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ABSTRACT

Asynchronous event-driven computation and communication using
spikes facilitate the realization of spiking neural networks (SNN)
to be massively parallel, extremely energy efficient and highly ro-
bust on specialized neuromorphic hardware. However, the lack
of a unified robust learning algorithm limits the SNN to shallow
networks with low accuracies. Artificial neural networks (ANN),
however, have the backpropagation algorithm which can utilize gra-
dient descent to train networks which are locally robust universal
function approximators. But backpropagation algorithm is neither
biologically plausible nor neuromorphic implementation friendly
because it requires: 1) separate backward and forward passes, 2)
differentiable neurons, 3) high-precision propagated errors, 4) co-
herent copy of weight matrices at feedforward weights and the
backward pass, and 5) non-local weight update. Thus, we propose
an approximation of the backpropagation algorithm completely
with spiking neurons and extend it to a local weight update rule
which resembles a biologically plausible learning rule spike-timing-
dependent plasticity (STDP). This will enable error propagation
through spiking neurons for a more biologically plausible and neu-
romorphic implementation friendly backpropagation algorithm for
SNNs. We test the proposed algorithm on various traditional and
non-traditional benchmarks with competitive results.
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1 INTRODUCTION

The brain uses discrete action potentials (spikes) in time through
plastic synapses for communication. This has inspired the third gen-
eration of neural networks called spiking neural networks (SNN).
The spikes have uniform magnitude and are sparse in time. Al-
though the SNN utilize a highly simplified spike generation mech-
anisms as compared to its biological counterpart [6], each spike
still contains high information content and its conveyed through
spike timing and/or spike rates. This sparse communication mech-
anism facilitates energy reduction in the brain and also translates
to hardware implementations [14][20].

Besides requiring minimal power, the brain can make sense of
huge amounts of concurrent sensory information from a noisy
environment through deep and complex neural structures such as
the visual cortex, primary auditory cortex etc. Although spiking
networks have theoretically been shown to have Turing-equivalent
computing power [13], it remains a challenge to train deep SNNs;
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threshold functions that generate spikes are discontinuous, so they
do not have derivatives and cannot directly utilize gradient-based
optimization algorithms for training. Biologically plausible learning
mechanism spike-timing-dependent plasticity (STDP) [18] and its
variants are local in synapse and time, thus the plasticity of the
synaptic weights are dependent on the relative timings of the pre
and post-synaptic spikes. It is difficult to train multi-layer SNNs by
utilizing only the local information. Thus, SNNs utilizing STDP are
limited to very shallow networks [4][22].

In contrast to SNNGs, artificial neural networks (ANNs) are com-
prised of neurons with continuous non-linear activation functions
and communicate through high-precision values. These neurons
are differentiable enabling gradient-based optimization methods
and they can be stacked in multiple (deep) layers producing a locally
robust universal function approximator. Recently, with the avail-
ability of computing power and large labeled datasets, ANNs have
become very deep producing breakthrough performances in various
fields of pattern recognition. Despite their effectiveness, they are
computationally expensive and not suitable for implementations
on portable hardware.

Even though ANNs were originally inspired by the brain and
the representations learned by ANNs in tasks like image classifica-
tion is shown to be similar to those observed in receptive fields of
the visual cortex [26], learning the synaptic weights through back-
propagation appears biologically unrealistic [3] in various ways: (a)
Neuron models in ANNs send a continuous-valued output which is
biologically unrealistic. Whereas, it is not trivial to compute their de-
rivative. (b) Neuron activities are not differentiable, while gradient
descent requires local derivative of the neuron to backpropagate the
error. (¢) The connection between neurons in SNN is unidirectional.
A backward path must be added specifically. However, it then will
create the "weight transport" problem. Two copies of the weight
must be stored in both the forward path and backward path. Since
the weight is constantly changing during learning, maintaining the
coherence between the two copies will create significant overhead.
(d) Errors in ANN are propagated as real value. This representation
is not compatible with SNN.

In this work, we systematically solve the above biological implau-
sibility issues with backpropagation with an intent to approximate
the entire backpropagation algorithm utilizing only the spiking
neurons and adapt it towards a local learning rule which resembles
STDP. We validate the approximation and the local learning rule us-
ing three benchmarks. The following summarizes our contributions:

(1) We formulated the backpropagation algorithm in terms of
spiking neurons to approximate the non-linearity of the
forward pass and the linearity of the backward pass.



Bias

1 0— W1

T Activation
function Output
Inputs Ty O— W2 @ @ Y

T3 0— W3
Weights

Figure 1: Spiking Neuron Model

(2) We show that, through a proper connection between the for-
ward and backward paths, gradient descent can be achieved
using local weight update that resembles STDP. This con-
nection is derived by adapting the back-propagated errors
as the target difference in the difference target propagation
algorithm.

(3) We propose to use a neural circuit to calculate the derivative
of the L2 loss in terms of spikes.

2 RELATED WORKS

There have been various approaches to adopt the backpropagation
algorithm to train deep SNNs directly. One category of approaches
keeps track of the membrane potential at spike times and back-
propagate errors based on that. SpikeProp [2] is the first attempt
to train an SNN using such an approach. But SpikeProp is very
limited to single-spike learning. A similar category of approach
[27] [11] treats the discontinuities during spike times as noise and
smoothen the membrane potential to essentially make is continu-
ous. These approaches utilize spike-rate to compute the loss and
membrane potential to compute the error derivative, and hence
create a discrepancy. Neftci et. al. (2017) [138] proposed an event-
driven random backpropagation (eRBP) algorithm simplifying the
backpropagation chain path. But this work requires multicompart-
mental neurons to enable error to locally modulate plasticity. In
[25], a supervised learning method was proposed (BP-STDP) where
the backpropagation update rules were converted to temporally
local STDP rules for multilayer SNNs.

In summary, existing works have some major limitations: a) they
either require high-precision back-propagating error derivatives
or do not adhere to the linearity of the original backpropagation
algorithm. b) Each neuron must know the membrane potential of
its presynaptic neighbors in order to determine the synaptic weight
change.c) Each neuron must also know the error derivatives of its
postsynaptic neighbors in order to calculate its own error derivative.
All these limitations violate the constraints of local communication
rule in spike domain. Meanwhile, there are approaches [21][19] to
convert ANNs to SNNs which is not condusive to neuromorphic
implementation and are thus out-of-scope for this work.

3 METHODS

In this section, we analyze the root cause of biological implausibili-
ties in the backpropagation algorithm and later we will show that
they can be eliminated for SNNs through a suitable sequence of
approximation techniques. This includes the approximation of the
derivatives of spiking neurons (Section 3.1), representing linearly

propagated errors using spiking neurons (Section 3.2), local learn-
ing through error spikes (section 3.3) and completely spike-based
computation of L2 loss’s derivative (Section 3.4). The whole method
is put together in the algorithm in Section 3.6. Table 1 provides a
list of symbols used relating to neuron’s state and output for clarity.

Symbol Symbol Meaning
Forward pass | Backward pass
U E Membrane potential
Accumulated
u € sub-threshold
membrane potential
h e Spike count
s es Spike train

Table 1: Symbols

3.1 Derivatives of Spiking Neuron Function

Fig. 1 shows a general model of a simple neuron in a neural net-
work in which there are a set of inputs (x1, x2, x3), synapses from
those inputs to the neuron (wi, wg, w3), those inputs are accumu-
lated and then goes through an activation function to produce an
output y. In SNNs, the inputs and outputs are spike trains, and
the activation function is a discontinuous threshold function. The
Leaky Integrate-and-Fire (LIF) is the most popular neuron model
[24] because of its simplistic representation of a spiking neuron.
Here, we utilize a discrete-time variant of the non-leaky IF neuron
that accumulates the input spikes over time and produces a binary
spike when the membrane potential crosses a clear threshold. The
membrane potential of neurons in layer i at time ¢ is:

Ui(t) = ) wimi-si-1() + by + Uy(t = 1) (1)

if Uj(t) >0 then s;(t)=1, else si(t)=0

where w;_1,; is the synaptic weight between pre-synaptic neu-
rons in layer i — 1 and post-synaptic neurons in layer i, b; is the
bias. s;—1(t) and s;(¢) are pre and postsynaptic spike trains respec-
tively. The neuron spikes when the membrane potential reaches
the threshold 8 and it’s membrane potential is reset to the resting
potential of 0.

The spike in the spike train is represented as a delta Dirac func-
tion at the spike time ¢,

s(ts) = 6(t — ts)
such that the sub-threshold membrane potential of the postsynaptic
neuron between consecutive spikes s;(ts1) and s;(ts2) is given by

Ls2
Uit) = D wicri( D) 8t —t) + btz —ta1)  (2)
I=ts1

The activity of a neuron can be represented either in terms of
their rate or spike count. Here, as we intend to compute the loss
based on the spike counts, we utilize the spike counts as neuron’s
activity which is given by the sum of delta Dirac functions over the

spiking time interval T as shown in Eq. 3.

T T

B(T) = ) s(ts) = ) 8t —ts) 3)

t=0 t=0



3 —
A
2 " i
1 . ¢ graéient
- * estimation
0 6 20 30 40 u

(a) Spiking Activation Function

0.5

0.4 1

0.

w
L

0.

0.14 I I

0.0

N
L

0.00 0.65 O.iO 0.‘15 0.‘20 0.‘25 0.30
Correlation Coefficient =0.99

(b) Correlation between ANN (y-axis) and SNN (x-axis)

Figure 2: Approximation of the forward pass

where t; are the post-synaptic spike times of neuron j.
The spike counts can also be represented in terms of the neuron
’s membrane potential.
u(T)J

h(T) = f(u(T)) = { 0 ©

where 6 is the spiking threshold and u(T) is the accumulated
sub-threshold membrane potential computed in Eq. 2 over the time
period T

N
wT) = ) Ut
s=0

where ¢, is the post-synaptic spike time, N is the number of spikes
in the post-synaptic spike train such that T > tj

The fig. 2(a) shows the function f(u) for the spike count over
time T is a staircase function of the total accumulated sub-threshold
membrane potential u. This represents the activation function of
the spiking neurons over that time window. Fig. 2(b) shows a strong
correlation of the hidden layers in the forward pass between the
ANN and the SNN with the same weight initialization and input
sample in the MNIST experiments. The ladder-like effect seen in Fig.
2(b) due to the discretization caused by the limited time window.

The function is clearly discontinuous and has no derivatives
when u = nf where n = 1,2, .., T. The derivative is zero at all other
u. To estimate the function’s gradient, we approximate f(u) by a
piece-wise linear function as shown byt the dotted line in fig. 2(a).
The function is zero for u < 0, then increases linearly with a slope
%. This approximation resembles a ReLU function shifted by 6.
This shift by 0 prevents computation of the gradient based on the
membrane potential before the first spike. This is important as we
compute the loss in terms of spikes and require the gradient on the
basis of the spikes. Thus, the derivative of f(u) is approximated as

Lo jfu>0
Wo=fu=40 ""= 5
fe {0 ifu<0 ©)

3.2 Spike Representation of Error Derivatives
Let us assume a network with [ layers. For a hidden layer i which
is post-synaptic for layer i — 1 and pre-synaptic for layer i + 1in a
time period T,

ui = wi—1,i - hi-1 + b (6)

and the spike count from Eq. 4 is

_|u
hl_{eiJ

Now, let us assume a loss function L such that the derivative of
the loss function at the i + 1 layer is

oL
Ohii1
Now, using the chain rule, the error derivative at layer i is:

. = oL _ L  Bhiy1 Ouin
"7 0hi ~ Ohiy1 Ouir1 Ol
1

s = €: . — T
€i = €it+1 01 Wi i+l
A

€i+1 =

when u;11 > ;41 (7)

We intend to represent the error derivative using spiking neu-
rons such that € now represents the accumulated sub-threshold
membrane potential for spiking neurons without bias. Such that
we utilize the same activation function as for the feedforward path
given in Eq. 4 to get a formulation as shown in Eq. 6

€ = €j41 'Wz?:i+1 (8)

where e3 is the error spike count such that we can model the

error network with IF neurons as well. In other words, €; is the

accumulated sub-threshold membrane potential of the error neuron

whose input is the spikes e;+1 from the upper-level error neuron.

So, the membrane potential of error neurons in in layer i at time
tis:

Ei(t) = ) w] yesiva(t) + Ei(t = 1)

if Ej(t) =6 then esi(t)=1, else esj(t)=0

where w; ;41 is the synaptic weight matrix from layer i to layer
i+ 1 and es;+1(t) is the spike train in the feedback path from layer
i + 1. The neuron spikes when the membrane potential reaches
the threshold 0 and it’s membrane potential is reset to the resting
potential of 0.

The activation function in Eq. 4 approximates a ReLU function
which is non-linear. To approximate the linearity of the backward
pass of backpropagation, we adopt a two-channel spikes approach;
one for positive and another for a negative spike as mentioned in
[23] and the spike count for the error derivatives is given as
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Figure 3: Approximation of the backward pass

et =|-5] ife>0
e=qe =|5]| ife<o 9)
0 otherwise

Eq. 9 essentially performs a linear combination of positive and
negative versions of the non-linear function Eq. 4 to approximate a
linear function as shown in fig. 3(a). Fig. 3(b) shows a fairly strong
correlation of the hidden layers in the backward pass between the
ANN and the SNN with the same weight initialization and input
sample in the MNIST experiments.

3.3 Local Learning

Given Eq. 5 and 7 and the chain rule, we can derive the weight
update for incoming weights in layer i as

Awi_1,i =€ - hi - h; (10)

In terms of the synapse, this weight update is based on local
variables presynaptic activity and derivative of the postsynaptic
activity. But the error derivative is not local to the synapse. So, we
take inspiration from the concept of an alternate credit assignment
method called difference target propagation [10] and modify it to
derive a local weight update formulation.

The main idea of target propagation is to provide each feedfor-
ward unit’s activation a target value which is close to the activation
value. Once the target is computed, the gradient of the loss between
the feedforward value and the target value is propagated only lo-
cally. In the limit where the target is very close to the feedforward
value, target propagation should behave like backpropagation.

Let us assume a network with I layers. Let h; be the target spike
count for the hidden layer i, such that the local L2 loss is given as

L(hi, hi) = ||hi - hi“j

such that the local weight update using the chain rule is given as

OL(hi,hi) _ OL(hi b)) dh; O
Owi—i Ok

Awj_1,i = .
’ ou; Bwifl,,-

~ 1
Aw;i_1,; < (hj = hy) - 7 hi-1 whenu; > 6; (11)

1

where the threshold @ is a constant that is incorporated in the
learning rate n such that local weight update is given as

Awi_1,i =1+ (hi = h;) - hizy (12)

In [10], the targets are determined utilizing an autoencoder with
inverse synaptic weights which are learnt through reconstruction.
Here, we use the error derivatives as the difference to determine
the target activation value.

hi = f(;) = f(ui + e; - Wei)
From Eq. 4,
hi =

Uj +ej - Wej
0;
Now, if we; = y0; then

hAi =h; +ye; (13)

Eq. 13 essentially provides the connectivity from the error neu-
rons to the feedforward neurons as shown in fig. 4(b) which is a
one-to-one connection with non-plastic synaptic weight equal to
a constant y factor of the spiking threshold, to produce the target
spike count.

From Eq. 13 we can also conclude

hi — hi « e (14)

Interestingly, given Eq. 14, the local weight update in Eq. 12
relates closely to the formulation of the rate-based STDP rule in
[1] in which the synaptic weight update is in proportion to the
product of the presynaptic activity and the rate of change of the
postsynaptic activity. This conclusion is supported by fig. 5 which
shows the strong correlation between our local weight update and
a basic two-factor event-based STDP rule that fit the biological
findings in [18]. Thus, we call the local learning rule given by Eq.
12 Error-modulated STDP (EMSTDP).

3.4 Derivative of L2 Loss

We utilize the L2 loss for the output layer in a network with [ layers
given as

L(hy. hy) = ||y - hl||§

where ho and h,, are the target and output spike counts respectively.
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L2 loss’s derivative results in a simple linear combination of the
target and the output value

AL(hy, b))
oh,

The choice of L2 loss is preferable as its derivative can be imple-
mented simply by a specific connectivity as shown in fig. 4(b) of IF
neurons whose membrane potential is given as

Ey(t) = wrsi(t) + (=wr)s;(t) + E;(t = 1)

where s;(t) and s;(t) are the target and output spike trains respec-
tively and wr, is the non-plastic synaptic weight to the neuron that
asynchronously computes the loss gradient in terms of spikes. The
neural circuit is shown in fig. 4(b) with wy, = 1.

Thus, the accumulated subthreshold membrane potential of the
output loss derivative is

= (hy — hp)

€ = wrhy + (=wp)hy

And its propagated backwards as the error derivatives for the hidden
layer as per Eq. 9 with a threshold 6;. As the loss is determined per
spike basis, the target output firing rate dictates the choice of 0.
For example, if wy = 1 then for a target output firing rate of 0.2 we
fix the 0; to 5.

3.5 Feedback Alignment

Probably, one of the most important issues is the weight trans-
port problem in backpropagation in terms of biological plausibility.
Two coherent copies of the weight must be stored in both the for-
ward path and backward path but there is no known biological
mechanism for synapses to know the synaptic strength of other
synapses. Also, since the weight is constantly changing during
learning, maintaining the coherence between the two copies will
create significant overhead. [12] proposes the Feedback Alignment
(FA) method which involves using fixed and random weights for the
feedback path to convey error signals with no assumptions on its
structure. In fully connected networks with FA, it was observed that
the angle between the back-propagated gradient with symmetric
weights and the FA propagated gradient converges from approx-
imately orthogonal to roughly 45°, meaning that the FA weight
updates are correlated but not identical to those with symmetric

weights. [16] introduced direct feedback alignment (DFA) in which
the output error signal is propagated directly to all hidden layers
instead of through adjacent layers using fixed and random weights.
In this work, we adopt both FA and DFA schemes to avoid the
weight transport problem. The resulting networks are shown in fig.
4(c).

3.6 Error-modulated STDP pipeline

The formulation provided in the previous sections shows how to rep-
resent error and backpropagate it in spike domain. It also provides a
guideline to design the feedback path including its connectivity and
neuron model as shown in fig. 4. In fig. 4, red solid directed lines
denote plastic synapses whereas blue lines denote fixed synapses.
Fig. 4(a) denotes a vanilla multilayer perceptron (MLP) with a for-
ward pass of continuous-valued activations and backward pass of
continuous-valued error derivatives. Fig. 4(b) denotes the resul-
tant network structure for EMSTDP derived in Section 3.3 and the
spiking circuitry for the derivative of L2 loss. Fig. 4(c) denotes the
variations of EMSTDP in which weight symmetry is avoided by
using feedback alignment and direct feedback alignment methods.

All the operations in the network with an arbitrary number
of layer is asynchronous except for the weight update which is
computed only when the error derivatives have driven the hidden
layers to its targets. Algorithm 1 shows the error-modulated STDP
algorithm for the SNN with an arbitrary number of layers.

Each input sample is a sequence of spikes (Poisson sampling
of input intensity) which is presented for a period of T time steps.
Given the local weight update rule Eq. 12, requires the postsynaptic
spike counts before it’s driven to its target and after it settles to
the target, it necessitates two phases. The spikes are propagated
through the forward pass for the whole period. After a warm-up
period, ideally, % when the firing rates for the hidden layer settle
to a fixed point, the spiking circuit computing the derivative of the
loss starts propagating spikes through the spiking error circuit.

The spiking error circuit drives the hidden layers in the forward
pass toward its target. In the remaining time period, the neurons in
the hidden layers settle towards its target firing rate. During the
two phases, the local activity i.e. pre and postsynaptic spike counts
are recorded, and at the end of T, the synaptic weight update is
calculated by Eq. 12.



Algorithm 1: Error-Modulated STDP algorithm

Initialization: Time window T

Spiking neuron i in forward pass
Incoming spike train s;—;
hisl’;i,hi—l —0
begin
while t < T do
si(t)=0
Ui(t)+ =b;
if s;_1(t) == 1 then
Ui(t)+ = wi-1,i
hi—1 ++
if es;(t) == 1 then
| Uit)+ =0
if U;(t) > 6; then
si(t) =1
Ui(t)+ =0
if t < T/2 then
| hi++
else
‘ hAiA+ +
Awi_1,; = nthi — hi) - hi—
wi-1,it = Awi_y

Spiking neuron i in backward pass
Incoming spike train es;+1

begin
while t < T do
esi(t) =0
if t > T/2 then
if esj4+1(t) == 1 then
| Ei()+ = wis,i
if E;(t) > 6; then
esi(t) =1
Ei(t)=0

4 EXPERIMENTS AND RESULTS

In this section, we will present different experiments and their re-
sults to evaluate the performance of the error-modulated STDP
algorithm. In the first experiment, we can observe the conclusions
presented in [1] such that our algorithm produces a profile of weight
updates similar to [18]. Then, we’ll test the algorithm on three
datasets; MNIST digit classification, Fashion MNIST and Sign lan-
guage classification.

Training an SNN can be difficult as the performance can be
sensitive to some present hyperparameters. Thus, it’s important to
adopt and standardize hyperparameter selection during training,
this means weight initialization and threshold selection for the
algorithm.

In deep learning, it is essential to have a proper initialization
method that should avoid reducing or magnifying the magnitudes
of input signals exponentially [5]. Similarly, in SNNs it is essential to
prevent vanishing and explosion of spikes through the layers. Vari-
ance matching initialization schemes attempt to keep Var(yr) =
Var(y1), where y; is the output of the first layer and yy is the out-
put of the last. In order to do so, the following condition must be

met, for any given layer I: %anar(wl) = 1 where n; is the number
of neurons in the previous layer. Thus, based on [5], we draw the
weights from a Gaussian distribution with p = 0 and var = SCnLle .

Similarly, the choice of thresholds is also important to prevent
extreme sparsity of spikes through the layers. Here, we adopt a
simple standardization of the thresholds given by 0; = n;.o(w;).f
where f is the constant that determines the percentage of input
neurons to spike for output neuron to spike.

And throughout this section, we will use the following notations
for the SNN network structure: Input dimensions are separated by
X, layers are separated by — and the last dimension of the network
structure is the output layer. For examples, 28 X 28 — 500 — 10
represents a network input of 28 X 28 dimension, a hidden layer
with 500 neurons and an output layer with 10 neurons.
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Figure 5: Correlation between EMSTDP and a basic STDP
weight change

4.1 STDP Observation

[1] has shown that updating the weights in proportion to the rate
of change of postsynaptic activity times the presynaptic activity
yielded a behavior similar to the STDP observations. They also
linked this STDP rule to stochastic gradient descent and suggested
that STDP would do gradient descent on the prediction errors
if the rate of change of postsynaptic activity is proportional to
the gradient of the error. In our formulation of EMSTDP, we have
shown that the EMSTDP algorithm satisfies the condition i.e. rate of
change proportional to the error gradient. Thus, utilizing EMSTDP,
we should achieve a strong correlation between our local weight
update and a basic two-factor event-based STDP rule that fit the
biological findings in [18].

In a simple network with two neurons (pre- and post-synaptic)
connected through a synapse, we first simulated random sets of the
postsynaptic spike trains (sj) induced by an externally driven volt-
age or some intrinsic bias and without any pre-synaptic spikes. This
is recorded as post-synaptic spike counts (h;). Then we simulate
random sets of pre-synaptic spike trains (s;) through the synapse
with a random set of strengths. For each of these combinations,
we record the new post-synaptic spike counts (h ;) to calculate the
respective change in post-synaptic activity. For each configuration,
we now compute the weight change based on Eq. 12. For the same
combinations, we also apply a basic two-factor event-based STDP
rule with an STDP window of 10ms and record the corresponding
total weight change. The resulting fig. 5 shows the relationship
between weight change for EMSTDP and the basic STDP rule.



H Dataset ‘ Method ‘ Learning Network Structure Accuracy%
Lee (2016) [11] BP 28 x 28 — 800 — 10 98.64
MNIST Lee (2016) [11] BP 28 X 28 — 500 — 500 — 10 98.7
Neftci (2017) [15] BP 28 X 28 — 500 — 10 97.71
Neftci (2017) [15] BP 28 X 28 — 500 — 500 — 10 97.98
O’Connor (2016) [17] BP 28 X 28 — 300 — 300 — 10 96.4
Jin (2019) [7] BP 28 X 28 — 800 — 10 98.84
Diehl (2015) [4] STDP 28 X 28 — 1600 — 10 95
Tavanaei (2017) [25] STDP 28 X 28 — 1000 — 10 96.6
Tavanaei (2017) [25] | STDP | 28 x 28 — 500 — 150 — 10 97.2
EMSTDP-SW STDP 28 X 28 — 500 — 10 97
EMSTDP-DFA STDP 28 X 28 — 500 — 10 96.8
EMSTDP-SW STDP 28 X 28 — 500 — 500 — 10 97.3
EMSTDP-DFA STDP 28 X 28 — 500 — 500 — 10 96.8
Vanilla BP BP 28 x 28 — 100 — 100 — 10 87.7
Fashion MNIST EMSTDP-SW STDP | 28 x 28 — 500 — 500 — 10 86.1
EMSTDP-DFA STDP 28 X 28 — 500 — 500 — 10 85.3
Australian sign Vanilla BP BP 45 X 22 — 150 — 150 — 50 98.5
language EMSTDP-SW STDP 45 x 22 — 150 — 150 — 50 97.5
EMSTDP-DFA STDP 45 X 22 — 150 — 150 — 50 97.1

Table 2: Performance Comparisons

Accuracy

911 — BP-MLP |

:Z: EMSTDP-MLP-SW

. — EMSTDP-MLP-DFA |

871 — EMSTDP-S-SW

861 — EMSTDP-S-DFA
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Figure 6: Performance comparison of vanilla BP, EMSTDP
in MLP and EMSTDP in SNN with symmetric weights (SW)
and direct feedback alignment (DFA)

4.2 MNIST Digit Classification

MNIST [9] is a standard benchmark to test the performance of rep-
resentation learning algorithms. The task is to classify handwritten
digits from 0 to 9. The MNIST handwritten digit dataset consists
of 60k samples for training and 10k for testing, each of which is a
28 x 28 grayscale image. We convert each pixel value of an MNIST
image into a spike train using Poisson sampling based on which the
probability of spike generation is proportional to the pixel intensity.
Using Poisson sampling, we flatten and encode each 28 X 28 image
of the MNIST dataset into a 784 spike trains with duration T. The
simulation time step is set to be 1ms. No pre-processing or data
augmentation is done in our experiments.

The experiments are carried out for two network structures
28%28—500—10 and 28 X 28 — 500 — 500 — 10 for symmetric weights
(SW) and direct feedback weights (DFA) each. Each configuration
is run for a time window of T = 200 for each spike sequence. Each

network is trained for 200 epochs, each epoch containing randomly
sampled 10k images from the training set. For comparison, we
also train an MLP with vanilla back-prop (BP-MLP) and an MLP
with a network structure and weight update as given by EMSTDP
(EMSTDP-MLP). All the results presented in this section are an
average of 5 trials after 200 epochs for the best set of parameters
obtained from an extensive grid search.

Fig. 6 shows the convergence comparison for BP-MLP, EMSTDP-
MLP, and EMSTDP with spiking neurons (EMSTDP-S) with sym-
metric weights (SW) and direct feedback weights (DFA) for a time
window T and two-layered architecture. As expected, MLP with
backpropagation converge faster and to a higher accuracy (98.2%)
than EMSTDP-MLP (97.8%) which is a modification of difference
target propagation in which change in activity doesn’t purely repre-
sent the error derivative. The spiking EMSTDP performed slightly
worse (97.3%) that the MLP counterpart which is again expected
due to the loss in precision due to spike encoding and approxi-
mations in the forward and backward pass. The DFA versions of
EMSTDP-MLP (97.5%) and EMSTDP-S (96.8%) also perform worst
than their symmetric weight counterparts as DFA is a less exact
optimization method compared to BP with symmetric weights [16].

In the experiments, we also observed that with larger time win-
dow T there is faster convergence and better accuracies. This is
expected as the input spikes trains are generated with Poisson
sampling and a larger time window allows the spike train to better
represent the input pixel values. Similarly, through the hidden layer,
the precision of the approximated activation function is better with
higher time window.

Table 2 shows our results in comparison to related works. The
results show that EMSTDP produces competitive to better results
as compared to other works such as [25] where the learning rule is
only temporally local or perform regular forms of STDP [4]. Our
work produces comparable but slightly worse results than related



works which only approximate backpropagation in an SNN [15]
[11] [7] where the error is non-spiking. The loss in performance
can be assigned to the approximation and propagation of error
derivatives using spiking neurons and also to the attempt to adapt
backpropagation to a local weight update rule.

4.3 Fashion MNIST

Fashion-MNIST [28] is a dataset comprising of 28 X 28 grayscale
images of 70, 000 fashion products from 10 categories. The training
set has 60, 000 images and the test set has 10, 000 images and it is
intended to serve as a direct drop-in replacement for the original
MNIST dataset, as it shares the same image size, data format and
the structure of training and testing splits. Table 2 shows our results
in comparison to an ANN with vanilla BP. The results show that
EMSTDP produces competitive results for this dataset as well.

4.4 Sign Language

We trained an MLP with back-prop, SNN with EMSTDP-SW and
EMSTDP-DFA with network structure 45 X 22 — 150 — 150 — 50 to
recognize Australian sign language symbols. The Australian sign
language dataset [8] involve movements of hand, wrist, and fingers.
The data set is collected from two Fifth Dimension Technologies
(5DT) data gloves, one right and one left. Each sample is a sequence
of data frames containing sensor data. Each sign has approximately
45 frames on average. Since the number of samples is limited, we
augmented the data by adding 10% noise. The objective in this do-
main is: given labeled recordings of different signs, learn to classify
an unlabelled instance. Table 2 shows the corresponding results.

5 CONCLUSION

In this work, we devised a set of approximations and formulations
to move backpropagation towards a more biologically plausible
local learning algorithm EMSTDP. We first separate the forward and
backward pass of the back-prop algorithm into two separate spiking
networks. We formulate the discontinuous activation function of
the forward and backward in terms of spike counts such that it
approximates a ReLU function and a linear function respectively.
We then apply the idea of difference target propagation to derive
a local credit assignment rule which resembles as well as produce
STDP characteristics. And finally, we solve the problem of weight
symmetry in back-prop by utilizing direct feedback alignment. We
tested this algorithm on MNIST, Fashion MNIST and Australian
sign language dataset with results comparable to better than related
works.
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