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Abstract. We prove that the size of the spectral gaps of weakly coupled quasi-periodic

Schrödinger operators with Liouville frequencies decays exponentially. As an application,
we obtain the homogeneity of the spectrum.

1. Introduction and main results

Let us consider a quasi-periodic Schrödinger operator given by

(1.1) (Hλf,α,θx)n = xn+1 + xn−1 + λf(θ + nα)xn,

where x = {xn}n∈Z ∈ l2(Z) and f is a real analytic function on R/Z. We will refer to such
operators as QPS. The QPS depend on three parameters (α, λ, θ) ∈ R3. Usually, we call α the
frequency, θ the phase and λ the coupling. In particular, if f(x) = 2 cos (2πx), we call (1.1)
an almost Mathieu operator (AMO). We will denote AMO by Hλ,α,θ .

For rational frequency α, the spectrum consists of finite number of intervals by Floquet
theory. For irrational frequency α and nonzero coupling constant, it is well-known that the
spectrum does not depend on θ and we denote it by Σλf,α ( Σλ,α for AMO). From now on,
we always assume α is irrational. Each connected component of [Emin, Emax]\Σλf,α is called a
spectral gap, where Emin = min{E : E ∈ Σλf,α} and Emax = max{E : E ∈ Σλf,α}. If λ = 0,
the spectrum Σλf,α = [−2, 2] so that there is no spectral gap. Then it is interesting to study
upper bounds of the size of the spectral gaps under small perturbation (i.e. λ is small). In
order to state the results, we introduce the fibered rotation number ρλf,α(E) (see section 2.3)
of QPS, which has the following properties [27]:

(i): ρλf,α(·) is a continuous non-increasing surjective function with ρλf,α: R → [0, 1
2 ],

ρλf,α(E) = 1
2 for E ≤ Emin and ρλf,α(E) = 0 for E ≥ Emax.

(ii): For each spectral gap G, there exists a unique integer m ∈ Z\{0}, such that the
fibered rotation number restricted to the spectral gap satisfies 2ρλf,α|G ≡ mα mod Z.

For any m ∈ Z\{0}, let us define

(1.2) [E−m, E
+
m] = {E ∈ R : 2ρλf,α(E) = mα mod Z}.

Now we distinguish two cases.

(1) E−m < E+
m. In this case, letting Gm = (E−m, E

+
m), then Gm is a spectral gap.

(2) E−m = E+
m. In this case, let Gm = {E−m} and we call Gm = {E−m} a collapsed spectral

gap.

Thus for any m ∈ Z\{0}, there exists a corresponding (possibly collapsed) spectral gap Gm.
We give some history of the results on the lower bounds of the spectral gaps first, which

originate from the study of the dry Ten Martini Problem. The spectrum Σλ,α of AMO has
been conjectured to be a Cantor set (dubbed the Ten Martini Problem), which was finally
proved by Avila-Jitomirskaya [5], after an a.e. result by Puig [33]. The dry Ten Martini
Problem asserts that AMO has no collapsed spectral gap for all λ 6= 0 and α ∈ R\Q, which
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is stronger than the Ten Martini Problem by properties of the fibered rotation number ρλ,α.
In [12], Choi-Elliott-Yui showed that AMO has no collapsed spectral gap by setting up the
lower bounds of the spectral gaps if α is Liouville and λ satisfies some assumption. Here, α is
Liouville means β(α) > 0, where

(1.3) β(α) = lim sup
k→∞

− ln ||kα||R/Z
|k|

,

and ||x||R/Z = min
k∈Z
|x− k|. To the contrary, if β(α) = 0, we say α is weak Diophantine 1.

Later, Puig proved the dry Ten Martini Problem for a set of (α, λ) of positive Lebesgue
measure [33, 34]. Puig approached it by conjugating the Schrödinger cocycle Sλf,E to a

parabolic matrix

[
±1 µ
0 ±1

]
and perturbing Sλf,E to Sλf,E+ε, where E = E−m or E = E+

m.

This idea is significantly developed by Avila and Jitomirskaya [1, 6, 7], in which they were
able to deal with all Diophantine α and λ 6= ±1. Avila-Jitomirskaya’s reducibility result also
holds for general analytical potentials with small coupling constant. For the quantitative lower
bounds of the spectral gaps, see [28, 29] and the references therein.

Now, let us move to the upper bounds on spectral gaps. Moser and Pöschel have shown that
for a small analytic potential and a Diophantine vector of frequencies, the spectral gap with
some certain label k decays exponentially. For the continuous quasi-periodic operators, the
breakthrough is from Damanik and Goldstein where they obtained very precise exponential
decay in terms of the smallness of potentials, and the decay rate is bounded by the size
of the analytic strip [13]. As an application, the homogeneity of the spectrum can also be
obtained [14]. For the discrete case, Leguil-You-Zhao-Zhou [29] showed that the rotation
number ρλf,α(E+ε) of Sλf,E+ε will change under large perturbation ε based on the reducibility
result of [6], where E = E−m or E = E+

m. This leads to an upper bound of the spectral gap. We
will say more after the statements of our main results. Before that, Amor [20] got an upper
bound on the spectral gap for small coupling constant and Diophantine frequency by KAM
theory stemming from [16]. Finally, we mention that there are some direct results about the
homogeneity of the spectrum, see [17–19].

However, all of the results for general analytic potentials on the upper bounds of spectral
gaps are focused on (weak) Diophantine frequencies. Recently, there has been a significant
interest in extending various Diophantine results to the case of Liouville frequencies, as phase
transitions in the behaviors of various objects happen in this regime [9, 11, 21, 23–25]. The
contribution of the present paper is to investigate the upper bounds on gaps for the Liouville
frequencies.

Theorem 1.1. Let Hλf,α,θ be given by (1.1) and E−m, E
+
m be given by (1.2). Suppose α ∈ R\Q

satisfies 0 ≤ β(α) <∞. Then there exists an absolute constant C > 0 such that if f is analytic
on the strip {x ∈ C/Z : |=x| < h} and β(α) ≤ h

C2 , then there exist λ0 = λ0(f, h, β(α)) > 0
and m? = m?(λ, f, h, α) > 0 such that for any |λ| ≤ λ0, the following estimate holds

E+
m − E−m ≤ e−

h
C |m|

for |m| ≥ m?. In the particular case of AMO, λ0 = e−C
2h.

For trigonometric polynomial potential, one has

Theorem 1.2. Let Hλf,α,θ be given by (1.1) and E−m, E
+
m be given by (1.2). Suppose α ∈ R\Q

satisfies 0 ≤ β(α) < ∞ and f is a trigonometric polynomial. Then for any η > 0, there exist

1We say α is Diophantine if there exists κ, τ > 0 such that ||kα||R/Z ≥ τ
|k|κ for any k 6= 0.
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λ0 = λ0(f, η, β(α)) > 0 and m? = m?(λ, f, η, α) > 0, such that for |λ| ≤ λ0, the following
estimate holds

E+
m − E−m ≤ e−η|m|

for |m| ≥ m? > 0.

For AMO, we have the following refinement.

Theorem 1.3. Let Hλ,α,θ be an almost Mathieu operator and E−m, E
+
m be given by (1.2).

Suppose α ∈ R \Q satisfies 0 ≤ β(α) <∞. Then there exists an absolute constant C > 0 such
that for any |λ| ≤ e−Cβ(α), the following estimate holds

(1.4) E+
m − E−m ≤ |λ|

1
C |m|

for |m| ≥ m?(λ, α).

Remark 1.4. (1) The case of β(α) = 0 in Theorem 1.3 with explicit C was proved in [29].
(2) Under the assumption 0 ≤ |λ| ≤ e−Cβ(α), Liu and Yuan [31] proved that there is no

collapsed spectral gap, i.e., E+
m > E−m for any nonzero integer m.

(3). Under the condition of Theorem 1.3, we have |λ| 1C |m| ≤ e
ln |λ|
C |m|. So the size of the

spectral gap Gm = (E−m, E
+
m) decays exponentially with respect to the label m.

(4). We expect the optimal decay in (1.4) to be C|λ||m|.

As an application, we obtain

Theorem 1.5. Under the condition of Theorem 1.1, for any ε > 0, there exists σ? =
σ?(λ, f, α, ε) > 0 such that for all E ∈ Σλf,α and σ ∈ (0, σ?), we have

Leb ((E − σ,E + σ) ∩ Σλf,α) ≥ (1− ε)σ,
where Leb(·) is the Lebesgue measure.

Remark 1.6. By letting E be a point on the boundary of a spectral gap, we see that the lower
bound 1− ε is optimal.

We want to explain the motivations for results, and also explain the new challenge for the
Liouville case. Recently, the global theory of one-frequency cocycles has been proposed. The
spectrum of the quasi-periodic operator (or the corresponding Schrödinger cocycle) can be
classified into three regimes:

• Supercritical regime if the Lyapunov exponent is positive.
• Subcritical if the corresponding transfer matricesAn(z) are uniformly subexponentially

bounded through some strip |=z| ≤ h.
• Critical regime otherwise.

See [2, 3] the formal definition and generalization. The three regimes have very important
spectral features. Roughly speaking, the (almost) reducibility in subcritical regime is the
competition between h and β(α) and it relates to absolutely continuous spectrum [1, 2, 4, 15,
16, 20, 22]. The (almost) localization in supercritical regime is the competition between the
positive Lyapunov exponent and resonance (it is governed by the frequency resonance β(α)
and the phase resonance) and it relates to the singular continuous spectrum and the pure point
spectrum [5, 24–26]. The critical regime relates to the singular continuous spectrum [8, 10].
The supercritical regime and subcritical regime can be connected by Aubry duality, and then
the (almost) localization and (almost) reducibility are connected [11, 23, 31, 33, 34]. However,
most of the previous references focus on Diophantine frequencies. The motivation of the results
in this paper is to set up the quantitative almost reducibility by the almost localization in the
dual model so that we can deal with upper bounds of spectral gaps. Roughly speaking, in
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order to balance the small divisor from the frequency α, we need the subcritical regime at
least in a strip of width h > C2β(α) and the upper bounds of spectral gaps are controlled
by the decaying rate γ = h

C , where C is a large absolute constant. In this paper, we do not
focus on the explicit value of C but it is doable. In particular, we only need h > 0 in the
case of weak Diophantine frequencies (β(α)=0). It is very difficult to address the spectral gap
by the approach β(α) → h → γ. As aforementioned, the recent results for general analytic
potentials are to deal with Diophantine frequencies [29]. For one dimensional case with general
analytic potentials and weak Diophantine frequencies (β(α) = 0), the authors obtained that
γ > 0 depends on the strip width h in [29]. We are able to give the explicit formula for γ
for any frequency with β(α) < ∞, that is γ = h

C . We should mention that the results in
[29] hold in higher dimensions and the explicit λ0 is given. The most challenged part in this
paper is to deal with Liouville frequencies (β(α) > 0). The problems of Liouville frequencies
are very hard to deal with. The traditional KAM theory is not able to set up the reducibility
for the corresponding cocycle. Recently, there are several big progresses to deal with Liouville
frequencies [4, 5, 11, 22, 24, 31]. Our method is based on several combinations of previous
methods plus the delicate quantitative estimate. Our approach from h→ γ is inspired by [29].
Some challenges related to Liouville frequencies from β → h→ γ have been solved in [30, 31],
where the reducibility results in [6] were extended to Liouville frequencies. Here, we obtain a
more delicate and quantitative version of the results of [30, 31] in order to establish the upper
bounds of the spectral gaps.

The present paper is organized as follows. In section 2, we give some basic concepts and
notations. In section 3, we construct a conjugacy by Aubry duality in order to reduce the
cocycle. In section 4, we perturb the cocycle near the boundary of a spectral gap. In section
5, we complete the proofs of Theorems 1.1, 1.2, 1.3 and 1.5.

2. Some basic concepts and notations

2.1. Cocycle and transfer matrix. Cωδ (R,B) be the set of all analytic mappings from R to
some Banach space (B, || · ||), which admit an analytic extension to the strip |=z| ≤ δ. Denote
by Cωδ (R/Z,B) ⊂ Cωδ (R,B) the subspace of 1-periodic mappings. Sometimes, we omit δ for
simplicity. By a cocycle, we mean a pair (α,A) ∈ (R \ Q) × Cωδ (R/Z,SL(2,R)) and we can
regard it as a dynamical system on (R/Z)× R2 with

(α,A) : (x, v) 7−→ (x+ α,A(x)v), (x, v) ∈ (R/Z)× R2.

For k > 0, we define the k-step transfer matrix as

Ak(x) =

1∏
l=k

A(x+ (l − 1)α).

2.2. Conjugacy and reducibility. Given two cocycles (α,A) and (α,B) withA,B ∈ Cωδ (R/Z,SL(2,R)),
a conjugacy between them is a cocycle (α,R) with R ∈ Cωδ (R/Z,PSL(2,R)) such that

R−1(x+ α)A(x)R(x) = B(x).

We say (α,A) is reducible if it conjugates to a constant cocycle (α,B).
Given R ∈ Cω(R/Z,PSL(2,R)), we say the degree of R is k and denote dy deg(R) = k, if

R is homotopic to R k
2 x

for some k ∈ Z, where

Rx =

[
cos 2πx − sin 2πx
sin 2πx cos 2πx

]
.
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2.3. The fibered rotation number. Suppose A ∈ Cω(R/Z,SL(2,R)) is homotopic to the
identity. Then the fibered rotation number ρα,A of the cocycle (α,A) is well defined. We refer
to papers [6, 29] for the definition of the fibered rotation number. If A,B : R/Z→ SL(2,R) and
R : R/Z→ PSL(2,R) are such that A is homotopic to the identity and R−1(x+α)A(x)R(x) =
B, then B is homotopic to the identity and

(2.1) 2ρ(α,A)− 2ρ(α,B) = deg (R)α.

Moreover, there is some absolute constant C > 0 such that

(2.2) |ρ(α,A)− θ| ≤ C sup
x∈R/Z

||A(x)−Rθ||.

In this paper, we consider the Schrödinger cocycle (α, Sλf,E), where

Sλf,E(x) =

[
E − λf(x) −1

1 0

]
.

If f = 2 cos(2πx), we call (α, Sλf,E) an almost Mathieu cocycle which is denoted by (α, Sλ,E)
for simplicity. It is easy to see that Sλf,E is homotopic to the identity. Thus the fibered
rotation number of (α, Sλf,E) is well defined and denoted by ρλf,α(E) (ρλ,α(E) for AMO).

2.4. Aubry Duality. For Schrödinger operator Hλf,α,θ, we define the dual Schrödinger op-

erator by Ĥλf,α,θ,

(Ĥλf,α,θx)n =
∑
k∈Z

λf̂kxn−k + 2 cos 2π(θ + nα)xn,

where f̂k is the Fourier coefficient of the potential f . Note that the spectrum of Ĥλf,α,θ is
equal to Σλf,α.

Aubry duality expresses an algebraic relation between the families of operators {Ĥλf,α,θ}θ∈R
and {Hλf,α,θ}θ∈R by Bloch waves, i.e., if u : R/Z → C is an L2 function whose Fourier

coefficients û satisfy Ĥλf,α,θû = Eû, then U(x) =

(
e2πiθu(x)
u(x− α)

)
satisfies

(2.3) Sλf,E(x) · U(x) = e2πiθU(x+ α).

2.5. Some notations and assupmtions. We briefly comment on the constants and norms
in the following proofs. We assume α is irrational and λ 6= 0. We let C (resp. c) be large (resp.
small) positive absolute constant and C (resp. c) may be different even in the same formula.
C2 (resp. C1) denotes a fixed (resp. any) constant, which is larger than all the constants
C, c−1 appearing in this paper.

Let C(α) be a large constant depending on α (and f) and C? (resp. c?) be a large (resp.
small) constant depending on λ, f and α. Define for δ ≥ 0 the strip ∆δ = {z ∈ C/Z : |=z| ≤ δ}
and let ||v||δ = sup

δ∈∆s

||v(z)||, where v is a mapping from ∆δ to some Banach space (B, || · ||).

For any mapping v defined on R/Z, we let [v] =
∫
R/Z v(x)dx. In this paper, B may be C, C2

or SL(2,C).

3. The construction of reducibility by Aubry duality

In order to state our reducibility result, we introduce some Lemmas first.

Lemma 3.1 (Theorem 3.3, [6]). Let E ∈ Σλf,α. Then there exist some θ = θ(E) ∈ R/Z and

û = {ûk}k∈Z with û0 = 1, |ûk| ≤ 1 such that Ĥλf,α,θû = Eû.
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Suppose η satisfies
η > C1β(α),

where C1 is a large absolute constant.

Lemma 3.2 (Theorems 4.7 and 5.2, [31]). Suppose α ∈ R \Q satisfies 0 ≤ β(α) <∞. Then
there exists an absolute constant C2 > 0 such that if f is analytic on the strip ∆C2η, then
there exists λ0(f, η, α) > 0 (depending only on f, η, α) such that if 0 < |λ| ≤ λ0(f, η, α) and
E ∈ Σλf,α with 2ρλf,α(E) = mα mod Z, then there is some ñ ∈ Z such that

(3.1) 2θ(E) = ñα mod Z,
and for |m| ≥ m?

2

(3.2) |m| ≤ C|ñ|.
Moreover,

(3.3) |ûk| ≤ C?e−2πη|k|, for |k| ≥ 3|ñ|,
where θ(E) and {ûk} are given by Lemma 3.1. In particular, λ0 = e−C2η for AMO.

Remark 3.3. The proof of this lemma for AMO can be found in [31]. It is easy to extend this
result to general QPS following the arguments in [30].

In the following, we fix λ0 as in Lemma 3.2. In order to avoid the repetition, we only give
the proof of β(α) > 0. Actually, the proof of β(α) = 0 is much easier.

From now on, we focus on a specific gap Gm. Let E = E+
m ∈ Σλf,α and AE(x) = Sλf,E(x)

(sometimes we omit dependence on λ and f for simplicity). We will reduce (α,AE) to a

parabolic matrix

[
±1 µ
0 ±1

]
. In order to study the size of spectral gap by reducibility,

we will set up subtle estimates on the coefficient µ and the conjugacy. We attach E with
θ(E) and find the localized solution for the Aubry dual operator. Then we use the localized
solution given by (3.3) to construct conjugacies which reduce the cocycle. We always assume
the conditions in Lemma 3.2 are satisfied so that

n = |ñ| <∞.
Our main theorem in this section is

Theorem 3.4. Suppose 0 < |λ| ≤ λ0. Then for E = E+
m, there exists R(x) ∈ Cω20β(R/Z,PSL(2,R))

such that

(3.4) R−1(x+ α)AE(x)R(x) =

[
±1 µm
0 ±1

]
,

where

(3.5) |µm| ≤ C?e−
η
2n,

and

(3.6) ||R||20β(α) ≤ C?eCβ(α)n.

Remark 3.5. Actually R in Theorem 3.4 depends on the label m. We ignore the dependence
for simplicity. By some results in [29, 31], we can say more about µm,

(i): For general analytic potential f , µm may be equal to zero. By Proposition 18 in
[34], the gap Gm is collapsed for µm = 0 and there is nothing to prove in this case.
Thus we assume µm 6= 0 in the following.

2Recall that m? is a large constant depending on λ, f and α.
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(ii): If E = E+
m and µm 6= 0, then the reduced matrix can only be

[
1 µm
0 1

]
with

µm > 0 or

[
−1 µm
0 −1

]
with µm < 0 [Theorem 6.1, [31]].

In [31], Liu and Yuan got the reducibility (3.4) for AMO without the estimates of (3.5) and
(3.6). Thus, the strategy of the proof of Theorem 3.4 is to follow the arguments of Liu and
Yuan with quantitative analysis. For simplicity, we omit the dependence on m in the proof of
(3.4) and (3.5) in this section.

Here, we give another lemma, which controls the growth of the cocycle.

Lemma 3.6 (Theorem 5.1, [30]). Suppose |λ| ≤ λ0. Then

(3.7) sup
0≤k≤eηn

||AEk ||η ≤ C?eCβ(α)n.

We define

(3.8) U(x) =

(
e2πiθu(x)
u(x− α)

)
,

where u(x) =
∑
k∈Z ûke

2πikx and θ = θ(E), û = {ûk} are given by Lemmas 3.1 and 3.2.
Let

(3.9) Û(x) = eiπñxU(x).

Lemma 3.7. Let Û(x) be given by (3.9). Then Û(x) is well defined on R/2Z and analytic on
∆40β(α), and

(3.10) ||Û ||40β(α) ≤ C?eCβ(α)n.

Proof. This follows from (3.3) and the fact that |ûk| ≤ 1 directly. �

Remark 3.8. Actually, Û(x) is analytic on ∆η. However 40β(α) is enough for our goal.

By (2.3), we have

(3.11) AE(x)Û(x) = ±Û(x+ α).

For the z ∈ 40β(α), define

<Û(z) =
Û(z) + Û(z)

2
;=Û(z) =

Û(z)− Û(z)

2i
.

Then for x ∈ R/Z, we have

Û(x) = <Û(x) + i=Û(x) ∈ R2 + iR2,

and it follows from (3.11) that for x ∈ R/Z

AE(x)<Û(x) = ±<Û(x+ α);(3.12)

AE(x)=Û(x) = ±=Û(x+ α).(3.13)

Note that <Û(x) and =Û(x) are well defined on R/2Z and analytic in the strip ∆40β(α).

Lemma 3.9. We can select V = <Û or V = =Û such that V is real analytic on ∆40β(α) and

(3.14) inf
|=x|≤40β(α)

||V(x)|| ≥ c?e−Cβ(α)n.
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Proof. Since û0 = 1, we have

||
∫
R/2Z

(
e−ñπix<Û(x) + ie−ñπix=Û(x)

)
dx|| = 2

√
2.

Thus we can choose V = <Û or V = =Û such that

(3.15) ||
∫
R/2Z

e−ñπixV(x)dx|| ≥
√

2.

Suppose (3.14) is not true. Then there must be some x0 ∈ ∆40β(α) with =x0 = t such that

(3.16) ||V(x0)|| ≤ c?e−Cβ(α)n.

By Lemma 3.6, (3.12) and (3.13), and following the arguments of the proof of Theorem 4.5 in
[31], one has

sup
x∈R
||V(x+ it)|| ≤ C?e−Cβ(α)n.

Thus, we obtain

||
∫
R/2Z

e−ñπi(x+it)V(x+ it)dx|| ≤ C?e−Cβ(α)n,

which contradicts (3.15).
�

Proof of Theorem 3.4

Proof. Let

(3.17) R(1)(x) =
[
V(x) T V(x)

||V(x)||2

]
,

where T

(
x
y

)
=

(
−y
x

)
and V is given by Lemma 3.9. By Lemma 3.7, it is easy to see

that R(1) ∈ Cω40β(R/Z,PSL(2,R)). From (3.10), (3.14) and (3.17), we have

(3.18) ||(R(1))−1||40β(α), ||R(1)||40β(α) ≤ C?eCβ(α)n.

By (3.12), (3.13), (3.17) and (3.18), one has

(3.19) (R(1))−1(x+ α)AE(x)R(1)(x) =

[
±1 ν(x)
0 ±1

]
,

where

(3.20) ||ν||40β(α) ≤ C?eCβ(α)n.

Now we will reduce the right side hand of (3.19) to a constant cocycle by solving a ho-
mological equation. More concretely, let φ(x) be a function defined on R/Z with [φ] = 0
and [

1 φ(x+ α)
0 1

]−1 [ ±1 ν(x)
0 ±1

] [
1 φ(x)
0 1

]
=

[
±1 [ν]
0 ±1

]
.

This can be done if we let

(3.21) ±φ(x+ α)∓ φ(x) = ν(x)− [ν].

By considering the Fourier series of (3.21), one has

(3.22) φ̂k = ± ν̂k
e2πikα − 1

(k 6= 0),

where φ̂k and ν̂k are Fourier coefficients of φ(x), ν(x) respectively.
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By the definition of β(α), we have the following small divisor condition

(3.23) ||kα||R/Z ≥ C(α)e−2β(α)|k|, k 6= 0.

Combining with (3.22) and (3.20), one has

(3.24) ||φ||20β(α) ≤ C?eCβ(α)n.

Let

(3.25) R(x) = R(1)(x)

[
1 φ(x)
0 1

]
.

By (3.18) and (3.24), one has

(3.26) ||R||20β(α), ||R−1||20β(α) ≤ C?eCβ(α)n.

This implies (3.6). Now we are in the position to give a estimate on µ. From (3.19) and (3.25),
we obtain

R−1(x+ α)AE(x)R(x) =

[
±1 µ
0 ±1

]
,

and thus for any l ∈ N

(3.27) R−1(x+ lα)AEl (x)R(x) =

[
±1 lµ
0 ±1

]
.

Let l = l0 = be 3
4ηnc in (3.27), one has

l0|µ| ≤ ||R−1||20β(α)||AEl0 ||20β(α)||R||20β(α)

≤ C?e
Cβ(α)n,(3.28)

where the second inequality holds by (3.7) and (3.26).
(3.5) follows from (3.28) directly.

�

We will give more details about

(3.29) R(x) =

[
R11(x) R12(x)
R21(x) R22(x)

]
,

which is defined in Theorem 3.4.

Theorem 3.10. Let [Rij(x)]i,j∈{1,2} be in Theorem 3.4. Then we have

(i)

R21(x+ α) = R11(x),

R22(x+ α) = R12(x)− µR11(x),

R11(x+ α)R12(x)−R12(x+ α)R11(x) = 1 + µR11(x+ α)R11(x);(3.30)

(ii)

(3.31) [R2
11] = [R2

21] ≥ 1

2||R||0
;

(iii)

[R2
11]

[R2
11][R2

12]− [R11R12]2
≤ C?eCβ(α)n,(3.32)

[R2
11][R2

12]− [R11R12]2 ≥ c?e−Cβ(α)n.(3.33)
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Proof. (i). This is done by direct computations and the details can be found in the proof of
Lemma 6.3 in [29].

(ii). See the proof of Lemma 6.2 in [29].
(iii). The proof is similar to that in [29]. Note

[R2
11][R2

12]− [R11R12]2

[R2
11]

=

[(
R12 −

[R11R12]

[R2
11]

R11

)2
]
,

and define

(3.34) R̂(x) = R12(x)− [R11R12]

[R2
11]

R11(x).

By (3.30) and (3.34), we have

(3.35) R11(x+ α)R̂(x)−R11(x)R̂(x+ α) = 1 + µR11(x+ α)R11(x).

By Cauchy-Schwarz inequality, one has

(3.36)
[
|R11(·+ α)R̂(·)−R11(·)R̂(·+ α)|

]
≤ 2||R||0

√
[R̂2].

By (3.5) and (3.6) in Theorem 3.4, we get for n ≥ n?3

(3.37) [|1 + µR11(·+ α)R11(·)|] ≥ 1

2
.

By (3.35), (3.36) and (3.37), one has

[R̂2] ≥ 1

16||R||20
≥ e−Cβ(α)n,

which implies (3.32). Now (3.33) follows from (3.6), (3.31) and (3.32). �

4. Perturbation near the boundary of a spectral gap

In this section, we will perturb the cocycle (α,AE) near the boundary E = E+
m of a spectral

gap Gm with m ∈ Z \ {0}. Without loss of generality, we assume the reduced cocycle given by
Theorem 3.4 is

(4.1) P =

[
1 µm
0 1

]
.

Lemma 4.1 ( [29, 33, 34]). Let R(x) be as in Theorem 3.4 and P in (4.1). Then for ε ∈
R, x ∈ R/Z, we have

(4.2) R−1(x+ α)AE+ε(x)R(x) = P + εP̃ (x),

where

(4.3) P̃ (x) =

[
R11(x)R12(x)− µmR2

11(x) R2
12(x)− µmR11(x)R12(x)

−R2
11(x) −R11(x)R12(x)

]
.

Next, we will tackle the perturbed cocycle (α, P + εP̃ ) given in (4.2) by averaging method,
which was originally from [32], and well developed in [20, 33, 34] for Diophantine frequencies
and [31] for Liouville frequencies. We develop the averaging method to reduce the cocycle

(α, P+εP̃ ) with the Liouville frequency α to a new constant cocycle plus a smaller perturbation,
that is

Theorem 4.2. Let δ = 5β(α). Then the following statements hold

3n? is a large constant depending on λ, f and α.
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(i) for any |ε| ≤ 1
C(α)||R||22δ

, there exist R1,ε, P̃1,ε ∈ Cωδ (R/Z,SL(2,R)) and P1,ε ∈ SL(2,R)

such that
R−1

1,ε(x+ α)(P + εP̃ (x))R1,ε(x) = P1,ε + ε2P̃1,ε(x)

and

||R1,ε − I||δ ≤ C(α)||R||22δ|ε|,(4.4)

||P1,ε − P || ≤ C(α)||R||22δ|ε|,(4.5)

||P̃1,ε||δ ≤ C(α)||R||42δ,(4.6)

P1,ε = P + ε[P̃ ];(4.7)

(ii) for any |ε| ≤ 1
C(α)||R||42δ

, there exist R2,ε, P̃2,ε ∈ Cω(R/Z,SL(2,R)) and P2,ε ∈ SL(2,R)

such that

(4.8) R−1
2,ε(x+ α)(P1,ε + ε2P̃1,ε(x))R2,ε(x) = P2,ε + ε3P̃2,ε(x),

and

||R2,ε − I||0 ≤ C(α)||R||42δε2,(4.9)

||P2,ε − P1,ε|| ≤ C(α)||R||42δε2,
||P̃2,ε||0 ≤ C(α)||R||82δ,
P2,ε = P1,ε + ε2[P̃1,ε].

The proof of Theorem 4.2 is similar to that in [20, 29, 31, 33, 34] with some modifications.
We present the proof in the Appendix. We should mention that it is necessary to shrink the
strip to overcome the small divisor condition (3.23) when we solve the homological equation.
In the proof of cases (i) and (ii) of Theorem 4.2, we shrink the strip from 2δ to δ and δ to 0
respectively.

Now we can state our main result of perturbation near the spectral gap.

Theorem 4.3. Let δ = 5β(α) and suppose |ε| ≤ 1
C(α)||R||42δ

. Let R̂ε(x) = Rε(x)R1,ε(x)R2,ε(x) ∈
Cω(R/Z,PSL(2,R)), where R1,ε(x) and R2,ε(x) are given by Theorem 4.2. Then we have

(4.10) R̂−1
ε (x+ α)AE+ε(x)R̂ε(x) = eP+εP1+ε2P2+ε3Rε(x),

where

P =

[
0 µm
0 0

]
,

P1 =

[
−µm2 [R2

11] + [R11R12] −µm[R11R12] + [R2
12]

−[R2
11] µm

2 [R2
11]− [R11R12]

]
,

P2 ∈ sl(2,R),

||P2|| ≤ C(α)||R||42δ,
||Rε||0 ≤ C(α)||R||82δ.

Moreover,

(4.11) deg (R̂ε) = deg (R).

Proof. (4.10) follows from (4.8) and some simple computations.
It suffices to prove (4.11). From (4.4) and (4.9), we obtain for |ε| ≤ 1

C(α)||R||42δ

||R1,ε − I||0 ≤
1

4
, ||R2,ε − I||0 ≤

1

4
,
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so that both R1,ε and R2,ε are homotopic to the identity. This implies (4.11). �

5. Proof of the main theorems

In this section, we will complete the proofs of Theorems 1.1, 1.2, 1.3 and 1.5. We assume
|m| ≥ m?. Then by (3.2), n is large enough.

Theorem 5.1. Suppose 0 < |λ| ≤ λ0. We have

E+
m − E−m ≤ e−

η
3n.(5.1)

Proof. We let δ = 5β(α). From (3.6), one has

||R||2δ ≤ C?eCβ(α)n

and so that

(5.2)
1

C(α)||R||42δ
≥ e−Cβ(α)n.

We define

εm =
−2µm[R2

11]

[R2
11][R2

12]− [R11R12]2
< 0,

since µm > 0 by Remark 3.5.
Following from (3.5) and (3.32), we have

|εm| ≤ C?e
− η2n+Cβ(α)n

≤ 1

C(α)||R||42δ
,

where the second inequality holds by (5.2).
Thus we can apply Theorem 4.3 with ε = εm < 0. Let

D = P+ εmP1 + ε2mP2

:=

[
D1 D2

D3 −D1

]
∈ sl(2,R),

where

D1 = εm

(
[R11R12]− µm

2
[R2

11]
)

+O(ε2m||P2||),

D2 = µm + εm
(
[R2

12]− µm[R11R12]
)

+O(ε2m||P2||),
D3 = −εm[R2

11] +O(ε2m||P2||),
and

∆ = det (D) =
εm

2

2
([R2

11][R2
12]− [R11R12]2) +O(|εm|3||R||20||P2||2 + µmε

2
m||R||40||P2||).

Recalling (3.33) and by direct computations, one has

|D1| ≤ eCβ(α)nµm,

|D2| ≥ e−Cβ(α)nµm, D2 < 0,

∆ ≥ e−Cβ(α)nµ2
m > 0.

Let

Q =

 0
√
−D2

∆
1
4

−∆
1
4√

−D2

D1

∆
1
4
√
−D2

 , Q−1 =

 D1

∆
1
4
√
−D2

−
√
−D2

∆
1
4

∆
1
4√
−D2

0

 .



13

Then

Q−1DQ =

[
0 −

√
∆√

∆ 0

]
.

Using the estimates that

||Q||, ||Q−1|| ≤ 1

∆
1
4

√
−D2

,

we obtain

(5.3) (R̂εm(x+ α)Q)−1AE
+
m+εm(x)R̂εm(x)Q = e

√
∆

 0 −1
1 0

+ε3mS(x)


,

where

S(x) =
Q−1(Rεm(x))Q√

∆
and

||ε3mS||0 ≤ C?e
Cβ(α)n |εm|3||R||82δ

µ2
m

≤ e−
η
4n � 1.(5.4)

Let ρ′ be the fibered rotation number of the right hand side of (5.3). Then ρ′ is small and
ρ′ 6= 0 by (2.2) and (5.4). Recalling (2.1), (4.11) and (5.3), we have

2ρλ,α(E+
m + εm) = 2ρ′ + deg (R)α mod Z

and

2ρλf,α(E+
m) = deg (R)α mod Z.

This means ρλf,α(E+
m + εm) 6= ρλf,α(E+

m). Then E+
m + εm /∈ Gm, that is

E+
m − E−m ≤ |εm| ≤ e−

η
3n.

�

Proof of Theorem 1.1. In Lemma 3.2, let h = C2η. Theorem 1.1 follows from Theorem 5.1
and the fact that |m| ≤ Cn by (3.2). �

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 1.1 and the fact that any trigono-
metric polynomial is analytic on C. �

Proof of Theorem 1.3. For AMO, by Lemma 3.2, λ0 = e−C2η with η > C1β(α). Let

η = − ln |λ|
C2

so that |λ| ≤ λ0. By Theorem 5.1, we have for |m| ≥ m?,

E+
m − E−m ≤ e−

1
3ηn

≤ |λ|
1

3C2
n

≤ |λ|
1

3CC2
|m|,(5.5)

where the third inequality holds by (3.2). This implies Theorem 1.3. �

In order to prove Theorem 1.5, we need two lemmas.

Lemma 5.2 (Corollary 6.1, [30]). Let |λ| ≤ λ0. Then

(5.6) |ρλf,α(E1)− ρλf,α(E2)| ≤ C?|E1 − E2|
1
2 , for all E1, E2 ∈ R.
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Lemma 5.3. Let Gm = (E−m, E
+
m) for m ∈ Z\{0} and G0 = (−∞, Emin)∪(Emax,+∞). Then

for m′ 6= m ∈ Z \ {0} with |m′| ≥ |m|, we have

(5.7) dist(Gm, Gm′) = inf
x∈Gm,x′∈Gm′

|x− x′| ≥ c?e−8β(α)|m′|,

and for m ∈ Z \ {0}

(5.8) dist(Gm, G0) ≥ c?e−8β(α)|m|.

Proof. We start with the proof of (5.7). From the small divisor condition (3.23), one has

||(m−m′)α||R/Z ≥ 1

C(α)
e−2β(α)|m−m′|

≥ 1

C(α)
e−4β(α)|m′|,(5.9)

for |m′| ≥ |m|.
Without loss of generality, we assume E+

m ≤ E−m′ . By Lemma 5.2, we have

dist(Gm, Gm′) = |E−m′ − E
+
m|

≥
(

1

C?
|ρλf,α(E−m′)− ρλf,α(E+

m)|
)2

≥ c?||(m−m′)α||2R/Z,

≥ c?e
−8β(α)|m′|,(5.10)

where the second inequality holds by (1.2) and the third inequality holds by (5.9). We finish
the proof of (5.7). The proof of (5.8) is similar. �

Proof of Theorem 1.5. Let η = C1β(α). We assume 0 < σ ≤ σ?(λ, f, α, ε). For E ∈ Σλf,α
and σ, let

R(E, σ) = {m ∈ Z \ {0} : (E − σ,E + σ) ∩Gm 6= ∅}.
Define m0 ∈ Z \ {0} with |m0| = min

m∈R(E,σ)
|m|. For any m ∈ R(E, σ), one has

(5.11) dist(Gm, Gm0) ≤ 2σ.

We first assume (E − σ,E + σ) ∩ G0 = ∅. Recalling (5.7), we have for any m ∈ R(E, σ)
with m 6= m0,

2σ ≥ c?e−8β(α)|m|,

that is

(5.12) |m| ≥ − ln (C?σ)

8β(α)
.

Then by (5.1), we obtain∑
m∈R(E,σ),m 6=m0

Leb((E − σ,E + σ) ∩Gm)

≤
∑

m∈R(E,σ),m 6=m0

(E+
m − E−m)

≤
∑

|m|≥− ln (C?σ)
8β(α)

C?e
−cη|m|

≤ εσ.(5.13)
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On the other hand, E ∈ Σλf,α implies E /∈ Gm0
. Thus we have

(5.14) Leb((E − σ,E + σ) ∩Gm0) ≤ σ.

In this case, (5.13) and (5.14) imply

Leb((E − σ,E + σ) ∩ Σλ,α)

≥ 2σ − Leb((E − σ,E + σ) ∩Gm0
)

−
∑

m∈R(E,σ),m 6=m0

Leb((E − σ,E + σ) ∩Gm)(5.15)

≥ 2σ − σ − εσ ≥ (1− ε)σ.

In the case (E − σ,E + σ)∩G0 6= ∅, without loss of generality, we assume (E − σ,E + σ)∩
(−∞, Emin) 6= ∅. Then we have

0 < E−m − Emin ≤ 2σ

for any m ∈ R(E, σ). Thus, (5.12) also holds for any m ∈ R(E, σ) by (5.8). From the proof
of (5.13), we have

(5.16)
∑

m∈R(E,σ)

Leb((E − σ,E + σ) ∩Gm) ≤ εσ.

Noticing that E ∈ Σλf,α and E /∈ G0, one has

(5.17) Leb((E − σ,E + σ) ∩G0) ≤ σ.

By (5.16) and (5.17), we obtain

Leb((E − σ,E + σ) ∩ Σλ,α)

≥ 2σ − Leb((E − σ,E + σ) ∩G0)

−
∑

m∈R(E,σ)

Leb((E − σ,E + σ) ∩Gm)

≥ 2σ − σ − εσ ≥ (1− ε)σ.

Putting all the cases together, we complete the proof of Theorem 1.5. �

appendix

Proof of Theorem 4.2. By (4.3), we have the upper bound

(5.18) ||P̃ ||2δ ≤ C||R||22δ.

(i). Notice that (4.5) follows from (4.7) and (5.18) directly. It suffices to prove (4.4) and
(4.6). The strategy employs Newton’s iteration. Let us consider the cocycles of the form

(5.19) R1,ε(x) = eεY(x),

where Y(x) ∈ sl(2,R) will be specified later. Under the conjugacy of R1,ε(x) in (5.19), we have

e−εY(x+α)(P + εP̃ (x))eεY(x)

=
(
I − εY(x+ α) +O(ε2)

) (
P + εP̃ (x)

) (
I + εY(x) +O(ε2)

)
.(5.20)

In order to make the nonconstant terms of order ε in (5.20) vanish, we need to solve

(5.21) Y(x+ α)P − PY(x) = P̃ − [P̃ ].
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We can solve equation (5.21) by using Fourier coefficients. For this reason, let

Ŷ21(k) =
̂̃
P21(k)

e2kπiα − 1
(k 6= 0),(5.22)

Ŷ11(k) =
µm
̂̃
P21(k) + (e2kπiα − 1)

̂̃
P11(k)

(e2kπiα − 1)2
(k 6= 0),(5.23)

Ŷ22(k) =
(e2kπiα − 1)

̂̃
P22(k)− µme2kπiα̂̃P21(k)

(e2kπiα − 1)2
(k 6= 0),(5.24)

Ŷ12(k) =

̂̃
P12(k) + µm

(
Ŷ22(k)− e2kπiαŶ11(k)

)
e2kπiα − 1

(k 6= 0),(5.25)

and

(5.26) Ŷij(0) = 0 (for any 1 ≤ i, j ≤ 2),

where Y(x) = (Yij(x))1≤i,j≤2, P̃ (x) = (P̃ij(x))1≤i,j≤2 and

Yij(x) =
∑
k∈Z

Ŷij(k)e2πkix, P̃ij(x) =
∑
k∈Z

̂̃
Pij(k)e2πkix.

It is easy to check that Y(x) given by (5.22)-(5.25) solves (5.21) and belongs to sl(2,R).
From the small divisor condition (3.23) and (5.22)-(5.25), we have

||Y||δ ≤ C(α)||P̃ ||2δ ≤ C(α)||R||22δ,(5.27)

where the second equality holds by (5.18).
By the definition of Y(x) and (5.19), one has

R−1
1,ε(x+ α)(P + εP̃ (x))R1,ε(x) = P1,ε + ε2P̃1,ε(x).

Now we are in the position to get the estimates.
Assume

(5.28) |ε| ≤ 1

C(α)||R||22δ
.

From (5.27) and (5.28), one has

|ε| · ||Y||δ ≤ c(α),

and then

||R1,ε − I||δ ≤
+∞∑
k=1

εk||Y||kδ
k!

≤ C|ε| · ||Y||δ
≤ C(α)||R||22δ|ε|,(5.29)
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which implies (4.4). By direct computations, we obtain

ε2P̃1,ε(x)

= ε2(P̃ (x)Y(x)−Y(x+ α)PY(x)−Y(x+ α)P̃ (x)− εY(x+ α)P̃ (x)Y(x))(5.30)

+

+∞∑
k=2

(−ε)kYk(x+ α)

k!

(
P + εP̃ (x)

)
eεY(x)(5.31)

+ (1− εY(x+ α))
(
P + εP̃ (x)

) +∞∑
k=2

εkYk(x)

k!
.(5.32)

By (5.18) and (5.27), we obtain the following estimates,

||(5.30)||δ ≤ ε2(2||P̃ ||δ · ||Y||δ + ||P || · ||Y||2δ + |ε| · ||P̃ ||δ · ||Y||2δ)
≤ C(α)||R||42δε2,

||(5.31)||δ ≤ (e|ε|·||Y||δ − 1− |ε| · ||Y||δ)(2 + |ε| · ||P̃ ||δ)e|ε|·||Y||δ

≤ Cε2 · ||Y||2δ(2 + |ε| · ||R||2δ)(1 + |ε| · ||Y||δ)
≤ C(α)||R||42δε2,

and

||(5.32)||δ ≤ C(α)||R||42δε2.
This implies (4.6).

(ii). The proof of (ii) is similar to the proof (i). Let

R2,ε(x) = eε
2X(x),X(x) ∈ sl(2,R),

and the homological equation becomes

X(x+ α)P − PX(x) = P ∗1,ε(x),

where

P ∗1,ε(x) = P̃1,ε(x)− [P̃1,ε].

Thus under the conjugacy R2,ε, we have

R−1
2,ε(x+ α)(P1,ε + ε2P̃1,ε(x))R2,ε(x) = P2,ε + ε3P̃2,ε(x),

and the estimates are similar to those in (i).
�
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[7] A. Avila and S. Jitomirskaya. Hölder continuity of absolutely continuous spectral measures
for one-frequency Schrödinger operators. Comm. Math. Phys., 301(2):563–581, 2011.

[8] A. Avila, S. Jitomirskaya, and C. A. Marx. Spectral theory of extended Harper’s model
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