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Abstract. In this paper, we consider the Schrödinger equation,

Hu = −u′′ + (V(x) + V0(x))u = Eu,

where V0(x) is 1-periodic and V(x) is a decaying perturbation. By Floquet theory,
the spectrum of H0 = −∇2 + V0 is purely absolutely continuous and consists of
a union of closed intervals (often referred to as spectral bands). Given any finite
set of points {Ej}Nj=1 in any spectral band of H0 obeying a mild non-resonance

condition, we construct smooth functions V(x) = O(1)
1+|x| such that H = H0 + V has

eigenvalues {Ej}Nj=1. Given any countable set of points {Ej} in any spectral band of
H0 obeying the same non-resonance condition, and any function h(x) > 0 going to
infinity arbitrarily slowly, we construct smooth functions |V(x)| ≤ h(x)

1+|x| such that
H = H0 + V has eigenvalues {Ej}. On the other hand, we show that there is no
eigenvalue of H = H0 + V embedded in the spectral bands if V(x) = o(1)

1+|x| as x goes
to infinity. We prove also an analogous result for Jacobi operators.

1 Introduction

In this paper, we consider the Schrödinger equation,

(1) Hu = −u′′ + (V(x) + V0(x))u = Eu,

where V0(x) is 1-periodic and V(x) is a decaying perturbation.

When V ≡ 0, we have an unperturbed 1-periodic Schrödinger equation,

(2) H0ϕ = −ϕ′′ + V0(x)ϕ = Eϕ.

We also consider a Jacobi eigenvalue equation,

(3) (J0u)(n) := an+1u(n + 1) + anu(n − 1) + bn+1u(n) = Eu(n), n ≥ 0,
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2 W. LIU AND D. C. ONG

where the {aj, bj} are real sequences indexed by j ≥ 1 with aj assumed to be
positive. Alternatively, we can view this eigenvalue equation in terms of an
operator on �2(Z≥0). We also consider perturbations of this equation, namely,

(4)
(Ju)(n) = (an+1 + a′

n+1)u(n + 1) + (an + a′
n)u(n − 1) + (bn+1 + b′

n+1)u(n)

= Eu(n), n ≥ 0,

where a′
j and b′

j are real sequences chosen so aj + a′
j is always positive. Let us

assume in addition that the aj and bj sequences are periodic with period q ≥ 1.

The present paper is the combination of our two preprints [21] and [22]. These
two preprints are not intended for publication.

Through basic Floquet theory, we know that the essential spectrum of the
operators H0 and J0 both consist of absolutely continuous bands. Our goal is to
identify perturbations that leave the absolutely continuous spectrum unchanged,
but also produce an embedded singular spectrum in these absolutely continuous
bands.

This is a problem with a long history. Let us consider first a special case, the
free Schrödinger operator (that is, the operator H0 in the case where V0 ≡ 0).
Here the absolutely continuous spectrum is the interval [0,∞). For this operator,
the classical Wigner–von Neumann result [33] introduces a decaying oscillatory
perturbation that produces a single embedded eigenvalue at E = 1. Following
this, it has been an enduring topic of interest in inverse spectral theory to find
perturbations of the free operator that produce an embedded point spectrum in
[0,∞): see for instance [7, 8, 14, 15, 24, 25, 28, 12, 30, 29, 1]. See also [4] for a
more detailed survey of results in this area.

A natural next step is to understandhow to produce an embeddedpoint spectrum
when V0 �≡ 0. This more general problem has attracted recent interest [26, 32, 14,
23]. In addition, there has also been work done in an embedded point spectrum
for the spectral bands of other periodic operators, such as the Jacobi operator
[9, 11, 27] and the CMV operator ([27] and [31, Section 12.2]).

Our paper’s main thrust may be summarized as follows. Let V0(x) be any
1-periodic potential function, and consider any countable set S embedded in a
band of the essential spectrum of H0 in (2). If S satisfies a mild non-resonance
condition, we then carefully construct a perturbation V of V0 so that the essential
spectrum remains unchanged, and eigenvalues appear at every point in S. In
other words, for a given band we can find a perturbation that can produce any
embedded point spectrum we desire, as long as our set of eigenvalues obeys that
weak non-resonance condition.
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Our choice of perturbation is inspired by the one introduced in [8]. Of course,
since we are perturbing a periodic operator rather than a free operator the construc-
tion is different, and in many ways much more challenging. Rather than using the
standard Prüfer variables, we have to instead use the generalized Prüfer variables
introduced in [14], which are a lot more complicated. The main contribution of
this paper is in Section 5 where we have to perform several precise estimates on
these generalized Prüfer variables. One key innovation in this section is the use
of a Fourier expansion to ensure that some key terms in our construction decay
sufficiently quickly. After the Fourier expansion, we end up having to bound some
decaying oscillatory functions, and we accomplish this by carefully ensuring that
the positive parts and the negative parts of the decaying oscillations cancel out well
enough. The ideas in Section 5 are all new, and it is perhaps the most technically
complicated part of our paper. We remark that the free perturbation setting ex-
plored in [8] does not contain the obstacles we have to overcome here in Section 5.
Actually, our result implies the almost orthogonalization of generalized Prüfer
angles in a suitable Hilbert space, which allows us to investigate the distribution
of embedded eigenvalues [18]. We believe our analysis provides a useful tool to
tackle other topics in the spectral theory of perturbed periodic operators.

Our construction is an improvement over previous results in a few important
ways. For example, the construction in Theorem 4 of [26] only produces a single
embedded eigenvalue in each band. In [14], Theorem 4.2 we are presented with
a construction that can produce a dense embedded point spectrum, but only if the
desired eigenvalues satisfy a rational independence condition. The reason for these
technical restrictions in previous results is that while it is not too difficult to control
the growth of the formal eigenfunction for one eigenvalue, simultaneously dealing
with multiple eigenvalues at once is problematic. Point spectra are in a sense very
fragile, so modifying a perturbation V(x) to produce one eigenvalue often destroys
the other eigenvalues. Thus simultaneously producing two embedded eigenvalues
in a band is challenging, let alone infinitely many. We were able to overcome this
problem by making very careful choices in our construction of V .

We do admit a technical restriction on S, a non-resonance condition. Each
point of every spectral band is assigned a quasimomentum, which is a phase
parameter in [0, π) related to the Floquet solution of the unperturbed periodic
operator equation (2). Given any two points in S, we require that their quasi-
momenta not sum to π. This is a very natural condition that appears almost
universally in the embedded eigenvalues literature. For example, in [26] this non-
resonance condition is addressed in their Lemma 13 (expressed as a condition
on Fourier coefficients). In [6] this condition is described as the complement



4 W. LIU AND D. C. ONG

of energies {±2 cos(ω),±2 cos(2ω)}. We emphasize that our condition is much
weaker than that of the restriction in [14, Theorem 4.2], which requires the set of
quasimomenta to be rationally independent of each other and of π. In particular,
if we restrict ourselves to half of the spectral band (e.g., the half of the band corre-
sponding to quasimomenta in (0, π/2)) we can allow S to be a completely arbitrary
countable set.

Furthermore, by carefully tweaking our construction, we are able to ensure
that our perturbation V(x) can be made to a smooth function. This smoothness is
known to be difficult to achieve even for the case when V0 ≡ 0. We are able to
ensure smoothness due to the iterative nature of our construction, which allows
us to make small, precise adjustments to the V(x) function at each step to make it
smooth, while still controlling the size of all the eigenfunctions.

With regard to the Jacobi versions of our result, we remark that ours is a very
significant improvement over previous results in the literature. Eigenvalues are
in a sense very fragile, and so forcing multiple embedded eigenvalues to appear
simultaneously is often challenging. Compare, for instance, the result in [11],
which introduces a perturbation that can only produce two embedded eigenvalues.
In another very recent paper [10], the authors employed a geometric method
to construct embedded eigenvalues. While they are able to construct finitely
many eigenvalues, to embed infinitely many eigenvalues they require a rational
independence condition which our result does not require.

Note also that the proof that the construction produces the desired set of eigen-
values ismore difficult in the Jacobi setting compared to the continuousSchrödinger
setting. The spectral transition of embedded eigenvalues for discrete operators
heavily depends on the arithmetic properties of quasimomenta. For example, the
sharp transition for a single embedded eigenvalue for the continuous was known
40 years ago [2], dating back to [5]. However, similar results for the discrete
case are still open [20]. In addition, the generalized Prüfer transformations are
singular for the discrete setting. Although the proof of the continuous and discrete
case looks similar, the understanding and mathematical principles behind them are
significantly different. In this paper, the construction for the continuous case can
be bounded by a constant in the continuous case, but in the Jacobi setting those
same terms are bounded by a term that grows like ε ln n for small positive ε and as
n → ∞, which leads to an additional parameter in the construction.

Our paper is organized in the following way. In Section 2 we will introduce
notation and state our results. We first address our proofs in the continuous
Schrödinger setting. In Section 3 we will prove a result complementary to our
main results: that no embedded eigenvalues will be produced if our perturbation



EMBEDDED EIGENVALUES IN SPECTRAL BANDS 5

is small. Section 4 is when we begin to address our main theorem. This section is
just a non-technical summary of our method, aimed to give the reader an intuition
about how our construction works. We will prove important technical estimates in
Section 5, and in Section 6 we will showhow to constructV(x). In the next sections,
we prove results in the Jacobi setting. In Section 7, we discuss Prüfer variables
and the discrete analogue of our auxiliary small perturbation result. In Section 8
we prove our main results concerning embedded eigenvalues, mainly explaining
the parts of the proof that differ from the continuous Schrödinger setting. For the
readers’ convenience, we write out explicitly the proofs for the Jacobi setting in
the Appendix.

2 Main results

We consider a Floquet solution ϕ of (2), which has the following form:

(5) ϕ(x,E) = p(x,E)eik(E)x

where k(E) is the quasimomentum, and p(x,E) is 1-periodic.
It is known that the spectrum of H0 (on the whole line) is purely absolutely

continuous and consists of a union of closed intervals (often referred to as bands).
We denote

σac(H0) = σess(H0) =
⋃
k

[ck, dk].

In each band [ck, dk], k(E) is monotonically increasing from0 toπ or monotonically
decreasing from π to 0. Any two of those bands can intersect at most at one point.
By Weyl’s theorem, σess(H) = σess(H0) if lim supx→∞ |V(x)| = 0.

Theorem 2.1. Suppose

(6) V(x) =
o(1)
1 + x

as x → ∞. Let H = H0 + V. Then there exists no non-trivial L2(R+) solution of

Hu = Eu for any E ∈ ⋃
k(ck, dk). More precisely, if for some E ∈ ⋃

n(ck, dk) the
solution u of Hu = Eu satisfies u ∈ L2(R+), then u ≡ 0.

Theorem 2.2. Suppose {Ej}N
j=1 ⊂ ⋃

k(ck, dk) such that quasimomenta
{k(Ej)}N

j=1 are different. Suppose for any i, j ∈ {1, 2, . . . ,N}, k(Ei) + k(Ej) �= π.

Then for any given {θj}N
j=1 ⊂ [0, π], there exist functions V ∈ C∞[0,∞) such that

(7) V(x) =
O(1)
1 + x

as x → ∞
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and

Hu = Eju

has an L2(R+) solution with boundary condition

u′(0)
u(0)

= tan θj.

Corollary 2.3. Choose any band [ck, dk]. Let ek ∈ [ck, dk] be such that
k(ek) = π

2 . Suppose {Ej}N
j=1 are a finite set of distinct points in (ck, ek) or (ek, dk).

Then for any given {θj}N
j=1 ⊂ [0, π], there exist functions V ∈ C∞[0,∞) such

that (7) holds as x → ∞ and

Hu = Eju

has an L2(R+) solution with boundary condition

u′(0)
u(0)

= tan θj.

Theorem 2.4. Suppose A = {Ej}∞j=1 ⊂ ⋃
n(an, bn) such that quasimomenta

{k(Ej)}j are different. Suppose for any i, j, k(Ei) + k(Ej) �= π. Let h(x) > 0 be any

function on (0,∞) with limx→∞ h(x) = ∞.

Then for any given {θj}∞j=1 ⊂ [0, π], there exist functions V ∈ C∞[0,∞] such
that

(8) |V(x)| ≤ h(x)
1 + x

for x > 0,

and

Hu = Eju

has an L2(R+) solution with boundary condition

u′(0)
u(0)

= tan θj.

Corollary 2.5. Choose any band [ck, dk]. Let ek ∈ [ck, dk] be such that

k(ek) = π
2 . Suppose {Ej}∞j=1 are a countable set of distinct points in (ck, ek) or

(ek, dk). Let h(x) > 0 be any function on (0,∞) with limx→∞ h(x) = ∞.

Then for any given {θj}∞j=1 ⊂ [0, π], there exist functions V ∈ C∞[0,∞] such
that (8) holds and

Hu = Eju

has an L2(R+) solution with boundary condition

u′(0)
u(0)

= tan θj.
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Remark 2.6. (i) Actually, in the proof of Theorems 2.2 and 2.4, we show
that

V (k)(x) =
Ok(1)
1 + x

and

|V (k)(x)| ≤ Ok(1)
h(x)
1 + x

, x > 0,

respectively, where Ok(1) is a large constant depending on k.
(ii) Although we only consider the half line [0,∞), all the results in this paper

hold for x ∈ (−∞, 0].
(iii) We can assume that the V(x) we construct in Theorems 2.2, 2.4 and Corol-

laries 2.3, 2.5 satisfies

|V(x)| ≤ C

(1 + |x|) 2
3

.

Thus σac(H) = σac(H0) =
⋃

k[ck, dk] [3].

Now we are in position to introduce the results for perturbed periodic Jacobi
operators. Recalling equation (3) we denote

σac(J0) = σess(J0) =
⋃
k

[ck, dk].

Let E ∈ (ck, dk) and ϕ be the Floquet solution of a q-periodic operator. Suppose

(9) ϕ(n,E) = p(n)ei k(E)
q n,

where p(n) is a real q-periodic function and k(E) ∈ (0, π) is called the quasimo-
mentum (q is the period for an, bn). Sometimes, we omit the dependence on E.

Theorem 2.7. Suppose a′
n = o(1)

1+n and b′
n = o(1)

1+n . Let J be given by (4). Then
there exists no non-trivial �2(Z≥0) solution of Ju = Eu for any E ∈ ⋃k(ck, dk).

Theorem 2.8. Suppose {Ej}N
j=1 ⊂ ⋃

k(ck, dk) such that quasimomenta

{k(Ej)}N
j=1 are different. Suppose for any i, j ∈ {1, 2, . . . ,N}, k(Ei) + k(Ej) �= π. Let

a′
n = 0. Then for any given {θj}N

j=1 ⊂ [0, π], there exist b′
n such that

(10) b′
n =

O(1)
1 + n

as n → ∞ and
Ju = Eju

has an �2(Z≥0) solution with boundary condition

u(1)
u(0)

= tan θj.
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Theorem 2.9. Suppose

{Ej}∞j=1 ⊂ ⋃
k

(ck, dk)

such that quasimomenta {k(Ej)}j are different. Suppose for any i, j,

k(Ei) + k(Ej) �= π.
Let h(n) > 0 be any function on Z≥0 with limn→∞ h(n) = ∞. Let a′

n = 0
Then for any given {θj}∞j=1 ⊂ [0, π], there exists a sequence b′

n such that

(11) |b′(n)| ≤ h(n)
1 + n

for n,

and
Ju = Eju

has an �2(Z≥0) solution with boundary condition

u(1)
u(0)

= tan θj.

Finally, we remark that it is possible to make O(1) in (7) and (10) quantitative
[19]. Also, under the assumption V(x) = O(1)

1+|x| , we can show that the singular
continuous spectrum of H0 + V is empty [16]. Similar results hold for the discrete
cases [17].

3 Absence of embedded eigenvalues for small pertur-
bations in the continuous setting

From Section 3 through Section 6, we only consider continuous Schrödinger
operators.

Let E ∈ ⋃
n(an, bn) and let ϕ(x,E) be the Floquet solution of H0. We recall

the generalized Prüfer transformation of the Schrödinger equation Hu = Eu first,
which is from [14].

By interchanging ϕ and ϕ, we can assume

Im(ϕ(0)ϕ′(0)) > 0.

Define γ(x,E) as a continuous function such that

(12) ϕ(x,E) = |ϕ(x,E)|eiγ(x,E).

In the following arguments, we leave the dependence on E implicit if there is no
confusion. Note that we define u to be a real solution of (1) and ϕ is a Floquet
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solution of (2) (so ϕ is complex-valued). We also assume the quasimomentum
k(E) satisfies 0 ≤ k(E) ≤ π.

By [14, Proposition 2.1], we know there exists some constant G > 0 (depending
on E) such that

(13)
1
G

≤ γ′(x) ≤ G.

Proposition 3.1 (Proposition 2.2 and Theorem 2.3(b)(c) of [14]). Suppose u

is a real solution of (1). Then there exist real functions R(x) > 0 and θ(x) such that

(14) [lnR(x)]′ =
V(x)
2γ′(x)

sin 2θ(x)

and

(15) θ(x)′ = γ′(x) − V(x)
2γ′(x)

sin2 θ(x).

Moreover, there exists a constant K(depending on E) such that

(16)
|u(x)|2 + |u′(x)|2

K
≤ R(x)2 ≤ K(|u(x)|2 + |u′(x)|2).

Remark 3.2. Let δ(x) be a continuous function such that

(17) ϕ′(x) = i|ϕ′(x)|eiδ(x).

Then we have the following precise relations:

(18) u(x) = R(x)|ϕ(x)| sin θ(x)
and

(19) u′(x) = R(x)|ϕ′(x)| cos(θ(x) + δ(x) − γ(x)).

Proof of Theorem 2.1. Suppose u is an eigensolution with corresponding
eigenvalue E ∈ (an, bn). By (14) and the assumption (6), we have

(20) lnR(x) ≥ ln R(x0) − 1
3

∫ x

x0

1
1 + x

dx

for large x0 and x > x0. Fixing x0, we obtain for large x and a constant C̃,

R(x) ≥ 1

C̃x
1
3

.

This contradicts (16) and u ∈ L2(R+). Here we used the basic fact that Hu = Eu
and u ∈ L2(R+) imply u′ ∈ L2(R+). �
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4 A non-technical summary of our method

Since the calculations in the next few sections will be very technical and compli-
cated, let us first provide a non-technical summary of our technique, to help the
reader understand how everything connects in the big picture. The challenge of
our construction is that we are trying to create many different eigenvalues (perhaps
a countably infinite number) simulateneously. In other words, our solution must
decay fast enough for many different values of the energy E; let us say we desire
a V(x) that induces embedded eigenvalues at E = E1,E2,E3, . . .. The difficulty
is, if we create a potential VE1 (x) that produces a decaying eigensolution uE1 that
corresponds to an energy E1, that potential might cause solutions uE2 (x), uE3(x), . . .
corresponding to E2,E3, . . . to grow.

We thus perform a complicated concatentation process on the potential V(x)
to ensure that all the eigensolutions uE1 (x), uE2(x), uE3(x), . . . decay quickly. At
each stage of the concatenation (think of a stage as an interval in [0,∞) ), we
construct a potential that forces the eigensolution corresponding to a single en-
ergy to decay. In one stage, we construct VE1 (x) so that the eigensolution uE1

corresponding to an energy E1 decays very quickily, while we prove upper bounds
on how much the eigensolutions uE2, uE3, . . . corresponding to the other desired
energies can grow. Then we concatenate a next stage VE2 (x), that makes the eigen-
function corresponding to a second energy E2 decay quickly, while limiting how
much the other eigenfunctions uE1 (x), uE3(x), . . . can grow, et cetera. We then
alternate these stages. If we have a finite number of E1,E2,E3, . . . ,Ek we simply
repeat the VE1 (x),VE2(x), . . . ,VEk(x) stages periodically. If we have infinitely many
E1,E2,E3, . . . the concatenation gets more complicated, but it is still possible to
alternate the stages in such a way that the VEk(x) concatenation occurs infinitely
many times for every k (albeit each Vk(x) concatenation occurs more and more
rarely as x increases). We construct the VE1 (x),VE2(x), . . . in such a way that
each eigensolution decays quickly enough at the stages where we are focusing on
them, so that it compensates for how they might grow when we are focusing on
other eigensolutions. We perform this delicate procedure and this results in all the
desired eigensolutions decaying quickly enough to be in �2.

Intuitively, our construction works in the following way: we bound the eigen-
functions by integrals that involve decaying oscillatory terms, for instance involv-
ing sines and cosines. It is unsurprising that we can do this, since in our setting
the background potential is periodic and the perturbative potential we construct is
formed by concatenating chopped-up pieces of decaying oscillatory functions. We
then carefully show that for the decaying oscillatory terms in our integral bound,
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the positive part of the oscillation mostly cancels out with the negative part, and
this results in small upper bounds for the sizes of our eigenfunctions.

In Section 5 we will prove various lemmas that show integrals of various oscil-
lating expressions are small. This will culminate in Proposition 5.5, which is the
proposition that asserts that there exists a VE1 (x) that ensures that the eigenfunction
uE1 (x) decays very quickly, and the other eigenfunctions uE2 (x), uE3(x), . . .will not
grow too much. In Section 6 we explain how we concatenate the VE1 (x),VE2(x), . . .
stages, and we prove that we do indeed get eigenvalues where we desire them.

For the discrete case, although the calculations are different the idea is more or
less the same as what we explained above for the continuous case.

5 Some preparation for construction in the continuous
setting

Before we proceed with our perturbative construction, we will have to lay some
groundwork to ensure that certain key terms decayquickly enough for our purposes.
This section is the most novel and difficult of our paper, and demonstrates clearest
why perturbing a periodic operator is more challenging than perturbing a free
operator.

For any E ∈ (an, bn), we consider the non-linear differential equation for x > b,

(21) θ′(x,E, a, b, θ0) = γ′(x,E) +
C

γ′(x,E)(1 + x − b)
sin 2θ sin2 θ,

where C is a large constant that will be chosen later. Solving (21) on [a,∞) with
initial condition θ′(a)

θ(a) = tan θ0, where a > b, we get a unique solution. Notice that θ
depends on a, θ0 and E. Set

(22) V(x,E, a, b, θ0) = − C
1 + x − b

sin 2θ(x).

Proposition 5.1. Suppose θ(x,E, a, b, θ0) is given by (21), k(E) �= π
2 and

V(x,E, a, b, θ0) is given by (22). Then we have

(23)
∫ x

a

1
1 + y

cos 4θ(y)dy = O(1).

Let Ê be another energy in
⋃
�(a�, b�) such that k(Ê) �= k(E) and k(Ê) + k(E) �= π.

Suppose θ(x, Ê) is a solution of

θ′(x, Ê) = γ′(x, Ê) − V(x,E, a, b, θ0)

2γ′(x, Ê)
sin2 θ(x, Ê).

Then

(24)
∫ x

x0

1

2γ′(y, Ê)

1
1 + y − b

sin 2θ(y,E) sin2θ(y, Ê)dy = O
( 1

x0 − b

)
,

for any x > x0 > a.
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Proof. We only give the proof of (24). The proof of (23) is similar. Without
loss of generality, we assume x0 > a is large. First, using (15) and (21) we have
the differential equations of θ(x,E) and θ(x, Ê),

(25) θ′(x,E) = γ′(x,E) +
C

γ′(x,E)(1 + x − b)
sin 2θ(x,E) sin2 θ(x,E)

and

(26) θ′(x, Ê) = γ′(x, Ê) +
C

γ′(x, Ê)(1 + x − b)
sin 2θ(x,E) sin2 θ(x, Ê).

By (5) and (12), we have

(27) γ(x,E) = k(E)x + η(x,E),

where η(x,E) mod 2π is a function that is 1-periodic in x.
Observe that by basic trigonometry,

(28)
−2 sin 2θ(y,E) sin 2θ(y, Ê)

= cos(2θ(y,E) + 2θ(y, Ê)) − cos(2θ(y,E) − 2θ(y, Ê)).

Thus it suffices for us to find a bound for

(29)
∫ x

x0

cos(2θ(y,E) ± 2θ(y, Ê))

2γ′(y, Ê)(1 + y − b)
dy.

For simplicity, let us focus on the 2θ(y,E) − 2θ(y, Ê) case. The 2θ(y,E) + 2θ(y, Ê)
case will proceed in a similar way.

By (25), (26) and (27), we have

(30)
d
dx

([θ(x,E) − η(x,E)] − [θ(x, Ê) − η(x, Ê)] = (k(E) − k(Ê)) +
O(1)

1 + x − b
.

Let

θ̃(x,E) = θ(x,E) − η(x,E)

and

θ̃(x, Ê) = θ(x, Ê) − η(x, Ê).

By trigonometry again, one has

cos(2θ(x,E) − 2θ(x, Ê)) = cos(2θ̃(x,E) − 2θ̃(x, Ê) + 2η(x,E) − 2η(x, Ê))

= cos(2η(x,E) − 2η(x, Ê)) cos(2θ̃(x,E) − 2θ̃(x, Ê))

− sin(2η(x,E) − 2η(x, Ê)) sin(2θ̃(x,E) − 2θ̃(x, Ê)).
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Thus ∫ x

x0

cos(2θ(y,E) − 2θ(y, Ê))
2γ′(y,E)(1 + y − b)

dy

=
∫ x

x0

cos(2η(y,E) − 2η(y, Ê))
2γ′(y,E)

cos(2θ̃(y,E) − 2θ̃(y, Ê))
1 + y − b

dy

−
∫ x

x0

sin(2η(y,E) − 2η(y, Ê))
2γ′(y,E)

sin(2θ̃(y,E) − 2θ̃(y, Ê))
1 + y − b

dy.

Again, because the estimate of the other term follows in a similar way, we only
give the estimate for

(31)
∫ x

x0

sin(2η(y,E) − 2η(y, Ê))
2γ′(y,E)

sin(2θ̃(y,E) − 2θ̃(y, Ê))
1 + y − b

dy.

We proceed by Fourier expansion of sin(2η(x,E)−2η(x,Ê))
γ′(x,E) (which is 1-periodic con-

tinuous) and obtain that

sin(2η(x,E) − 2η(x, Ê))
γ′(x,E)

=
c0

2
+

∞∑
k=1

ck cos(2πkx) + dk sin(2πkx).

Plugging this back into (31), we get

(32)

(31) =
∫ x

x0

c0

2
sin(2θ̃(y,E) − 2θ̃(y, Ê))

(1 + y − b)
dx

+
∞∑
k=1

ck cos(2πky)
sin(2θ̃(y,E) − 2θ̃(y, Ê))

(1 + y − b)
dy

+
∞∑
k=1

dk sin(2πky)
sin(2θ̃(y,E) − 2θ̃(y, Ê))

(1 + y − b)
dy.

By the Cauchy–Schwarz inequality, (32) and the fact that
∑

c2
� + d2

� < ∞, we only
need to show that for � > 0∫ x

x0

cos(2π�y)
sin(2θ̃(y,E) − 2θ̃(y, Ê))

(1 + y − b)
dy =

1
�
O
( 1

x0 − b

)
and

(33)
∫ x

x0

sin(2π�y)
sin(2θ̃(y,E) − 2θ̃(y, Ê))

(1 + y − b)
dy =

1
�
O
( 1
x0 − b

)
,

and ∫ x

x0

sin(2θ̃(y,E) − 2θ̃(y, Ê))
(1 + y − b)

dx = O
( 1
x0 − b

)
.



14 W. LIU AND D. C. ONG

As before, we only give the proof of (33).
By trigonometry, we have

(34)

∫ x

x0

sin(2π�y)
sin(2θ̃(y,E) − 2θ̃(y, Ê))

(1 + y − b)
dy

=
∫ x

x0

cos(2π�y − (2θ̃(y,E) − 2θ̃(y, Ê)))
2(1 + y − b)

dy

− cos(2π�y + (2θ̃(y,E) − 2θ̃(y, Ê)))
2(1 + y − b)

dy.

By the same reason, we only prove that

(35)
∫ x

x0

cos(2π�y − (2θ̃(y,E) − 2θ̃(y, Ê)))
1 + y − b

dy =
1
�

O(1)
x0 − b+1

.

Since k(E) and k(Ê) are distinct, we must have

(36) 0 < |k(E) − k(Ê)| < π.
Note that since the other case has a minus instead of a plus, here is where we need
the restriction k(E) + k(Ê) �= π.

Denote
θ̃�(x) = 2π�x − 2(θ̃(x,E) − θ̃(x, Ê))

and
�̃ = 2π�− 2(k(E) − k(Ê)) > 0.

By (30), one has

(37) θ̃′
�(x) = �̃ +

O(1)
1 + x − b

.

Observe that this is positive if x − b is sufficiently large.
Let i0 be the largest integer such that

2πi0 +
π

2
< θ̃�(x0).

By (37), there exist x0 < x1 < x2 < · · · < xt < xt+1 such that x lies in [xt−1, xt) and

(38) θ̃�(xi) = 2πi0 +
2i − 1

2
π

for i = 1, 2, . . . , t, t + 1.
By integrating (37), we obtain

(39) θ̃�(x) = �̃x + O(1) ln(1 + x − b).
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And so

�̃|xi+1 − xi| = θ̃�(xi+1) − θ̃�(xi) + O(1) ln
(1 + xi+1 − b

1 + xi − b

)
= π + O(1) ln

(1 + xi+1 − b
1 + xi − b

)
by (38)

= π + O(1)
∣∣∣ ln(1 +

xi+1 − xi

1 + xi − b

)∣∣∣ = π + O(1)
∣∣∣ xi+1 − xi

1 + xi − b

∣∣∣.
This implies

|xi+1 − xi| =
π

�̃
+

O(1)

�̃(xi + 1 − b)
,

and so for sufficiently large xi − b,

(40) xi ≥ x0 +
iπ

2�̃
.

Similarly, for y ∈ [xi, xi+1), we have

θ̃�(y) = 2πi0 + iπ− π

2
+ �̃(y − xi) +

O(1)

�̃(1 + xi − b)
,

which implies

(41)

∫ xi+1

xi

| cos(2π�y − 2(θ̃(y,E) − θ̃(y, Ê)))|dy

=
∫ xi+1

xi

| cos θ̃�(y)|dy

= 2
∫ π

2�̃

0
cos(�̃y)dy +

O(1)

�̃2(1 + xi − b)
=

1

�̃
+

O(1)

�̃2(1 + xi − b)
.

Notice that cos(2π�x − 2(θ̃(x,E) − θ̃(x, Ê))) changes the sign at xi. The integral
also has some cancellation between (xi−1, xi) and (xi, xi+1). Let t′ ∈ {t, t + 1} such
that t′ is odd.

By (41), we obtain

(42)

∫ x

x0

cos(2π�y − 2(θ̃(y,E) − θ̃(y, Ê)))
1 + y − b

dy

=
O(1)

�̃(1 + x0 − b)
+
∫ xt′

x1

cos θ̃�(y)
1 + y − b

dy

=
O(1)

�̃(1 + x0 − b)
+

t+1∑
i=1

O(1)

�̃2(1 + xi − b)

1
1 + xi − b

=
O(1)

�̃(1 + x0 − b)
,

where the last equality holds by (40). Since �/�̃ is bounded, (35) follows. This
concludes our proof. �
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Remark 5.2. In order to estimate the other part of (29), that is∫ x

x0

cos(2θ(y,E) + 2θ(y, Ê))

2γ′(y, Ê)(1 + x − b)
dy,

we need the assumption k(E) + k(Ê) �= π.

Lemma 5.3. Fix E ∈ (an, bn) and boundary condition θ0 ∈ [0, π). Then there
exists a ψ0 ∈ [0, π) such that under the potential of V given by (22), the solution

of Hu = Eu on [a,∞) with boundary condition u′(a)
u(a) = tan θ0 satisfies

(43) lnR(x,E) − ln R(a,E) ≤ −100 ln
x − b
a − b

+ C

and

(44) lnR(x,E) ≤ ln R(a,E)

for all x > a.

Proof. Without loss of generality, assume b = 0. Choose some ψ0 = θ(a)
such that (12), (17), (18) and (19) hold for x = a and u′(a)

u(a) = tan θ0. By (14), (15),
(21) and (22), we have

(45) ln R(x,E) − ln R(a,E) = −
∫ x

a

C
2γ′(y,E)

1
1 + x

sin2 2θ(y)dy

and

(46) θ′(x,E) = γ′(x,E) +
C

2γ′(x,E)(1 + x)
sin 2θ sin2 θ.

Observe that (44) follows from (45) directly.

By (23) in Proposition 5.1, one has∫ x

a

1
1 + y

cos 4θ(y)dy = O(1).

This yields that

−
∫ x

a

C
2γ′(y,E)

1
1 + y

sin2 2θ(y)dy = −
∫ x

x0

C
4γ′(y,E)

1
1 + y

(1 − cos 4θ(y))dy

≤ −
∫ x

a

C
4γ′(y,E)

1
1 + y

dy

≤ −100 ln
x
a

+ C.
�
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Lemma 5.4. Let us use the potential V(x,E, a, b) of Lemma 5.3 in (1). Let Ê

be another energy in
⋃
�(a�, b�) such that k(Ê) �= k(E) and k(Ê) + k(E) �= π. Then

we have

(47) R(x, Ê) ≤ 1.5R(x0, Ê),

for any x > x0 ≥ a and large enough x0 − b.

Proof. By (14) and (22), we have

ln R(x, Ê) − lnR(x0, Ê) = −
∫ x

x0

C

2γ′(y, Ê)

1
1 + x

sin 2θ(y,E) sin2θ(y, Ê)dy.

By (24) in the previous Proposition 5.1,∫ x

x0

1

2γ′(y, Ê)

1
1 + y − b

sin 2θ(y,E) sin2θ(y, Ê)dy = O
( 1

x0 − b

)
,

for all x > x0 ≥ a. This implies Lemma 5.4. �
So far we have a construction of V that is discontinuous. Now we want to assert

that we may choose V to be smooth.

Proposition 5.5. Let E and A = {Êj}k
j=1 be in

⋃
�(a�, b�). Suppose k(E) and

{k(Êj)}k
j=1 are different, and k(E) + k(Êj) �= π for any j ∈ {1, 2, . . . ,N}. Suppose

θ0 ∈ [0, π]. Let x1 > x0 > b. Then there exist constants K(E,A), C(E,A)
(independent of b, x0 and x1) and potential Ṽ(x,E,A, x0, x1, b, θ0) such that for

x0 − b > K(E,A) the following holds:

Potential. For x0 ≤ x ≤ x1, supp(Ṽ) ⊂ (x0, x1), Ṽ ∈ C∞(x0, x1), and

(48) |Ṽ(x,E,A, x0, x1, b, θ0)| ≤ C(E,A)
x − b

.

Solution for E. The solution of

(H0 + Ṽ)u = Eu

with boundary condition u′(x0)
u(x0)

= tan θ0 satisfies

(49) R(x1,E) ≤ C(E,A)
(x1 − b
x0 − b

)−100
R(x0,E)

and for x0 < x < x1,

(50) R(x,E) ≤ 2R(x0,E).
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Solution for Êj. The solution of (H0 + Ṽ)u = Êju with any boundary condition

satisfies for x0 < x ≤ x1,

(51) R(x, Êj) ≤ 2R(x0, Êj).

Proof. Let V1 be given by (22) with a = x0. Let x = x1 and a = x0 in
Lemmas 5.3 and 5.4. We modify V1 on the boundary x = x0 and x = x1 a little and
obtain V . We can also require |V(x)| ≤ |V1(x)|. Recall that R is the magnitude of
the solution of the linear differential equation (2). Thus R(x,E) is continuously
related to V , and so a small change in V will only result in a small change in R(x,E)
in the finite interval x ∈ [x0, x1]. Thus Lemmas 5.3 and 5.4 still hold, and this
implies Proposition 5.5. �

6 Constructing the perturbative potential in the con-
tinuous setting

In this section we will give a proof of Theorems 2.2 and 2.4. We will give the con-
struction of the potential V . The idea is to glue the potential V(x,E,A, x0, x1, b, θ0)
in a piecewise manner. Our construction is inspired by [8], where they use it to
construct a rotationally symmetric metric on manifolds.

Let us fix a band of the absolutely continuous spectrum, and enumerate the
desired embedded eigenvalues in our band spectrum as Ej (we always assume there
are countably many). Let N : Z+ → Z

+ be a non-decreasing function, N(1) = 1
and N(w) grows very slowly (in other words, we expect N(w) = N(w + 1) to be
true for “most" w ∈ Z+). Furthermore, we define N so if N(w + 1) > N(w) then
N(w+1) = N(w)+1. Let Cw be a large constant that depends on the eigenvalues E1

until EN(w),

(52) Cw = C(E1,E2, . . . ,EN(w)).

We emphasize that the dependence of Cw+1 on the Ej does not take into account
multiplicity. Thus if N(w + 1) = N(w + 2) (which we expect to happen very
frequently) then Cw+1 = Cw+2.

We have N(w) = maxN for sufficiently large w in the construction of Theo-
rem 2.2 and we instead have limw N(w) = ∞ in the construction of Theorem 2.4.

Define

(53) Tw+1 = TwCw+1

and T0 = C1. By modifying Cw, we can assume Tw is large enough so that

Tw ≥ K(E, {Ej}N(w)
j=1 \E)

for any E ∈ {Ej}N(w)
j=1 in Proposition 5.5.
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On the other hand, if N(w) goes to infinity arbitrarily slowly, then Cw can also
go to infinity arbitrarily slowly. This doesn’t contradict our previous statement
that Tw is “large enough", since we can choose the Cw to be large but also choose
it to be constant for long stretches of w ∈ Z+. We do however choose Cw so that it
goes to infinity faster than N(w): let us in fact choose Cw so that

(54) Cw ≥ 4N(w+1).

We can also assume

(55) Tw ≥ 1000w,

and for large w,
Cw ≤ lnw,

and

(56) C2
wN(w) ≤ 1

100
min

x∈[Jw−1,Jw]
h(x),

where h(x) is given by Theorem 2.4.
Let

(57) Jw =
w∑
i

N(i)Ti.

Notice that Jw and Tw go to infinity faster than Cw. More precisely, we will have
Cw/Jw and Cw/Tw both tending to 0 as w tends to infinity.

We will also define function V (suppV ⊂ (1,∞) ) and u(x,Ej), j = 1, 2, . . . on
(1, Jw) by induction, such that:
(1) u(x,Ej) solves for x ∈ (0, Jw)(

− d2

dx2 + V0(x) + V(x)
)
u(x,Ej) = Eju(x,Ej),(58)

and satisfies boundary condition

(59)
u′(0,Ej)
u(0,Ej)

= tan θj;

(2) u(x,Ei) for i = 1, 2, . . . ,N(w) and w ≥ 2, satisfies

(60) R(Jw,Ei) ≤ 2N(w)N(w)50C−50
w R(Jw−1,Ei);

(3) V(x) ∈ C∞(Jw−1, Jw] and

(61) |V(x)| ≤ M
N(w)C2

w

x + 1
,

where M is an absolute constant.
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By our construction, one has

(62)
Jw

Tw+1
≤ 2

∑w
i N(i)Ti

Tw+1
≤ 2

N(w)
Cw+1

w∑
i=1

Ti

Tw
≤ 4

N(w)
Cw+1

.

The last inequality comes from (55).

6.1 Construction. Define V(x) = 0 for x ∈ [0, 1]. Let u(x,Ej) be the
solution of

(63) Hu = Eju

with boundary condition
u′(0,Ej)
u(0,Ej)

= tan θj.

We proceed by an induction argument. Suppose we have completed the con-
struction V(x) for step w. That is we have given the definition of u(x,Ej) on
(1, Jw] for all possible j. Suppose also u(x,Ei) on (1, Jw] for i = 1, 2, . . . ,N(w)
satisfies (60).

Denote Bw+1 = {Ei}N(w+1)
i=1 . Applying Proposition 5.5 to x0 = Jw, x1 =Jw + Tw+1,

b = 0, E = E1, tan θ0 = u′(Jw,E1)
u(Jw,E1)

and A = Bw+1\{E1}, we can define

V(x,E1,Bw+1\{E1}, Jw, Jw + Tw+1, 0, θ0)

on x ∈ (Jw, Jw + Tw+1] since the boundary condition matches at the point Jw
(guaranteed by tan θ0 = u′(Jw,E1)

u(Jw,E1)
). Thus we can define u(x,Ej) on (0, Jw + Tw+1) for

all possible j. Moreover, letting x1 = Jw+Tw+1 in Proposition 5.5, one has (by (49))

(64)
R(Jw + Tw+1,E1) ≤

(Jw + Tw+1

Jw

)−100
Cw+1R(Jw,E1)

≤ N(w)50C−50
w+1R(Jw,E1),

since (62) holds and Cw+1 is chosen to be large.
We mention that now the constant C(E,A) in Proposition 5.5 should be Cw+1.
Applying Proposition 5.5 to x0 = Jw + Tw+1, x1 = Jw + 2Tw+1, b = Tw+1, E = E2,

A = Bw+1\E2, and tan θ0 = u′(Jw+Tw+1,E2)
u(Jw+Tw+1,E2)

, we can define

V(x,E2,Bw+1\E2, Jw+Tw+1, Jw+2Tw+1,Tw+1, θ0) on x ∈ (Jw+Tw+1, Jw+2Tw+1].

Thus we can define u(x,Ej) on (0, Jw + 2Tw+1) for all possible j. Moreover, letting
x1 = Jw + 2Tw+1 in Proposition 5.5, one has

(65)
R(Jw + 2Tw+1,E2) ≤

(Jw + Tw+1

Jw

)−100
Cw+1R(Jw + Tw+1,E2)

≤ N(w)50C−50
w+1R(Jw + Tw+1,E2).
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Suppose we give the definition of V and u(x,Ej) for all j on (0, Jw + tTw+1] for
t ≤ N(w + 1) − 1. Let us give the definition on (0, Jw + (t + 1)Tw+1].

Applying Proposition 5.5 to x0 = Jw + tTw+1, x1 = Jw + (t + 1)Tw+1,
b = tTw+1, E = Et+1, A = Bw+1\Et+1 and tan θ0 = u′(Jw+tTw+1,Et+1)

u(Jw+tTw+1,Et+1)
, we can define

V(x,Et+1,Bw+1\Et+1, Jw + tTw+1, Jw + (t + 1)Tw+1, tTw+1, θ0)

on x ∈ (Jw + tTw+1, Jw + (t + 1)Tw+1). Thus we can define

u(x,Ej) on (0, Jw + (t + 1)Tw+1]

for all possible j. Moreover, letting x1 = Jw+(t+1)Tw+1 in Proposition 5.5, one has

(66)
R(Jw + (t + 1)Tw+1,Et+1) ≤

(Jw + Tw+1

Jw

)−100
CwR(Jw + tTw+1,Et+1)

≤ N(w)50C−50
w+1R(Jw + tTw+1,Et+1).

Thus we can define on (0, Jw+N(k+1)Tw+1) = (0, Jw+1) by induction for Jw+ tTw+1.

Let us mention that for x ∈ [Jw+tTw+1, Jw+(t+1)Tw+1] and 0 ≤ t ≤ N(w+1)−1,
(67)

V(x)= Ṽ
(
x,Et+1,Bw+1\{Et+1}, Jk+tTk+1, Jk+(t+1)Tk+1, tTk+1,

u′(Jw+tTw+1,Et+1)
u(Jw+tTw+1,Et+1)

)
,

where Ṽ is taken from Proposition 5.5.

Now we should show that the definition satisfies the w + 1 step conditions
(58)–(61).

Let us consider R(x,Ei) for i = 1, 2, . . . ,N(w + 1). R(x,Ei) decreases from
point Jw + (i − 1)Tw+1 to Jw + iTw+1, i = 1, 2, . . . ,N(w + 1), and may increase from
any point Jw + (m − 1)Tw+1 to Jw + mTw+1, m = 1, 2, . . . ,N(w + 1) and m �= i. That
is

R(Jw + iTw+1,Ei) ≤ N50(w)C−50
w+1R(Jw + (i − 1)Tw+1,Ei),

and for m �= i,

R(Jw + mTw+1,Ei) ≤ 2R(Jw + (m − 1)Tw+1,Ei),

by Proposition 5.5.

Thus for i = 1, 2, . . . ,N(w + 1),

R(Jw+1,Ei) ≤ 2N(w+1)N(w)50C−50
w+1R(Jw,Ei).

This implies (60) for w + 1.



22 W. LIU AND D. C. ONG

By the construction of V(x) in equations (67), (48) and (53) we have for
x ∈ [Jw + tTw+1, Jw + (t + 1)Tw+1] and 0 ≤ t ≤ N(w + 1) − 1,

(68) |V(x)| ≤ Cw+1

x − tTw+1
≤ Cw+1

(Jw + tTw+1) − tTw+1
=

Cw+1

Jw
.

Furthermore, notice that by (53) and (57), for a constant M,

(69)
Tw+1

Jw
=

TwCw+1

Jw
< MCw+1

Recall that x ∈ [Jw + tTw+1, Jw + (t + 1)Tw+1] and 0 ≤ t ≤ N(w + 1) − 1.

Direct computations show that

(70)

1
N(w + 1)

+
1

JwN(w + 1)
+

Tw+1

Jw
<2Cw+1,

1 +
1
Jw

+ N(w + 1)
Tw+1

Jw
<2N(w + 1)Cw+1,

Jw + N(w + 1)Tw+1 + 1
Jw

<2N(w + 1)Cw+1,

1
Jw
<

2N(w + 1)Cw+1

Jw + N(w + 1)Tw+1 + 1
,

1
Jw
<

2N(w + 1)Cw+1

Jw + (t + 1)Tw+1 + 1
,

1
Jw
<

100N(w + 1)Cw+1

x + 1
,

Cw+1

Jw
<

100N(w + 1)C2
w+1

x + 1
.

By (68) and (70), we have for x ∈ [Jw, Jw+1]

(71) |V(x)| < 100
N(w + 1)C2

w+1

x + 1
.

This implies (61).

6.2 Proof of Theorems 2.2 and 2.4.

Proof. In the construction of Theorem 2.2, eventually N(w) and Cw are
bounded. In the construction of Theorem 2.4, N(w) and Cw grow to infinity
arbitrarily slowly. By (61) and (56), we have that (7) and (8) hold.

By (16), it suffices to show that for any j, R(x,Ej) ∈ L2([1,∞), dx). Below we
give the details.
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For any N(w0 − 1) < j ≤ N(w0), by the construction (see (60)), we have for
w ≥ w0

(72)
R(Jw+1,Ej) ≤ 2N(w+1)N(w)50C−50

w+1R(Jw,Ej) ≤ C−25
w+1R(Jw,Ej)

≤ T25
w0

T−25
w+1R(Jw0,Ej)

where the second inequality holds by (54) and the third inequality holds by (53).
By (50), (51), (54) and (72), for all x ∈ [Jw+1, Jw+2],

(73) R(x,Ej) ≤ 2N(w+2)R(Jw+1,Ej) ≤ Cw+2R(Jw+1,Ej) ≤ T25
w0

T−24
w+1R(Jw0,Ej).

Then by (73), we have∫ ∞

Jw0+1

R2(x,Ej)dx =
∑
w≥w0

∫ Jw+2

Jw+1

R2(x,Ej)dx ≤ ∑
w≥w0

∫ Jw+2

Jw+1

T50
w0

T−48
w+1R

2(Jw0,Ej)dx

≤ T50
w0

R2(Jw0,Ej)
∑
w≥w0

N(w + 2)Tw+2T
−48
w+1

= T50
w0

R2(Jw0,Ej)
∑
w≥w0

N(w + 2)Cw+2T
−47
w+1

≤ T50
w0

R2(Jw0,Ej)
∑
w≥w0

T−40
w+1 < ∞,

since N(w) and Cw go to infinity slowly and Tw satisfies (55). This completes the
proof. �

7 Generalized Prüfer transformation and proof of The-
orem 2.7

This section is mostly a summary of the generalized Prüfer variables developed
in [27]. At the end of the section we prove Theorem 2.7. In (3), we have a
Jacobi matrix J with coefficients an > 0, bn ∈ R, viewed as an operator J0

on �2(Z≥0). We consider also its perturbation, a Jacobi matrix J with coefficients
an+a′

n > 0, bn+b′
n ∈ R, and viewed as an operator J on �2(Z≥0). For E ∈ ⋃(ck, dk),

let ϕ be a Floquet solution given by (9). Without loss of generality, assume
|ϕ(0)|2 + |ϕ(1)|2 = 1. Obviously,

(74) an+1ϕ(n + 1) + bn+1ϕ(n) + anϕ(n − 1) = Eϕ(n).

We also consider an eigensolution u for H,

(75) (an+1 + a′
n+1)u(n + 1) + (bn+1 + b′

n+1)u(n) + (an + a′
n)u(n − 1) = Eu(n).
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We define γ(n) as the argument of ϕ(n). In other words,

(76) ϕ(n) = |ϕ(n)|eiγ(n).

We can ensure uniqueness of γ by setting γ(0) ∈ [0, 2π), γ(n)−γ(n−1) ∈ [0, 2π).
Note thatϕ is complex, and is linearly independentwith its complex conjugate ϕ̄.

On the other hand, we assume that u is a real-valued eigensolution.
We now introduce Z(n). Our Prüfer variables will be defined as the argument

and absolute value of Z(n). It is defined as follows:(
(an + a′

n)u(n)
u(n − 1)

)
=

1
2i

(
Z(n)

(
anϕ(n)
ϕ(n − 1)

)
− Z(n)

(
anϕ(n)
ϕ(n − 1)

))
(77)

= Im

[
Z(n)

(
anϕ(n)
ϕ(n − 1)

)]
.(78)

By linear independence of ϕ and ϕ̄ and reality of u, (77) uniquely determines Z(n).
The Prüfer amplitude R(n) > 0 and Prüfer phase η(n) ∈ R are defined as

(79) Z(n) = R(n)eiη(n).

We will also need a few alternate versions of the Wronskian. For two sequences
f, g, we have

W0,0(f, g)(n) = an+1f (n)g(n + 1) − an+1f (n + 1)g(n),

Wa′,a′(f, g)(n) = (an+1 + a′
n+1)f (n)g(n + 1) − (an+1 + a′

n+1)f (n + 1)g(n),

W0,a′(f, g)(n) = (an+1 + a′
n+1)f (n)g(n + 1) − an+1f (n + 1)g(n).

If we assume

an+1f (n + 1) + anf (n − 1) = (x − bn+1)f (n)

and

(an+1 + a′
n+1)g(n + 1) + (an + a′

n)g(n − 1) = (x − bn+1 − b′
n+1)g(n),

then

(80)
W0,a′(f, g)(n)−W0,a′(f, g)(n − 1)

= −b′
n+1f (n)g(n) − a′

n(f (n)g(n − 1) + f (n − 1)g(n)).

Since ϕ, ϕ are linearly independent solutions of (74), by constancy of the Wron-
skian, we have

(81) W0,0(ϕ, ϕ)(n) = 2ian+1Im(ϕ(n)ϕ(n + 1)) = iω,
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for some real nonzero constant ω. Thus,

(82) 2|ϕ(n)| · |ϕ(n + 1)|an+1 sin(γ(n + 1) − γ(n)) = ω.

We can use Wronskians to invert (77) to get

(83) Z(n) =
2
ω

W0,a′(ϕ, u)(n − 1).

Theorem 7.1 (Theorem 5 of [27]). Prüfer variables obey the first-order re-

cursion relation

Z(n + 1)
Z(n)

= 1 − i
ω

an

an + a′
n
b′

n+1|ϕ(n)|2(e−2i(η(n)+γ(n)) − 1)

+
i
ω

a′
n|ϕ(n − 1)| · |ϕ(n)|ei(γ(n−1)−γ(n))

− i
ω

a′
n|ϕ(n − 1)| · |ϕ(n)|e−2iη(n)e−i(γ(n−1)+γ(n))

+
i
ω

an

an + a′
n
a′

n(1 − e−2i(η(n)+γ(n)))|ϕ(n − 1)| · |ϕ(n)|e−i(γ(n−1)−γ(n)).

Remark 7.2. In this paper, we assume a′
n = o(1) and b′

n = o(1). Since an, bn

are periodic, an, an + a′
n > 0 for all n, then

(84)
1

an + a′
n

= O(1).

We define the Prüfer amplitude R and the Prüfer phase η by

(85) R(n) = |Z(n)|, η(n) = Arg(Z(n)).

In that case, we have

(86)
R(n + 1)

R(n)
=
∣∣∣Z(n + 1)

Z(n)

∣∣∣.
Note the following bound on R(n):

Proposition 7.3. For a constant K (depending on H0 and E),

1
K

√
u(n)2 + u(n − 1)2 ≤ R(n) ≤ K

√
u(n)2 + u(n − 1)2.

Proof. The left inequality simply follows from (78). The right inequality
follows from (83) and the Cauchy–Schwarz inequality. �



26 W. LIU AND D. C. ONG

Let us set a′
j = 0 for all j. This changes Theorem 7.1 into a much simpler

formula,

(87)
Z(n + 1)

Z(n)
= 1 − i

ω
b′

n+1|ϕ(n)|2(e−2i(η(n)+γ(n)) − 1).

Using (87) and (86) we have

(88)

R(n + 1)2

R(n)2

=
(
1 − i

ω
b′

n+1|ϕ(n)|2(cos(2η(n) + 2γ(n)) − i sin(2η(n) + 2γ(n)) − 1)
)

×
(
1 +

i
ω

b′
n+1|ϕ(n)|2(cos(2η(n) + 2γ(n)) + i sin(2η(n) + 2γ(n)) − 1)

)
= 1 − b′

n+1
2
ω

sin(2η(n) + 2γ(n))|ϕ(n)|2

+
4(b′

n+1)
2|ϕ(n)|4
ω2 sin2(η(n) + γ(n)).

Also, starting with (87) and multiplying by Z(n)eiγ(n) we obtain

(89)

R(n + 1) exp(iη(n + 1) + iγ(n))

= R(n) exp(iη(n) + iγ(n)) − i
ω

b′
n+1|ϕ(n)|2(exp(−iη(n)

− iγ(n)) − exp(iη(n) + iγ(n)))R(n).

Dividing the real part by the imaginary part for both sides of the above equation,
we get

(90) cot(η(n + 1) + γ(n)) = cot(η(n) + γ(n)) − 2
ω

b′
n+1|ϕ(n)|2

Proof of Theorem 2.7. Suppose u is an eigensolution with corresponding
E ∈ (ck, dk). By Theorem 7.1, (84) and (86), we have

R(n + 1)
R(n)

= 1 − o(1)
n
.

This implies that

(91) lnR(n + 1) − ln R(n) =
o(1)
n
.

Thus for large n0, and n > n0, we have

(92) lnR(n) ≥ lnR(n0) − 1
3

n∑
k=n0

1
k
.
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This implies for large n,

R(n) ≥ 1

Cn
1
3

.

This contradicts u ∈ �2(Z≥0) by Proposition 7.3. �

8 The perturbative construction in the Jacobi setting

We always assume a′
n = 0. In this section, all the equations are in the discrete

setting. We indicate the dependence on E; thus we will write R(n,E), Z(n,E),
η(n,E) and γ(n,E). Let θ(n,E) = η(n,E) + γ(n,E).

By (90) and [13, Prop. 2.4], one has

(η(n + 1) + γ(n)) − (η(n) + γ(n)) = O(|b′
n+1|).

This implies

(93) θ(n + 1,E) − θ(n,E) = γ(n + 1,E) − γ(n,E) + O(|b′
n+1|).

We will add another equation to complete our construction. Using (88) we get

(94)
lnR(n + 1,E)− ln R(n,E)

= −b′
n+1

ω
sin(2η(n,E) + 2γ(n,E))|ϕ(n,E)|2 + O(|b′

n+1|2).

We will construct b′
n in a piecewise manner. Let J0 be the periodic operator with

Jacobi coefficient sequences an, bn and J0 +b′Id be the perturbation with coefficient
sequences an, bn + b′

n.

Proposition 8.1. Let E be in
⋃
�(c�, d�) such that k(E) �= π

2 . Let A = {Ej}m
j=1

be in
⋃
�(c�, d�) such that k(E) �= k(Ej) and k(E) + k(Ej) �= π for all j = 1, 2, . . . ,m.

Suppose θ0 ∈ (0, π). Let n1 > n0 > v . Then there exist constants K(E,A), C(E,A)
(independent of v, n0 and n1) and perturbation b′

n(E,A, n0, n1, v, θ0) such that for
n0 − v > K(E,A) the following holds:

Perturbation. for n0 ≤ n ≤ n1, supp(b′) ⊂ (n0, n1), and

(95) |b′
n(E,A, n0, n1, v, θ0)| ≤ C(E,A)

n − v
.

Solution for E. the solution of (J0+b′Id)u = Euwith boundary condition θ(n0,E) =
θ0 satisfies

(96) R(n1,E) ≤ C(E,A)
(n1 − v

n0 − v

)−100
R(n0,E),
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and for n0 < n < n1

(97) R(n,E) ≤ C(E,A)R(n0,E).

In particular, for any ε > 0, if n1−v
n0−v > K(E,A, ε),

(98) R(n,E) ≤
(n1 − v

n0 − v

)ε
R(n0,E).

Solution for Ej. any solution of (H0 + b′Id)u = Eju satisfies for n0 < n ≤ n1 and
ε > 0,

(99) R(n,Ej) ≤ D(E,A, ε)
(n1 − v

n0 − v

)ε
R(n0,Ej).

In particular, if n1−v
n0−v > K(E,A, ε),

(100) R(n,Ej) ≤
(n1 − v

n0 − v

)ε
R(n0,Ej).

For simplicity, denote K = K(E,A), C = C(E,A) etc. We mention that

K � C > 0.

Recall that γ(n,E) is the argument of ϕ and is therefore fixed. We solve the
following equation for η(n,E) with initial condition η(n0,E) = θ0 − γ(n0,E) (or in
other words, θ(n0,E) = θ0):

(101) cot(η(n + 1,E) + γ(n,E)) = cot(η(n,E) + γ(n,E)) − 2
ω

b′
n+1|ϕ(n,E)|2

with

(102) b′
n+1 = b′

n+1(E,A, n0, n1, v, θ0) =
C

n − v
sin(2η(n) + 2γ(n)).

We will show that this choice of b′
n satisfies our construction. Obviously, (95)

follows from (102).
First, we require a technical lemma:

Lemma 8.2. Let b′
n be given in (102), and let E and A satisfy the assumptions

of Proposition 8.1. Let f (n) be a sequence with q period. For any ε > 0, there

exists D(E,A, ε) such that

(103)
∣∣∣∣ n∑

t=n0

f (t)
cos 4θ(t,E)

t − v

∣∣∣∣ ≤ D(E,A, ε) + ε ln
n − v

n0 − v

and

(104)

∣∣∣∣ n∑
t=n0

f (t)
sin 2θ(t,Ej) sin 2θ(t,E)

t − v

∣∣∣∣ ≤ D(E,A, ε) + ε ln
n − v

n0 − v
,

for all Ej ∈ A.
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Proof. We only give the proof of (103). The proof of (104) proceeds similarly.
Case 1. k(E)

π
is rational. Since k(E) /∈ π

2 , we can assume k(E)
π

= N1
N for some

N ≥ 3. Thus for any φ,

(105)
N−1∑
j=0

cos(4jk(E) + φ) = 0.

By (9), (76), (93) and (95), one has

(106) k(E) = θ(n0 + q,E) − θ(n0,E) + O
( 1
n0 − v

)
mod Z.

Iterating, we obtain for any positive integer j ≤ N − 1,

(107) jk(E) = θ(n0 + jq,E) − θ(n0,E) + O
( 1

n0 − v

)
mod Z.

Thus by (105) and (107), we can translate n0 by p and use φ = θ(n0 + p,E) to
get

N−1∑
j=0

cos 4θ(n0 + jq + p,E) = O
( 1
n0 + p − v

)
,

for all p = 0, 1, . . . , q − 1. This implies

N−1∑
j=0

f (n0 + jq + p)
cos 4θ(n0 + jq + p,E)

n0 + jq + p
=

O(1)
(n0 + p − v )2

,

for all p = 0, 1, . . . , q−1. Let us define an integerw so thatw is the largest integer
such that n − n0 ≥ Nqw− 1. Then

(108)

∣∣∣∣ n∑
t=n0

f (t)
cos 4θ(t,E)

t − v

∣∣∣∣ ≤ |O(1)|
n0 − v

+
n0+q−1+Nqw∑

i=n0

|O(1)|
(i − v )2

≤ |O(1)|
n0 − v

+
∞∑

i=n0

|O(1)|
(i − v )2

=
|O(1)|
n0 − v

.

This completes the proof of (103) for rational k(E)
π

.
Case 2. k(E)

π
is irrational. By the ergodic theorem, for any ε > 0, there exists

N > 0 such that

(109)

∣∣∣∣ N−1∑
j=0

cos(4jk(E) + φ)

∣∣∣∣ ≤ Nε.
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By (109) and (106), one has

N−1∑
j=0

cos 4θ(n0 + jq + p,E) ≤ N
(
ε + O

( 1
n0 − v

))
,

for all p = 0, 1, . . . , q − 1. This implies

(110)
N−1∑
j=0

f (n0 + jq + p)
cos 4θ(n0 + jq + p,E)

n0 + jq − p
≤ N

( ε

n0 − v
+

O(1)
(n0 − v )2

)
,

for all p = 0, 1, . . . , q − 1.
We note that n∑

j=n0

1
j − v

≤ O(1) ln
( n − v

n0 − v

)
.

Thus, performing an estimate analogous to (108) we obtain∣∣∣∣ n∑
t=n0

f (t)
cos 4θ(t,E)

t − v

∣∣∣∣ ≤ D(E,A, ε) + ε ln
( n − v

n0 − v

)
.

This concludes our proof of (103) for irrational k(E)
π

. �

Proof of Proposition 8.1. Equation (94) becomes

(111)
ln R(n + 1,E)− ln R(n,E)

= −|ϕ(n,E)|2 C
n − v

sin2(2η(n) + 2γ(n)) +
|O(1)|

(n − v )2
.

This implies

(112) ln R(n + 1,E) − ln R(n,E) ≤ C
(n − v )2

.

It is easy to see that (97) follows from (112) since n0 − v > K.
Rewrite (111) as

(113)
ln R(n + 1,E) − ln R(n,E)

= −|ϕ(n,E)|2 C
n − v

+ O(1)|ϕ(n,E)|2 cos 4θ(n,E)
n − v

+
O(1)

(n − v )2
.

Applying (103) with ε = 1 to (113), we have, for n ≥ n0,

ln R(n,E) − ln R(n0,E) ≤
n∑

t=n0

− C
t − v

+ O(1)|ϕ(n,E)|2 cos 4θ(t,E)
j − v

+
O(1)

(t − v )2

≤ C − C ln
( n − v

n0 − v

)
.

This implies (96).
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Now let us consider the solution u(n,Ej) of (H0 + b′Id)u = Eju.
By (94) again, one has

lnR(n + 1,Ej) − ln R(n,Ej) = −C|ϕ(n,Ej)|2 sin 2θ(n,E) sin 2θ(n,Ej)
n − b

+
O(1)

(n − b)2
.

By (103) (following Lemma 8.2) and following the proof of (96), we can prove
(99). We finish the proof. �

Proof of Theorems 2.8 and 2.9. Replacing Proposition 5.5 with Propo-
sition 8.1, Theorems 2.8 and 2.9 can be proved in a similar way to Theorems 2.2
and 2.4. The difference is that there is a new parameter ε involved. We write the
details in full in the Appendix. �

Appendix A Proof of Theorems 2.8 and 2.9

We will give the construction of the perturbation b′. The idea is to glue the potential
b′(n,E,A, x0, x1, v, θ0) in a piecewise manner like the procedure of the continuous
case.

Let us fix a band of the absolutely continuous spectrum, and enumerate the
desired embedded eigenvalues in our band spectrum as Ej (we always assume
there are countably many). Let N : Z≥0 → Z≥0 be a non-decreasing function,
N(1) = 1 and N(w) grows very slowly (in other words, we expect N(w) = N(w+1)
to be true for “most” w ∈ Z≥0). Furthermore, we define N so if N(w + 1) > N(w)
then N(w + 1) = N(w) + 1. Let

(114) εw =
1

100N(w)
.

Let Cw be a large constant that depends on the eigenvalues E1, . . . ,EN(w). We write

(115) Cw = C(E1,E2, . . . ,EN(w)).

We emphasize that the dependence ofCw+1 on the Ej does not take into accountmul-
tiplicity. Thus if N(w+1) = N(w+2) (which we expect to happen very frequently),
then Cw+1 = Cw+2. Let Kw be large enough such that Kw > K(E, {Ej}N(w)

j=1 \E, εw)

for all E ∈ {Ej}N(w)
j=1 in Proposition 8.1.

We have N(w) = maxj N(j) for sufficiently large w in the construction of Theo-
rem 2.8 and we instead have limw N(w) = ∞ in the construction of Theorem 2.9.

Define

(116) Tw+1 = TwCw+1
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and T0 = C1. By modifying Cw, we can assume Tw is large enough so that

Tw ≥ Kw

for any E ∈ {Ej}N(w)
j=1 in Proposition 8.1.

Let Ej and θj be given by Theorem 2.8 and Theorem 2.9. Fix w. By Propo-
sition 8.1, then there exist constants Kw, Cw (independent of v, n0 and n1) and
perturbation b′(n,Ej,A, n0, n1, v, θ0) such that for n0 − v > Kw the following
holds:

Potential. for n0 ≤ n ≤ n1, supp(V) ⊂ (n0, n1), and

(117) |b′(n,Ej,A, n0, n1, v, θ0)| ≤ Cw
n − v

.

Solution for Ej. the solution of (H0 + b′Id)u = Eju with boundary condition
θ(n0,Ej) = θ0 satisfies

(118) R(n1,Ej) ≤ Cw
(n1 − v

n0 − v

)−100
R(n0,E),

and for n0 < n < n1

(119) R(n,Ej) ≤
(n1 − v

n0 − v

)εw
R(n0,Ej).

Solution for Ej′ with j′ �= j. any solution of (H0 +b′Id)u = Ej′u satisfies, for n0 <

n ≤ n1,

(120) R(n,Ej′) ≤
(n1 − v

n0 − v

)εw
R(n0,Ej′).

On the other hand, if N(w) goes to infinity arbitrarily slowly, then Cw can also
go to infinity arbitrarily slowly. Let us in fact choose Cw so that

(121) Cw ≥ 4N(w+1).

We can also assume for large w,

(122) Tw ≥ 1000w,

and for large w,
Cw ≤ lnw.

Thus eventually one has

(123) Cw+1 ≤ Tw.
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Let

(124) Jw =
w∑
i

N(i)Ti.

By letting N(w) go to infinity arbitrarily slowly, we assume that

(125) C2
wN(w) ≤ 1

100
min

n∈[Jw−1,Jw]
h(n),

where h(n) is given by Theorem 2.9.
We will also define potential b′

n and u(n,Ej), j = 1, 2, . . . on (0, Jw) by induction,
such that:
(1) u(n,Ej) solves for n ∈ (0, Jw)

Ju(n,Ej) = Eju(n,Ej),(126)

and satisfies boundary condition

(127)
u(1,Ej)
u(0,Ej)

= tan θj;

(2) u(n,Ei) for i = 1, 2, . . . ,N(w) and w ≥ 2, satisfies

(128) R(Jw,Ei) ≤ 2N(w)N(w)50C−50
w R(Jw−1,Ei).;

(3)

(129) |b′
n| ≤ 100

N(w)C2
w

n + 1

for Jw−1 ≤ n ≤ Jw.
By our construction, one has

(130)
Jw

Tw+1
≤ 2

∑w
i N(i)Ti

Tw+1
≤ 2

N(w)
Cw+1

w∑
i=1

Ti

Tw
≤ 4

N(w)
Cw+1

.

The last inequality comes from (116) and (121).
Let u(n,Ej) be the solution of

(131) Ju = Eju

with boundary condition
u(1,Ej)
u(0,Ej)

= tan θj.

Now we should show that the b′ derived from this construction satisfies the
w + 1-step conditions (126)–(129).
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Let us consider R(n,Ei) for i = 1, 2, . . . ,N(w + 1). Now R(n,Ei) decreases
from point Jw + (i − 1)Tw+1 to Jw + iTw+1, i = 1, 2, . . . ,N(w+ 1), and may increase
from any point Jw + (m − 1)Tw+1 to Jw + mTw+1, m = 1, 2, . . . ,N(w + 1) and m �= i.
That is

R(Jw + iTw+1,Ei) ≤ N50(w)C−50
w+1R(Jw + (i − 1)Tw+1,Ei),

and for m �= i (see (120)),

(132) R(Jw + mTw+1,Ei) ≤ Cεw+1
w+1R(Jw + (m − 1)Tw+1,Ei),

by Proposition 8.1.

Thus by (114), for i = 1, 2, . . . ,N(w + 1),

R(Jw+1,Ei) ≤ N(w)50C−50
w+1C

N(w+1)εw
w+1 R(Jw,Ei) ≤ N(w)50C−49

w+1R(Jw,Ei).

This implies (128) for w + 1. By the construction of b′
n, we have

(133) |b′
n| < 100

N(w + 1)C2
w+1

n + 1
,

for Jw ≤ n ≤ Jw+1. This implies (129).

Proof of Theorems 2.8 and 2.9. In the construction of Theorem 2.8,
eventually N(w) and Cw are bounded. In the construction of Theorem 2.9, N(w)
and Cw grow to infinity arbitrarily slowly. By (129) and (125), we have that (10)
and (11) hold.

It suffices to show that for any j, R(n,Ej) ∈ �2. Below we give the details.

For any N(w0 − 1) < j ≤ N(w0), by the construction (see (128)), we have for
w ≥ w0

(134)
R(Jw+1,Ej) ≤ N(w)50C−49

w+1R(Jw,Ej) ≤ C−25
w+1R(Jw,Ej)

≤ T25
w0

T−25
w+1R(Jw0,Ej)

where the second inequality holds by (121) and the third inequality holds by (116).

By (114), (119), (120), (121), (134), (132) and (123), for all n ∈ [Jw+1, Jw+2],

(135)
R(n,Ej) ≤ CNw+2εw+2

w+2 R(Jw+1,Ej) ≤ CNw+2εw+2
w+2 T25

w0
T−25
w+1R(Jw0,Ej)

≤ T25
w0

T−24
w+1R(Jw0,Ej).
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Then by (135), we have

∞∑
n=Jw0+1

R2(n,Ej) =
∑
w≥w0

Jw+2∑
n=Jw+1

R2(n,Ej) ≤ ∑
w≥w0

Jw+2∑
n=Jw+1

T50
w0

T−48
w+1R

2(Jw0,Ej)

≤ T50
w0

R2(Jw0,Ej)
∑
w≥w0

N(w + 2)Tw+2T
−48
w+1

= T50
w0

R2(Jw0,Ej)
∑
w≥w0

N(w + 2)Cw+2T
−47
w+1

≤ T50
w0

R2(Jw0,Ej)
∑
w≥w0

T−40
w+1 < ∞,

since N(w) and Cw go to infinity slowly and Tw satisfies (122). This completes the
proof. �
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