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ABSTRACT

The use of augmented reality (AR) with semi-autonomous aerial 
systems in civil infrastructure inspection offers an extension of 
human capabilities by enhancing their ability to access hard-to-
reach areas, decreasing the physical requirements needed to 
complete the task, and augmenting their visual field of view with 
useful information. Still unknown though is how helpful AR visual 
aids may be when they are imperfect and provide the user with 
erroneous data. A total of 28 participants flew as an autonomous 
drone around a simulated bridge in a virtual reality environment 
and participated in a target detection task. In this study, we analyze 
the effect of AR cue type across discrete levels of target saliency 
by measuring performance in a signal detection task. Results 
showed significant differences in false alarm rates in the different
target salience conditions but no significant differences across AR 
cue types (none, bounding box, corner-bound box, and outline) in 
terms of hits and misses.

Keywords: Augmented reality, signal detection, infrastructure 
inspection, workload, unmanned aerial system. 

Index Terms: Multimedia information systems—artificial, 
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1 INTRODUCTION

Civil infrastructure (e.g., roads, dams, bridges, buildings, etc.) 
inspection is a labor intensive and arduous process that demands 
that the inspectors visually analyze and annotate each area of the 
structure. This process is both time consuming and sometimes 
dangerous, requiring heavy equipment to allow workers to visually 
inspect hard-to-reach areas. Given the sheer number of structures 
that require inspection and the requirement that these inspections
occur once every two years [1], there arises a need for timely and
remote inspection solutions that provide the operator with enough 
information to make correct decisions but allow them to conduct 
inspections remotely. The use of unmanned aerial systems (UASs)
in this space provides a means to access, with greater ease, these 
hard-to-reach areas of bridges and other forms of civil 
infrastructure. In addition, by using stereoscopic depth cameras on 
the UAS paired with computer vision algorithms and video pass-
through augmented reality (AR), we can detect defects on the 
bridge surface and relay those issues to the operator while 
augmenting the video stream with useful information (e.g., world-
fixed rulers and annotations) that can aid the operator in their tasks.
The use of these UAS-mounted camera systems, in addition to the
added augmentations, would help operators beyond what a simple 

monoscopic camera would provide by adding the ability to display
relevant information to the operator while providing them with the 
stereoscopic visual information needed for accurate depth 
perception. It is still unknown though what cognitive costs, or 
performance decrements, may be associated with these 
augmentation interface elements. 

To test these possible human performance decrements and for
ease of rapid prototyping and interface development, we created a 
virtual testbed (Figure 1) for the present study that allows us to 
simulate video see-through AR in virtual reality [2]. With this 
testbed, we can examine how different AR user interface designs
impact users during bridge inspection tasks without the associated 
costs of real-world testing as the testing of these designs in the real-
world often incurs a great deal of expense in both time and energy.

1.1 Use of unmanned aerial systems in infrastructure 
inspection

In general, the use of UASs in infrastructure inspections falls into 
the categories of construction monitoring and condition 
assessment, where the level of autonomy of the UAS is either 
autonomous or manual [3]. While bridge inspectors currently use 
UASs to inspect bridges, these use cases often consist of simply 
taking video of the bridges and analyzing the video offsite later [1]. 
One issue with this practice is that an expert analyzing the recorded 
video would be unable to take a closer look at certain sections of 
bridge areas, since the video has already been captured and does 
not afford, without significant quality loss, the ability to zoom in 
and traverse the bridge. These videos are also usually captured with 
monoscopic cameras which limits the depth perception of humans 
and does not easily afford complex AR overlays. In our current 
approach, we propose the use of stereo depth cameras that allow for 
video pass-through AR so that we can display useful augmentations 
(e.g., annotations or measuring tools) to the operator in real-time so 
the inspector can analyze potential problem areas and probe further 
if they need to see more detail. 

The use of UASs in infrastructure inspections allows the 
inspectors to be virtually placed anywhere on the bridge. 
Additionally, AR interface elements can be placed that show 
thermal overlays [3, 4], structural stresses [5], exterior deformation 
or plumbness [6], and measurements of structural elements [7]. 
However, the use of UASs and AR in infrastructure inspection does 
not come without its issues. In general, the complexity of the task 
may impact the usefulness of the AR interface. For example, the 
use of AR cuing during complex tasks can be helpful, but in easy 
tasks, the cuing may provide no help or may even harm 
performance [8]. Cuing that can harm performance would be 
especially impactful with infrastructure inspection, where the 
misidentification or miss of a defect could lead to catastrophic 
failure if not caught in an adequate timeframe.

1.2 Signal detection with augmented reality
AR can direct a user’s attention toward real-world referents (e.g., a 
bridge defect), even when those targets lie in the user’s peripheral 
field of view [9]. The SEEV model, initially used in the aviation 
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domain, can explain in part the perceptual and cognitive elements 
at play when assessing whether an AR cue may or may not demand 
a user’s attention. In this model, the scanning pattern used by 
individuals is determined by the factors of saliency, effort, 
expectancy, and value [10]. AR-enhanced manipulations like 
changing the shape, motion, and color of objects can increase the 
saliency of those objects [11]. By manipulating the saliency of 
objects, AR interface designers can direct user’s visual attention to 
a specific target (e.g., a bridge defect), making detection quicker 
and easier. The use of subtle AR cuing can also draw users’ 
attention without the extra clutter that comes with augmenting the 
environment using typical bounding boxes [12]. While these AR
cues generally aid users in target detection tasks (looking for a 
target in an environment of noise [12]), cue reliability and target 
expectation can also mediate cue effectiveness [13].

2 EMPIRICAL USER STUDY

2.1 Study purpose and hypothesis
Our study aims to extend previous target detection work to the 
virtual reality space specific to infrastructure inspection to
determine the effect of AR cue type and target saliency on 
operators’ signal detection rates. Additionally, signal detection 
rates with different AR cue types will be measured to see if feature-
bound AR cues afford similar detection rates as compared to fully 
bound and corner bound AR cues while also granting operators a
better view and understanding of the target’s visible features. 

In this work, we posit the following hypotheses: Signal detection 
(percentage of hits, misses, and false alarms) in the low target 
saliency trials will not be significantly different amongst the three
AR cue types but will differ significantly relative to the control
condition (i.e., no-AR cues). When targets are highly salient, the
AR cues will hurt overall signal detection performance relative to 
the control condition.

2.2 Experimental design

2.2.1 Procedure
We assigned participants (n = 28, μ 27 years old, 7 Females) to 
experimental conditions via a Latin square where participants
experienced all three levels of target saliency and all four AR cue 
types. Specifically, our study employed a four (AR cue type: none, 
bounding box, corner-bound box, and outline – see Figure 1) ×
three (target saliency: low (0.12), medium (0.17), and high (0.22)) 
within-subjects design. With this design, participants experienced 
12 total trials with one repetition of each target saliency and AR 
cue type pair. For the duration of the experiment, participants sat in 
an office chair that allowed them to spin around a central vertical 
axis, or move around the room that measured 11.6 ft. by 12 ft. 
Before beginning the experiment, we instructed participants on the
use of the virtual reality headset and the accompanying hand 
controller used to select targets via a ray casting selection 
technique. Participants were then given brief instructions on what 
the targets would look like and before performing a practice trial 
that used the same bridge model as the experimental trials but had 
targets with a lower transparency value of 0.4 (making them easier 
to see). In all practice and experimental trials, participants were 
asked to visually search for bridge defects (i.e., targets) and select
them using the hand controllers. After confirming that each
participant understood what the targets looked like and their task 
for the experiment, the experimental trials began.

2.2.2 Testbed environment
We modeled and rendered the virtual bridge in the Unity game 
engine and presented it to participants via a wireless HTC Vive Pro
headset with a 90 Hz 1440 × 1600 pixels per eye. We used an 
Alienware Aurora R6 running Windows 10 with an Intel Core i7-
7700 CPU and a NVIDIA GeForce GTX 1080 Ti graphics card to 
power the HMD. Concentrated areas of dots that were a different

Figure 1: Simulated bridge environment with all saliency levels and augmentation types represented. The top left target is the low saliency target 
(0.12) with the bounding box augmentation, the bottom left target is the medium saliency target (0.17) with the corner-bound augmentation, the 
top right target is the high saliency target (0.22) with the outline type augmentation, and the bottom right target is the non-augmented, high 
saliency target. Note that this graphic is for visual representation only and that during experimental trials, only one saliency type and one 
augmentation type would appear for each trial.
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color from the surrounding bridge area delineated the target areas
(Figure 1). Each target had the same dot pattern, but flipped, or 
rotated randomly across the bridge so that the targets would look 
slightly different but still have the same global dot pattern. We 
adjusted saliency by adjusting the transparency values of the target 
area. Transparency values used were 0.12 for the low/hard 
condition, 0.17 for the medium condition, and 0.22 for the 
high/easy condition. Transparency values were determined via a 
pilot study in which we adjusted transparency values until 
participants got an average of 80% correct for the easy condition, 
60% correct for the medium condition, and 30% correct for the hard 
condition (with no AR cues present). The program then randomly 
placed the targets on the bridge surface before each trial with 
constraints that allowed only a maximum of three targets per plane 
to minimize overcrowding of any individual bridge section.
Additionally, governing the maximum number of targets per plane
limits user misses due to a physical inability to accurately select the 
targets even if they could visually identify them all. 

The cues used in the study were a bounding box, corner-bound 
box, and an outline of the target area. We used a no-augmentation 
condition as a control. All augmentations were red (RGB:255, 0, 
0). See Figure 1 for a visual representation of the different target 
saliency levels and AR cue types. The virtual camera followed a 

fixed flightpath that simulated a typical flightpath an UAS might 
take as it captured video of a bridge surface. As such, participants 
had no control over the position of the camera, only the orientation 
(by pivoting in the chair and scanning with their head). The 
movement followed a serpentine pattern that weaved in between 
each bridge column and gave the participant a view of every surface 
plane that had targets. User inputs were classified as hits when they 
correctly selected a target, misses when they did not select a target 
area, and false alarms when they selected an area that did not 
contain a target. Movement speed and flightpath was the same in 
every condition and the total flight time of each trial was two
minutes.

3 RESULTS

We used the Winsorize technique to transform four total outliers 
when a data point was greater than three interquartile ranges from 
the upper, or lower, limit of the 25th percentile. We set the alpha at
0.05 for all statistical tests.

3.1 Hits
We used a RMANOVA with AR cue type and target saliency to 
determine their effects on the hit rate of subjects. Main effects were 
present for both AR cue type [F (3,81) = 6.94, p < 0.001, η2partial =
0.2] and target saliency [F (2,54) = 41.75, p < 0.001, η2partial = 0.61]
but the interaction did not reach significance (p = 0.49). Significant 
pairwise differences were present between the control condition 
and bounding box cue (p = 0.009) as well as the control and corner 
bound cue (p = 0.033) but were not significant for the control and 
outline AR cue comparison (p = 0.074). Pairwise comparisons 
between the three AR cue types were not significant as all p values 
were greater than 0.5. Significant differences existed between the 
low and medium (p < 0.001) target saliency, low and high 
(p<0.001) target saliency, and medium and high (p < 0.001) target 
saliency. As seen in figure 2, the number of hits a participant had 
varied significantly on AR cue type and target saliency where 
participants had more hits in the higher target saliency and AR 
cueing conditions. These results show partial support of our first 
hypothesis but, did not show support for the proposed interaction 
wherein augmentations might hurt performance in the high target
salient trials.

3.2 Misses
To determine the possible impact that augmentation type and 
saliency has on user misses, we used a RMANOVA. Main effects
of both target saliency [F (2,54) = 35.63, p < 0.001, η2partial = 0.57] 
and AR cue type [F (2.3,62.14) = 4.20, p < 0.05, η2partial = 0.14] 
were present using the Huynh-Feldt correction as well as the 
interaction [F (5.53,149.32) = 2.56, p = 0.025, η2partial = 0.09]. 
While mean misses for the control conditions was higher relative 
to the bounding box, corner bounded box, and outline, none of the 
pairwise comparisons were significant (p > 0.09). Pairwise 
comparisons with the three target saliency conditions though 
indicated significant differences between low and medium (p <
0.001), low and high (p < 0.001), and medium and high (p = 0.002). 
As shown in figure 2, results indicate partial support for our
hypothesis as performance did differ significantly based on target 
saliency but, in contradiction to the hypothesis. significant 
differences between the control condition and the AR cue
conditions did not exist.

3.3 False Alarms

We used a RMANOVA to test the effect of AR cue type and target 
saliency on the number of false alarms. Significant main effects 

Figure 2: Group means for number of hits (top) and misses (bottom) 
per trial categorized by augmentation type and saliency level. Error 
bars represent standard error of the mean. 
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were present for target saliency [F (2,54) = 38.59, p = 0.02, η2partial
= 0.14], but not for AR cue type (p = 0.33) or the interaction of AR 
cue type and target saliency (p = 0.14) using the Huynh-Feldt 
correction. Pairwise comparisons within the AR cue type condition 
led to no significant differences with all p values greater than 0.7 
for each combination. Pairwise comparisons between low and 
medium (p = 0.083) target saliency as well as medium and high (p
= 1) levels of target saliency did not reach significance. A 
significant pairwise difference did exist though when comparing 
low to high saliency (p = 0.03). With this comparison, participants 
had significantly more false alarms in the high saliency (0.22) 
condition when compared to the low saliency (0.12) condition.

4 DISCUSSION

Our hypothesis was partially supported in that performance on the 
signal detection task was generally better in the AR cue conditions 
relative to the control conditions, but the proposed interaction 
where AR cues would hurt performance in the highly salient target 
conditions was not supported except in the case of false alarms 
where participants had more false alarms in the high target salience
conditions. 

Given the work of Maltz and Shinar [8] who found that AR cuing 
was generally helpful during complex tasks, but hurtful during easy 
tasks, and the finding of the present study where users had more 
false alarms during the high target salience trials, care should be 
taken to only use AR cuing systems during complex tasks or those 
tasks where user misses carry significant weight. Future research 
should also examine this area further by studying AR cuing systems 
that adjust cue saliency to the target difficulty so that, when target 
saliency is low and the target is difficult to detect, the AR cue is 
very salient but, when target saliency is high and easy to detect, the
AR cue saliency is either low and unobtrusive, or not present.

The results of this study show that the corner-bound AR cue is
useful when designers need to attract the user’s attention without 
the increased pixel density that accompanies the typical bounding 
box. For interface designers encountering an already cluttered
visual scene, the corner-bound AR cue could be a useful addition 
that would still alert the operator to a target while still leaving more 
of the scene without augmentations. Like the corner-bound 
augmentation, the outline AR cue did not hinder performance 
beyond the other AR cue types, so these cue types could be useful 
in situations where the exact shape of the target area is needed, or 
useful for the operator to know. 

5 LIMITATIONS AND FUTURE WORK

As with any study, our experiment had limitations that limited the 
conclusions we could draw from the data. Thus, a possible 
limitation of the present study is the limited amount of time 
participants had with each AR cue type. With each trial only lasting 
two minutes, participants had little time to develop an 
understanding of the system. Future work analyzing the effects of 
different augmentation types should limit the number of analyzed 
AR cues to give participants ample time to become accustomed to 
the AR cuing aid. 

Future work in this research space entails analyzing the effect 
that imperfect AR cuing aids have on user signal detection when 
the cuing aid augments objects that are near targets that the cuing 
aid misses. By cuing one target and not the other nearby target, the 
user may overlook the non-augmented target as their attention is 
drawn to the augmented target. With the data collected, we hope to 
answer this question by measuring signal detection rates and 
comparing performance when the aid highlights all nearby targets
versus participant performance when the AR cue only highlights 

one of the targets when another, non-augmented target, is in close 
proximity. We also hope to extend this work by conducting real-
world inspection with in order to determine how the present 
findings translate to actual infrastructure inspections. 
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