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Abstract
For perturbed Stark operators𝐻𝑢 = −𝑢′′ − 𝑥𝑢 + 𝑞𝑢, the author has proved thatlim sup𝑥→∞ 𝑥 12 |𝑞(𝑥)| must be larger than 1√2𝑁 12 in order to create 𝑁 linearly

independent eigensolutions in 𝐿2(ℝ+) [29]. In this paper, we apply generalized
Wigner–von Neumann type functions to construct embedded eigenvalues for a

class of Schrödinger operators, including a proof that the bound 1√2𝑁 12 is sharp.
KEYWORDS
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1 INTRODUCTION

The Stark operator 𝐻𝑢 = −𝑢′′ − 𝑥𝑢 + 𝑞𝑢 describes a charged quantum particle in a constant electric field with an addi-
tional electric potential 𝑞. It has attracted a lot of attentions from both mathematics and physics [1, 2, 4, 6, 8, 9, 11, 13, 20,
21, 23, 24, 40, 42].
In this paper, we consider a class of more general operators, Stark type operators on 𝐿2(ℝ+):

𝐻𝑢 = −𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢, (1.1)

where 0 < 𝛼 < 2. Denote by𝐻0𝑢 = −𝑢′′ − 𝑥𝛼𝑢 and regard 𝑞 as a perturbation.
It is well known that for any 0 < 𝛼 < 2, 𝜎ess(𝐻0) = 𝜎ac(𝐻0) = ℝ and𝐻0 does not have any eigenvalue. The criteria for

the perturbation such that the associated perturbed Stark type operator has single eigenvalue, finitely many eigenvalues
or countably many eigenvalues have been obtained in [29].
Define 𝑃 ⊂ ℝ as

𝑃 = {𝐸 ∈ ℝ ∶ −𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢 = 𝐸𝑢 has an 𝐿2(ℝ+) solution}.
In [29], the author proved that

Theorem 1.1. [29, Theorem 1.5] Let 𝑎 be given by
𝑎 = lim sup𝑥→∞ 𝑥1−𝛼2 |𝑞(𝑥)|. (1.2)
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Then we have

𝑎 ≥ 2 − 𝛼√2 (#𝑃) 12 . (1.3)

Theorem 1.2. [29, Theorem 1.6] For any
{𝐸𝑗}𝑁𝑗=1 ⊂ ℝ and any

{𝜃𝑗}𝑁𝑗=1 ⊂ [0, 𝜋], there exist potentials 𝑞 ∈ 𝐶∞[0, +∞) such
that

lim sup𝑥→∞ 𝑥1−𝛼2 |𝑞(𝑥)| ≤ (2 − 𝛼)𝑒2√ln𝑁𝑁,
and for any 𝑗 = 1, 2, … ,𝑁, −𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢 = 𝐸𝑗𝑢 has an 𝐿2(ℝ+) solution 𝑢 with the boundary condition

𝑢′(0)𝑢(0) = tan 𝜃𝑗.
Theorem 1.1 implies that in order to create 𝑁 linearly independent eigensolutions in 𝐿2(ℝ+), the quantity 𝑎 given by

(1.2) must be equal or larger than 2−𝛼√2 𝑁 12 . However, Theorem 1.2 shows that if we allow 𝑎 ≥ (2 − 𝛼)𝑒2√ln𝑁𝑁, one can
create 𝑁 eigensolutions in 𝐿2(ℝ+) for arbitrary 𝑁. There is a gap between 𝑁 12 and 𝑒2√ln𝑁𝑁. It is natural to ask what is
the sharp bound of 𝑎 to create 𝑁 linearly independent eigensolutions in 𝐿2(ℝ+).
Question 1.3. What is the minimum of 𝛾 such that for any 𝑁, there is a potential 𝑞 on ℝ+ such that #𝑃 ≥ 𝑁 and

lim sup𝑥→∞ 𝑥1−𝛼2 |𝑞(𝑥)| ≤ 𝐶(𝛾)𝑁𝛾.
Theorems 1.1 and 1.2 imply 𝛾 ∈ [12 , 1].
Our first result in this paper is to show that for any 𝛼 satisfying 23 < 𝛼 < 2, 𝛾 = 12 is the solution to Question 1.3.

Theorem 1.4. Suppose 23 < 𝛼 < 2. Then for any𝑁 > 0, there exists a potential 𝑞 onℝ+ such that
lim sup𝑥→∞ 𝑥1−𝛼2 |𝑞(𝑥)| ≤ 20(2 − 𝛼)√𝑁 (1.4)

and #𝑃 = 𝑁.
For some technical reasons, currently we can only give the proof for 23 < 𝛼 < 2. We believe it that 𝛾 = 12 is the solution

to Question 1.3 for all 0 < 𝛼 < 2.
Question 1.3 and Theorem 1.4 do not care about the locations of the corresponding energies. If we take the distribution

of energies into consideration, what is the sharp upper bound? We formulate it as the following question.

Question 1.5. What is the minimum of 𝛾 such that for any
{𝐸𝑗}𝑁𝑗=1, there exists a potential 𝑞 on ℝ+ such that

−𝑢′′ − 𝑥𝛼𝑢+𝑞𝑢=𝐸𝑗𝑢 has an 𝐿2(ℝ+) solution for each 𝑗 = 1, 2, … ,𝑁 and

lim sup𝑥→∞ 𝑥1−𝛼2 |𝑞(𝑥)| ≤ 𝐶(𝛾)𝑁𝛾.
Theorems 1.1 and 1.2 imply 𝛾 ∈ [12 , 1]. We conjecture that 𝛾 = 1 is the solution to Question 1.5.
During the proof Theorem 1.4, we are able to improve the bound in Theorem 1.2.
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Theorem 1.6. For any 𝜀 > 0, {𝐸𝑗}𝑁𝑗=1 ⊂ ℝ and
{𝜃𝑗}𝑁𝑗=1 ⊂ [0, 𝜋], there exist local 𝐿1(ℝ+) potentials 𝑞 such that

lim sup𝑥→∞ 𝑥1−𝛼2 |𝑞(𝑥)| ≤ (2 − 𝛼 + 𝜀)𝑁, (1.5)

and for each 𝑗 = 1, 2, … ,𝑁, −𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢 = 𝐸𝑗𝑢 has an 𝐿2(ℝ+) solution 𝑢 with the boundary condition
𝑢′(0)𝑢(0) = tan 𝜃𝑗.

Remark 1.7.

∙ Theorem 1.6 gives better bounds than those in Theorem 1.1, but less regularity in potentials.∙ Applying additional piecewise constructions in the proof of Theorem 1.6, it is possible to show that the upper bound in
(1.5) can be improved to (2 − 𝛼)𝑁. We refer the readers to the critical case of [29, Theorem 1.2 ] for details.∙ In the main part of this paper, we only consider the relations between 𝐿2 solutions and limit bound of 𝑞(𝑥). In the last
section, we will mention similar results presented in the bounds of integrals.

The proof of both Theorems 1.4 and 1.6 are inspired by the methods tackling perturbed free Schrödinger operators. Let
us turn to perturbed free Schrödinger operators −𝐷2 + 𝑉 first. Naboko [35] and Simon [39] constructed power-decaying
potentials 𝑉 such that−𝐷2 + 𝑉 has dense eigenvalues. Before that, Wigner–von Neumann type functions can only create
one 𝐿2 solution [41]. Recently, there have been several important developments on the problem of embedded eigenvalues
for Schrödinger operators, Laplacians on manifolds or other models [12, 14–17, 25, 27, 29–32, 34]. For perturbed Stark type
operators, under the rational independence assumption of set

{𝐸𝑗}, Naboko and Pushnitskii [36] constructed operators
with given a set

{𝐸𝑗} as embedded eigenvalues. The author [29] constructed perturbed Stark type operators with any given{𝐸𝑗} as a set of eigenvalueswith the quantitative bound (see Theorem 1.2).However, the potential cannot be given explicitly.
One of the motivations of this paper is to approach the problem in an explicit way.
In [39], Simon used Wigner–von Neumann type functions 𝑉(𝑥) = 𝑎1+𝑥 ∑𝑗 sin(2𝜆𝑗𝑥 + 2𝜙𝑗)𝜒[𝑎𝑗,∞), to complete his con-

structions. It turns out that Wigner–von Neumann type function is a good way to create embedded eigenvalues [15, 17, 26,
31–33]. Moreover, Wigner–von Neumann type functions can also be used to achieve the optimal bounds. Denote by

𝑆 = {𝐸 > 0 ∶ −𝑢′′(𝑥) + 𝑉(𝑥)𝑢(𝑥) = 𝐸𝑢(𝑥) has an 𝐿2(ℝ+) solution}.
Kiselev–Last–Simon [22] proved if lim sup𝑥→∞ 𝑥|𝑉(𝑥)| < ∞, then the set 𝑆 is countable and∑

𝐸𝑖∈𝑆 𝐸𝑖 < ∞. (1.6)

This result has been extended to perturbed periodic operators by the author [28]. By Wigner–von Neumann type func-
tions and additional probability arguments from [18], Remling [37] proved that there are potentials 𝑉(𝑥) = 𝑂(𝑥−1) with∑𝐸𝑖∈𝑆 𝐸𝑝𝑖 = ∞ for every 𝑝 < 1. Remling’s result implies that (1.6) cannot be improved in some sense, which answers a
question in [22].
Another motivation of the present paper is to find the substitution ofWigner–von Neumann type functions to deal with

perturbed Stark type operators, so that we can use the ideas of Simon, Remling, and among others to address our problems.

We found a good type of substituted functions
sin( ∫ 𝜉0 √1−𝛽𝐸𝑗 (𝑥) 𝑑𝑥+𝑡𝑗)𝜉 , which is called the generalizedWigner–vonNeumann

type function. See the definition of 𝛽𝐸𝑗 (𝑥) below.
We want to highlight another ingredient in our proof. Our goal is to create cancellations of the sum of generalized

Wigner–von Neumann type functions as many as we can. This problem is very similar to the constructions of uniformly
bounded bases in the spaces of complex homogenous polynomials [3, 38]1 . It turns that the Rudin–Shapiro sequence,
which is a key ingredient of [3], is also useful to our problem.
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Although the arguments in this paper are inspired by those in dealing with perturbed free Schrödinger operators, the
details are much more delicate and difficult, in particular, oscillated integrals and resonant phenomena. The spectra of
perturbed free Schrödinger operators and Stark operators are quite different. Under the assumption 𝑉(𝑥) = 𝑂(𝑥−1), per-
turbed free Schrödinger operators can have infinitely many eigenvalues. However, under the corresponding assumption,
perturbed Stark operators can only have finitely many eigenvalues by Theorem 1.1. Moreover, for free cases, there is only
one leading entry dominating each Prüfer angle and the leading entries are distinguished by energies. For Stark type cases,
there are finitely many entries (the number of entries depends on 𝛼) dominating each Prüfer angle, and the first/leading
entry is 1 for any Prüfer angle, which leads to resonance. Similar resonance has been studied in [29]. In the proof of
Theorem 1.6, we are able to deal with the resonance coming from the first dominating entry and all the other dominating
entries at the same time. However, for the technical reason, we can only deal with the first two dominating entry for the
topic in Theorem 1.4, and the assumption 𝛼 > 23 will guarantee that there are exact two entries to dominate Prüfer angles.

2 PREPARATIONS

Let 𝑣𝛼(𝑥) = 𝑥𝛼 for 𝑥 ∈ ℝ+ and consider the Schrödinger equation on ℝ+,
−𝑢′′(𝑥) − 𝑥𝛼𝑢(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝐸𝑢(𝑥). (2.1)

The Liouville transformation (see [4, 36]) is given by

𝜉(𝑥) = ∫
𝑥

0
√𝑣𝛼(𝑡) 𝑑𝑡, 𝜙(𝜉) = 𝑣𝛼(𝑥(𝜉)) 14 𝑢(𝑥(𝜉)). (2.2)

We define a weight function 𝑝𝛼(𝜉) by
𝑝𝛼(𝜉) = 1𝑣𝛼(𝑥(𝜉)) . (2.3)

We also define a potential by

𝑄𝛼(𝜉, 𝐸) = − 516 |𝑣
′𝛼(𝑥(𝜉))|2𝑣𝛼(𝑥(𝜉))3 + 14 𝑣

′′𝛼 (𝑥(𝜉))𝑣𝛼(𝑥(𝜉))2 + 𝑞(𝑥(𝜉)) − 𝐸𝑣𝛼(𝑥(𝜉)) . (2.4)

Let 𝑐 = (1 + 𝛼2
) 22+𝛼 . Direct computations imply that

𝑥 = 𝑐𝜉 22+𝛼 , 𝜙(𝜉, 𝐸) = 𝑐 𝛼4 𝜉 𝛼2(2+𝛼) 𝑢(𝑐𝜉 22+𝛼 ) , (2.5)

𝑝(𝜉) = 1
𝑐𝛼𝜉 2𝛼2+𝛼

, (2.6)

and

𝑄𝛼(𝜉, 𝐸) = −54 𝛼2(2 + 𝛼)2 1𝜉2 + 𝛼(𝛼 − 1)(2 + 𝛼)2 1𝜉2 +
𝑞(𝑐𝜉 22+𝛼 ) − 𝐸

𝑐𝛼𝜉 2𝛼2+𝛼
. (2.7)

Notice that the potential 𝑄𝛼(𝜉, 𝐸) depends on 𝑞, 𝛼 and 𝐸. In the following, we always fix 𝛼 ∈ (0, 2). For simplicity, we
drop off its dependence. Let

𝑉(𝜉) = 𝑞(𝑐𝜉 22+𝛼 )
𝑐𝛼𝜉 2𝛼2+𝛼

. (2.8)
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Then

𝑄(𝜉, 𝐸) = −54 𝛼2(2 + 𝛼)2 1𝜉2 + 𝛼(𝛼 − 1)(2 + 𝛼)2 1𝜉2 − 𝐸
𝑐𝛼𝜉 2𝛼2+𝛼

+ 𝑉(𝜉) (2.9)

= − 𝐸
𝑐𝛼𝜉 2𝛼2+𝛼

+ 𝑉(𝜉) + 𝑂(1)𝜉2 .
Suppose 𝑢 ∈ 𝐿2(ℝ+) is a solution of (2.1). It follows that 𝜙 satisfies

−𝑑2𝜙𝑑𝜉2 + 𝑄(𝜉, 𝐸)𝜙 = 𝜙, (2.10)

and 𝜙 ∈ 𝐿2(ℝ+, 𝑝(𝜉)𝑑𝜉).
Below, 𝜖 > 0 always depends on 𝛼 in an explicit way. Denote by

𝛽𝐸(𝜉) = − 𝐸
𝑐𝛼𝜉 2𝛼2+𝛼

.
When 𝜉 is large, one has |𝛽𝐸(𝜉)| < 1. By shifting the equation, we always assume 𝛽𝐸(𝜉) is sufficiently small. So√1 − 𝛽𝐸(𝜉)
is well defined.

Proposition 2.1. Suppose 𝑎 ≠ 0. Then following estimates hold for 𝜉 > 𝜉0 > 1 and 𝛾 ∈ ℝ:
1.

∫
𝜉

𝜉0
sin(𝑎 ∫ 𝑠0

√1 − 𝛽𝐸(𝑥) 𝑑𝑥 + 𝛾)𝑠 𝑑𝑠 = 𝑂(1)𝜉𝜖0 . (2.11)

2. for any 𝐸1 ≠ 𝐸2 ∈ ℝ,

∫
𝜉

𝜉0
sin(𝑎 ∫ 𝑠0

√1 − 𝛽𝐸1(𝑥) 𝑑𝑥 ± 𝑎 ∫ 𝑠0
√1 − 𝛽𝐸2(𝑥) 𝑑𝑥 + 𝛾)𝑠 𝑑𝑠 = 𝑂(1)𝜉𝜖0 . (2.12)

Proof. We only give the proof of case “−” in (2.12). The rest can be proceeded in a similar way.
Denote by

𝛽(𝜉) = 𝑎 ∫
𝜉

0 [√1 − 𝛽𝐸1(𝑥) 𝑑𝑥 − 𝑎 ∫
𝜉

0
√1 − 𝛽𝐸2(𝑥)] 𝑑𝑥 + 𝛾.

Then

𝛽′(𝜉) = 𝑎√1 − 𝛽𝐸1(𝜉) − 𝑎√1 − 𝛽𝐸2(𝜉) = 𝑎 𝐸1 − 𝐸22𝑐𝛼𝜉 2𝛼2+𝛼
+ 𝑜(1)
𝜉 2𝛼2+𝛼

,
and

𝛽′′(𝜉) = 𝑂(1)
𝜉1+ 2𝛼2+𝛼

.
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Integration by part, we have

∫
𝜉

𝜉0
sin(𝑎 ∫ 𝑠0

√1 − 𝛽𝐸1(𝑥) 𝑑𝑥 − 𝑎 ∫ 𝑠0
√1 − 𝛽𝐸2(𝑥) 𝑑𝑥 + 𝛾)𝑠 = ∫

𝜉
𝜉0
sin 𝛽(𝑠)𝑠 𝑑𝑠 = ∫

𝜉
𝜉0
𝛽′(𝑠) sin 𝛽(𝑠)𝛽′(𝑠)𝑠 𝑑𝑠

= 𝑂(𝜉−𝜖0 ) + 𝑂(1)∫
𝜉

𝜉0
cos 𝛽(𝑠)𝛽′′𝑠𝛽′2 𝑑𝑠

= 𝑂(𝜉−𝜖0 ). □

3 ASYMPTOTICAL BEHAVIOR OF SOLUTIONS FOR A CLASS OF LINEAR SYSTEMS

The proof of this section is inspired by the WKB method. We refer the readers to papers [5, 7 10] for arguments.

Theorem 3.1. Suppose 𝑎 > 0 is a constant. Suppose {𝐸𝑗} ∈ ℝ are distinct. Define 𝑉(𝜉) = 0 for 𝜉 ∈ [0, 1] and
𝑉(𝜉) = 4𝑎𝜉

𝑁∑
𝑗=1 sin(∫

𝜉
0 2√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗), (3.1)

for 𝜉 > 1.
Define 𝑞(𝑥) on [0,∞) such that (2.8) holds for (3.1). Let 𝑄(𝜉, 𝐸) be given by (2.9). Then the following asymptotics hold as 𝜉

goes to infinity,

1. if 𝐸 ≠ 𝐸𝑗 for any 𝑗 = 1, 2, …𝑁, then there exists a fundamental system of solutions {𝑦1(𝜉), 𝑦2(𝜉)} of (2.10) such that

[𝑦1(𝜉)𝑦′1(𝜉)] =
⎡⎢⎢⎢⎢⎢⎣

cos(∫
𝜉

0
√1 − 𝛽𝐸(𝑥) 𝑑𝑥 + 𝑡𝑗)

− sin(∫
𝜉

0
√1 − 𝛽𝐸(𝑥) 𝑑𝑥 + 𝑡𝑗)

⎤⎥⎥⎥⎥⎥⎦
+ 𝑂(𝜉−𝜖)

and

[𝑦2(𝜉)𝑦′2(𝜉)] =
⎡⎢⎢⎢⎢⎢⎣

sin(∫
𝜉

0
√1 − 𝛽𝐸(𝑥) 𝑑𝑥 + 𝑡𝑗)

cos(∫
𝜉

0
√1 − 𝛽𝐸(𝑥) 𝑑𝑥 + 𝑡𝑗)

⎤⎥⎥⎥⎥⎥⎦
+ 𝑂(𝜉−𝜖).

2. if 𝐸 = 𝐸𝑗 for some 𝑗, then there exists a fundamental system of solutions
{𝑦1(𝜉), 𝑦2(𝜉)} of (2.10) such that

[𝑦1(𝜉)𝑦′1(𝜉)] = 𝜉𝑎
⎡⎢⎢⎢⎢⎣
cos(∫

𝜉
0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)

− sin(∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)

⎤⎥⎥⎥⎥⎦
+ 𝑂(𝜉𝑎−𝜖)

and

[𝑦2(𝜉)𝑦′2(𝜉)] = 𝜉−𝑎
⎡⎢⎢⎢⎢⎢⎣

sin(∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)

cos(∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)

⎤⎥⎥⎥⎥⎥⎦
+ 𝑂(𝜉−𝑎−𝜖).
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Proof. In order to avoid repetition, we only give the proof of the case the case 𝐸 = 𝐸𝑗 for some 𝑗 = 1, 2, … ,𝑁. Denote by
𝑉̃(𝜉) = 4𝑎𝜉

𝑁∑
𝑖=1,𝑖≠𝑗 sin(2∫

𝜉
0
√1 − 𝛽𝐸𝑖 (𝑥) 𝑑𝑥 + 2𝑡𝑖). (3.2)

Rewrite the second order differential equation of (2.10) as the linearly differential equations,

[ 𝑦𝑦′]
′ = ⎡⎢⎢⎣

0 1
𝛽𝐸𝑗 (𝜉) + 𝑉(𝜉) + 𝑂(1)𝜉2 − 1 0

⎤⎥⎥⎦
[𝑦𝑦′].

Let

[𝑢1𝑢2] = ⎡⎢⎣
√1 − 𝛽𝐸𝑗 (𝜉) 0

0 1
⎤⎥⎦[
𝑦𝑦′].

We obtain a new equation

[𝑢1𝑢2]
′ =

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

0 √1 − 𝛽𝐸𝑗 (𝜉)
−√1 − 𝛽𝐸𝑗 (𝜉) + 𝑉√1 − 𝛽𝐸𝑗 (𝜉) 1

⎤⎥⎥⎥⎥⎦
+ 𝑂(1)𝜉1+𝜖

⎞⎟⎟⎟⎠
[ 𝑦𝑦′].

Let

[𝑦1𝑦2] =
⎡⎢⎢⎢⎣
cos(∫ 𝜉0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗) − sin(∫ 𝜉0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)

sin(∫ 𝜉0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗) cos(∫ 𝜉0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)
⎤⎥⎥⎥⎦
[𝑢1𝑢2].

Obviously, one has

[𝑢1𝑢2] =
⎡⎢⎢⎢⎣
cos(∫ 𝜉0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗) sin(∫ 𝜉0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)

− sin(∫ 𝜉0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗) cos(∫ 𝜉0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 𝑡𝑗)
⎤⎥⎥⎥⎦
[𝑦1𝑦2].

After some calculations, we have

[𝑦1𝑦2]
′ = (Λ(𝜉) + 𝐻(𝜉) + 𝑂(𝜉−1−𝜖))[𝑦1𝑦2],

where

Λ(𝜉) =
⎡⎢⎢⎢⎢⎢⎢⎣

−2𝑎 sin
2(2 ∫ 𝜉0

√1 − 𝛽𝐸𝑗 (𝑥)𝑑𝑥 + 2𝑡𝑗)𝜉 0
0 2𝑎 sin

2(2 ∫ 𝜉0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)𝜉

⎤⎥⎥⎥⎥⎥⎥⎦
(3.3)
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and

𝐻(𝜉) = [𝐻11(𝜉) 𝐻12(𝜉)𝐻21(𝜉) 𝐻22(𝜉)].
The explicit formulas for𝐻𝑖𝑗 , 𝑖, 𝑗 = 1, 2, are

𝐻11 = −12𝑉̃(𝜉) sin(2∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗),

𝐻22(𝜉) = 12𝑉̃(𝜉) sin(2∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗),

𝐻12(𝜉) = −12𝑉(𝜉)(1 − cos(2∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)),

and

𝐻21(𝜉) = 12𝑉(𝜉)(1 + cos(2∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)).

By Proposition 2.1, one has

𝑄(𝜉) ≡ −∫
∞

𝜉 𝐻(𝑠) 𝑑𝑠 = 𝑂(𝜉−𝜖).
Assume 𝜉 is large, then ||𝑄|| ≤ 12 . Let

[𝑦̃1𝑦̃2] = (𝐼 + 𝑄)−1[𝑦1𝑦2].
We obtain

[𝑦̃1𝑦̃2]
′ = (Λ(𝜉) + 𝑅(𝜉))[𝑦̃1𝑦̃2], (3.4)

where 𝑅(𝜉) = (𝑅𝑖𝑗) = 𝑂(𝜉−1−𝜖). Let

𝜑(𝜉) = [𝑦̃1𝑦̃2] and 𝜆(𝜉) = 2𝑎 sin
2(2 ∫ 𝜉0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)𝜉 .
Let us consider the integral equation,

𝜑(𝜉) = [𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠
0 ] − ∫

∞
𝜉

⎡⎢⎣
𝑒− ∫ 𝑦𝜉 𝜆(𝑠) 𝑑𝑠 0

0 𝑒∫ 𝑦𝜉 𝜆(𝑠) 𝑑𝑠
⎤⎥⎦𝑅(𝑦)𝜑(𝑦) 𝑑𝑦. (3.5)
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If (3.5) has a solution ||𝜑(𝜉)|| ≤ 2𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠, then (by direct computation) 𝜑(𝜉) is a solution of Equation (3.4). Moreover,
|||||||||||
|||||||||||∫

∞
𝜉

⎡⎢⎣
𝑒− ∫ 𝑦𝜉 𝜆(𝑠) 𝑑𝑠 0

0 𝑒∫ 𝑦𝜉 𝜆(𝑠) 𝑑𝑠
⎤⎥⎦𝑅(𝑦)𝜑(𝑦) 𝑑𝑦

|||||||||||
||||||||||| = 𝑂(1)∫

∞
𝜉 𝑒∫ 𝑦𝜉 𝜆(𝑠)||𝑅(𝑦)||𝑒− ∫ 𝑦1 𝜆(𝑠) 𝑑𝑠

= 𝑂(1)𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠∫
∞

𝜉 ||𝑅(𝑦)||
= 𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠𝑂(𝜉−𝜖). (3.6)

Define iteration equations:

𝜑𝑘(𝜉) = [𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠
0 ] − ∫

∞
𝜉

⎡⎢⎣
𝑒− ∫ 𝑦𝜉 𝜆(𝑠) 𝑑𝑠 0

0 𝑒∫ 𝑦𝜉 𝜆(𝑠) 𝑑𝑠
⎤⎥⎦𝑅(𝑦)𝜑𝑘−1(𝑦) 𝑑𝑦, (3.7)

with 𝜑 = 0. By induction that ||𝜑𝑘(𝜉) − 𝜑𝑘−1(𝜉)|| ≤ 12𝑘+1 𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠, one can show (3.5) has a solution ||𝜑(𝜉)|| ≤
2𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠 (see p. 94 in [5] for all the details).
By (3.4), (3.5) and (3.6), we get a solution

[𝑦̃1𝑦̃2] = 𝑒− ∫ 𝜉1 𝜆(𝑠) 𝑑𝑠([10] + 𝑂(𝜉−𝜖)).
By Proposition 2.1 again, we have

∫
𝜉

1 𝜆(𝑠) 𝑑𝑠 = 2𝑎 ∫
𝜉

1
sin2(2 ∫ 𝑠0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)𝑠 𝑑𝑠

= 𝑎 ∫
𝜉

1
1𝑠 𝑑𝑠 − 𝑎 ∫

𝜉
1
cos(4 ∫ 𝑠0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 4𝑡𝑗)𝑠 𝑑𝑠

= 𝑎 ∫
𝜉

1
1𝑠 𝑑𝑠 − 𝑎 ∫

∞
1

cos(4 ∫ 𝑠0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 4𝑡𝑗)𝑠 𝑑𝑠 + 𝑎 ∫

∞
𝜉

cos(4 ∫ 𝑠0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 4𝑡𝑗)𝑠 𝑑𝑠

= ln 𝜉𝑎 − 𝑐 + 𝑂(𝜉−𝜖),
where the constant 𝑐 equals

𝑎 ∫
∞

1
cos(4 ∫ 𝑠0

√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 4𝑡𝑗)𝑠 𝑑𝑠.
Thus (3.4) has a solution

[𝑦̃1𝑦̃2] = 𝜉−𝑎[10] + 𝑂(𝜉−𝑎−𝜖). (3.8)



10 LIU

By the similar argument (see [5] again), we obtain that (3.4) has a solution

[𝑦̃1𝑦̃2] = 𝜉𝑎[10] + 𝑂(𝜉𝑎−𝜖). (3.9)

Now the theorem follows from (3.8) and (3.9). □
4 PROOF OF THEOREMS 1.4 AND 1.6

Proof of Theorem 1.6. Let 𝑎 > 2−𝛼2(2+𝛼) . Define potentials

𝑉(𝜉) = 4𝑎𝜉
𝑁∑
𝑗=1 sin(2∫

𝜉
0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)𝜒[𝑎𝑗,∞),

with large 𝑎𝑗 .
Obviously,

|𝜉𝑉(𝜉)| ≤ 4𝑎𝑁,
so that

|||||||𝜉1−
𝛼2 𝑞(𝜉)||||||| ≤ 2(2 + 𝛼)𝑎𝑁. (4.1)

By (2.6),

𝑝(𝜉)|||||𝜙(𝜉, 𝐸𝑗)|||||2 ≤ 𝑂(1)𝜉−2𝑎− 2𝛼2+𝛼 ≤ 𝑂(1)𝜉−1−𝜖. (4.2)

By (4.2), (2.10) has a solution 𝜙(𝜉, 𝐸𝑗) ∈ 𝐿2(ℝ+, 𝑝(𝜉)𝑑𝜉) for each 𝑗 = 1, 2, … ,𝑁. However, 𝜙(𝜉, 𝐸𝑗) may not satisfy the
given boundary condition. This can be done by adjusting 𝑎𝑗 and additional functions𝑊 with support in (1,2). We refer
readers to [39] for rigorous arguments. Now the Theorem follows from (4.1). □
Let

𝜏 = 2 + 𝛼2(2 − 𝛼) 1(1 + 𝛼2
) 2𝛼2+𝛼 ,

so that

𝜏𝑑𝜉 2−𝛼2+𝛼𝑑𝜉 = 12 1
𝑐𝛼𝜉 2𝛼2+𝛼

.
For any given 𝑁, let

𝐸𝑗 = 𝑗𝑁𝜏 , for 𝑗 = 1, 2, … ,𝑁.
Before giving the proof of Theorem 1.4, several lemmas about Rudin–Shapiro sequence are needed. Suppose

{𝜎𝑗}𝑛𝑗=0 is𝑛 + 1 consecutive numbers in the Rudin–Shapiro sequence. We should mention that 𝜎𝑗 ∈ {±1}, 𝑗 = 0, 1, 2, … , 𝑛.
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Lemma 4.1. [[19, p. 46], [3, Lemma 1]] Assume 𝑎, 𝑏 ∈ ℤ satisfy 𝑏 − 𝑎 = 2𝑚 − 1 with𝑚 ∈ ℤ+. Then
sup𝜃∈ℝ

|||||||||
𝑏∑
𝑗=𝑎 𝜎𝑗𝑒2𝜋𝑖𝑗𝜃

||||||||| ≤
√22𝑚∕2.

By dividing the general interval [𝑎, 𝑏] into dyadic intervals as in Lemma 4.1, we have
Lemma 4.2. For any 𝑎, 𝑏 ∈ ℤ and 𝑎 < 𝑏, we have

sup𝜃∈ℝ
|||||||||
𝑏∑
𝑗=𝑎 𝜎𝑗𝑒2𝜋𝑖𝑗𝜃

||||||||| ≤ 5√𝑏 − 𝑎 + 1. (4.3)

Proof. Let 𝑛 be such that 2𝑛 ≤ 𝑏 − 𝑎 + 1 < 2𝑛+1. Rewrite 𝑏 − 𝑎 as
𝑏 − 𝑎 + 1 = 𝑛∑

𝑘=0 𝜂𝑘2𝑘,
where 𝜂𝑘 ∈ {0, 1}. For 𝑘 with 𝜂𝑘 = 1, applying Lemma 4.1 with𝑚 = 𝑘, we have

sup𝜃∈ℝ
|||||||||
𝑏∑
𝑗=𝑎 𝜎𝑗𝑒2𝜋𝑖𝑗𝜃

||||||||| ≤
√2 𝑛∑

𝑘=0 𝜂𝑘2𝑘∕2 ≤
√2√2 − 1(2

𝑛+12 − 1) ≤ 5√𝑏 − 𝑎 + 1.
□

Lemma 4.2 appears in [3] without the quantitative factor 5 in (4.3). Lemma 4.2 immediately implies,

Lemma 4.3. There exist 𝜃𝑗 ∈ {0, 12 }, 𝑗 = 1, 2, … ,𝑁, such that for any 𝜉 > 0
|||||||||
𝑁∑
𝑗=1 sin

(2𝜏𝐸𝑗𝜉 + 2𝜋𝜃𝑗)||||||||| +
|||||||||
𝑁∑
𝑗=1 cos

(2𝜏𝐸𝑗𝜉 + 2𝜋𝜃𝑗)||||||||| ≤ 10√𝑁. (4.4)

Proof of Theorem 1.4. It suffices to prove the case that 𝑁 ≥ 2. For any given 𝑁 ≥ 2, let
𝐸𝑗 = 𝑗𝑁𝜏 , for 𝑗 = 1, 2, … ,𝑁.

Let 𝑎 > 2−𝛼2(2+𝛼) . By Lemma 4.3, there exist 𝑡𝑗 ∈ [0, 𝜋) such that for any 𝜉 > 0,
|||||||||
𝑁∑
𝑗=1 sin

(2𝜏𝐸𝑗𝜉 + 2𝑡𝑗)||||||||| +
|||||||||
𝑁∑
𝑗=1 cos

(2𝜏𝐸𝑗𝜉 + 2𝑡𝑗)||||||||| ≤ 10√𝑁. (4.5)

Let

𝑉(𝜉) = 4𝑎𝜉
𝑁∑
𝑗=1 sin(2∫

𝜉
0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗). (4.6)
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By Tayor series, one has

∫
𝜉

0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 = ∫

𝜉
0 (1 − 12𝛽𝐸𝑗 (𝑥) + 𝑂(1)𝛽𝐸𝑗 (𝑥)2) 𝑑𝑥

= 𝜉 + 𝜏𝐸𝑗𝜉 2−𝛼2+𝛼 + 𝑂(1)
𝜉 4𝛼2+𝛼 −1 + 𝑡𝑗

= 𝜉 + 𝜏𝐸𝑗𝜉 2−𝛼2+𝛼 + 𝑂(𝜉−𝜖) + 𝑡𝑗, (4.7)

since 𝛼 > 23 .
By (4.5), (4.6) and (4.7), one has

|𝜉𝑉(𝜉)| = 4𝑎|||||||||
𝑁∑
𝑗=1 sin(2∫

𝜉
0
√1 − 𝛽𝐸𝑗 (𝑥) 𝑑𝑥 + 2𝑡𝑗)|||||||||

= 4𝑎|||||||||
𝑁∑
𝑗=1 sin(2𝜉 + 2𝜏𝐸𝑗𝜉

𝛼2+𝛼 + 2𝑡𝑗 + 2𝑡𝑗)||||||||| + 𝑂(𝜉−𝜖)
≤ 4𝑎|||||||||

𝑁∑
𝑗=1 sin(2𝜏𝐸𝑗𝜉

𝛼2+𝛼 + 2𝑡𝑗 + 2𝑡𝑗)||||||||| + 4𝑎
|||||||||
𝑁∑
𝑗=1 cos(2𝜏𝐸𝑗𝜉

𝛼2+𝛼 + 2𝑡𝑗 + 2𝑡𝑗)||||||||| + 𝑂(𝜉−𝜖)
≤ 40𝑎√𝑁 + 𝑂(𝜉−𝜖). (4.8)

Define 𝑞(𝑥) on [0,∞) such that (2.8) holds for (4.6). Then by (4.8), we have
𝜉1−𝛼2 |𝑞(𝜉)| ≤ (2 + 𝛼)20𝑎√𝑁 + 𝑂(𝜉−𝜖). (4.9)

By Theorem 3.1, for any 𝐸𝑗 , 𝑗 = 1, 2, … ,𝑁, (2.10) has a solution 𝜙(𝜉, 𝐸𝑗) satisfying
||||𝜙(𝜉, 𝐸𝑗)|||| ≤ 2𝜉−𝑎

for large 𝜉. Let 𝑎 = 2−𝛼2+𝛼 . By (2.6),

𝑝(𝜉)||||𝜙(𝜉, 𝐸𝑗)||||2 ≤ 𝑂(1)𝜉−2𝑎− 2𝛼2+𝛼 ≤ 𝑂(1)𝜉−1−𝜖. (4.10)

It implies 𝜙(𝜉, 𝐸𝑗) ∈ 𝐿2(ℝ+, 𝑝(𝜉)𝑑𝜉) and then 𝑢 ∈ 𝐿2(ℝ+). Now Theorem 1.4 follows from (4.9). □
5 PROBLEMS ABOUT THE SHARP BOUNDS IN THE INTEGRAL FORM

Motivated by [36], we will discuss the sharp bounds in the integral form in this section. Define

𝐼𝛼𝑞 (𝜌) = ∫
∞

1
𝑑𝑥√𝑣𝛼(𝑥) exp(−𝜌 ∫

𝑥
1

|𝑞(𝑡)|√𝑣𝛼(𝑡) 𝑑𝑡)
= ∫

∞
1

𝑑𝑥𝑥𝛼∕2 exp(−𝜌 ∫
𝑥

1
|𝑞(𝑡)|𝑡𝛼∕2 𝑑𝑡).
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We drop the dependence of 𝛼 for simplicity. Let
𝐼𝑞 = sup𝜌 {𝜌 ≥ 0 ∶ 𝐼𝑞(𝜌) = ∞} = inf𝜌 {𝜌 ≥ 0 ∶ 𝐼𝑞(𝜌) < ∞}.

Obviously, |𝑞1(𝑥)| ≤ |𝑞2(𝑥)| implies
𝐼𝑞1 ≥ 𝐼𝑞2 .

Regarding one 𝐿2 solution, Naboko and Pushnitskii [36] proved the following statement
Theorem 5.1. [36, Theorem 1] Suppose 𝐼𝑞 > 1. Then −𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢 = 𝐸𝑢 has no 𝐿2(ℝ+) solution for any 𝐸 ∈ ℝ.
Theorem 5.2. [36, Theorem 2] For any 𝐸 ∈ ℝ and 0 < 𝜖 < 1, there exists 𝑞 such that 𝐼𝑞 = 1 − 𝜖 and−𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢 = 𝐸𝑢
has an 𝐿2(ℝ+) solution.
Remark 5.3. Theorems 5.1 and 5.2 hold for more general cases [36].

It is natural to ask what is the analog version of Theorems 5.1 and 5.2 for the𝑁 linearly independent 𝐿2(ℝ+) solutions.
By choosing test functions 𝑞(𝑥) = 𝐶

𝑥1− 𝛼2 and also motivating from Questions 1.3 and 1.5, we post another two questions.

Question 5.4. What is the minimum of 𝛾1 such that for any 𝑁, there is a potential 𝑞 on ℝ+ such that #𝑃 ≥ 𝑁 and

𝐼𝑞 ≥ 𝑐(𝛾1)𝑁𝛾1 .
Question 5.5. What is the minimum of 𝛾2 such that for any

{𝐸𝑗}𝑁𝑗=1, there exists a potential 𝑞 on ℝ+ such that

−𝑢′′ − 𝑥𝛼𝑢+𝑞𝑢=𝐸𝑗𝑢 has an 𝐿2(ℝ+) solution for each 𝑗 = 1, 2, … ,𝑁 and

𝐼𝑞 ≥ 𝑐(𝛾2)𝑁𝛾2 .
By Theorems 1.4 and 1.6, one has following corollaries.

Corollary 5.6. Suppose 23 < 𝛼 < 2. Then for any𝑁 > 0, there exists a potential 𝑞 onℝ+ such that
𝐼𝑞 ≥ 120(2 − 𝛼)√𝑁

and #𝑃 = 𝑁.
Corollary 5.7. For any 𝜀 > 0, {𝐸𝑗}𝑁𝑗=1 ⊂ ℝ and

{𝜃𝑗}𝑁𝑗=1 ⊂ [0, 𝜋], there exist potentials 𝑞 such that
𝐼𝑞 ≥ 2 − 𝛼2(2 − 𝛼 + 𝜀)𝑁

and for each 𝑗 = 1, 2, … ,𝑁, −𝑢′′ − 𝑥𝛼𝑢 + 𝑞𝑢 = 𝐸𝑗𝑢 has an 𝐿2(ℝ+) solution 𝑢 with the boundary condition
𝑢′(0)𝑢(0) = tan 𝜃𝑗.
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By Corollaries 5.6 and 5.7, we have for 0 < 𝛼 < 2,
𝛾2 ≤ 1

and for 23 < 𝛼 < 2,
𝛾1 ≤ 12 .

We conjecture that 𝛾1 = 12 and 𝛾2 = 1 are the answers to Questions 1.3 and 1.5 respectively.
Finally, we remark that the method in [36] is based on the integral of “piecewise constant” functions. More precisely,

in each piece, 𝑓(𝑥) ≈ 𝐶1+𝑥 , which has the same flavor of Naboko [35] Our proof in the present paper (also [29]) is very
different. We used the delicate estimate of the oscillated integrals

(𝑓(𝑥) ≈ sin 𝜃(𝑥)1+𝑥
)
stemming from Prüfer transformation.

Since the two methods are very different, we are not sure wether the corresponding integral form of Theorem 1.1 holds
or not.
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