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Exact dynamical decay rate for the almost
Mathieu operator

SVETLANA JITOMIRSKAYA, HELGE KRUGER, AND WENCAI LIU

We prove that the exponential decay rate in expectation is well
defined and is equal to the Lyapunov exponent, for supercritical
almost Mathieu operators with Diophantine frequencies.

1. Introduction

In physics literature, Lyapunov exponent is often referred to as the inverse
localization length, and its positivity is often considered a manifestation of
localization in a 1D system. At the same time, various physically desirable
conclusions, such as e.g. the exponential decay of the two-point function at
the ground state and positive temperatures with correlation length staying
uniformly bounded as temperature goes to zero, are often implicitly assumed
as attributes of localization. A way to derive them currently requires a strong
form of dynamical localization [3]: the exponential (in space) rate of decay
of the two point function, that is

(1) E les(O)llps(k)| < Ce 1

where {¢s}s is a complete set of orthonormalized eigenfunctions (and the
sum may be localized in energy, if needed).

In view of this, the exponential decay rate in expectation was defined in
[14] as

1 CImEQC, [es(0)] - les(k)])
(2) V4 = 11&8&1) ( 7 ) ,
and

e T S IHE(ZS ‘SOS(ON i ‘@s(k)’)
(3) v = hkn_lggf <— 7 ) .
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It is obviously connected to the minimal inverse correlation length. This
definition can be localized to an energy range by summing over the eigen-
functions with energies falling in the range, in which case it is linked to the
minimal inverse correlation length for Fermi energies falling in that range.

It is well known that there is a long road from positive Lyapunov expo-
nents to a statement like (1). First, positive Lyapunov exponents don’t even
imply pure point spectrum for a.e. phase [6]. Even for models with positive
Lyapunov exponents and known pure point spectrum, dynamical localization
may not hold [9], and then an averaged statement (dubbed strong dynami-
cal localization) is strictly stronger, and a result such as (1) is stronger yet
(albeit equivalent in all known examples so far).

Yet it may be natural to expect that there is a certain reason to physi-
cists’ jump in conclusions, and that for physically relevant models Lyapunov
exponent is indeed related to ..

In this paper we prove the first such result.

It turns out that for almost Mathieu operators, arguably the most pop-
ular 1D model in physics, the Lyapunov exponent precisely defines the dy-
namical decay rate.

We define the almost Mathieu operator by its action on u € (*(Z),

(4) (Hya0u)(n) =u(n+1)+u(n —1) + Vi q0(n)u(n),
with the potential V) , ¢ given by
(5) Vaa0(n) = 2Xcos2m(0 + na),

where A # 0 is the coupling, a € R\Q is the frequency, and 6 € R is the
phase.

We say that frequency « is Diophantine if there exist x > 0 and 7 > 0
such that for k£ # 0,

.

k >
H a||R/Z el |k|na
where ||z||g/z = infrez |2 — 4]

Let L := max{0, In|\|} be the Lyapunov exponent of the almost Mathieu
operator for energies in the spectrum [8]. We have

Theorem 1.1. Let |A\| > 1, and o be Diophantine. Then

(6) Y+ =7-=L.
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Remark 1.2. We define 4 only in the regime of localization, but of course
it is natural to set y1 = 0 in absence of localization. With this definition
Theorem 1.1 holds also without the asumption |A| > 1.

Without loss of generality, we assume A > 0. We note that almost Math-
ieu operators have Anderson localization with eigenfunctions decaying ex-
actly at the Lyapunov rate if and only if A > 1, and « is Diophantine [15],
thus we establish equality of the exponential decay rate in expectation and
the Lyapunov exponent throughout this entire regime!.

Previous quantum dynamics results in the regime of localization have
been limited to lower bounds for related quantities, for any model. Bounds
for the supercritical (that is A > 1) almost Mathieu operator go back to
[12, 21]. Dynamical localization for general analytic quasiperiodic potentials
was obtained in [7].

A lower bound on ~_, establishing its positivity, was proved, under
the same assumptions as in Theorem 1.1, in [14]. Previously, lower bounds
on vy_ were obtained for the Anderson model, i.e. for the potential being
independent identically distributed random variables, in [10, 22] for the
one-dimensional case and in [1, 4] for higher dimensions throughout the
regimes where corresponding proofs of localization work, thus excluding e.g.
Bernoulli. The corresponding result for continuum operators was proven in
[2]. Recently, a proof of such lower bound was obtained for an arbitrary 1D
bounded Anderson model in [11] using a more delicate implementation of
the method of [19] and some ideas of [14].

While lower bounds on «y_ are a corollary of localization, that is of taming
the resonances, upper bounds on ~y are a corollary of delocalization, that
is of exploiting the presence of the resonances. It is well known that the
latter task is usually harder. In this paper we achieve this, at the same time
making both estimates sharp. Our analysis uses (a small part of the) delicate
estimates on eigenfunctions obtained in [16]. The statements we need that
are similar to those in [16] are presented in the appendix, while the body of
the paper consists of the new argument needed to derive the sharp upper
and lower bounds. The technique we develop to obtain sharp estimates is
also an important ingredient in the upcoming work [17].

'More precisely, exact Lyapunov decay of the eigenfunctions holds if and only
if A > 1, and lim sup LLUUES A 0, where ¢,, are denominators of continued fraction
approximants of a [15]. Our result depends on Lemmas from [16] that were for-
mulated there for the standard Diophantine condition, but our proof would hold

. . . In Ani1l . .
for the entire regime limsup —2+ = ( if those lemmas were correspondingly up-

graded, which is a technical matter.
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It is tempting to conjecture that Theorem 1.1 has a universal nature, but
one should be cautious. For example, we do not expect it to hold even for
weakly Liouville almost Mathieu operators for which localization has been
established in [5, 15], with eigenfunctions decaying exponentially but at a
non-Lyapunov rate [15]. However, even for those a statement of the form
v+ = L may be plausible. Moreover, almost Mathieu operators are special
in that their Lyapunov exponent is constant on the spectrum, and without
this condition the statement of the theorem doesn’t even make sense. Yet,
it is natural to expect that in many physically relevant situations it should
be true that vy = Ly, where Ly =sup L(F) (L- =inf L(F)) over E in
the spectrum. For example, it is a very interesting question to establish
such a connection for the Anderson model where eigenfunctions do decay
at the Lyapunov rate (e.g. [19]) as well as in the other models where there
is Lyapunov decay of the eigenfunctions. In the framework of the method
of [11, 19] this would require more delicate estimates on the probabilities of
large deviation sets.

2. Preliminaries

In the following, we will consider A > 1 and « Diophantine fixed, and so set
Hy := H) , 9. We know that for almost every 6, the spectrum of Hy is pure
point [20]. We denote by ¢y.s an orthonormal basis consisting of eigenfunctios
of Hp, where the enumeration can be assumed to be measurable [13] . Let
ng.s be the position of the leftmost maximum of ¢g.s, so

(7) P05 (na;s)| = || do;s

¢ (z) -

A key step in the proof of Theorem 1.1 will be to prove the following
localization result. Below ¢ is always small.

Theorem 2.1. Let A > 1, a Diophantine, § € R, { € Z, and ¢’ = |{ — ng|.
Let xp € [—2¢',2('] be such that

(8)  |sinm(20 + a(2ng,s + x0))| = lr‘ninz |sin (20 + o(2ng.s + ))|.
x| <20’

Then for large ¢ (depending on ) we have

e if{ and xo + ng,s are on different sides of ng.s, that is ({ — ng.s)xg < 0,
then

(9) | g (€)] < e~ (EmE)emos

¢9;s<n9;s)’~
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o if ({—nps)xo>0 and |sinm(20 + a(2ng.s +x0))| > e M0l for
somen € (0,L —¢), then

(10) |9, (0)] < e~ Lmemle=moud

¢9;s(n9;s)"

Proof. Theorem 2.1 is obtained using the arguments from [16]. We include
a proof in the appendix. O

Theorem 2.1 implies the following corollary immediately.

Corollary 2.2. Let A > 1, a Diophantine, 0 € R, £ € Z, and l' = |[{ — ng.|.
Let xg € [—20',20'] such that

(11) | sin (20 + a(2ng.s + z0))| = ‘I?nine | sin (20 + o(2ng.s + ))|.
x| <20

Suppose for some n € (0,L —¢)

(12) min

Sin 7r(29 + Oé(QTLQ;S —|— :L‘))‘ > e_nw_ne;sl_
|z|<2¢

Then we have

(13) |Gp,s(0)] < e EmmmalEmesl| gy (ng)].
3. The lower bound

In this part we will prove the lower bound in Theorem 1.1: v_ > L. That is
we will fix ¢ € Z and bound

1 1
(14) /O S 0030 (0)a (0)]d6 = 3 /0 S (0020 (0) e (0)]d6

nezZ

from above. By orthogonality, we have for any s,
(15) > loosm)P =1,
and for any § € R

(16) > leps(n)> =1.

By symmetry, we can clearly assume that ¢ > 0. We note that in order to
prove the lower bound in Theorem 1.1, it suffices to show
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Theorem 3.1. Let A > 1, a Diophantine, and 0 <I' < L. Then for £ >0
large enough, we have

1
(17) S Y o 0lds <,
nes 0 ne;s=n

For n € Z and 0 < n < L, we define the sets

(18) Apn = {6 | Tgilxél | |sinm(20 + a(2n +n'))| < e},

and

(19) Bppe={6: min | |sinm(20 + a(2n +n'))| < e

[n’|<10|n—¢

We clearly have that |A,,| < (20|n|+ 1)e™" and |B,.,.¢| < (20|n — £] +
1)6*7]‘”*5‘
By Theorem 2.1 and Corollary 2.2, we can obtain the following Lemma.

Lemma 3.2. For anyn € (0,L — ¢), the following estimates hold,
(i) For 0 ¢ Ay, and ng.s = n, we have
(20) |60;5(0)] < e 17Nl gy (m)],
for large |n|.
(i) For 0 ¢ By and ng.s = n, we have
(21) [d0.5()] < e FT1 gy (),
for large |n — £].
Proof of Theorem 3.1. Let dy be a small positive constant. We write
+oo ool (1—60)¢

Z/O Z |¢9,s(0)¢9’5(€)‘d9: Z +Z+ Z

nezZ (1-80)¢ n=00¢
=14 1T+ IIL

We estimate I first. In this case, fix ngs=mn> (1—40d)f. By (i) of
Lemma 3.2 and (16), we can conclude that for any n > (1 —dp)¢ and
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9¢A77§n7
D 1¢0s(0)das (DI < > 66:5(0)dess ()]
| <e I S (g ()2

Ne;s =N

< ef(Lfnfs)n'
Therefore, we have that for t = ¢™e~ (L= and 5 € (0, L — 2¢),
(22) 0eT: >  |ops(0)das(0)] >t p C App.
Let t; = e~ ", ty = e~ (L7297 Define 5(t) for to <t <1 implicitly by t =
e"®n . e=(L=e)n Then for to <t < 1, n(t) > e, and we have
(23) | Ayyn < (20n + 1)e”E72m /,

Since >, _, [¢6,5(0)dg.s(€)] < 1, for any Borel € T, we have
(24)

|3 10000010 - /[0 0eQ: S |00s(0)dus(0)] > t §|dt.

71] Ng;s =N

Thus we have

1 to t1 1
(25) /O Z |¢e;5(0)¢e;s(€)d9=/0 +/tz +/tl — i+ i + idd.

Then
(26) i <ty < e (E72m,
From (24), (22) and (23), one has for large n,
t1
(27) i < / Ayt
ta

t1
< / (20|n| 4 1)e~mA=2n /gy
ta

< ef(Lfo-:)n
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Noticing that |4, .| < (20[n] + 1)e~(mA=297 one has
(28) i < (1= 1) Ay g, | < e (L8,
Thus, for n > (1 — dp)¢,
1
@) | on@ana(eids < e,
(R ———
Then, we have that
o 1
(30) I= Z / Z ’¢9;8(0)w9;8(g)’d9 < e—(L—4a)(1—60)z.
n=(1—8¢)¢ 0 ng.=n
Similarly,
(31) IT < e~ (L=4e)(1=80)¢

Now we are in a position to estimate III. For 6 € [0,1] \ As,., U Bs,:nie, by
Lemma 3.2 and (16), one has

Y 160,5(0)as ()] < e Fm27I N gy (n)?

Ng;s="N Ng;s=n

< e—(L—(so—E)é.

It leads to
(32)

Z |05 (0) Py (£)|dO < o~ (L—b0—2¢)¢

;="

Sol<n<(1—3)¢ /[071}\(’450;”UB(‘0:":@) n

For 0 € As,.n U Bsyonie, let 29(0) € [—10¢,104] be such that

(33) |sin7(20 4+ axg)| = min |sinmw(20 + ax)|.
|z <10¢

Notice that xg is unique by the fact that « satisfies Diophantine condition.
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Let
M = {0 € As,.n U Bs,nue|zo(0) < n},
and
Qo ={0 € As,.n U Bsyon|zo(6) > n}.
By Theorem 2.1 and the fact that dof < n < (1 — dg)¢, for any 6 € )y,

|0.5(€)] < e E=EE g (n),
and for any 6 € Q,
|90,5(0)] < e |y ().

For 0 € Oy \ A, with ég <7 <InL — ¢, by Lemma 3.2, we have that

(34) Y 1000 (0)] < em Fmn=tlemtEmn=linl % = gy, ()|

Ng,s=n Ng,s=n

o~ (L=0)n—t] ~(L—n—o)ln

[VARVA

A similar bound holds for 6 € Q9 \ B;,.,.¢. That is, for 6 € Q9 \ B¢ and
do<n<L—eg,

(35) Z |h0:5 (0) g (£)] < e (E=E)enlnl,

Ng;s=MN

By (34), (35), (24) and (23), we then have (25) with fo replaced by [, o,
and also (26), (27), (28). Thus we also have

/Q Z |b9:5(0) g, (£)]dO < e~ (L=,

1UQ Noss

It leads to

(36) > > Ions(s(0)d0 < =72,

Sot<n<(1—8p)e 1822
By (32) and (36), we get the bound of II,

1I S e~ (L—60—3¢e)¢ )
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Putting the bounds of I, IT and III together, we have
1
> / > 166:5(0)0p;s(0)]d0 < e (=000,
nez 0 Ng;s=n

Letting dg,& — 0, we obtain Theorem 3.1. ([

4. The upper bound
In this part we will prove the upper bound: v < L.

Theorem 4.1. For any I" satisfying L < I" < 2L, we have forn large enough
1
(37 in [ 3 lon 0)60 (|8 = ~Tnl.
0 S

Fix L < T < 2L and large n. Define sets
(38) 0, ={0¢e0,1]: e 2" <|sin7(20 + na)| < e T}
and

(39) O2 = {0 € [0,1] : there exists some |k| > 1000|n|
such that |sin (260 4 ka)| < e‘WLOW},

Then © = ©1\0; has measure satisfying |©| > ﬁe—Flnl.
Lemma 4.2. Let a be Diophantine with constants k,7 > 0. Then for any
6 € © and for any m > C(k,7)|n|,

(40) min |sin7(20 + za)| > e 1™,

|lz|<m

Proof. Let xg be such that the minimum in (40) is attained at x = xy. We
split our analysis into three cases depending on the value of xg.

Case L. |zp| > 1000|n|. Then the Lemma holds because of 6 ¢ ©.

Case II. |zo| < 1000|n| and g # n. The Lemma holds because of § € 0
and DC frequencies.

Case III. g = n. The Lemma holds because of § € ©1 (using | sin 7 (26 +
na)| > e 200y, O
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It clearly suffices to show that for the eigenfunctions ¢, of H = H) o
(we ignore the dependence on #) we have

(41) Z 164(0)65(n)| > =

N

as long as |n| is large enough, uniformly in 6 € ©. The first step is

Proposition 4.3. For |n| large enough and 6 € ©, we have

(42) PSRl

Im|<Ci|n| ns=m
where Cy, = C(k,T).
Proof. Without loss of generality, assume n > 0. Suppose m < —C\yn or m >

C.n.
Using Corollary 2.2 with ng.,; = m, £ =0, by (40), we have

65(0)] < |ps(m)]e~ =™,

Thus
2. 2 6OP< 3 Y lesm)Per ™
Im|>C\nns=m \m\zC nns=m
= 2 Y lem)l?
|m|>C.n ns=m
<% e
|m|>C\n
1
<
-2
Combining with (16), the result follows. O

The following lemma is similar to a statement appearing in [16] with some
modifications. We present a proof in the Appendix.
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Lemma 4.4. Suppose
(43) | sin (20 + na)| < e T
with L < T < 2L. Suppose ¢ is an £? solution of Hy o900 =E¢. Then

(44) [6(n) — ¢(0)] < e 2L g )

Proof of Theorem 4.1. For large n, by Proposition 4.3 and Lemma 4.4, one
has for 6 € ©,

S s (0dsm) = DT D [6s(0)¢s(n)

Im|<Cy|n| ns=m

> 5T S 18s(0)](165(0)] — e L2 g |

[m|<C\|n| ns=m

> Y > 160

[m|<C. |n| n.=m

_ e i@-L-o)in] Z Z EXO] Z s (k)[?

Im|<C,|n| ns=m |k|<Cy|n|

NE

1 —L(T=L—g)[n]
D D M
Im|<CsIn| ns=m |k|<C\|n]|
1
> .
4
Then
1
/ S 165(0)s(n)]d0 > / 3 Ios(0)0s(n)a
0 S
*Flnl
> .
— 400
This implies Theorem 4.1. U

Appendix A. Proof of Theorem 2.1

By shifting the operator by ng.; units we can assume ng,; = 0. Without loss
of generality, we assume ¢ > ng.s. Then in order to prove Theorem 2.1, it
suffices to prove the following theorem.
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Theorem A.1. Let A > 1, a Diophantine, ng.s =0, ¢5(0) =1, £ € Z*. Let
xo € [—24,20] be such that

(A.1) |sin (26 + axp)| = |H‘1<irzlz |sin (20 + ax)|.

Then the following statements hold for large £:
If xg € [-2¢,0], then

(4.2) 65(0)] < =@,
If form e (0,L —¢)

(A.3) min |sin (20 4+ azx)| > e ",
| <2¢

and xo € [0,2(], then

(A4) |6s(£)] < em Lo,

Suppose Hy o 9p = Eg. Let U?(y) = < 30(930/(3)1) > It isa standard fact
(e.g. (37) in [16]) that for large |k1 — ks,

(A5)  Cem FHIRRl U2 (ky)|| < [|UP (Ry)|| < CelbHR R U (hy) .

Lemma A.2. [16, Lemma 3.4] Let rj = max|s|<104 |¢(y + ok)|. Suppose
ko € [-2Ck,2Ck] is such that

|sin7(20 + ako)| = min |sin7(20 4+ ax)|,
|z|<2Ck

where C > 1 is a constant. Let v,e be small positive constants. Let y; =
0,y2 = ko,ys € [—2Ck,2Ck]. Assume y lies in [y;,y;] (i-e., y € [ys,y;])with

i —yj| = k and ys & [yi,y;], s # 4, j. Suppose |yil, |y;| < Ck and |y — y;| >
10vk, |y — y;| > 10vk. Then for large enough k,

(A.6) ry < max{ry exp{—(L —¢)(ly — v — 37k)},
ry exp{—(L —e)(ly —y;| — 3vk)} }-
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Lemma A.3. [16, Lemma 3.7] Fiz 0 < t < L. Suppose

(A.7) |sin (20 + ak)| = et

Then for large |k|

(A.8) |U (k)| < max{||[U2(0)], [T (2k)| [y~ Ft=IH,

Proof of Theorem A.1. We start with the proof of Case I. Let ¢ = ¢,
vy=¢, k=¥t C=1, kp=20<0 and y3=2¢ in Lemma A.2. By

Lemma A.2, one has ¢ € [y1,ys] and y2 < y1, so

(Ag) T,Zﬁ < ef(Lsz)KTg) + ef(LfCE)ZTJQbZ < ef(LfCE)Z

Y

since |¢(n)| <1 for all n € Z. By (A.5) and (A.9), we have
|6(0)] < e B,
It finishes the proof of Case I.
Now we turn to Case II. Let ¢ be such that tzg =nl. Let p = ¢, v =
e, k=0, C=1, kg=29>0 and y3 = 2¢ in Lemma A.2. By Lemma A.2
and (A.5), one has (as in the proof of Case I), one has

(A.10) [9(0)] < 77 4 e Il |72 ().

Suppose xg > (£ + €)¢. In this case, by the definition of ¢, one has 0 <
t < L. Let k =29 and ¢ = ¢ in Lemma A.3, one has

(A11) [[U®(z0)|| < max{|[U?(0)][], [|U®(2xo)[[ye~Ft)m0 < m(Ertmemo,
In this case, (A.4) follows from (A.10) and (A.11).

Suppose 0 < o < (# +¢)f. In this case, (A.4) follows from (A.10) di-
rectly since ||U?(xo)|| < 2. O

Appendix B. Proof of Lemma 4.4

Proof. Without loss of generality, we assume n > 0. Set A = |[¢||g(z). We
let (k) = ¢p(n—k), V(k)=2\cos2m(0 +ka) and V (k) = 2Xcos 27 (0 +
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(n — k)ar). Then by the assumption (43), one has for all k € Z,
(B.12) \V(E) = V(E)| < Ce ™

We also have

(B.13) ok + 1)+ ok — 1) + V(k)o(k) = Ep(k)
and
(B.14) bk + 1)+ d(k — 1)+ V(k)p(k) = Ed(k).

Let W(n) =W(f,g9) = f(n+1)g(n) — f(n)g(n + 1) be the Wronskian. Let

and

v = (4 )

By a standard calculation using (B.12), (B.13), (B.14) and palindromic
arguments as in [18] 2, we have,

~

(B.15) (W (0, 0)(k) — W (e, d)(k — 1)| < |V(k) — V(k)||¢(k) (k)|
< Ce Mg(k) (k)|
< CA%2e 1,

In Lemma A.2, let kg = n and y3 = 1000n, then by (A.6) one has
(5.16) U(m = DL, IUGm)| < e T4,

where m = 500n.
By (B.15) and (B.16), we have

(B.17) (W (6, ) (k)| < AZe= T,

for |k| < 500n.
Now we split n into cases, depending on whether it is odd or even.

?Palindromic argument of [18] then yields ||[U(2)[| < e=T=9)% if n is even and
analogous statement if n is odd. Here we want to gain a factor of A2
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Case 1. n is even. Let m = 3, then

_ B(m) P _ o(m)
WW‘(¢mfn>"Wm‘<am+n>'
Applying (B.17) with £k = m — 1, we have
|p(m)|[¢(m + 1) — p(m — 1)] < A%~ T,

This implies

(B.18) lp(m)| < Ae~ 2T,
or
(B.19) lp(m +1) — ¢p(m — 1)] < Ae— 2T,

If (B.18) holds, by (B.13), we also have
(B.20) p(m +1) + ¢(m — 1) < Ae 2=,
Putting (B.18) and (B.20) together, we get
(B:21) [U(m) + U(m)]| < Ae™T=,
If (B.19) holds, we have
(B.22) |U(m) — U(m)|| < Ae—2T—o)n,
Thus in case 1 there exists ¢ € {—1,1} such that
(B.23) |U(m) + U (m)|| < Ae=z T,
In Lemma A.2, let kg = n, y1 = 0 and y3 = m, then by (A.5) one has,
(B.24) |0 (m)|| < Ae=E=eIm,

Let T and T lge the transfer matrices associated with potentials V' and
V, taking U(m),U(m) to U(0),U(0) correspondingly. By (B.12), the usual
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uniform upper semi-continuity and telescoping, one has
1T]], ||T| < etEFem,
and
HT _ TH < e(L—QF—&—s)m.
Then by (B.23), we have
1U(0) + U (0)]| < [|T([[|U(m) + U (m)|| + ||T = T|||U (m)|
< Ae(L—i—s)me—%(L—e)n + Ae(L—QF—i—a)me—m(L—s) )
< Ae—%(l"—L—s)n‘

This completes the proof for even n due to the definition of U/(0) and U(0).

Case 2. n is odd. Let m = %, then

UG +1) = ( ¢(Zﬁt)1) ); U@ +1) = ( ¢(?5§ﬁ}r)1) >

Combining with (B.17), we have
6(7) + G0 + DI|6(R) — (i + 1)] < AZe" T,

This implies

|6(R) + G + 1) < Ae2 o,
or

¢+ 1) = pri)| < Aem 2,

Thus in case 2, there also exists ¢ € {—1,1} such that
U (i + 1) + 0 (i + 1)|| < Ae~ 202,
The rest of the proof is the same as in case 1. O
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