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Abstract—Driven by the expanse of Internet of Things (IoT)
and Cyber-Physical Systems (CPS), there is an increasing demand
to process streams of temporal data on embedded devices
with limited energy and power resources. Among all potential
solutions, neuromorphic computing with spiking neural networks
(SNN) that mimic the behavior of brain, have recently been
placed at the forefront. Encoding information into sparse and
distributed spike events enables low-power implementations,
and the complex spatial temporal dynamics of synapses and
neurons enable SNNs to detect temporal pattern. However, most
existing hardware SNN implementations use simplified neuron
and synapse models ignoring synapse dynamic, which is critical
for temporal pattern detection and other applications that require
temporal dynamics. To adopt a more realistic synapse model
in neuromorphic platform its significant computation overhead
must be addressed. In this work, we propose an FPGA-based SNN
with biologically realistic neuron and synapse for temporal in-
formation processing. An encoding scheme to convert continuous
real-valued information into sparse spike events is presented. The
event-driven implementation of synapse dynamic model and its
hardware design that is optimized to exploit the sparsity are also
presented. Finally, we train the SNN on various temporal pattern-
learning tasks and evaluate its performance and efficiency as
compared to rate-based models and artificial neural networks on
different embedded platforms. Experiments show that our work
can achieve 10X speed up and 196X gains in energy efficiency
compared with GPU.

Index Terms—FPGA, Spiking neural network, Neuromorphic
computing

I. INTRODUCTION

Spiking neural networks (SNN) are the third generation of
neural networks where the neurons, which are functionally
similar to biological neurons, communicate using sequences of
spikes. These asynchronous and sparse spikes enable spiking
neurons to process large amounts of data using a relatively
small number of computations, showing significant energy
effciency over deep learning systems [27] [25]. The SNNs
have been shown to solve problems solvable by other classes
of neural networks along with being computationally more
powerful than them [20] [28] [9].

An important question on the road to maximize SNNs
potential is how to represent information through spikes.
Encoding information in spiking neurons in terms of its firing
rate (rate coding) is the traditional coding scheme. The firing
rate increases, generally non-linearly, with increasing stimulus
intensity while ignoring information in the temporal structure
or the exact timing of spikes in the input spike train [16].
This makes rate coding inefficient. Rate coding is also treated
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statistically such that it ignores irregularities in spiking pat-
terns hence it is robust to noise. However, these irregularities
could also convey essential information that could be lost
during the encoding process due to its inability to capture the
temporal structure of the input spike train. Ignoring the timing
information in the spike train also reduces the information
capacity of rate coding. Spike trains with similar spiking rate
could also have distinct spike patterns, hence should be able
to embed more information. Temporal codes enable spiking
neurons to capture such temporal structures in the spike train
[5].

The ability to detect the temporal codes is determined by
the dynamics of the spiking neurons and synapses. To exploit
the full potential of temporal coding, it is important for neuron
and synapse models to have sufficient dynamics. Such property
must be retained during hardware implementations. In this
work, we introduce a biologically-inspired neuron model that
treats neurons as a dynamical system characterized by at
least one state variable, and a biologically-inspired synapse
model whose spike response is a filter function. Although
analog hardware are potentially most-suited to emulate the
behavior of biological neural system, they are usually noisy
and unreliable, and hard to be configured precisely. Hence
neuron and synapse behavior are usually approximated using
discrete digital systems.

In this work, we present a neuromorphic hardware design
of the biologically plausible neurons and synapses with low
computation overhead and marginal performance loss. Event-
driven computation approach is devised from the mathematical
property of neuron and synapse model to exploit the sparsity of
the SNN activities. A configurable and bio-inspired population
encoding scheme is also developed to convert continuous
values into temporal spike patterns. Finally we evaluate the
performance of proposed design, and compare its computation
overhead and energy efficiency with rate based SNN and
LSTM. Experiments show that our encoding scheme can
reduce model size by 88% compared with rate coding. The
system achieves 196X improvement in energy efficiency and
10.1X speed up compared with SNN GPU implementation.

II. BACKGROUND AND MOTIVATION

Spiking neural network can be classified based on how in-
formation is encoded as rate-based and time-based system. In a
rate-based system, the number of spikes generated by a spiking
neuron in a fixed amount of time represents a numerical value.
In a rate based SNN, each neuron performs integrate and fire,
which is similar to those in the Artificial Neural Network such
as Multi Layer Perceptron. This type of SNN has demonstrated



state-of-art performance in various tasks [22]. However, it
suffers from high spike activities [18], thus cannot fully
benefit from event-driven computation. Studies have shown
that temporal pattern of spike trains carries information [15]
[14] [18]. Such temporal encoding can efficiently represent
information using extremely sparse spikes-events. Neurons
capability to classify temporal spike patterns relies on synapse
dynamic, temporal information of input spikes is preserved by
synapses as postsynaptic potentials (PSP). However, keeping
track of synaptic dynamics introduces significant computation
overhead, because the number of synapses is quadratic to
the number of pre- and post-synaptic neurons. It is desirable
to exploit advantages of temporal coding and event-driven
computation to mitigate the overhead.

There have been various works on hardware implementation
of SNNs using different design style, including Application
Specific Integrated Circuits(ASICs), analog circuits, emerging
devices and FPGAs etc. As an example, IBM TrueNorth [22]
neurosynaptic processor is a neuromorphic ASIC chip. It has
demonstrated state-of-art accuracy on multiple tasks with very
low power consumption. However, the design tradeoffs also
impose constraints on the functionality. For example, synapse
dynamics are not considered; Only four different weights are
allowed in per neuron, etc. These limitations make it difficult
to implement algorithms that rely on SNNs temporal behavior
on TrueNorth. SpiNNaker [11] is another well-known neuro-
morphic platform. SpiNNaker chip uses general purpose ARM
cores as its computation engines. It aims at parallel simulation
of large scale SNN for computational neuroscience. Emerging
devices such as memristor have also drawn research interests
recently [30] [7]. FPGAs are another popular approach for
neuromorphic hardware implementation. They provide higher
flexibility with short development time. Intrinsic parallelism
of FPGA make it an ideal platform for SNNs. However, most
FPGA based SNN employ simplified neuron model and ignore
temporal dynamics of neurons and synapses so that only rate-
based SNNs are handled. They have limited capability to
process temporal data.

Clock-driven computation and event-driven computation are
two main paradigms of SNN simulation. In clock-driven
simulation, neuron and synapse states are updated every tick.
Significant computation overheads are introduced due to the
constant update [3], which makes it less favorable for energy-
constrained applications. In contrast, event-driven computation
is more biologically plausible, it only updates SNN states
when a spike is received or issued, thus it has the potential
to exploit the sparse activity of SNN to avoid redundant
computation. Without considering the synapse dynamic, event-
driven computation can be implemented in a straightforward
way. Because synapse is stateless, i.e. synapse does not have
PSP, an incoming spike causes an instantaneous change on
membrane potential. Hence membrane potential is simply an
accumulation of weighted input spikes [22] [24]. However,
such systems is not capable of simulating complex temporal
behaviors of SNN, as the temporal dynamic is ignored.

III. REALISTIC SNN MODEL

Without generality, in this work, we adopt the most widely
used Leaky Integrate and Fire(LIF) neuron. The neuron has
N input synapses as shown in figure 1. Each synapse has a
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Fig. 1: Spiking neuron model
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postsynaptic potential (PSP), which is defined by the Spike
Response Model as [12]:

PSP (t) =

ti<t∑
ti

K(t− ti)w (1)

where ti is the arrival time of ith spike, K(t) is the
postsynaptic potential(PSP) kernel, which acts as a filter. The
PSP (t) is the impulse response of the filter scaled by the
weight factor w. The neurons potential is the summation of
all weighted input PSP plus a reset term [12]:

V (t) =
N∑
i

wi

tij<t∑
tij

K(t− tij)− Vth
∑
tjs<t

e−
t−tjs
τm (2)

where wi is the weight associated with each input synapse,
tij is the arrival time of jth spike at ith input synapse, Vth
is firing threshold. When the potential exceeds the threshold,
neuron generates a spike, and the potential is reset. tjs < t is
the time when the neuron generates a spike. The last term in
equation 2 can be interpreted as a negative impulse Vreset(t)
applied to the neuron to reset potential. Equation 1 and 2
intuitively explain the neurons capability to recognize temporal
pattern. At time t, PSP and membrane potential are determined
by all previous inputs as if the past information is stored in
the PSP. Such filter function in synapse response is critical
for biological neuron to learn and recognize temporal patterns
[15] [14]. However, this important behavior is usually ignored
by many SNN hardware implementations.

The shape of PSP is determined by the kernel K(t). There
are three commonly used synapse kernels: exponential kernel,
alpha kernel and dual exponential kernel. They are defined as
the following: [26]:

Exponential kernel:K(t) = e−
t
τs (3)



Alpha kernel:K(t) = V0 ·
t

τs
· e−

t
τs (4)

Dual exponential kernel:K(t) = V0(e−
t
τm − e

−t
τs ) (5)

where V0 is a normalization factor to set the maximum synapse
response to 1, τm and τs (τm > τs) are membrane and
synapse time constants respectively. The exponential kernel is
simplified representation of the synapse response. It introduces
less computation overhead than alpha and dual exponential
kernel, widely used by rate-based SNN models. It can be
proved that if all synapses have the same time constant,
then the realistic neuron with post synaptic potential behaves
the same as a simple integrate and fire neuron for rate-
coded input with uniform distributed stochastic behavior [13].
Alpha kernel and dual exponential kernel are more biologically
realistic models [26], which are used by temporal pattern
classification algorithms such as tempotron [15]. To support
various demands, without loss of generality, we approach the
work to support the above three types of synapse models. The
training of the weight parameters of a temportron neuron is
discussed in [15].

IV. SPIKE-DRIVEN COMPUTATION

As shown in figure 2, unlike the simplified SNN models, in
a biological realistic SNN, synapse is stateful and PSP evolves
continuously over time. Equation 2 requires the evaluation
of PSP (t), V (t) and Vreset(t) based on all previous spike
activities. It is impractical to record PSP (t) and V (t) at every
time step and store the entire spike history. In addition, the
computation involves multiplication and exponential function,
which are expensive for FPGA implementation. However, we
can utilize the mathematical property of the kernel to derive
an event-driven implementation to exploit SNNs sparsity.

Consider the PSP of an exponential synapse:

PSPexp(t) = V0
∑

exp(− t− ti
τs

)w (6)

Suppose at time t, the value of PSPexp(t) is known, ∆t
unit time later, and assume that no input spike during this
period, i.e. at time t′ = t+ ∆t, the PSP can be computed as:

PSPexp(t
′) = V0

∑
e−

t+∆t−ti
τs w

= V0(
∑
ti<t′

e−
t−ti
τs · e−

∆t
τs )w

= PSPexp(t)e
−∆t
τs

(7)

If at time tj = t + ∆t, there is an input spike, an
instantaneous charge is applied on PSP:

PSPexp(tj) = PSPexp(t)e
−∆t
τs + V0 · w (8)

Similarly, the reset voltage Vreset = Vth
∑
tjs<t

e−
t−tjs
τm can

also be computed in an event-driven manner:

Vreset(t+ ∆t) = Vreset(t)e
−∆t
τm (9)

Equation 7, 8 and 9 indicate that V (t) can be computed
using an incremental approach. By tracking the elapsed time

Algorithm 1: Spike-driven updating for LIF neuron with
exponential synapse
Set of input spike: Qspike = ∅
Set of destination synapse: Qsyn
∆t of each synapse ∆t: Dt

Postsynaptic potential: PSP
Reset history: Dr[:] = 0
Reset potential Vreset = 0
if Qspike 6= ∅ then

foreach synapse i do
if i in Qsyn then

// Update spike response

PSP [i] = PSP [i] · e
−Dt[i]
τs + w · V0

V+ = PSP [i]
Dt[i] = 0

else
Dt[i]+ = 1

V+ = PSP [i] · e
−Dt[i]
τs

if V > Vth then // Generate spike
Dr = 0

Vreset = Vreset · e
−Deltareset

τm + Vth
V = V − Vreset

else
Dr+ = 1

else
Dt+ = 1
Dr+ = 1

(i.e. ∆t), V (t) only needs to be updated when an event triggers
the computation, i.e. the computation is only necessary when
a spike event is received or issued. In addition e

−∆t
τs vanishes

over time, and will be effectively 0 after certain period of
time. Therefore, the values of a few different e

−∆t
τs can be

pre-computed and stored in a look-up table to speed up the
computation and reduce the overhead.

The spike-driven implementation for LIF neuron with expo-
nential synapse is given in Algorithm 1. Since PSP is defined
to decay, V (t) is only possible to reach peak value when
there is an input spike, therefore checking if V (t) exceeds
Vth is only necessary when spike buffer is not empty. Studies
have shown that the SNNs spiking rate is less than 10% [6].
Computation overhead is drastically reduced in such sparse
environments utilizing the event-driven approach.

Following a similar principle, the PSP of dual exponential
synapse can be computed as:

PSP (t+ ∆t) = V0(PSPfall(t)e
−∆t
τm − PSPrise(t)e

−∆t
τs )

(10)

where PSPfall(t) and PSPrise(t) are:

PSPfall(t) = V0
∑

e−
t−ti
τm w (11)

and
PSPrise(t) = V0

∑
e−

t−ti
τs w (12)

The dual exponential synapse can be interpreted as the com-
bination of two exponential synapse, therefore the updating
algorithm is similar to the exponential synapse. However, as



Algorithm 2: Spike-driven updating for LIF neuron with
alpha synapse

if Qspike 6= ∅ then
timer[tdelay] = 1
foreach synapse i do

if i in Qsyn then
// Update spike response

PSPexp[i] = PSPexp[i] · e
−Dt[i]
τs + w · V0

PSPα[i] = PSPα[i]e
−Dt[i]
τs + PSPexp[i]

Dt[i] = 0
else

Dt[i]+ = 1
if timer[0] == 0 then

V = V + PSPexp[i] · e
−Dt[i]
τs + PSPα[i]e−

∆t
τs

if V > Vth then // Generate spike
// Update reset history
Dr = 0

Vreset = Vreset · e
−Dr
τm + Vth

V = V − Vreset
else

Dr+ = 1
timer << 1

else
Dt+ = 1
Dr+ = 1
timer << 1
timer[tdelay] = 0

figure 2 shows, the spike response of dual exponential filter
is non-instantaneous, there is a delay tdelay = τmτs

τm−τs log( τmτs )
between the arrival of spike and the time when PSP reaches
peak value. The evaluation of PSP is delayed by tdelay , such
delayed evaluation can be implemented with a timer.

The evaluation of alpha synapse requires a different algo-
rithm. Suppose at time t, PSPα(t) is known, at t′ = t+ ∆t,
PSPα(t′) can be computed as:

PSPα(t′) = V0
∑ t+ ∆t− ti

τs
e−

t+∆t−ti
τs w

= V0 · e−
∆t
τs

∑
ti<t′

(
t− ti
τs

e−
t−ti
τs +

∆t

τs
e−

k
τs )w

= e
−∆t
τs PSPα(t) + e

−∆t
τs

∆t

τs
PSPexp(t)

(13)

Alpha synapse PSP reaches maximum tdelay = τs later than
the arrival if spike, thus similar as dual exponential synapse,
the evaluation of alpha synapse PSP is also delayed. The
implementation is presented in algorithm 2.

V. ENCODING SCHEME

Rate coding has been a widely used encoding scheme in
SNNs. It represent the value of each input dimension using
the activity of an individual neuron that fires at a particular
rate. It assumes that the spike count C in a time window
T represents a numerical value. There are several drawbacks
of this approach: 1) Encoding using the stochastic behavior
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Fig. 3: Encoding method

of an individual neuron is too noisy due to large variance;
2) It introduces high spiking activity, which will deprive the
energy efficiency of SNN ; 3) It suffers from limited precision
because the value represented by rate coding is quantized using
a bin size of 1/T , where T is the window size. A larger T
will improve the data precision but increase the computational
latency as well.

A. Temporal Population Encoding
To address aforementioned issues, we use an encoding

scheme that combines population coding and temporal coding.
Population coding represents information by the activity of
a group of neurons. Recent research shows that this coding
method widely exists in sensory systems [1] and it represents
information more accurately [4]. Research also observed that
spike-timing carries information in neural systems [5] [21],
which leads to temporal coding.

We utilize a population of Current-based Integrate and
Fire(CUBA) neurons as encoder. A CUBA neuron is defined
as a hybrid system [3]:

dV

dt
= −1

τ
V + I(t)

V ← 0 when V exceeds Vth
(14)

where I(t) is the time-varying input signal, τ is the mem-
brane time constant, V (t) is the neuron membrane poten-
tial. Neuron accumulates the input and updates the potential
continuously overtime. The reset event is triggered when the
potential exceeds threshold. Unlike the delay coding proposed
by [18], in which input value is sampled at time t and
translated into specific spike delays, CUBA accumulates all
of the input through a low pass filter. In order to differentiate
subtle differences and cover wide range of the input I(t), the
delay coding requires a high resolution in the delay value,
which can either be achieved by increasing the clock frequency
or extend the window size. The resolution of the delay is set
by the worst case scenario of the aforementioned local input
features. CUBA employs the entire spike train to represent the
entire input sequence, hence will not be constrained by those
local features.

For an input that has D dimensions, each input dimension is
connected to E encoder neurons, which form a sub-population.
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D sub-populations are grouped into one population. Each
neuron in a sub-population has a different time constant τ ,
so that they respond differently to the input. In such a way,
continuous value is encoded into time-varying patterns of spike
trains. Unlike image data where all dimensions have identical
range, temporal streams are collected from various sensors,
therefore the range, scale, precision may vary. Existing rate-
coding or delay-coding are required to provide data precision
for the worst case input, while CUBA coding can fine tune
its timing constants and sub-population size to provide just
enough data resolution for each channel of input [29].

B. Model Size Reduction

Figure 3 shows an example of the encoding scheme. Each
input dimension is sent to multiple neurons as a time-varying
current. Neurons convert continuous values into spike patterns.
Consider a time series of length T and dimension D, and a
one layer classifier whose output size is K. Using the rate-
coding scheme, since it is not capable of handling temporal
pattern but only spatial pattern, the input sequence has to be
buffered and flattened into a vector with size T × D. The
value of each entry in the vector will be rate coded into a
spike train. Hence the classifier requires T ×D input neurons.
T × D × K weights are required if the classifier is a fully
connected network. In the temporal-coding scheme, buffering
is no longer necessary, time-varying input is converted to P
spike trains, where P is the size of the population, and the
number of weights for input layer is reduced from T ×D×K
to P × K. For long sequences, T × D >> P . In addition
to fewer weight parameters and simpler network, the CUBA
coding scheme will also reduce spike activity compared to
rate-coding, which will be discussed in section VII-C1.

VI. HARDWARE ARCHITECTURE

We adopted a Network-on-Chip(NoC) architecture proposed
in [10] for scalability. Each neuron core is attached to a
router. Spikes generated by neuron core are delivered to
destination through on-chip network. To increase resource
utilization, neuron cores are time-multiplexed and a neuron
core implements multiple spiking neurons.

The block diagram of neuron design is shown in figure
4. A neuron core has four sub-units and a controller. The
neuron core is time-multiplexed as N LIF neurons with M
input synapses. We use a M ×N crossbar to support massive

connectivity, where M and N are input size and output size
of crossbar respectively. Each crossbar input is called an axon,
each crossbar output connects to a LIF neuron and each switch
is a synapse. An axon is shared by all neurons. To enable
network topology to be flexible, the connectivity of crossbar
is configurable, so that the crossbar can provide one-to-many
and dedicated one-to-one connection.

The LIF neuron model requires to store the spike history
and PSP of each synapse, thus a neuron core requires M ×N
memory entries. Updating the PSP and spike history of each
synapse also introduces significant computation overhead. The
memory and computation overhead can be optimized. PSP
can be regarded as a spike response R(t) =

∑ti<t
ti

K(t− ti)
times a weight w. Axon is shared by multiple neurons through
synapses, the synapses that belong to different neurons but
have same source axon have identical spike histories and
spike responses. Thus, tracking spike history and PSP of
each synapse is not necessary. Therefore in a core with M
axons shared by N neurons, only M different spike responses
and spike histories have to be tracked. An independent axon
module tracks spike history and spike response. It consists of
a DSP block, an adder and two memories. The DSP block
performs fixed-point multiplication to update spike response,
adder updates spike history. A 16-bit width memory of M
entries stores spike responses, A 8-bit memory is used to
track the time elapsed since last spike. In common settings,
for example, when τs = 5, e−255/τs is effectively 0, there is
no need to spend extra memory to store spike history. If the
spike buffer is empty, no computation needs to be done and
the spike history of axon is increased by 1. If an axon receives
a spike, the spike history is set to 0, and the spike triggers a
spike response update.

The charge of alpha synapse and dual exponential synapse is
non-instantaneous, evaluation should be delayed. A 16-bit shift
register is used as task scheduler to assign the computation
task. In exponential synapse, this shift register is bypassed
because the charge is instantaneous, evaluation is performed
immediately. In alpha synapse or dual synapse mode, upon
receiving a spike, kth bit of shift register is set to 1, where
k = tdelay , otherwise kth bit is set to 0. The register is shifted
by one bit every time. Controller checks 0th bit of register,
computation is performed when 0th bit is 1.

Synapse module stores the connectivity between axons
and neurons. A 16-bit width memory stores the weights of
synapses, 12 bits for fractional bits, 3 bits for integer bits and
1 for sign. A 16-bit width LUT stores the pre-computed decay
factor for spike response computation.

Neuron module consists of a DSP block, an accumulator, a
configuration memory and a destination memory. Input spike
triggers the neuron to compute the membrane potential; first
it reads the spike response from the axon memory, and then
the weight multiplies with spike response to obtain the PSP
of the first synapse, and accumulates in a dedicated potential
accumulator. This procedure is repeated for every synapse to
get the membrane potential. Then, the membrane potential
is compared with threshold stored in configuration memory.
Neuron generates a spike if the potential exceeds the threshold.
The spike also triggers the reset module to generate a negative
impulse applied to the neuron potential to push it to 0. The
reset module has similar structure as axon module, it has a



DPS block to compute reset response, and a memory to track
reset history. Reset response history is also set to 0 when
generating a spike. Spike also triggers the neuron to forward
a spike packet to the router and the on-chip network delivers
that spike packet to the destination core specified by the packet
information. If no spike is generated, reset response history is
increased by 1, no addition computation is required.

VII. EXPERIMENTS

The proposed design is implemented on Cyclone V FPGA
clocked at 75 MHz. To validate and evaluate the design, we
use MNIST, Australian Sign Language [17] as benchmarks.
The training of the synaptic weight is off-chip and done by
the Tempotron algorithm proposed in [15]. We also compared
the computation overhead and energy efficiency for different
neural networks and platforms.

A. Spatial Pattern Classification
The first experiment is to validate the correctness of the

implementation and we test the design for spatial pattern
classification with a rate coded input. The number of spikes in
a time window represents a value. As we mentioned in Section
III, for uniformly distributed stochastic rate coding, the neuron
with PSP acts similar as a simple integrate and fire neuron.
This experiment is also to demonstrate the flexibility of the
model and design.

We use MNIST dataset as benchmark. It includes grayscale
images of 10 classes of handwritten digits. The image size is
2828. Each pixel is represented by a spike train, resulting 784
spike trains. The spike rate of each spike train is proportional
to corresponding pixels value. We trained a MLP(784x600x10)
and then convert it to SNN and use the methods proposed by
[8] to find the optimal threshold.

Our work is compared with other FPGA-based spiking
neural network implementation as shown in table I. [24] is an
event driven neuromorphic hardware implementing IF neuron,
the synapse dynamic is ignored. [23] is a step-based FPGA
SNN implementation of non-leaky integrate and fire neuron,
the computation is performed every time step. Among those
works, ours achieves the highest accuracy.

TABLE I: Hardware Comparison

Platform Update
Method

Network
Structure Precision Acc.

Minitaur [24] Event
driven 784x500x500x10 16 (5.11) 94.2

Hesham [23] Step
based 784x600x10 16 (3.13) 96.8

Tao [19] Step
based 784x512x256x10 16(-) 96.8

This work Event
driven 784x600x10 16 (4.12) 97.7

B. Temporal Spike Pattern Classification
The second experiment is to test whether our design with

realistic synapse dynamic is capable of memorizing and detect-
ing desired temporal spike patterns. Such detection is not able
to be performed by rate-based SNN models. In the experiment,
we train a neural network to memorize 5 different temporal
patterns that are generated randomly. Each pattern contains
10 independent spike trains whose length is 200 time steps.
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Fig. 5: Spike patterns and neuron potential

Each spike train has same spike rate, which is 5%, however
the precise spike timing is different. Although these patterns
are different, from the perspective of rate-based input, these
patterns are not distinguishable. A fully connected layer is
constructed, with 10 input neurons and 5 output neurons. The 5
output neurons are PSP neurons with dual exponential kernel.
Their weights are trained using Tempotron algorithm.

Figure 5a shows the 5 different input spike patterns. The
x-axis gives the time. Each row shows the spike activity
at a specific time. The five different colors (i.e. red, green,
blue, orange and purple) represents the spikes belong to 5
different patterns. When we present different spiking patterns
to the network, as shown by an example in 5b, the neurons
membrane potential are constantly changing, and eventually,
the membrane of the neuron corresponding to the correct class
will surge and exceed the threshold. In this experiment, we got
100% detection of those patterns.

C. Performance Evaluation on Sign Language

To evaluate effectiveness of the proposed encoding scheme,
the event-driven computation and synaptic dynamics, we apply
our work to classify a temporal dataset, Australian Sign Lan-
guage. It is a multivariate time-series dataset, which includes
95 classes of sign language actions. Data is collected from
sensors by tracking hand movements using a data glove. The
data has 22 attributes including X, Y, Z positions, roll, pitch
and yaw etc. Tempotron [15] algorithm is used to train the
synaptic weights. We randomly pick 10 classes from the data
set, and convert the time-series into temporal spike patterns
using method in section V-A. We also trained a rate-based
SNN with same number of neurons and a LSTM with size
10 as the reference system for comparison. In the following
experiments, we set τm = 10, τs = 2.5 for dual exponential
kernel. Time window is set to 500 for both rate-based SNN
and timing-based SNN. To temporal code the time series into
spike patterns, we use a sub-population of size 5 to encode
each dimension of the input, resulting in 110 distinct spike



(a) Rate-based input.
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(b) Timing-based input

Fig. 6: Input comparison

TABLE II: Coding Efficiency

Model Input
Dimension

Spike
Count Firing Rate Window

Rate
SNN 990 91390.7 18.46% 500

Temporal
SNN 110 711.3 1.30% 500

trains in total. For rate-based SNN, the sign language data is
flattened into a 1-D array of size 990. Each entry in this array
is represented by a spike train.

1) Encoding Efficiency: Figure 6 shows the spike patterns
generated using rate-based and timing-based input encoding.
Each point represents a spike event. Rate-based input has 990
spike trains, only first 110 spike trains of rate-based input
are shown in the figure for clarity. The latter is not only
significantly sparser, but also has lower dimension. Table II
shows the statistics of rate-based SNN and timing based SNN
for 100 input samples. The number of spikes generated using
timing-based input encoding is only 7.04% of that of rate-
based encoding, therefore its on-chip traffic as well as power
consumption is significantly reduced.

2) Computation Overhead: Temporal encoding scheme re-
duces the dimension of a temporal input and also increases
the sparsity of the representation. This makes event-driven
computation even more effective. Table III shows the computa-

TABLE III: Computation Overhead

Model Param.
number Add. Mult. LUT Exp. Acc.

LSTM 1380 51930 57700 - 10080 84.73
Rate
SNN 12880 801900 801900 - 49500 95.66

Temporal
SNN 1440 30719 30580 30580 - 94.79

tion complexity in the number of different types of operations
required to process a sample during inference using temporal
SNN as compared to that of the LSTM and the rate-based
SNN. Benefiting from the event-driven approach, computation
is only necessary when there is input or output spikes, there-
fore the sparsity leads to significant reduction of computation
overhead. In addition, the temporal SNN model size is reduced
by 88 % compated with rate SNN. Temporal SNN also reduces
number of addition and multiplication by 96.17%. The LUT
here refers to look-up-table access, it is needed to read out
the leakage value in equation 7. Percentage accuracy is also
given in the table. LSTM has the lowest accuracy because,
given the same number of units as the SNN, the small
network size limits its capability to classify temporal patterns.
The timing-based SNN achieves better performance, due to
the sufficient temporal information preserved by the input
synapses [15]. Rate-based SNN achieves highest performance,
while at the cost of additional computation overhead. Please
note that the computation will further be reduced in hardware
implementation due to the shared spike response.

3) Energy Efficiency: To evaluate the energy efficiency
across different platforms, the two SNNs are implemented on
Nengo spiking neural network simulator [2] and the LSTM is
implemented on Keras. The networks are evaluated on Core
7700K CPU, nVidia GTX 1060, ARM A57 processor and TX1
GPU. In addition, the two SNN are tested as the FPGA based
neuromorphic hardware. The time, power consumption and
energy dissipation are presented in table IV for the inference
of 3000 samples.

As can be seen from the table, SNNs are not suitable for
Von Neumann systems. The CPUs and GPUs cannot take
advantage of the sparsity in the SNNs and its event driven
nature. SNNs are even less energy effective compared with
LSTM. Rate SNN and temporal SNN consumes 33X and
27.5X times ennergy than LSTM. It also has a higher latency
because SNNs have to process a window of 500 ticks. We do
observe a reduction in the energy per sample when comparing
timing-based SNN to rate-based SNN on CPU and GPU. This
is due to reduced input dimension.

The advantage of temporal SNN is clearly visible when
implemented on the dedicated hardware. Since its input dimen-
sion is significantly reduced, the time to process each sample
and the consumption of programmable logic resource as well
as on-chip memory are reduced. In addition, the sparsity in
timing-based input can fully exploit the benefit of event-driven
computation. Finally, the sparsity in the spiking activities sig-
nificantly reduces the on-chip communication overhead, hence
contributes to the energy reduction. Temporal SNN is 8.43X
faster than rate SNN on FPGA platform. When compared with
GPU and CPU, the advantage is more significant. Temporal
SNN on FPGA achieves 10.15X speed up than GPU and 196X
improvement in energy efficiency.

VIII. CONCLUSIONS

In this work, we proposed a biological realistic neuromor-
phic system. The proposed hardware with realistic synapse ex-
hibits complex temporal dynamic, which enables it to process
temporal data. To fully exploit the sparsity of SNN, it runs
in an event-driven manner. A population encoding scheme is
also introduced to convert continuous value into discrete spike



TABLE IV: Energy Efficiency

Platform Model Time
(s)

Avg.
power(W)

Time(ms)
per sample

Energy(J)
per sample

i7
7700K

LSTM 2.79 28.95 1.12 0.032
Rate
SNN 182.56 17.48 60.86 1.06

Temporal
SNN 143.52 18.43 47.83 0.88

GTX
1060

Rate
SNN 30.63 16.43 10.21 0.17

Temporal
SNN 24.04 17.90 8.01 0.14

ARM
A57

Rate
SNN 686.39 4.72 228.79 1.08

Temporal
SNN 630.90 4.63 210.30 0.97

TX1
GPU

Rate
SNN 141.89 5.63 47.30 0.27

Temporal
SNN 125.09 5.39 41.70 0.22

FPGA
Rate
SNN 19.9646 1.029 6.65 0.0065

Temporal
SNN 2.364 0.926 0.79 0.00072

trains. The proposed design is implemented on Cyclone V
FPGA. To evaluate its performance, multiple experiments on
different platforms are tested. The proposed hardware shows
significant energy efficiency. Since proposed design supports
standard Integrate and Fire Neuron, its application is not
only limited to temporal spike pattern classification, it also
capable of implementing rate-based SNNs and simulation for
biologically plausible SNNs. We need to point out that a
significant challenge of proposed design is the lack of effective
SNN training method to classify temporal spike patterns.
Existing algorithms such as [15], [14] suffer from scalability,
cannot be extended to multiple layers like RNN/LSTM, which
benefit from deep structures. There is an urgency to explore
more efficient training rules in the future to fully utilize the
advantage of SNNs.
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