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1 | INTRODUCTION
The Stark operator Hu = —u’’ — xu + qu describes a charged quantum particle in a constant electric field with an addi-

tional electric potential g. It has attracted a lot of attentions from both mathematics and physics [1, 2, 4, 6, 8, 9, 11, 13, 20,
21, 23, 24, 40, 42].
In this paper, we consider a class of more general operators, Stark type operators on L?(R*):

Hu = —u" — x"u + qu, 1
where 0 < a < 2. Denote by Hyu = —u’ — x*u and regard q as a perturbation.

It is well known that for any 0 < a < 2, 0ess(Hy) = 04.(Ho) = R and H,, does not have any eigenvalue. The criteria for
the perturbation such that the associated perturbed Stark type operator has single eigenvalue, finitely many eigenvalues
or countably many eigenvalues have been obtained in [29].

Define P C R as

P={EeR: —u" —x*u+ qu = Eu has an L*(R™") solution}.

In [29], the author proved that

Theorem 1.1. [29, Theorem 1.5] Let a be given by

a = lim sup x'73 [g(x)]. (1.2)
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Then we have

2—a 1
> ——(#P)>. 1.3)
A

N
Theorem 1.2. [29, Theorem 1.6] For any {E j}.
j

N
) C R and any {Gj} - C [0, 7], there exist potentials g € C*[0, +o0) such
that

limsupx'~Z|g(x)| < (2 — a)e2VInN N,

X—>00
and forany j = 1,2,..,N, —u"" — x*u + qu = Eju has an LZ(R+) solution u with the boundary condition

u'(0)
u(0)

tanej.

Theorem 1.1 implies that in order to create N linearly independent eigensolutions in L?(R"), the quantity a given by

1
(1.2) must be equal or larger than 2_—2“N 2. However, Theorem 1.2 shows that if we allow a > (2 — a)e?VI"NN, one can

7

1
create N eigensolutions in L?(R*) for arbitrary N. There is a gap between N2 and e?V"NN. It is natural to ask what is
the sharp bound of a to create N linearly independent eigensolutions in L?(R*).

Question 1.3. What is the minimum of y such that for any N, there is a potential g on R* such that #P > N and

limsup x'~2 |g(x)] < C(Y)N.

X—>00

Theorems 1.1 and 1.2 imply y € [%, 1].
Our first result in this paper is to show that for any « satisfying % <a<2,y= % is the solution to Question 1.3.
Theorem 1.4. Suppose % < a < 2. Then for any N > 0, there exists a potential g on R* such that

limsupx' "2 |g(x)| < 202 — )W N (1.4)
X—00
and #P = N.
For some technical reasons, currently we can only give the proof for g < a < 2. We believe it thaty = % is the solution
to Question 1.3 forall0 < o < 2.

Question 1.3 and Theorem 1.4 do not care about the locations of the corresponding energies. If we take the distribution
of energies into consideration, what is the sharp upper bound? We formulate it as the following question.

N
Question 1.5. What is the minimum of y such that for any {EJ} v there exists a potential g on R* such that
Jj=

—u" —x“u+qu=FE;uhasan L*(R™") solution for each j = 1,2,...,N and

limsupx'~Z|g(x)| < C(y)N”.

X—>0

Theorems 1.1 and 1.2 imply y € E 1]. We conjecture that y = 1 is the solution to Question 1.5.

During the proof Theorem 1.4, we are able to improve the bound in Theorem 1.2.
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Cc Rand {Gj}l'v

N
Theorem 1.6. Foranye > 0, {Ej} )
J Jj=

. C [0, 7], there exist local L (R™) potentials q such that

lim sup x'7z lg(x)] £ (2—a+¢)N, (1.5)
X—>00
and for each j = 1,2,...,N, —u” — x*u + qu = Eju has an L>(R™) solution u with the boundary condition

u'(0) _
u(0)

tanej.

Remark 1.7.

* Theorem 1.6 gives better bounds than those in Theorem 1.1, but less regularity in potentials.

* Applying additional piecewise constructions in the proof of Theorem 1.6, it is possible to show that the upper bound in
(1.5) can be improved to (2 — a)N. We refer the readers to the critical case of [29, Theorem 1.2 | for details.

« In the main part of this paper, we only consider the relations between L? solutions and limit bound of g(x). In the last
section, we will mention similar results presented in the bounds of integrals.

The proof of both Theorems 1.4 and 1.6 are inspired by the methods tackling perturbed free Schrédinger operators. Let
us turn to perturbed free Schrédinger operators —D? + V first. Naboko [35] and Simon [39] constructed power-decaying
potentials V such that —D? + V has dense eigenvalues. Before that, Wigner-von Neumann type functions can only create
one L? solution [41]. Recently, there have been several important developments on the problem of embedded eigenvalues
for Schrodinger operators, Laplacians on manifolds or other models [12, 14-17, 25, 27, 29-32, 34]. For perturbed Stark type
operators, under the rational independence assumption of set {E j}, Naboko and Pushnitskii [36] constructed operators

with given a set {E j} as embedded eigenvalues. The author [29] constructed perturbed Stark type operators with any given

{E j} as aset of eigenvalues with the quantitative bound (see Theorem 1.2). However, the potential cannot be given explicitly.
One of the motivations of this paper is to approach the problem in an explicit way.

In [39], Simon used Wigner-von Neumann type functions V(x) = l-l—Lx Zj sin(24 X +2¢ j) Xla;j,o0)» to complete his con-
structions. It turns out that Wigner-von Neumann type function is a good way to create embedded eigenvalues [15, 17, 26,
31-33]. Moreover, Wigner-von Neumann type functions can also be used to achieve the optimal bounds. Denote by

S={E>0: —u"(x) + V(x)u(x) = Eu(x) has an L?>(R*) solution}.

Kiselev-Last-Simon [22] proved if limsup__,  x|V(x)| < co, then the set S is countable and

D Ei < o (1.6)

E;eS

This result has been extended to perturbed periodic operators by the author [28]. By Wigner-von Neumann type func-
tions and additional probability arguments from [18], Remling [37] proved that there are potentials V(x) = O(x!) with
> Ees Ef = oo for every p < 1. Remling’s result implies that (1.6) cannot be improved in some sense, which answers a
question in [22].

Another motivation of the present paper is to find the substitution of Wigner-von Neumann type functions to deal with
perturbed Stark type operators, so that we can use the ideas of Simon, Remling, and among others to address our problems.

sin( f [Tz, (0 dx+;)
3

type function. See the definition of ﬁEj (x) below.

We want to highlight another ingredient in our proof. Our goal is to create cancellations of the sum of generalized
Wigner-von Neumann type functions as many as we can. This problem is very similar to the constructions of uniformly
bounded bases in the spaces of complex homogenous polynomials [3, 38]1. It turns that the Rudin-Shapiro sequence,
which is a key ingredient of [3], is also useful to our problem.

We found a good type of substituted functions ,which is called the generalized Wigner-von Neumann
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Although the arguments in this paper are inspired by those in dealing with perturbed free Schrodinger operators, the
details are much more delicate and difficult, in particular, oscillated integrals and resonant phenomena. The spectra of
perturbed free Schrodinger operators and Stark operators are quite different. Under the assumption V(x) = O(x™1), per-
turbed free Schrodinger operators can have infinitely many eigenvalues. However, under the corresponding assumption,
perturbed Stark operators can only have finitely many eigenvalues by Theorem 1.1. Moreover, for free cases, there is only
one leading entry dominating each Priifer angle and the leading entries are distinguished by energies. For Stark type cases,
there are finitely many entries (the number of entries depends on «) dominating each Priifer angle, and the first/leading
entry is 1 for any Priifer angle, which leads to resonance. Similar resonance has been studied in [29]. In the proof of
Theorem 1.6, we are able to deal with the resonance coming from the first dominating entry and all the other dominating
entries at the same time. However, for the technical reason, we can only deal with the first two dominating entry for the

topic in Theorem 1.4, and the assumption o > % will guarantee that there are exact two entries to dominate Priifer angles.

2 | PREPARATIONS
Let v (x) = x* for x € R™ and consider the Schrodinger equation on R*,
—u(x) — x*u(x) + g(x)u(x) = Eu(x). 1)

The Liouville transformation (see [4, 36]) is given by

§(x) = / \ Ve dt,  $(§) = va(x(§)) 4 u(x(§)). (22)
0
We define a weight function p,(§) by
1
pa(§) = m (2.3)
We also define a potential by
5 o1 1 v (x(§) | q(x(§))—E
CEB = Gy T ARG@? T nG@) @
Letc = (1 + %)E Direct computations imply that
x:cgﬂ_a,¢(§,E)=c%§Mu<c§2+_a>, (2.5)
pE) = —5, (26)
ca €2
and
2 _ q c§ﬁ —E
QuEm=-1—* L de UL o) ) @7)
2+a) § 2+a) § caf e

Notice that the potential Q,(&, E) depends on g, a and E. In the following, we always fix a € (0, 2). For simplicity, we
drop off its dependence. Let
2
)

2a
cx &2+

V(§) = (2:8)
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Then
2 (-1 1 E
Q(E,E) = a a —_ v 2.9
£ 4@+ fg Crar B ) 29)
=— E +V(§)+O§(21).
Ca§2+oc

Suppose u € L>(R™) is a solution of (2.1). It follows that ¢ satisfies

2

g5 TOEEB =9, (2.10)

and ¢ € L2(R*, p(§)d§).
Below, € > 0 always depends on « in an explicit way. Denote by

Be(§) = — Em .

caf2va

When £ is large, one has | 85(€)| < 1. By shifting the equation, we always assume S(§) is sufficiently small. Soy/1 — Bg(§)
is well defined.

Proposition 2.1. Suppose a # 0. Then following estimates hold for ¢ > £y > 1 andy € R:

L

. - ds = e (2.11)

/§ sin(a Sy NT=Bp(x)dx + 7’) 0Q1)

2. foranyE; # E, € R,

/g sm( f \/1-Bg(x)dx+a / V1 = Br,(x)dx + )/) 0o(1)
ds =

) (2.12)
£ £
Proof. We only give the proof of case “—” in (2.12). The rest can be proceeded in a similar way.
Denote by
¢ ¢
B(&) = a/ [\/ 1 - B (x)dx — a/ \1-Bp,(X)| dx +y.
0 0
Then
/ / 0(1)
B'(§) = ay/1 =B (5) —ay/1 - g ( 5)—‘1
(;055 2+a §2+a
and

0(1)
g1+ 2+4a

B(6) =
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Integration by part, we have

/g sm< JoAJ1=Be, () dx —a [, \/1 = Be,(x)dx + J/) /§ sinf(s) | _ $ B/(s)sin B®) 4

% g S U ON

§ "
= 0(¢,°) +0(D) /g —Cosfﬁ(,sz)ﬁ ds

=0(£,°)- O

3 | ASYMPTOTICAL BEHAVIOR OF SOLUTIONS FOR A CLASS OF LINEAR SYSTEMS
The proof of this section is inspired by the WKB method. We refer the readers to papers [5, 7 10] for arguments.

Theorem 3.1. Suppose a > 0 is a constant. Suppose {E j} € R are distinct. Define V(§) = 0 for € € [0,1] and

N 3
V() = %;Sin(/o 24/1—Bg,(x)dx + 2tj), (3.1

foré > 1.
Define q(x) on [0, oo) such that (2.8) holds for (3.1). Let Q(&, E) be given by (2.9). Then the following asymptotics hold as &
goes to infinity,

L ifE # Ej forany j = 1,2,... N, then there exists a fundamental system of solutions {y;(§), y»(§)} of (2.10) such that

cos(/gwll —BE(x)dx+tj>
0

[ylos)] _ +O(E—)
y1(€) §
' —sin(/0 \/1—6E(x)dx+tj>
and
sin / v/ 1= Be(x)dx +t; )
J’2(§) + O(g_e)
y2(§)

cos / \ll—ﬁE(x)dx+t)

2. IfE = E; for some j, then there exists a fundamental system of solutions {y1(§ ), ¥2(E)} of (2.10) such that

¢
[Y1(§)] =g COS(/O \/TEJ-(X)dx+tj>

Y®| 5 HOETD
1 .
_sm(/o /1= Br,(x)dx + tj)
and
L
sin 1-8 .(x)dx+t»>
Ol gl Vo ¥ o
y5(&) '

cos(/ér A/1 —ﬁE]_(x)dx + tj)
0 .
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Proof. In order to avoid repetition, we only give the proof of the case the case E = E j for some j = 1,2,..., N. Denote by

V() = sm( / ,/1—5E(x)dx+2t> (3.2)
i=1,i#j

Rewrite the second order differential equation of (2.10) as the linearly differential equations,
0 1
.|

- w o]
Y Be, (&) + V() + — £2 -1 0|

Let

U 0 1 y'

[ul]:[,/l—ﬁg,@) o]H
We obtain a new equation

, \/1-BE;()
| _ +@ y
| T 1-B5® + ——— 1 £ |y |

1—Bg, ()

Let

[yl] _ cos(fog\/TEj(x)dx+tj> _sjn<f0§mdx+tj> [ul]
Y2 Sin(fogmdx-’_tj) cos(/jmdx+tj> uy |’
Obviously, one has
[ul] ) cos(fog\/TEj(x)dx + tj) sin(fog \/TE](X)dx + tj) y1]
Uy —Siﬁ(/j\/%dx-i_tj) cos(fog\/TEj(X)dx‘”j) &l

After some calculations, we have

[jjj = (A®) +HE) + o(g-l-f))m,

where
sin2<2 /j /1~ B, (x)dx + 2t j)
-2a

AE) = § (33)

N sin2(2 f0§ L1 —;E_,-(X) dx + 2tj)
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and

HE) = [Hn(f) H12(§)]‘

Hy(§) Hyp(8)

The explicit formulas for H; s i,j=1,2,are

3
Hyy = —%V(§)Sin(2/ \/1-Bg,(x)dx + 2tj>,
0
£
Hy(8) = %V(f) sin(Z/ A/1 —ﬁEj(x) dx + 2tj>,
0

3
Hpy(§) = —%V(é’)(l—cos(Z/ 1/1—[5’Ej(x)dx+2tj>>,
0

and

1 ¢
Hy(8) = 5"(5)(1 + 008(2/0 £/1- ﬁEj(x) dx + ZtJ)).

By Proposition 2.1, one has
o)== [ HEds =0
3
Assume € is large, then ||Q|| < % Let
A% [N
=1+ .
We obtain

[?1] = (A(®) + R())
Y2

%1
Z10

where R(§) = (R;;) = O(§717°). Let

(&) = [y?] and A(¢) = 2a
Y2

Let us consider the integral equation,

0

—/g/l(s)ds 0 e—/gy/l(s)ds 0
—_|e 1
p(§) = [ 0 ] - /g [ S i RMe(y)dy.

sin2<2 fo§ \/TE}(X)dx + 2tj>
7 )

(34)

(3.5
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3
If (3.5) has a solution ||@(§)|| < 2e™ A 9 then (by direct computation) ¢(£) is a solution of Equation (3.4). Moreover,

® e—fgyl(s)ds 0 K)o
/g . a0 V() dy

oy
= o(1) / e AV Ryl A
§

_ o) A0 ds / RO

£
4
= e~/ A0 dpg—e), (3.6)
Define iteration equations:
y
—/f/l(s)ds © e—/§ A(s)ds 0
P = | -/ O roeady, 37)
0 £ 0 6/5 A(s)ds
4
with 0. By induction that ||¢,(§) — )| < e /i A9ds one can show (3.5) has a solution ||@(§)|| <
®= Y Pr Pr—1 2k+1 ®
2e” fl AS)ds (see p. 94 in [5] for all the details).
By (3.4), (3.5) and (3.6), we get a solution
P _ o~ awas( |1 —e
S l=e N +0(&79) ).

By Proposition 2.1 again, we have

/fl(s)ds 2a/§ Sin2<2/os\/TEj(x)dX+ZIj>
! 1

ds
s

cos 4]0 de""”j)
/ —ds—a/g

= ds
s
s COS 4/ W1 ﬁE,(x)dx+4t‘> ooCOS(4/S1/1—ﬁE,(X)dx+4t‘>
0 J 0 J
= / —ds—a/ . ds+a/ . ds
s ¢ s
=1Iné% —c+0(£7°),
where the constant c equals
o cos<4/0S 1= B, (x)dx + 4tj>
a / ds.
1 s
Thus (3.4) has a solution
)71 —-a 1 —a—e
1 = +0 . 3.8
[yz] § | +OE™) (38)
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By the similar argument (see [5] again), we obtain that (3.4) has a solution

V1| _ sa
5

Now the theorem follows from (3.8) and (3.9). O

1 a—e
o| +0(E7). (3.9)

4 | PROOF OF THEOREMS 1.4 AND 1.6

2—a

2(2+a)

N 3
V() = %“jz:lsin<z/o 1 —BEj(x)dthj)X[aj,oo)’

Proof of Theorem 1.6. Leta > . Define potentials

with large a;.

Obviously,
[EV(E)] < 4aN,
so that
£73q(6) < 22 + a)aN. 1)
By (2.6),
2 —2a—2—a
p&[$(&.E))| <0E e <ot (42)

By (4.2), (2.10) has a solution ¢(§,Ej) € L*(R*, p(§)d¢) for each j = 1,2,...,N. However, ¢(§,E~) may not satisfy the
given boundary condition. This can be done by adjusting a; and additional functions W with support in (1,2). We refer
readers to [39] for rigorous arguments. Now the Theorem follows from (4.1). 1

Let

2a

24+« 1 2+4a

BESEITHI

so that
2=«
d§2+a 1 1
T == .
2 2a
df ca§2+a
For any given N, let
E-=L forj=1,2,...,N.
J NT’ 9 b 9

n
Before giving the proof of Theorem 1.4, several lemmas about Rudin-Shapiro sequence are needed. Suppose {a j} is

Jj=0
n + 1 consecutive numbers in the Rudin-Shapiro sequence. We should mention that o i € {1}, j=0,1,2,..,n.
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Lemma 4.1. [[19, p. 46], [3, Lemma 1]] Assume a,b € Z satisfy b — a = 2™ — 1 withm € Z*. Then

<+\22m/2,

sup
6eR

Z o; p2mijo

] =a

By dividing the general interval [a, b] into dyadic intervals as in Lemma 4.1, we have

Lemma 4.2. Forany a,b € Z and a < b, we have

Zaesze <5Vb—a+1

sup
6eR

Proof. Let nbe such that2" < b —a +1 < 2", Rewrite b — a as

n
b—a+1=277k2k,
k=0

where 7, € {0, 1}. For k with », = 1, applying Lemma 4.1 with m = k, we have

Z o; p2mije

sup

<\/_an2’</2 \/_\/_ <2T—1)55 b—a+1

2-1

Lemma 4.2 appears in [3] without the quantitative factor 5 in (4.3). Lemma 4.2 immediately implies,

Lemma 4.3. Thereexist0; € { } j=1,2,..,N, such that forany § > 0

N N
Z sin(szj§ + 271'9j> + Z cos<21'Ej§ + 271'9j) <10VN.
=1 =1

Proof of Theorem 1.4. 1t suffices to prove the case that N > 2. For any given N > 2, let

J .
E] = m, for] = 1,2,...,N.
Leta > 2(2 By Lemma 4.3, there exist ¢; € [0, 7) such that for any £ > 0,
N N
>, sin(22E;§ + 2t;)| + | 3 cos(20E;€ + 2;)| < 10VN.
j=1 j=1
Let

N £
V() = 4?aj2=1sin(2/0 ,/1—/3Ej(x)dx+2tj>.

(4.3)

(4.4)

(4.5)

(4.6)
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By Tayor series, one has

/0§ \/TE],(x)dx _ /Og (1 _ %ﬁEj(x) + 0(1)5Ej(x)2> dx

2 o(1) .

=§+ Bl + 4+
g
2—a
=€+TE]§2+_O’ +O(§_€)+fj’ (47)
. 2
since a > -.
By (4.5), (4.6) and (4.7), one has
N 3
[EV(E)| = 4a Z sin(z/ A/1— B (x)dx + 2t-)
=1 0 ' !
N a
=4a Z sm(2§ + ZTEjgm + 21'} + 2%) + O(g_e)
j=1

<4a i sin<2‘L'Ej§’2ercY +2t; + 2fj> +4a % COS<2TEJ-§2;L‘X +2t; + 2fj> +O0(£79)
j=1 j=1
< 40aVN + O(£79). (4.8)
Define g(x) on [0, co0) such that (2.8) holds for (4.6). Then by (4.8), we have
E731q(8)] < (2 + @200V N + O(E). (4.9)
By Theorem 3.1, for any E;, j = 1,2,..., N, (2.10) has a solution ¢ (¢, E;) satisfying
|6(5.E))| < 267
for large €. Leta = :—Z By (2.6),
p@O[#(EE)| < O < 0. (4.10)
It implies ¢(§, Ej) € L2(R*, p(£)d¢) and then u € L?(R™). Now Theorem 1.4 follows from (4.9). O

5 | PROBLEMS ABOUT THE SHARP BOUNDS IN THE INTEGRAL FORM

Motivated by [36], we will discuss the sharp bounds in the integral form in this section. Define
o) X t
= [ 2 exp(—p la®) dt)
1 Vue(x) 1 Vug(t)

_ [T dx *lg®)]
_/1 ey exp(—,o/1 oy dt |.
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We drop the dependence of « for simplicity. Let

I, = Sl;.p{p >0 : Iy(p) = oo} = ilgf{,o >0 Iy(p) < oo}.

Obviously, |g;(x)| < |g,(x)| implies

Regarding one L? solution, Naboko and Pushnitskii [36] proved the following statement
Theorem 5.1. [36, Theorem 1] Suppose I, > 1. Then —u"" — x*u + qu = Eu has no L*>(R") solution for any E € R.

Theorem 5.2. [36, Theorem 2] Forany E € R and 0 < € < 1, there exists q such thatIq =1-cand-u" —x*u+qu=Eu
has an L?(R*) solution.

Remark 5.3. Theorems 5.1 and 5.2 hold for more general cases [36].

It is natural to ask what is the analog version of Theorems 5.1 and 5.2 for the N linearly independent L?(R") solutions.

By choosing test functions g(x) = % and also motivating from Questions 1.3 and 1.5, we post another two questions.
X2

Question 5.4. What is the minimum of y; such that for any N, there is a potential g on R* such that #P > N and

c(r1)
Iy > N7

N
Question 5.5. What is the minimum of y, such that for any {E j} , there exists a potential g on R* such that
j=1

—u" — x*u+qu =E;u has an L(R*) solution for each j = 1,2,...,N and

c(72)
Iq > NT2

By Theorems 1.4 and 1.6, one has following corollaries.
Corollary 5.6. Suppose % < a < 2. Then for any N > 0, there exists a potential g on R* such that

1

Ij> ————
2002 — a/N

and #P = N.

N N
Corollary 5.7. Foranye > 0, {E j}' . C Rand {6 j}, ) C [0, ], there exist potentials q such that
Jj= Jj=
I, > 2
2R —a+¢e)N
and foreach j = 1,2,...,N, —u” — x*u + qu = Eju has an L>(R™) solution u with the boundary condition

u'(0)
u(0)

=tan9j.
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By Corollaries 5.6 and 5.7, we have for 0 < a < 2,

2
andfor§<oc<2,

71 <

N

We conjecture that y; = % and y, = 1 are the answers to Questions 1.3 and 1.5 respectively.
Finally, we remark that the method in [36] is based on the integral of “piecewise constant” functions. More precisely,

in each piece, f(x) ~ 1%, which has the same flavor of Naboko [35] Our proof in the present paper (also [29]) is very

different. We used the delicate estimate of the oscillated integrals ( f)~ %am) stemming from Priifer transformation.
X

Since the two methods are very different, we are not sure wether the corresponding integral form of Theorem 1.1 holds

or not.
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