≤ M

q
. (50)

Case I: q > Cqk.
In this case, we claim that q = bk+1−aqk for some a ≥ 0. Otherwise q = bk+1−aqk + l

for some 1 ≤ l < qk. Thus

||γ − qα|| = ||γ − bk+1α + aqkα− lα||
≥ ||lα|| − ||aqkα|| − ||γ − bk+1α||

≥ 1
qk + qk−1

− bk+1

qk

1
qk+1

− 1
qk+1

≥ 1
4qk

,

where the second inequality holds by (8), (9) and (45), and the third inequality holds by 
the fact qk+1 > C2qk. This contradicts (50) since q ≥ Cqk.

Now we are in a position to show 0 ≤ a ≤ C. Suppose a > C. By (44) and q =
bk+1 − aqk, one has

a ≤ qk+1

2qk
+ CP. (51)

By (50), we have

||γ − qα|| ≤ M

bk+1 − aqk

and also, using (51),

||γ − qα|| ≥ ||aqkα|| − ||γ − bk+1α||

≥ a

qk+1 + qk
− 1

qk+1

≥ a
.
2qk+1
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Thus we have

a

2qk+1
≤ M

bk+1 − aqk
. (52)

Solving quadratic inequality (52), we have by (44),

a ≥
bk+1 +

√
b2k+1 − 8Mqkqk+1

2qk
= bk+1

qk
+ O(1), (53)

or

a ≤
bk+1 −

√
b2k+1 − 8Mqkqk+1

2qk
= O(1). (54)

Inequality (53) can not happen since q = bk+1 − aqk ≥ Cqk. Inequality (54) does not 
hold since we assume a > C. This implies Case I.

Case II: bk ≤ q ≤ Cqk. Rewrite q as q = bk + aqk + bqk−1 + l, where |bqk−1 + l| ≤ 1
2qk

and |l| < qk−1. Notice that |b| ≤ qk
2qk−1

.
We claim that l = 0. Indeed, assume |l| > 0. Then

||γ − qα|| = ||γ − bkα− aqkα− bqk−1α− lα||
≥ ||lα|| − ||γ − bkα|| − ||aqkα|| − ||bqk−1α||

≥ 1
qk−1 + qk−2

− 1
qk

− a

qk+1
− qk

2qk−1

1
qk

≥ 1
3qk−1

where the second inequality holds by (8), (9) and (45), and the third inequality holds by 
the fact qk+1 > C2qk. This contradicts (50) since q ≥ bk.

In this case (q ≤ Cqk), it is immediate that 0 ≤ a ≤ C. Thus we only need to prove 
|b| ≤ C. Since q = bk + aqk + bqk−1 and q ≥ bk, we have using also (44) that

||γ − qα|| ≤ M

bk
≤ 3M

qk

and also have

||γ − qα|| ≥ ||bqk−1α|| − ||γ − bkα|| − ||aqkα||

≥ |b|
qk−1 + qk

− 1
qk+1

− C

qk

Thus we have

|b| ≤ C. �
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Proof of Theorem 4.1. Let γ be given by (46). Suppose bk ≤ q < bk+1 is such that (p, q)
are coprime and

|γ − qα + p| ≤ M

q
.

Since γ �= 0, this implies p = �qα� and ||γ − qα|| ≤ M
q . By Theorem 4.7, we have 

q = bk+1 − aqk with 0 ≤ a ≤ C or q = bk + aqk + bqk−1 with 0 ≤ a ≤ C and |b| ≤ C.
We will show that (q, �qα�) is not coprime for all such q.
Without loss of generality, assume q = bk+1 − aqk and 0 ≤ a ≤ C, the other part of 

the argument being similar.
Suppose l > 0 and l < C. By (36), (37) and (10), we have for odd k

�lqkα� = lpk − 1 ≡ l − 1 mod P (55)

and for even k

�lqkα� = lpk ≡ 0 mod P. (56)

Suppose l < 0 and |l| < C. Similarly, we have for odd k

�lqkα� = lpk ≡ l mod P (57)

and for even k

�lqkα� = lpk − 1 ≡ −1 mod P. (58)

Let 〈x〉 be the unique number in [−1/2, 1/2) such that x − 〈x〉 is an integer. Let t = a. 
Let 0 ≤ −j < P be such that −j ≡ −aqkα− 〈−aqkα〉 mod P and γj = 〈−aqkα〉.

By (55)-(58), we have 0 ≤ |t|, |j| ≤ C.
By (8) and (9), one has

|γj | = || − aqkα|| ≤
C

qk+1
. (59)

By (47), we have for all |t| ≤ C1,

bk+1 ≡ t mod pt,j ,

which implies for some t ∈ [−C, C] (using t = a and (35))

bk+1 − aqk ≡ 0 mod pt,j . (60)

Applying Lemma 4.6 and (59), one has for large k,
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(bk+1 − t)
pt,j

α ∈ (j + γj − tα

pt,j
,
j + 1 − γj − tα

pt,j
) mod Z.

By Lemma 4.3, one has for all |j| ≤ C1

�bk+1α + γj� ≡ j mod pt,j .

This implies for some j ∈ [−C, C],

�bk+1α− aqkα� ≡ �bk+1α + γj� − j ≡ 0 mod pt,j . (61)

Thus by (60) and (61), we have that (bk+1 − aqk, �bk+1 − aqk�) is not coprime. This 
implies for such γ given by (46), the inequality

|γ − qα + p| ≤ M

q
,

only has finitely many coprime solutions (p, q) ∈ N2. By Remark 4.5, this completes the 
proof. �

Actually, we have proved the following more general result.

Theorem 4.8. For any positive constant M , there exist large constants C̄1 and C̄2 (de-
pending on M) such that the following statement holds: Let P = p1p2 · · · pn, where 
n = C̄3

1 + 1. Let pk

qk
be the continued fraction expansion to α. Let

Λ = {α : there exists some S = {a1, a2, · · · , am} ⊂ N ∩ [0, P ] with m ≤ C̄1 such that,

eventually for all k, qk, pk ∈ S mod P and qk+1 ≥ C̄2Pqk}.

Then for any α ∈ Λ, there exists a dense uncountable set Ω(α) ⊂ [0, 1) such that for all 
γ ∈ Ω(α), inequality

|γ − qα + p| ≤ M

q
,

only has finitely many coprime solutions (p, q) ∈ N2.

Remark 4.9. Λ is a dense uncountable set.
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