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Abstract. In this paper, we consider the Schrodinger equation,
Hu=—u"+ (V(x) + Vo(x))u = Eu,

where V(x) is 1-periodic and V(x) is a decaying perturbation. By Floquet theory,
the spectrum of Hy = —V?2 + Vj is purely absolutely continuous and consists of
a union of closed intervals (often referred to as spectral bands). Given any finite

set of points {Ej};.\'1 in any spectral band of H, obeying a mild non-resonance

condition, we construct smooth functions V(x) = 10+(|L)| such that H = Hy + V has

eigenvalues {Ej}jf\il. Given any countable set of points { E;} in any spectral band of
Hj obeying the same non-resonance condition, and any function 4(x) > 0 going to

infinity arbitrarily slowly, we construct smooth functions |V(x)| < th£|?| such that

H = Hjy +V has eigenvalues {Ej}. On the other hand, we show that there is no
eigenvalue of H = Hy + V embedded in the spectral bands if V(x) = oy

L4)y 48 X goes
to infinity. We prove also an analogous result for Jacobi operators.

1 Introduction
In this paper, we consider the Schrédinger equation,
(1) Hu=—u"+ (V(x) + Vo(x))u = Eu,

where Vj(x) is 1-periodic and V(x) is a decaying perturbation.
When V = 0, we have an unperturbed 1-periodic Schrodinger equation,

(2) Hop = —¢" + Vo(x)¢ = Ep.
We also consider a Jacobi eigenvalue equation,
3 (Jow)(n) = apru(n+ 1) + a,u(n — 1) + byyyu(n) = Eu(n), n >0,
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where the {a;, b;} are real sequences indexed by j > 1 with g; assumed to be
positive. Alternatively, we can view this eigenvalue equation in terms of an
operator on ¢%(Z=(). We also consider perturbations of this equation, namely,

/

() Ju)(n) = (an+1 + a, 1
=Fu(n), n=>0,

Yu(n + 1) + (a, + a)u(n — 1) + (bps1 + b, u(n)

where aj’. and bj’. are real sequences chosen so a; + a} is always positive. Let us

assume in addition that the a; and b; sequences are periodic with period g > 1.

The present paper is the combination of our two preprints [21] and [22]. These
two preprints are not intended for publication.

Through basic Floquet theory, we know that the essential spectrum of the
operators Hy and Jy both consist of absolutely continuous bands. Our goal is to
identify perturbations that leave the absolutely continuous spectrum unchanged,
but also produce an embedded singular spectrum in these absolutely continuous
bands.

This is a problem with a long history. Let us consider first a special case, the
free Schrodinger operator (that is, the operator Hy in the case where Vy = 0).
Here the absolutely continuous spectrum is the interval [0, co). For this operator,
the classical Wigner—von Neumann result [33] introduces a decaying oscillatory
perturbation that produces a single embedded eigenvalue at £ = 1. Following
this, it has been an enduring topic of interest in inverse spectral theory to find
perturbations of the free operator that produce an embedded point spectrum in
[0, 0): see for instance [7, 8, 14, 15, 24, 25, 28, 12, 30, 29, 1]. See also [4] for a
more detailed survey of results in this area.

A natural next step is to understand how to produce an embedded point spectrum
when Vj #£ 0. This more general problem has attracted recent interest [26, 32, 14,
23]. In addition, there has also been work done in an embedded point spectrum
for the spectral bands of other periodic operators, such as the Jacobi operator
[9, 11, 27] and the CMV operator ([27] and [31, Section 12.2]).

Our paper’s main thrust may be summarized as follows. Let Vy(x) be any
1-periodic potential function, and consider any countable set S embedded in a
band of the essential spectrum of Hy in (2). If S satisfies a mild non-resonance
condition, we then carefully construct a perturbation V of V{, so that the essential
spectrum remains unchanged, and eigenvalues appear at every point in S. In
other words, for a given band we can find a perturbation that can produce any
embedded point spectrum we desire, as long as our set of eigenvalues obeys that
weak non-resonance condition.
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Our choice of perturbation is inspired by the one introduced in [8]. Of course,
since we are perturbing a periodic operator rather than a free operator the construc-
tion is different, and in many ways much more challenging. Rather than using the
standard Priifer variables, we have to instead use the generalized Priifer variables
introduced in [14], which are a lot more complicated. The main contribution of
this paper is in Section 5 where we have to perform several precise estimates on
these generalized Priifer variables. One key innovation in this section is the use
of a Fourier expansion to ensure that some key terms in our construction decay
sufficiently quickly. After the Fourier expansion, we end up having to bound some
decaying oscillatory functions, and we accomplish this by carefully ensuring that
the positive parts and the negative parts of the decaying oscillations cancel out well
enough. The ideas in Section 5 are all new, and it is perhaps the most technically
complicated part of our paper. We remark that the free perturbation setting ex-
plored in [8] does not contain the obstacles we have to overcome here in Section 5.
Actually, our result implies the almost orthogonalization of generalized Priifer
angles in a suitable Hilbert space, which allows us to investigate the distribution
of embedded eigenvalues [18]. We believe our analysis provides a useful tool to
tackle other topics in the spectral theory of perturbed periodic operators.

Our construction is an improvement over previous results in a few important
ways. For example, the construction in Theorem 4 of [26] only produces a single
embedded eigenvalue in each band. In [14], Theorem 4.2 we are presented with
a construction that can produce a dense embedded point spectrum, but only if the
desired eigenvalues satisfy a rational independence condition. The reason for these
technical restrictions in previous results is that while it is not too difficult to control
the growth of the formal eigenfunction for one eigenvalue, simultaneously dealing
with multiple eigenvalues at once is problematic. Point spectra are in a sense very
fragile, so modifying a perturbation V(x) to produce one eigenvalue often destroys
the other eigenvalues. Thus simultaneously producing two embedded eigenvalues
in a band is challenging, let alone infinitely many. We were able to overcome this
problem by making very careful choices in our construction of V.

We do admit a technical restriction on S, a non-resonance condition. Each
point of every spectral band is assigned a quasimomentum, which is a phase
parameter in [0, 7) related to the Floquet solution of the unperturbed periodic
operator equation (2). Given any two points in S, we require that their quasi-
momenta not sum to z. This is a very natural condition that appears almost
universally in the embedded eigenvalues literature. For example, in [26] this non-
resonance condition is addressed in their Lemma 13 (expressed as a condition
on Fourier coefficients). In [6] this condition is described as the complement
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of energies {2 cos(w), =2 cos(2w)}. We emphasize that our condition is much
weaker than that of the restriction in [14, Theorem 4.2], which requires the set of
quasimomenta to be rationally independent of each other and of z. In particular,
if we restrict ourselves to half of the spectral band (e.g., the half of the band corre-
sponding to quasimomenta in (0, 7 /2)) we can allow S to be a completely arbitrary
countable set.

Furthermore, by carefully tweaking our construction, we are able to ensure
that our perturbation V(x) can be made to a smooth function. This smoothness is
known to be difficult to achieve even for the case when V; = 0. We are able to
ensure smoothness due to the iterative nature of our construction, which allows
us to make small, precise adjustments to the V(x) function at each step to make it
smooth, while still controlling the size of all the eigenfunctions.

With regard to the Jacobi versions of our result, we remark that ours is a very
significant improvement over previous results in the literature. Eigenvalues are
in a sense very fragile, and so forcing multiple embedded eigenvalues to appear
simultaneously is often challenging. Compare, for instance, the result in [11],
which introduces a perturbation that can only produce two embedded eigenvalues.
In another very recent paper [10], the authors employed a geometric method
to construct embedded eigenvalues. While they are able to construct finitely
many eigenvalues, to embed infinitely many eigenvalues they require a rational
independence condition which our result does not require.

Note also that the proof that the construction produces the desired set of eigen-
values is more difficultin the Jacobi setting compared to the continuous Schrédinger
setting. The spectral transition of embedded eigenvalues for discrete operators
heavily depends on the arithmetic properties of quasimomenta. For example, the
sharp transition for a single embedded eigenvalue for the continuous was known
40 years ago [2], dating back to [5]. However, similar results for the discrete
case are still open [20]. In addition, the generalized Priifer transformations are
singular for the discrete setting. Although the proof of the continuous and discrete
case looks similar, the understanding and mathematical principles behind them are
significantly different. In this paper, the construction for the continuous case can
be bounded by a constant in the continuous case, but in the Jacobi setting those
same terms are bounded by a term that grows like ¢ In n for small positive ¢ and as
n — oo, which leads to an additional parameter in the construction.

Our paper is organized in the following way. In Section 2 we will introduce
notation and state our results. We first address our proofs in the continuous
Schrodinger setting. In Section 3 we will prove a result complementary to our
main results: that no embedded eigenvalues will be produced if our perturbation
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is small. Section 4 is when we begin to address our main theorem. This section is
just a non-technical summary of our method, aimed to give the reader an intuition
about how our construction works. We will prove important technical estimates in
Section 5, and in Section 6 we will show how to construct V(x). In the next sections,
we prove results in the Jacobi setting. In Section 7, we discuss Priifer variables
and the discrete analogue of our auxiliary small perturbation result. In Section 8
we prove our main results concerning embedded eigenvalues, mainly explaining
the parts of the proof that differ from the continuous Schrodinger setting. For the
readers’ convenience, we write out explicitly the proofs for the Jacobi setting in
the Appendix.

2 Main results

We consider a Floquet solution ¢ of (2), which has the following form:
(5) ¢(x, E) = p(x, E)e™*

where k(E) is the quasimomentum, and p(x, E) is 1-periodic.

It is known that the spectrum of Hy (on the whole line) is purely absolutely
continuous and consists of a union of closed intervals (often referred to as bands).
We denote

Gac(Ho) = 0ess(Ho) = | Jlck, dil.
k
Ineachband [cy, di], k(E) is monotonically increasing from O to 7 or monotonically
decreasing from 7 to 0. Any two of those bands can intersect at most at one point.
By Weyl’s theorem, oess(H) = 0ess(Hp) if limsup,_, . |V (x)| = 0.

Theorem 2.1. Suppose
o(1l)

(6) Vo= .

as x — oo. Let H = Hy + V. Then there exists no non-trivial L*(R*) solution of
Hu = Eu for any E € \J,(ck, dr). More precisely, if for some E € |J,(ck, di) the
solution u of Hu = Eu satisfies u € L>(R"), then u = 0.

Theorem 2.2. Suppose {Ej}].\i1 C Uilek, dr) such that quasimomenta
{k(Ej)}j’\i1 are different. Suppose for any i,j € {1,2,...,N}, k(E;) + k(Ej) # .
Then for any given {491}]111 C [0, ], there exist functions V € C*°[0, oo) such that

7 V(x) = ?-(l-l))c asx — oo
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and
Hu=FEu

has an L>(R*) solution with boundary condition

u'(0)

u(0) = tan 0.

Corollary 2.3. Choose any band [cy,dy]. Let ey € [ck, di] be such that
k(ex) = 5. Suppose {Ej}j[i1 are a finite set of distinct points in (cy, ex) or (ey, di).

jil C [0, x], there exist functions V € C*[0, co) such

Then for any given {0;};
that (7) holds as x — oo and

Hu = Ejlxl
has an L>(R*) solution with boundary condition

u'(0)

u(0) = tan 0.

Theorem 2.4. Suppose A = {E; ;fl C U,(an, by) such that quasimomenta
{k(E))}; are different. Suppose for any i,j, k(E;) + k(E;) # . Let h(x) > 0 be any
function on (0, 0o0) with lim,_, o h(x) = oo.

Then for any given {Qj}]‘-fl C [0, x], there exist functions V € C*[0, oo] such
that

h
(®) vel< " forxso,
1+x
and
Hu = Eju

has an L>(R*) solution with boundary condition

u'(0)

4(0) = tan §;.

Corollary 2.5. Choose any band [cy,dy]. Let ex € [ck, di] be such that
k(ex)=73. Suppose {Ej}]‘-f1 are a countable set of distinct points in (ci, ex) or
(ex, dy). Let h(x) > 0 be any function on (0, co) with lim,_, o, h(x) = oo.

Then for any given {0; j°=°1 C [0, z], there exist functions V € C*°[0, oo] such
that (8) holds and

Hu = Eu

has an L>(R*) solution with boundary condition

u'(0)

u(0) = tan 0.
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Remark 2.6. (i) Actually, in the proof of Theorems 2.2 and 2.4, we show

that Oul)
VO = %
) 1+x
and 5
VO < 0" xso,
1+x

respectively, where O (1) is a large constant depending on k.

(i) Although we only consider the half line [0, 0o), all the results in this paper
hold for x € (—o0, 0].

(iii) We can assume that the V(x) we construct in Theorems 2.2, 2.4 and Corol-
laries 2.3, 2.5 satisfies

V)| < 2
(1 +1x[)3

Thus O-ac(H) = o-ac(HO) = Uk[ck: dk] [3]

Now we are in position to introduce the results for perturbed periodic Jacobi
operators. Recalling equation (3) we denote

ac(J0) = Oess(Jo) = | Jlex, dil.
k

Let E € (¢, dy) and ¢ be the Floquet solution of a g-periodic operator. Suppose

) o(n, E) =p(n)e' ¢ ",

where p(n) is a real g-periodic function and k(E) € (0, ) is called the quasimo-
mentum (g is the period for a,, b,). Sometimes, we omit the dependence on E.

Theorem 2.7. Suppose d, = %Y and b, = °V. Let J be given by (4). Then

l+n l+n
there exists no non-trivial €*(Zq) solution of Ju = Eu for any E € Ui (cx, di).

Theorem 2.8. Suppose {Ej},, C Ulck,dx) such that quasimomenta
{k(Ej)}j]\i1 are different. Suppose foranyi,j e {1,2,...,N}, k(E;)) +k(Ej) # n. Let
a,, = 0. Then for any given {6}-}};1 C [0, z], there exist b, such that

O(1
(10) = O
1+n

asn — oo and
Ju=Eu

has an € Z(Zzo) solution with boundary condition

u(l)

u(0) = tan0.
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Theorem 2.9. Suppose
BN J(ew di)
k
such that quasimomenta { k(E))}; are different. Suppose for any i, j,
kK(E)+k(E) # .

Let h(n) > 0 be any function on Zso with lim,_,« h(n) = co. Let a,, =0
Then for any given {6;}2, C [0, 7], there exists a sequence b;, such that

h
(11) ol < " forn,
1+n
and
Ju=FEu

has an t*(Z-) solution with boundary condition

u(l) _

=tand,.

u(0) !

Finally, we remark that it is possible to make O(1) in (7) and (10) quantitative
o)
1+|x] °
continuous spectrum of Hy + V is empty [16]. Similar results hold for the discrete

cases [17].

[19]. Also, under the assumption V(x) = we can show that the singular

3 Absence of embedded eigenvalues for small pertur-
bations in the continuous setting

From Section 3 through Section 6, we only consider continuous Schrodinger
operators.

Let E € U, (an, by) and let ¢(x, E) be the Floquet solution of Hy. We recall
the generalized Priifer transformation of the Schrodinger equation Hu = Eu first,
which is from [14].

By interchanging ¢ and ¢, we can assume

Im(p(0)¢'(0)) > 0.
Define y(x, E) as a continuous function such that
(12) o(x, E) = |p(x, E)|e7®P).

In the following arguments, we leave the dependence on E implicit if there is no
confusion. Note that we define u to be a real solution of (1) and ¢ is a Floquet
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solution of (2) (so ¢ is complex-valued). We also assume the quasimomentum
k(E) satisfies 0 < k(E) < «.

By [14, Proposition 2.1], we know there exists some constant G > 0 (depending
on F) such that

(13) (1; <y'(x) <G.

Proposition 3.1 (Proposition 2.2 and Theorem 2.3(b)(c) of [14]). Suppose u
is a real solution of (1). Then there exist real functions R(x) > 0 and 0(x) such that

(14) RO = P sin200x)
2y"(x)

and

(15) 00y = 70— D sin2ow).
2y"(x)

Moreover, there exists a constant K(depending on E) such that

2 / 2
(16) el ;'” OF 2 re? < KQuePR + W),

Remark 3.2. Let d(x) be a continuous function such that

(17) @' (x) = ilg’ (x)| ™.

Then we have the following precise relations:

(18) u(x) = R(x)|p(x)| sinO(x)
and
(19) ' (x) = R(x)|¢'(x)| cos(8(x) + d(x) — y(x)).

Proof of Theorem 2.1. Suppose u is an eigensolution with corresponding
eigenvalue E € (a,, b,). By (14) and the assumption (6), we have

1 M~ 1
20 InR(x) > InR — d.
(20) nRW = IR0 — 3 [ | dr
for large x¢ and x > x(. Fixing xy, we obtain for large x and a constant C,

1
Rx) > . .
Cxs

This contradicts (16) and u € L>(R*). Here we used the basic fact that Hu = Eu
and u € L>(R*) imply u’ € L>(R"). O
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4 A non-technical summary of our method

Since the calculations in the next few sections will be very technical and compli-
cated, let us first provide a non-technical summary of our technique, to help the
reader understand how everything connects in the big picture. The challenge of
our construction is that we are trying to create many different eigenvalues (perhaps
a countably infinite number) simulateneously. In other words, our solution must
decay fast enough for many different values of the energy E; let us say we desire
a V(x) that induces embedded eigenvalues at £ = E|, E;, E3, .... The difficulty
is, if we create a potential Vg, (x) that produces a decaying eigensolution ug, that
corresponds to an energy Ej, that potential might cause solutions ug, (x), ug,(x), . ..
corresponding to E;, E3, ... to grow.

We thus perform a complicated concatentation process on the potential V(x)
to ensure that all the eigensolutions ug, (x), ug,(x), ug,(x), . .. decay quickly. At
each stage of the concatenation (think of a stage as an interval in [0, c0) ), we
construct a potential that forces the eigensolution corresponding to a single en-
ergy to decay. In one stage, we construct Vg (x) so that the eigensolution ug,
corresponding to an energy E; decays very quickily, while we prove upper bounds
on how much the eigensolutions ug,, ug,, ... corresponding to the other desired
energies can grow. Then we concatenate a next stage Vg, (x), that makes the eigen-
function corresponding to a second energy E, decay quickly, while limiting how
much the other eigenfunctions ug, (x), ug,(x), ... can grow, et cetera. We then
alternate these stages. If we have a finite number of E1, E», E3, ..., E; we simply
repeat the Vg, (x), Vg, (x), ..., Vg (x) stages periodically. If we have infinitely many
E\, E,, E5, ... the concatenation gets more complicated, but it is still possible to
alternate the stages in such a way that the Vg, (x) concatenation occurs infinitely
many times for every k (albeit each V;(x) concatenation occurs more and more
rarely as x increases). We construct the Vg, (x), Vg, (x), ... in such a way that
each eigensolution decays quickly enough at the stages where we are focusing on
them, so that it compensates for how they might grow when we are focusing on
other eigensolutions. We perform this delicate procedure and this results in all the
desired eigensolutions decaying quickly enough to be in £2.

Intuitively, our construction works in the following way: we bound the eigen-
functions by integrals that involve decaying oscillatory terms, for instance involv-
ing sines and cosines. It is unsurprising that we can do this, since in our setting
the background potential is periodic and the perturbative potential we construct is
formed by concatenating chopped-up pieces of decaying oscillatory functions. We
then carefully show that for the decaying oscillatory terms in our integral bound,
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the positive part of the oscillation mostly cancels out with the negative part, and
this results in small upper bounds for the sizes of our eigenfunctions.

In Section 5 we will prove various lemmas that show integrals of various oscil-
lating expressions are small. This will culminate in Proposition 5.5, which is the
proposition that asserts that there exists a Vi, (x) that ensures that the eigenfunction
ug, (x) decays very quickly, and the other eigenfunctions ug, (x), ug,(x), . .. will not
grow too much. In Section 6 we explain how we concatenate the Vg, (x), Vg, (x), . ..
stages, and we prove that we do indeed get eigenvalues where we desire them.

For the discrete case, although the calculations are different the idea is more or
less the same as what we explained above for the continuous case.

5 Some preparation for construction in the continuous
setting

Before we proceed with our perturbative construction, we will have to lay some
groundwork to ensure that certain key terms decay quickly enough for our purposes.
This section is the most novel and difficult of our paper, and demonstrates clearest
why perturbing a periodic operator is more challenging than perturbing a free

operator.
For any E € (a,, b,), we consider the non-linear differential equation for x > b,
C . .
21) O (x,E,a,b,0) =7 (x,E)+ sin 26 sin* 6,

Y (x, EY(1 +x—b)

where C is a large constant that will be chosen later. Solving (21) on [a, co) with
0@ _
Oa) —
depends on a, 6 and E. Set

initial condition tan @y, where a > b, we get a unique solution. Notice that 6

(22) V(x,E,a,b,0)=— ¢ sin 20(x).
1+x—5b

Proposition 5.1. Suppose 0(x, E, a, b, ) is given by (21), k(E) # 7 and
V(x, E,a, b, 8) is given by (22). Then we have

(23) /X ! cos40(y)dy = O(1).
a 1+y

Let E be another energy in \J,(az, be) such that k(E) # k(E) and k(E) + k(E) # .
Suppose 0(x, E) is a solution of

R R E, a,b,6 R
O )=y (x By — VB E D) Gop0 by,
2y'(x, E)
Then
(24) / ol b in200, By sin 200y, Bydy = 0( L )
w 2y, E)l+y—b ’ = = b/

forany x > xo > a.
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Proof. We only give the proof of (24). The proof of (23) is similar. Without
loss of generality, we assume xy > a is large. First, using (15) and (21) we have
the differential equations of 8(x, E) and 6(x, E),

c : .
25) O E)=y(xE)+ e EYL+x— by S0 20(x, E) sin® (x, E)

and

(26) O, Ey=9y(x,E)+ sin 26(x, E) sin® 6(x, E).

Y (x, EY(1 +x — b)
By (5) and (12), we have

27 y(x, E) = k(E)x + n(x, E),

where 7(x, E) mod 27 is a function that is 1-periodic in x.
Observe that by basic trigonometry,

—25in26(y, E) sin 20(y, E)

28
(28) = cos(20(y, E) + 26(y, E)) — cos(20(y, E) — 26(y, E)).

Thus it suffices for us to find a bound for

/x cos(20(y, E) & 20(, E)) 4
w270, E)1+y—b)

For simplicity, let us focus on the 26(y, E) — 26(y, E) case. The 26(y, E) + 26(y, E)
case will proceed in a similar way.
By (25), (26) and (27), we have

(29)

d N N N 1
GO 100, ) = nx, B = [00x, B) = v, B3] = (k(B) — k(B + | )
X l+x—b
Let
O(x, E) = 6(x, E) — n(x, E)
and

O(x, E) = 0(x, E) — n(x, E).

By trigonometry again, one has

cos(20(x, E) — 20(x, E)) = cos(20(x, E) — 20(x, E) + 25(x, E) — 25(x, E))
cos(27(x, E) — 25(x, E)) cos(20(x, E) — 20(x, E))

— sin(27(x, E) — 25(x, £)) sin(20(x, E) — 20(x, E)).
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Thus
/xCos(ze(y, E) —20(y, E)) 4
X0 27'()’, E)(1+y_b)
_ /*coa2n04E>—2nan»coazéouE>—2éocE»dy

0 2y'(y, E) l+y—»b
_ / ¥ sin(2y(y, E) — 2n(y, E)) sin(20(y, E) — 20(y, E)) p
0 2y'(y, E) l+y—b Y

Again, because the estimate of the other term follows in a similar way, we only
give the estimate for

* sin(25(y, E) — 25(y, E)) sin(20(y, E) — 26(y, E))
G /xo 2y'(y, E) l+y—b .

£ Sin205E)=2n(x, £))

We proceed by Fourier expansion o V(E)

(which is 1-periodic con-
tinuous) and obtain that

sinn(x, E) — 25(x, £)) _ o

. B =, + ) ¢ cos(2mkx) + d sin(2mkx).
y'(x,

k=1

Plugging this back into (31), we get

X co sin(20(y, E) — 20(y, E)) g

B= o 2 (1+y—b)
o0 sin(20(y, E) — 26(y, £))
32 + cx cos(2zky) dy
(32) kz:; (1+y—0>b)
o sin(20(y, E) — 20(y, E))
+ ) disin(2mky) (1+y—b) dy.

k=1

By the Cauchy—Schwarz inequality, (32) and the fact that Y ¢Z +d? < oo, we only
need to show that for £ > 0

x sin(20(y, E) — 20(v,E)) , 1 1
/xo cos(2zLy) Uty dy = fo(xO_b)
and
v sin(20(y, E) — 20(v, E)) , 1 1
(33) /xo sin(2z£y) Gy dy=, 0<x0 B b),
and

*sin(20(y, E) — 20y, E)) , 1
/xo (1+y—b) dx_O<X0—b).
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As before, we only give the proof of (33).
By trigonometry, we have

X sin(20(y, E) — 20(y, E))
/XU sin(2z{y) (1+y—b) dy
_ [*cosQ2mly — (20(y, E) — 26(y, E)))
(34 = /xo 2(1+y—b) dy
_ cos(2rly+ 200, B) = 200, £) ,
2(1+y—b) Y

By the same reason, we only prove that

/x cos(2zly — (20(y, E) — 20(y, E))) el 0

35 - .
(35) l+y—b N

0

Since k(E) and k(E) are distinct, we must have
(36) 0 < |k(E) — k(E)| < =.

Note that since the other case has a minus instead of a plus, here is where we need
the restriction k(E) + k(E) # «.
Denote
Or(x) = 27lx — 2(0(x, E) — O(x, E))

and
{ =2xt —2(k(E) — k(E)) > 0.

By (30), one has

o(1)

(37) Go=C+ .

Observe that this is positive if x — b is sufficiently large.
Let iy be the largest integer such that

27y + 72T < ég()(o).

By (37), there exist xo < x; < Xy < -+ < X; < Xz41 such that x lies in [x,—;, x;) and
~ 2i—1

(38) Bp(xr) = 2mip + - oo

fori=1,2,...,t,t+1.

By integrating (37), we obtain

(39) Op(x) = {x + O(1) In(1 +x — b).
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And so
7 | = BCxi) = ) + Oy (1T Y
Xiy1 — Xi| = Xi — Xi
+1 C\Ni+1 4 1+xi —b
_ 1+)C,'+1 -b
—7r+0(1)ln< 1+x,-—b) by (38)
_ Xit1 — X _ Xigl — X
—7r+0(1)‘ln(1+ 1+xi—b)‘_ﬂ+0(1)‘1+xi—b'
This implies
T o(l)
|xiv1 —xil = 5+ - )
£ €x;+1—-0b)
and so for sufficiently large x; — b,
i
40 izXot 5.
(40) XiZ X0+ 5
Similarly, for y € [x;, x;+1), we have
~ . T - o(1)
0 =2mig+irt — _ +€(y—x)+ . R
) =2 +im = 4l =+ o S
which implies
Xit+1 - - R
[ coseaty = 2600, £~ 6. Epiay
Xit+1 -
(41) =/ | cos O (y)|dy
b3 ~ o(1 1 o
:2/’cos(€y)dy+ o 1, o
0 A +x;—b) € 2(1+x;—b)

Notice that cos(2ztx — 2(0(x, E) — O(x, E))) changes the sign at x;. The integral
also has some cancellation between (x;_1, x;) and (x;, x;+1). Let ¢ € {z, ¢t + 1} such
that 7’ is odd.

By (41), we obtain

/x cos2rly — 2(0(y, E) — O(y, E))) i

" 1+y—5>
o) X cos By (y)
(42) = +/ 2 ay
A +xg—b) Jy, 1+y—2>
1 s 1 1 1
_ o) +Z~ o) _ o) ’
t(l+x0—b) “Z O +xi—=b)l+x;i—b {(1+x9—b)

where the last equality holds by (40). Since /¢ is bounded, (35) follows. This
concludes our proof. (]
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Remark 5.2. In order to estimate the other part of (29), that is

/X cos(20(y, E) + 26(y, E))d
w 27’0, E)Y1+x—b)

b

we need the assumption k(E) + k(E) Z.

Lemma 5.3. Fix E € (a,, b,) and boundary condition 0, € [0, ). Then there
exists a yo € [0, ) such that under the potential of V given by (22), the solution

W@ _

of Hu = Eu on [a, 00) with boundary condition tan 0y satisfies

u(a)
x—>b
43) InR(x, E) —InR(a, E) < —1001n b +C
a—
and
(44) InR(x, E) < InR(a, E)

forall x > a.

Proof. Without loss of generality, assume b = 0. Choose some yy = 0(a)
such that (12), (17), (18) and (19) hold for x = a and “\) = tan6,. By (14), (15),
(21) and (22), we have

C

_ - _ * )
45) InR(x, E) —InR(a, E) /a 29y, E) 1 +x sin“ 260(y)dy
and
’ C : 1.2
(46) O, E)=y'(x,E)+ sin 260 sin”~ 6.

2y"(x, E)(1 +x)

Observe that (44) follows from (45) directly.
By (23) in Proposition 5.1, one has

L |
/a1+ycos4t9(y)dy—0(1).

This yields that
e 1, e 1
— sin“ 20(y)dy = — / (1 — cos46(y))dy
/a 2y, E) 1 +y o 4V E) L +y
x C 1
< — / dy
a 4Y0E)1+y
< —100ln" +C.

a O
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Lemma 5.4. Let us use the potential V(x, E, a, b) of Lemma 5.3 in (1). Let E
be another energy in \J (as, by) such that k(E) # k(E) and k(E) + k(E) # m. Then
we have

47) R(x, E) < 1.5R(xo, E),
for any x > xo > a and large enough xy — b.

Proof. By (14) and (22), we have

* C

. sin 20(y, E) sin 20(y, E)dy.
2 By 1+ (v, E) (v, E)dy

InR(x, E) — InR(x0, E) = —

By (24) in the previous Proposition 5.1,

x 1

. 1
N sin 26(y, E) sin20(y, E)dy = O s
X 2V E)lL+y—0 02 E) (v, E)dy <X()—b)

for all x > xo > a. This implies Lemma 5.4. O

So far we have a construction of V that is discontinuous. Now we want to assert
that we may choose V to be smooth.

Proposition 5.5. Let E and A = {Ej}j’.‘=l be in |J,(ar, be). Suppose k(E) and
{k(Ej)}J'.‘=1 are different, and k(E) + k(Ej) Zrforanyje {1,2,...,N}. Suppose
6y € [0,7]. Let xiy > x9 > b. Then there exist constants K(E,A), C(E,A)
(independent of b, xy and x,) and potential XN/(x, E, A, xo, x1, b, 6y) such that for

xo — b > K(E, A) the following holds:
Potential. For xy < x < xy, supp(\7) C (x0, X1), Ve C*®(xg, x1), and
C(E,A)

b

(48) \V(x, E, A, x0, X1, b, 0p)| < .

Solution for E. The solution of
(Ho + V)u=Eu

with boundary condition ';/((;‘:)) = tan Oy satisfies

— by —100
(49) R, B) < CEA) () 7)) R, B)

and for xy < x < xy,

(50) R(x, E) < 2R(xp, E).
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Solution for Ej. The solution of (Hp + Vu = Eju with any boundary condition

satisfies for xo < x < xy,

(51 R(x, Ej) < 2R(x0, E)).

Proof. Let V| be given by (22) with a = xg. Let x = x; and a = xp in
Lemmas 5.3 and 5.4. We modify V| on the boundary x = xy and x = x; a little and
obtain V. We can also require |V(x)| < |Vi(x)|. Recall that R is the magnitude of
the solution of the linear differential equation (2). Thus R(x, E) is continuously
related to V, and so a small change in V will only result in a small change in R(x, E)
in the finite interval x € [xp, x;]. Thus Lemmas 5.3 and 5.4 still hold, and this
implies Proposition 5.5. O

6 Constructing the perturbative potential in the con-
tinuous setting

In this section we will give a proof of Theorems 2.2 and 2.4. We will give the con-
struction of the potential V. The idea is to glue the potential V(x, E, A, xq, x1, b, 6p)
in a piecewise manner. Our construction is inspired by [8], where they use it to
construct a rotationally symmetric metric on manifolds.

Let us fix a band of the absolutely continuous spectrum, and enumerate the
desired embedded eigenvalues in our band spectrum as E; (we always assume there
are countably many). Let N : Z* — Z* be a non-decreasing function, N(1) = 1
and N(w) grows very slowly (in other words, we expect N(w) = N(w + 1) to be
true for “most" w € Z,). Furthermore, we define N so if N(w + 1) > N(w) then
N(w+1) =N(w)+1. Let C,, be a large constant that depends on the eigenvalues £
until Enw),

(52) Cy,=C(E, Es, ..., Enw)-

We emphasize that the dependence of Cy,.; on the E; does not take into account
multiplicity. Thus if N(w + 1) = N(w + 2) (which we expect to happen very
frequently) then Cy41 = Cypso.

We have N(w) = max N for sufficiently large w in the construction of Theo-
rem 2.2 and we instead have lim,, N(w) = oo in the construction of Theorem 2.4.

Define
(53) Tyr1 = TyCun
and Ty = C;. By modifying C,,, we can assume T, is large enough so that

T, > K(E, {E}Y("\E)

for any E € {Ej}jl\i (” in Proposition 5.5.
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On the other hand, if N(w) goes to infinity arbitrarily slowly, then C,, can also
go to infinity arbitrarily slowly. This doesn’t contradict our previous statement
that 7, is “large enough", since we can choose the C,, to be large but also choose
it to be constant for long stretches of w € Z,. We do however choose C,, so that it
goes to infinity faster than N(w): let us in fact choose C,, so that

(54) C, > 4Nw+h,

We can also assume

(55) T, > 1000,
and for large w,
Cy < Inuw,
and
1

2 .
(56) CulV(w) < 100 xe[ﬁﬂJth(x)’
where /(x) is given by Theorem 2.4.

Let

(57) Jw =Y NOT;.

Notice that J,, and T}, go to infinity faster than C,,. More precisely, we will have
Cy/J, and C,,/T,, both tending to 0 as w tends to infinity.
We will also define function V (suppV C (1, 00) ) and u(x, E;), j=1,2,... on
(1, J,) by induction, such that:
(1) u(x, E;) solves for x € (0, J,,)

2

(58) ( — o TV + V(x))u(x, E)) = Eju(x, E)),
and satisfies boundary condition
u'(0, Ey)
59 77 =tan0;;
&9 u©.E)

2) ux,E))fori=1,2,...,N(w) and w > 2, satisfies
(60) R(J, Ei) < 2YINw)  C R -1, E);

3) Vix) e C*WJp-1,Jw] and

N(w)C?

(61) Vol=M

>

where M is an absolute constant.
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By our construction, one has

Ju S SENOT _  Nw) _ Nw)

T;
62 < < <
( ) Tw+ 1 Tw+ 1 Cw+1 i—1 Tw Cw+ 1

The last inequality comes from (55).

6.1 Construction. Define V(x) = 0 for x € [0, 1]. Let u(x, E;) be the
solution of

(63) Hu = Eju
with boundary condition
u'(0, Ey)
= tand,.
u©,E)

We proceed by an induction argument. Suppose we have completed the con-
struction V(x) for step w. That is we have given the definition of u(x, E;) on
(1, J,] for all possible j. Suppose also u(x, E;) on (1,J,,] fori =1,2,..., N(w)
satisfies (60).

Denote B, = {Ei}ﬁ(lwl). Applying Proposition 5.5 to xo=J,,, X1 =J + Twe1,

b=0,E=E tanf, = IZ/((JJ,T,’E)) and A = B,,+1\{ E1}, we can define

V('xa Ela Bw+1\{E1}9Jwa Jw + Tll)+19 05 60)

on x € (Jy,Juw + Ty+1] since the boundary condition matches at the point J,,
(guaranteed by tan 6y = ';/((Jjw’gl))). Thus we can define u(x, E;) on (0, J,, + T,41) for

all possible j. Moreover, letting x| = J,,+ T+ in Proposition 5.5, one has (by (49))

Juw+ Ty —100
RUy+ Ty, B < (777 ) 7 Cpi RU, En)
(64) Jw
< N(w)C 2R, E1),

since (62) holds and C,,. is chosen to be large.
We mention that now the constant C(E, A) in Proposition 5.5 should be Cy,.;.
Applying Proposition 5.5 to xog = Jy, + Tpi1, X1 = J + 2T 41, b = Typy1, E = En,

A =B,1\E,, and tan 6, = ’;((JJU’ITTi‘:I'g;)), we can define

V()C, E2: Bu>+1 \Ez, Ju>+Tw+l 5 Jw+2Tw+l: Tw+l 5 ‘90) onx e (]w+Tw+l 5 Jw+2Tu>+l]-

Thus we can define u(x, E;) on (0, J,, + 2T ) for all possible j. Moreover, letting
x1 =Jy + 2T, in Proposition 5.5, one has

Jw + Tw+l
JZU
< N Cy R, + Ty, En).

w+1

—100
Ry + 2T, E2) < ( ) ConiRUy + Ty, Ea)

(65)
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Suppose we give the definition of V and u(x, E;) for all j on (0, J,, + tT,4+1] for
t < N(w+ 1) — 1. Let us give the definition on (0, J,, + (t + 1)T,11]-
Applying Proposition 5.5 to xo = Jy + tTyps1, X1 = Jp + (¢ + DTy,

W (Jp+tT i1, E,
b=tTyi1, E=FE;1,A=By,1\E4 and tanfy = u((J,f+szw:11,E,:1))’ we can define

V(x, Et+l: Bu>+1 \Et+l 5 Jw + tTw+l ) Jw + (t + l)Tw+l: tTw+l ) 90)
onx € (J, +tTys1,Jw+ (@ +1)T,41). Thus we can define
u(x, E]) on (0: Jw + (t + 1)Tw+l]

for all possible j. Moreover, letting x; = J,,+(¢+1)T,,+; in Proposition 5.5, one has

Ju + Toppg \ 100
RUy+(+ DTt Ere) < (777 7 ) CuRWU + 1T, i)

(66) Jw
< Nw) C2R(Jp + tTs1, Ers1).

w+1

Thus we can define on (0, J, +N(k+1)Ty+1) = (0, Jp+1) by induction for J,, + T+ .
Letus mention that forx € [J,,+tT 41, J+(@+1)T11]and0 <t < N(w+1)—1,
(67)

- U (Jp+tT a1, Es1)
V=V (%, Bt Bust\UEs1}, it T, et (DT, T, - 000 ),

M(Jw+tTw+l > Et+1)

where V is taken from Proposition 5.5.

Now we should show that the definition satisfies the w + 1 step conditions
(58)—(61).

Let us consider R(x, E;) fori = 1,2,...,N(w + 1). R(x, E;) decreases from
pointJ,+ (i — DTy toJy, +iT 1, i=1,2, ..., N(w+ 1), and may increase from
any point J,, + (m — )Ty to Jyy +mT 1, m=1,2,... ., N(w+ 1) and m #i. That
is

R(Jy +iTwi1, Ei) < NP(0)CL Ry + (i — DT w1, E),

w+1

and for m # i,
R(Jy +mT i1, E) < 2R(Jy + (m — 1)T 41, Ei),

by Proposition 5.5.
Thusfori=1,2,...,N(w+1),
R(J w1, Ei) < 2V ON(w)°CR(,,, E).

w+1

This implies (60) for w + 1.
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By the construction of V(x) in equations (67), (48) and (53) we have for
X € []w +tTw+l:Jw + (t+ 1)Tw+l] and0 <1 < N(U)+ 1) -1,

Cw+1 Cw+1 _ Cw+1

68 Vv < = .
( ) | (X)l X tTw+1 N (Ju) + tTw+1) - tTw+1 Jw

Furthermore, notice that by (53) and (57), for a constant M,

Tw+1 _ Tw Cw+1

69
( ) JU) Ju)

< Mcw+l

Recall thatx € [J, + tT i1, Jw + @+ DT ]and 0 <z < N(w+ 1) — 1.

Direct computations show that

! + ! + T <2C
Nw+1)  J,Nw+1)  J, wils
1 T
L+ +N(w+1) ;’*‘ <2N(w + D)Cppr1,
w w
Jy+N(w + DTy + 1

J <2N(w + 1)Cyr1,

I _ 2N(w+ DCyu

Jy Ju+ N+ DTpey + 1
L _ 2N@w+DCon

Jo Jo+@+ DTy +1’
I _100N(w+ D)Cys

(70)

Jw x+1 ’
Corl _ 100N (w + 1)C2
Jw x+1

By (68) and (70), we have for x € [J,, Jp+1]

Nw+1C2,,

(71) |[V(x)| < 100
x+1

This implies (61).

6.2 Proof of Theorems 2.2 and 2.4.

Proof. In the construction of Theorem 2.2, eventually N(w) and C, are
bounded. In the construction of Theorem 2.4, N(w) and C, grow to infinity
arbitrarily slowly. By (61) and (56), we have that (7) and (8) hold.

By (16), it suffices to show that for any j, R(x, E}) € L3([1, 00), dx). Below we
give the details.



EMBEDDED EIGENVALUES IN SPECTRAL BANDS 23

For any N(wg — 1) < j < N(wy), by the construction (see (60)), we have for
w = wo

VDN (W) CNR . Ej) < CufiR(w, E))
T25 w+lR(Jwr>’ E)

— wo

R(J w1, Ej)

IN

(72)

A

where the second inequality holds by (54) and the third inequality holds by (53).
By (50), (51), (54) and (72), for all x € [Jy+1, Juw2l,

(73) R, E)) < 2YPRU i1, E)) < CosaR(U i1, Ep) < T Ty 2Ry, Ej).

Then by (73), we have

/ R(x,Epdx= ) / R(x,Epdx < > TigTwHR%JwO,E)dx
Jzu[)+l

w>1w Jw+1 w>wg Juw+1
50 p2 —48
< TR Juys E) > N(w +2)T T
w=wo
50 p2 —47
= TR (Jugs E) Y N(w+2)CoiaT,}]
w=1wo
50 p2 —40
=< TwoR (JIUO’EJ) Z wrl < OO,
w=1wo

since N(w) and C,, go to infinity slowly and T, satisfies (55). This completes the
proof. (|

7 Generalized Priifer transformation and proof of The-
orem 2.7

This section is mostly a summary of the generalized Priifer variables developed
in [27]. At the end of the section we prove Theorem 2.7. In (3), we have a
Jacobi matrix J with coefficients @, > 0, b, € R, viewed as an operator Jy
on é’z(Zzo). We consider also its perturbation, a Jacobi matrix J with coefficients
an+a, > 0, b,+b, € R, and viewed as an operator J on £?(Zx). For E € (ck, dy),
let ¢ be a Floquet solution given by (9). Without loss of generality, assume
|p(0)]? + |@(1)|> = 1. Obviously,

(74) an19(n+ 1) + bpro(n) + app(n — 1) = Ep(n).
We also consider an eigensolution u for H,

(75) (ans1 + dpDum+ 1) + (bpsr + b, Du(n) + (a, + a,)u(n — 1) = Eu(n).
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We define y(n) as the argument of ¢(n). In other words,
(76) p(n) = p(n)|e”™.

We can ensure uniqueness of y by setting y(0) € [0, 2x), y(n) — y(n — 1) € [0, 27).
Note that ¢ is complex, and is linearly independent with its complex conjugate .
On the other hand, we assume that u is a real-valued eigensolution.
We now introduce Z(n). Our Priifer variables will be defined as the argument
and absolute value of Z(n). It is defined as follows:

(an+du(m) _ 1 aom \ anp(n)
an ( u(n — 1) ) =2 (Z(”) <(p(n - 1)) Z(m) <(p(n - 1)))

a,p(n)
Zn) <¢(n - IN '

By linear independence of ¢ and ¢ and reality of u, (77) uniquely determines Z(n).

(78) =1Im

The Priifer amplitude R(n) > 0 and Priifer phase #(n) € R are defined as
(79) Z(n) = R(n)e™™.

We will also need a few alternate versions of the Wronskian. For two sequences
f, & we have

Wo,o(fs ©)(1) = apsif(n)g(n+ 1) — a1 f(n + Dg(n),
Wa o (f, 8)(n) = (ape1 + dp (D) + 1) — (ape1 + @, )f (n+ 1)g(n),
Wo.a (f, )(n) = (aps1 + @, )f (g + 1) — apif(n + 1)g(n).

If we assume

aprif(n+ 1)+ apf(n — 1) = (x = bu)f (n)

and
(Aps1 + dypy)g(n+ 1) + (ay + a)g(n — 1) = (x — by — b, )g(n),
then
a'\/s - a'\ls _1
(80) Wo,« (f, 8)(m)—Wo,o (f, )(n — 1)

= =D}, f(Mg(n) — a,(f(m)g(n — 1) + f(n — D)g(n)).

Since ¢, ¢ are linearly independent solutions of (74), by constancy of the Wron-
skian, we have

(8D Wo,0(e, 9)(n) = 2ian Im(p(mp(n + 1)) = iw,



EMBEDDED EIGENVALUES IN SPECTRAL BANDS 25

for some real nonzero constant w. Thus,

(82) 2|p(n)| - lp(n + Dlap sin(y(n+1) — y(n) = .

We can use Wronskians to invert (77) to get
2
(83) Z(n) = wWo,a/(co, u)(n—1).

Theorem 7.1 (Theorem 5 of [27]). Priifer variables obey the first-order re-
cursion relation
Zn+1) i

a I ¥
zm ~ ' wa +n o b, ()| (e~ 210 _ 1)
n

n

i i(rn—1)—
+  dulop—=DI - lp(m)]er =D

i . .
— d)p(n — )| - |p(n)|e” 2N =0 0=Drym)

0]
i a . .

+ n a;(l _ 6—21(77(11)+y(n)))|¢(n —-1)- |(p(n)|e_’(y(”_l)_y(”)).
wa, +a,

Remark 7.2. In this paper, we assume a), = o(1) and b}, = o(1). Since ay,, b,
are periodic, a,, a, + a;, > 0 for all n, then

1
(84) ara o).

We define the Priifer amplitude R and the Priifer phase # by
(85) R(n) =1Zn)|,  n(n) = Arg(Z(n)).

In that case, we have

(86) R(n+1):‘Z(n+1).

R(n) Z(n)
Note the following bound on R(n):

Proposition 7.3. For a constant K (depending on Hy and E),
1
K\/u(n)2 +u(n — 12 < R(n) < K/u(n)? +u(n — 1)2.

Proof. The left inequality simply follows from (78). The right inequality
follows from (83) and the Cauchy—Schwarz inequality. ([
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Let us set a} = 0 for all j. This changes Theorem 7.1 into a much simpler
formula,

Zn+1)
Z(n)

Using (87) and (86) we have

(87) 1= "B, oGP~ 2 _ 1)
w

R(n+1)>?
R(n)?

= (1= | BhulotnPeos2(m) + 2y(m)) — isin@(m) +2y(m) = 1))
(88) x (1+ ;b;+1|go(n)|2(cos(2;7(n) +29() + i sin(2n(n) + 2y (n) = 1))

2
= 1=y sin@n(n) +2y(m)lp(m)P

/ 2 4
& 4O 10O G ny 4 9.
w

Also, starting with (87) and multiplying by Z(n)e”?™ we obtain
R(n+ 1)exp(in(n+ 1) + iy(n))
. . l / .
(89) = RO exp(in(m) + iy(m) = b1 lo(m)I*(exp(—in(n)

— iy(n)) — exp(in(n) + iy(n)))R(n).

Dividing the real part by the imaginary part for both sides of the above equation,
we get

2
(90) cot(n(n+ 1) + y(m) = cot(n(m) + y(m) = by, lp(n)|*

Proof of Theorem 2.7. Suppose u is an eigensolution with corresponding
E € (¢, di). By Theorem 7.1, (84) and (86), we have

Rn+1) _ o(l)
Rn) = n
This implies that
1) InR( + 1) — InR(n) = OS).

Thus for large ng, and n > ngy, we have

(92) InR(n) > InR(ng) — ; > ;{

k=no
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This implies for large n,

1
R(n) > |-
Cns

This contradicts u € {’Z(Zzo) by Proposition 7.3. ]

8 The perturbative construction in the Jacobi setting

We always assume a, = 0. In this section, all the equations are in the discrete
setting. We indicate the dependence on E; thus we will write R(n, E), Z(n, E),
n(n, E) and y(n, E). Let O(n, E) = y(n, E) + y(n, E).

By (90) and [13, Prop. 2.4], one has

(n(n+ 1)+ y(m) — (n(n) + y(n)) = O}, ).
This implies
(93) On+1,E)—0n,E)=yn+1,E) — y(n, E)+ O(|b,,]).
We will add another equation to complete our construction. Using (88) we get

InR(n+ 1, E)—InR(n, E)
(94) b;’l+1 . 2 / 2
== sin(2n(n, E) + 2y(n, E)|p(n, E)|” + O(|D)4, 7).

We will construct ), in a piecewise manner. Let Jy be the periodic operator with
Jacobi coefficient sequences a,, b, and Jy +b'Id be the perturbation with coefficient
sequences a,, b, + b),.

Proposition 8.1. Let E be in | J,(c¢, d;) such that k(E) # 5- Let A= {Ej};’;l
be in \J,(ce, dp) such that k(E) # k(E;) and k(E) + k(Ej) #m forallj=1,2,...,m.
Suppose 8y € (0, w). Letny > ng > v . Then there exist constants K(E, A), C(E, A)
(independent of v, ng and n;) and perturbation b,(E, A, ng, n1, v, 6y) such that for
ng — v > K(E, A) the following holds:

Perturbation. for ny < n < ny, supp(b’) C (ng, n,), and

C(E,A)

(95) |b;l(EaAa no, ni, L, 90)' <
n—o

Solution for E. the solution of (Jo+b'1d)u = Euwith boundary condition (ny, E) =
Oy satisfies

D\ —100
(96) R, B) < CEA) (1" ) R0, B),

ny —
no — o
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and forng < n < nj
o7 R(n, E) < C(E, A)R(ny, E).

In particular, for any ¢ > 0, if z(‘)_“ > K(E,A,¢),

—0

(98) R, By < ("' 7 Y Rowo, B).

n —

Solution for E;. any solution of (Hy + b'ld)u = Eju satisfies for no < n < n; and
e >0,
99) R, B < DE A, &)(" " ) R, By,
no — o

In particular, ifz[‘):llj > K(E,A,ég),
(100) R, E) < (" 7" ) Rno, By,

ng—0o

For simplicity, denote K = K(E, A), C = C(E, A) etc. We mention that
K> C>0.

Recall that y(n, E) is the argument of ¢ and is therefore fixed. We solve the
following equation for #(n, E) with initial condition #(ng, E) = 6y — y(ng, E) (or in
other words, O(ng, E) = 6y):
2.,
(101)  cot(n(n+ 1, E) + y(n, E)) = cot(n(n, E) + y(n, E)) — wbn+l lo(n, E)|?
with
/ / C :
(102) bn+1 = bn+1(Ea A: no, ny, L, 90) = Sln(217(n) + 2)’("))
n—o
We will show that this choice of b, satisfies our construction. Obviously, (95)

follows from (102).
First, we require a technical lemma:

Lemma 8.2. Let b, be given in (102), and let E and A satisfy the assumptions
of Proposition 8.1. Let f(n) be a sequence with q period. For any ¢ > 0, there
exists D(E, A, ) such that

(103) S0 B A em T
t=ng r—vo ng — 0
and
- in 20(t, E;) sin 20(t, E -
(104) S fi SO EDSNOE BN g gy sen T
t—o ng—o

1=ng

for all E; € A.
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Proof. We only give the proof of (103). The proof of (104) proceeds similarly.
KE) _

Case 1. k(f) is rational. Since k(E) ¢ 7, we can assume "

N > 3. Thus for any ¢,

Ny
N for some

N—-1

(105) > cos(4jk(E) + ¢) = 0.

J=0

By (9), (76), (93) and (95), one has
1
(106) K(E) = O(no + q, E) — O(no, E) + 0( ) mod Z.
no—0o
Iterating, we obtain for any positive integerj < N — 1,

(107) JK(E) = O(no + jq, E) — 0(no, E) + 0( mod Z.

l’lo—l))

Thus by (105) and (107), we can translate ng by p and use ¢ = 8(ng + p, E) to
get

N-1
1
Zcos49(no+jq+p,E):O( ),
=0 no+p—vo
forallp=0,1,...,qg— 1. This implies
N-1 .
. cosdl(ny +jg+p, E) o(l)
> f(no +jq +p) 0TMTE R ,
P no +jq+p (mo+p—v)
forallp=0,1,...,g—1. Letus define an integer w so that w is the largest integer
such that n — ng > Nqw — 1. Then
S 1 0440 E)\ _ lomr "M o))
- = 0 — )2
1=ng 4 v o v i=ng (l v )
(108) _ lomr i lo)
ng—v o (i—v)?
_ o)
ng—o

This completes the proof of (103) for rational k(f).

Case 2. k(f) is irrational. By the ergodic theorem, for any ¢ > 0, there exists
N > 0 such that

N—1
(109) > cos(4jk(E) + ¢)| < Ne.
j=0
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By (109) and (106), one has

N—-1

jz:;cos46'(n0+jq+p,E) 5N(3+O<noiv )),

forallp=0,1,...,q— 1. This implies

N—-1 .
46 E 1
W10) Y fin+iqep @ N HIIEPE) (2 Oy
= no+jq —p np—v  (ng—v)>

forallp=0,1,...,9— 1.
‘We note that

n

1 n—o
Zn:oj_” < 0(1)1n(no_v )

Thus, performing an estimate analogous to (108) we obtain

- cos40(t, E)
> T

1=ng

< D(E.,A,¢)+¢ln (:0__’; )

This concludes our proof of (103) for irrational k(f). ]

Proof of Proposition 8.1. Equation (94) becomes

InR(n+1,E)—InR(n, E)
(111) , C ., [O(D)]
=—lpon BF | 7 s @0+ 2900+ 7T
This implies
(112) InRn+1,E) —InR(n, E) < .
(n—wv)?
It is easy to see that (97) follows from (112) since ng — v > K.
Rewrite (111) as

InR(n+1,E) —InR(n, E)
(113) C cos40(n, E) o(1)
= —lp(n, E))? +O0()lp(n, E)|? + .
n—o -0 n—o)
Applying (103) with € = 1 to (113), we have, for n > ny,

,cos40(t, E) . o(l)

u C
InR(n, E) =InRuo, ) < 3 = 7 +OWlp, P 7"+ 7

1=ng

<C—-Ch (:0__1; )

This implies (96).
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Now let us consider the solution u(n, E;) of (Hy + b'Id)u = Eju.
By (94) again, one has

»,8in 20(n, E) sin 20(n, E;) o(l)

InR(n+ 1, Ej)) — InR(n, Ej) = —Clo(n, Ej)| L * 1y

By (103) (following Lemma 8.2) and following the proof of (96), we can prove
(99). We finish the proof. O

Proof of Theorems 2.8 and 2.9. Replacing Proposition 5.5 with Propo-
sition 8.1, Theorems 2.8 and 2.9 can be proved in a similar way to Theorems 2.2
and 2.4. The difference is that there is a new parameter ¢ involved. We write the
details in full in the Appendix. g

Appendix A Proof of Theorems 2.8 and 2.9

We will give the construction of the perturbation »’. The idea is to glue the potential
b'(n, E, A, xo, X1, 0, ) in a piecewise manner like the procedure of the continuous
case.

Let us fix a band of the absolutely continuous spectrum, and enumerate the
desired embedded eigenvalues in our band spectrum as E; (we always assume
there are countably many). Let N : Zso — Zs¢ be a non-decreasing function,
N(1) = 1 and N(w) grows very slowly (in other words, we expect N(w) = N(w + 1)
to be true for “most” w € Zs). Furthermore, we define N so if N(w + 1) > N(w)
then N(w + 1) = N(w) + 1. Let

1
114 , = .
(114) = 100N (w)
Let C,, be a large constant that depends on the eigenvalues E1, . . ., Eyq,). We write
(115) Cy,=CE, Es, ..., Enw))-

We emphasize that the dependence of C,,,| on the E; does not take into account mul-
tiplicity. Thus if N(w+ 1) = N(w+2) (which we expect to happen very frequently),
then C,,1 = Cyp4s. Let K, be large enough such that K, > K(E, {Ej}j}i(lw)\E, cw)
forall E € {Ej}j}i(lw) in Proposition 8.1.
We have N(w) = max; N(j) for sufficiently large w in the construction of Theo-
rem 2.8 and we instead have lim,, N(w) = oo in the construction of Theorem 2.9.
Define

(116) Tyr1 = TwCui
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and Ty = C;. By modifying C,,, we can assume T, is large enough so that
T, = Ky

for any E € {Ej}jli(lw) in Proposition 8.1.

Let E; and 6; be given by Theorem 2.8 and Theorem 2.9. Fix w. By Propo-
sition 8.1, then there exist constants K,,, C,, (independent of v, ny and n;) and
perturbation &'(n, E;, A, ng, n1, v, 6p) such that for np — o > K,, the following

holds:

Potential. forny < n < ny, supp(V) C (ng, n1), and
/ Co

(117) |b (l’l, EjaAa ng, ny, v, 90)' <
n [—

Solution for E;. the solution of (Hy + b'ld)u = E;ju with boundary condition
O(no, E;) = 0, satisfies

— —100
(118) Rou, B < Co( 11— %) Rano, B,
nog— 0o
and forng < n < ny
(119) R E) < (' ) Rono, B
nog— 0o

Solution for E; with j' #j. any solution of (Hy+b'Id)u = Eju satisfies, for ny <
n < nj,

— 8"7
(120) Rou Epy < (" 0 ) R, Ep).
nop— 0o

On the other hand, if N(w) goes to infinity arbitrarily slowly, then C,, can also
go to infinity arbitrarily slowly. Let us in fact choose C,, so that
(121) C, > 4Nw+h,

We can also assume for large w,
(122) T, = 1000*,

and for large w,
Cy, <Inuw.

Thus eventually one has

(123) Cw+1 < Tw-
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Let
w

(124) Jo=>_ N@OT;
i

By letting N(w) go to infinity arbitrarily slowly, we assume that
1

(125) C2N(w) < min  h(n),

- 100 nelJy-1,Jul

where h(n) is given by Theorem 2.9.

33

We will also define potential b, and u(n, E;),j =1, 2, ...on (0, J,,) by induction,

such that:
(1) u(n, E;) solves for n € (0, J,,)

(126) Ju(n, Ej) = Eju(n, Ej),

and satisfies boundary condition

Lt(l, E]) _

127) w0, E)

tan 6;;

2) u(n,E;))fori=1,2,..., N(w) and w > 2, satisfies

(128) R(Jy, E)) < 2YNw)Y°C°R(J -1, Ei)-;
3)
N 2
(129) b, < 100 (ui)le

forJy,—1 <n < J,.

By our construction, one has

Jw 522" N(l)TigzN(w) L _ ,Nw)

(130)

Tp+1 Ty+1 Cut i=1

The last inequality comes from (116) and (121).
Let u(n, E;) be the solution of

(131) Ju=Eu

with boundary condition

Tw - Cw+1 '

Now we should show that the b’ derived from this construction satisfies the

w + 1-step conditions (126)—(129).
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Let us consider R(n, E;) fori = 1,2,..., N(w + 1). Now R(n, E;) decreases
from point J,, + (i — 1)T 41 to Jyy +iT 41,1 =1,2, ..., N(w+ 1), and may increase
from any point J,, + m — 1)Tyry to Jy+mT e, m=1,2,...,N(w+1)and m #i.
That is

R(Jy +iT i1, Ep) < N (w)C 2Ry + (i — DT, Ep),
and for m # i (see (120)),

(132) Ry + mT 1, E)) < C3*HR(J + (m — DT yi1, EY),

w+1

by Proposition 8.1.
Thus by (114), fori=1,2,...,N(w + 1),

R a1, Et) < N(w) ' Co 0 CY " R(J, Ep) < N(w)°CoiiRU o, Ey).

w+1
This implies (128) for w + 1. By the construction of b/, we have

N(w + 1)C?
n+1

w+1
b

(133) .| < 100

forJ, < n < Jy+1. This implies (129).

Proof of Theorems 2.8 and 2.9. In the construction of Theorem 2.8,
eventually N(w) and C,, are bounded. In the construction of Theorem 2.9, N(w)
and C,, grow to infinity arbitrarily slowly. By (129) and (125), we have that (10)
and (11) hold.

It suffices to show that for any j, R(n, E}) € £%. Below we give the details.

For any N(wo — 1) < j < N(wy), by the construction (see (128)), we have for
w = wo

R(J 41, Ej) < Nw)°Cp iR, Ej) < Co3R(J s E))

(134) 257
< Tw w+1R(on’E)

where the second inequality holds by (121) and the third inequality holds by (116).
By (114), (119), (120), (121), (134), (132) and (123), for all n € [Jyy+1, Jw+21,

(135) R(n, Ej) = Cw-ul)-+22€w+2R(‘]w+1’ E) = C{Xiazgmz Tl%)o w+1 R(on’ E)
T25 u>+1R(‘]lDr)’ E)

— wo

A
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Then by (135), we have

o0 J1u+2 Jm+2
Y. RmE)=3) > RmE)< ) » TOT, R, E)
nzjzu[)+l w=wo n=J 41 wW=wo n=J 41
< TR (Jus E) > N(w +2)Tpa Tl
w>1wo
= T R*(Jup- E)) Y N(w +2)Copr Tyt
w>wo
< TR Uuwyn E) D Tl < oo,
w>1wo

since N(w) and C,, go to infinity slowly and T, satisfies (122). This completes the
proof. g
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