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We report a numerical observation where the infinite-temperature out-of-time-order correlators (OTOCs)
directly probe quantum phase transitions at zero temperature, in contrast to common intuition where low-energy
quantum effects are washed away by strong thermal fluctuations at high temperature. By comparing numerical
simulations with exact analytic results, we determine that this phenomenon has a topological origin and is highly
generic, as long as the underlying system can be mapped to a 1D Majorana chain. Using the Majorana basis, we
show that the infinite-temperature OTOCs probe zero-temperature quantum phases via detecting the presence of
Majorana zero modes at the ends of the chain that is associated with 1D Z2 topological order. Hence, we show
that strong zero modes also affect OTOCs and scrambling dynamics. Our results demonstrate an intriguing
interplay between information scrambling and topological order, which leads to a new phenomenon in the
scrambling of generic nonintegrable models: topological order induced prescrambling, paralleling the notion of
prethermalization of two-time correlators that defines a timescale for the restricted scrambling of topologically
protected quantum information.
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I. INTRODUCTION

Out-of-time-order correlators (OTOCs) have become a
widely appreciated tool to measure the correlation build-up
in space and time, and hence quantitatively characterize infor-
mation scrambling in interacting many-body systems [1–5].
Started off as a theoretical tool to understand quantum infor-
mation in a black hole [1,6] its impact quickly expanded to a
wide variety of subjects including but not limited to: quantum
chaos [7–11], many-body localization [3,9,12–14], quantum
integrability [8,11,15,16], quantum criticality [17], and re-
cently symmetry-breaking quantum phase transitions [18,19].

At temperature T = 1/β, an OTOC is defined as

F (t ) = Tr(e−βHW †(t )V †W (t )V ), (1)

where W and V are local quantum operators and H is the
Hamiltonian. At infinite temperature (T = ∞ and β = 0), the
Boltzmann weight e−βH becomes an identity operator and
thus the OTOC reads

F (t ) = 1

M

M∑
n=1

〈ψn|W †(t )V †W (t )V |ψn〉

≈ 〈ψh|W †(t )V †W (t )V |ψh〉. (2)

Here we sum over a complete basis of the Hilbert space of
dimension M, while in the second line, we use a random state
|ψh〉 drawn from the Haar measure [14,20] to approximate
an infinite-temperature state in a correlation function, e.g.,
Eq. (1) [21–25].
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The OTOC of a generic system is expected to decay to
zero fast where the rate of decay carries information on
the chaotic properties of the system; and saturate at zero
in long-time dynamics. Saturation at zero indicates that the
system scrambles information completely, whereas a finite
saturation value points to a restricted scrambling [26]. In this
manuscript, we focus on the regime starting shortly after the
(initial) decay of OTOC and lasts for a time interval of T .
It has been recently found that the OTOC saturation value
at zero-temperature exhibits order parameterlike behavior,
and thus can directly probe the long-range quantum order
and quantum phase transitions [19]. In contrast to the naive
intuition, where thermal fluctuations wash away low-energy
quantum effects at high temperature, in this work we observe
an emergent relation between infinite-temperature informa-
tion scrambling and zero-temperature Z2 topological order
in the bulk in multiple model systems, e.g., noninteracting,
interacting and/or nonintegrable. The effect is robust where
the qualitative features remain invariant regardless of micro-
scopic details, e.g., integrability and symmetries. In particular,
by settingW andV as local degrees of freedom localized near
the edge of the system, we find that the time average of OTOC
F̄ = 1/T

∫
dtF (t ) (or equivalently the saturation value, if the

OTOC saturates) behaves like an order parameter (Fig. 1).
It is worthwhile to emphasize that the infinite temperature
OTOCs are effective tools for detecting chaos that is based on
the entire energy spectrum [7–11,14]. Hence it is surprising
and highly not obvious that this correlator can also directly
probe zero temperature physics of the ground state, such
as quantum phase transitions. Then what is the underlying
physics that allows the infinite temperature out-of-time-order
correlator at the edge to accurately sense the bulk ground state
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FIG. 1. The schematic of dynamic phase boundaries determined
by OTOC time average F̄ with respect to control parameter h and
temperature T . The system experiences a topological phase transition
(TPT) defined at T = 0 temperature from Z2 topologically ordered
phase to a trivial phase. The graphics with red grids and solid blue
show how the topological phase survives in dynamics and at higher
temperatures for integrable and generic nonintegrable models, re-
spectively. While integrable models recover zero-temperature phase
boundary at infinite temperature, nonintegrable models experience a
shift that tends to destroy order quicker than at low temperature.

physics and capture the bulk phase transition? Is this a generic
feature?

Through a careful analysis, we find that this connection
arises universally as long as the quantum system can be
mapped to a Majorana chain (1D superconductor) [27] and
F̄ value of edge operators serves as the Z2 topological order
parameter. It is known that Z2 topological order results in a
twofold degeneracy for all energy eigenstates of the entire
spectrum; and recently it is pointed out that this degeneracy
structure of Z2 topological order has a highly nontrivial impact
on dynamics at any temperature, e.g., long coherence times
for edge spins in Ref. [28] while the zero modes surviving in
the dynamics is dubbed as strong zero modes, and prethermal-
ization effect in Ref. [29]. Our results extend this impact of
Z2 topological order to information scrambling and OTOCs,
opens up new avenues to dynamically detect and study topo-
logical order through utilizing information scrambling as an
order parameter. Paralleling the well-known prethermalization
effect appearing in simpler correlators [29–31], we find that
a new timescale appears in information scrambling when
Z2 topological order [32] exists. We name this phenomenon
topologically induced prescrambling and hence define the
timescale as prescrambling time. Figure 2 shows a cartoon
picture of prescrambling for a generic (nonintegrable) model
with solid-red line where the system experiences restricted

FIG. 2. The schematic of infinite-temperature OTOC evolving in
time t for a quantum system with (solid red line) and without (dotted
purple line) Z2 topological order. A generic system with Z2 topolog-
ical order would exhibit topologically induced prescrambling F̄ �= 0
before fully scrambles at scrambling time τsc. We coin τpresc for the
prescrambling timescale. Our study focuses on this prescrambling
plateau (green panel), where the OTOC time average exhibits order
parameterlike behavior (Fig. 1).

scrambling, F̄ �= 0, forming a plateau at τpresc for a period
of time T after the first OTOC decay and preceding the
full scrambling at τsc in a topological phase. On the other
hand, the purple-dotted line in Fig. 2 shows the expected
rapid OTOC decay until scrambling time τsc for a generic
system with no topological order. Prescrambling (green panel)
plateau in Fig. 2 survives at infinite time in thermodynamic
limit for systems with extensive number of symmetries, e.g.,
noninteracting and/or integrable limits, with no full scram-
bling occurring. Such systems might demonstrate F̄ �= 0 in
their trivial phases [9,14,33], nevertheless it is still possible
to mark down the topological phase transition due to sharp
transition signatures. We compare the infinite-temperature dy-
namic phase boundary with zero-temperature quantum phase
boundary where topological order starts to develop in Fig. 1
and observe that they perfectly coincide with each other in
integrable systems. Away from the integrability, the dynam-
ical phase boundary significantly shifts away from the zero-
temperature phase boundary, although the qualitative trend of
F̄ survives.

The dynamical detection of topological order has been
under intensive investigation [28,29,34–36]. Furthermore, the
topological insulators and superconductors have been stud-
ied [37–41] and classified [42] according to their nonequi-
librium dynamics rather in an analogy to the classification
tables for topological states of matter [43] superposed with the
notion of dynamical quantum phase transitions [44–46]. Thus
understanding if the information scrambling has fundamental
restrictions when topological order exists is a puzzle left at the
intersection of many subfields.

In Sec. II, we are going to detail our numerical observation
around its corresponding Majorana chain and discuss about
the connection between infinite temperature scrambling and
T = 0 topological order with quantitative arguments. Later,
in Sec. III, we are going to show how the topological order is
encoded in the saturation regime of OTOCs based on the an-
alytical calculations in the noninteracting regime. In Sec. IV,
we extend the discussion to interacting and/or nonintegrable
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FIG. 3. Long-time average of OTOC for XXZ model for edge-
spin operatorsW = V = σ z

edge in blue circles and its (later explained)
diagonal contribution in orange squares; for bulk-spin operators
σ z
bulk with periodic boundary chain (pbc) in yellow diamonds and

its diagonal contribution in purple dots; with open boundary chain
(obc) in green left-pointing arrows and the diagonal contribution in
light-blue right-pointing arrows. System size is N = 14 and the time
of averaging is tJ = 800.

models and demonstrate topologically induced prescrambling.
Later we show how topological order persists in two sep-
arate contributions to the coherence times of prescrambling
plateaus. This will help us to explore if and how strong zero
modes affect the scrambling dynamics of OTOC different
than the dynamics of two-time correlators. Finally we discuss
the effect of prescrambling on dynamic phase diagrams. We
conclude in Sec. V and elaborate on possible questions to
answer in the future.

II. DEMONSTRATION OF TOPOLOGICAL ORIGIN

It turns out that the connection between infinite-
temperature information scrambling and quantum phases at
zero temperature has a robust topological origin. Let us
demonstrate how the topological origin reveals itself in the
dynamics of OTOCs with an example on 1D XXZ chain,

H = J
∑

i

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + Jz

J
σ z

i σ z
i+1

)
. (3)

At T = 0, the model exhibits quantum phase transitions be-
tween a gapped Ising phase |Jz| > 1 and a critical XY-phase
|Jz| < 1 where the spectrum is gapless [47]. We employ Haar-
distributed random states |ψh〉 and compute F̄ shown in Fig. 3.

If spin operators at the edge of the chain W = V = σ z
edge

are utilized (blue-circles), the infinite-temperature OTOC sat-
uration value behaves like an order parameter of the zero-
temperature quantum phase transition, i.e., F̄ ∼ 0 in the
XY phase (|Jz/J| < 1) and increases monotonically as we
enter the Ising phases (|Jz/J| > 1). In contrast, under pe-
riodic boundary conditions (yellow diamonds line) and for
a bulk spin W = V = σ z

bulk (green left-pointing triangles),

the OTOC no longer differentiates the two phases, and the
transition point is smoothed out consistent with predictions
from Ref. [19].

To demonstrate the role of topological order, we rewrite the
Hamiltonian of the XXZ model in the Majorana basis. First,
via the Jordan-Wigner (JW) transformation [48]

σ z
i = −

∏
j<i

(1 − 2c†j c j )(ci + c†i ),

σ x
i = 1 − 2c†i ci, (4)

σ
y
i = −i

∏
j<i

(1 − 2c†j c j )(ci − c†i ).

The spin Hamiltonian is mapped to

H = J
∑

i

[
(1 − 2c†i ci )(1 − 2c†i+1ci+1) − (ci + c†i )

× (ci+1 − c†i+1) + Jz

J
(ci − c†i )(ci+1 + c†i+1)

]
, (5)

which can be written in terms of the Majorana fermions
a2 j−1 = c j + c†j and a2 j = −i(c j − c†j ) [27]:

H = −J
∑

i

(a2i−1a2ia2i+1a2i+2 + ia2i−1a2i+2)

+ iJz

∑
i

a2ia2i+1. (6)

In the Majorana basis, the spin system is mapped to an inter-
acting Majorana chain. The XY (Ising) phase is mapped to a
gapless (topological) phase, and the quantum phase transition
becomes a topological transition. Same as the Kitaev chain,
the topological phase in Eq. (6) develops Z2 topological order
and is characterized by two Majorana zero-modes localized at
the two ends of the chain [27].

The physics can be understood by considering the Jz � J
limit, where Eq. (6) converges to the Kitaev model [27] with
two zero-energy Majorana modes γ1 = a1 and γ2 = a2N fully
decoupled from the rest of the chain. Away from the Jz � J
limit, quartic terms in the Hamiltonian introduce interactions,
but the zero-energy Majorana modes at the two ends of the
chain remain topologically protected for the entire topological
(Ising) phase. The existence of two Majorana modes at the
two ends of the chain (γ1 and γ2) indicates that a zero-energy
nonlocal fermion d = γ1+iγ2√

2
can be defined. Because of its

zero-energy nature, for an eigenstate of the Hamiltonian |ψ0〉,
another degenerate state |ψ1〉 = d|ψ0〉 must exist with an
opposite fermion parity. Therefore, in the topological phase,
the edge modes are responsible of the degenerate subspaces
forming not only in the ground state, but throughout the entire
spectrum [27,47]. In other words, in contrast to a conventional
(Landau-type) quantum phase transition, where across the
phase boundary the ground state changes from nondegenerate
(the disordered phase) to degenerate (the ordered phase), Z2

topological order has a direct impact for the degeneracy of
all eigenstates in the entire energy spectrum, i.e., twofold
degeneracy for the entire spectrum. The effect has a direct
impact on measurements and dynamical quantities at any
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FIG. 4. (a) The second derivative of the OTOC time average
d2F̄11(t → ∞)/dh2 pinpoints the phase transition point via its max-
imum. (b) The system-size scaling of the phase transition point
gives hdc ∼ N−0.7189 + 1.0069 with R2 = 0.9996, meaning in the
thermodynamic limit the OTOC pinpoints the phase transition point
as h∞

dc = 1.0069.

temperature [28,29] and it is in sharp contrast to a conven-
tional phase transition that can only be detected by zooming
to the ground state at low temperature. This is the key reason
why the infinite-temperature OTOC is capable of detecting a
zero-temperature topological order, but not a regular Landau-
type quantum order (unless it can be mapped into a topologi-
cal order).

III. TOPOLOGICAL EDGE PHYSICS ENCODED IN THE
OUT-OF-TIME-ORDER CORRELATORS

In this section, we study the noninteracting limit to provide
analytical arguments in the demonstration of how infinite-
temperature information scrambling of edge spins encodes
the existence or absence of Majorana zero modes. Later we
will mark the topological phase transition point via F̄ in this
noninteracting limit.

A. Transverse-field Ising model

We consider a noninteracting, hence analytically solvable
model and directly compute the contributions of Majorana
zero modes in the infinite-temperature OTOCs with edge op-
erators. The Hamiltonian for the transverse-field Ising model
with open boundary conditions is

H = −J
N−1∑
j=1

σ z
j σ

z
j+1 + h

N∑
j=1

σ x
j . (7)

Equation (7) has a critical point at h = 1 that separates a
ferromagnetic ordered phase from a disordered phase. The
time average of OTOC F̄ with σ z

1 at β = 0 is shown with
the lines with blue circles and orange diamonds for N = 14
and 50, respectively in Fig. 5(a). The simulation with N =
50 spins is performed with matrix product states (MPS) in
a t-DMRG (time-dependent density matrix renormalization
group) method, (see Appendix A for details). Here the error
bars stand for the extend of oscillations in time, as we time
average the real part of the OTOC signal in a time interval of
tJ = π

4 10 ∼ 7.85. For an edge spin operator σ z
1 , F̄ behaves

like an order parameter, which is F̄ ∼ −1 in the disordered
phase (h > J) and increase monotonically in the ordered
phase (h < J). On the contrary, for a bulk spin operator, σ z

7 ,
this feature disappears [green triangles in Fig. 5(a)]. This
observation reflects that the physics captured by edge- and
bulk-spin operators are different; a similar observation to what
we presented for the XXZ model earlier. To further show how
the real-time OTOC dynamics look like, we contrast time-
evolving OTOC F (t ) of edge and bulk operators in Fig. 5(b).
The OTOCs of the edge spin converge to different values at
large times, depending on the value of h/J , while the OTOCs
of bulk spins always converge to 0 at large t , as long as
h �= 0. The h = 0 limit is trivial for information scrambling,
because the spin chain turns into the classical Ising model
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FIG. 5. Transverse-field Ising model at infinite temperature. (a) The OTOC time average of the edge spin operators σ z
1 via real-time

OTOC dynamics (blue circles) at N = 14 and (orange diamonds) at N = 50 where we used MPS (see Appendix A) for a time interval
tJ = π

4 10 ∼ 7.85. The yellow pentagrams show F11 based on Eq. (9) where the Majorana edge states are extracted from HBdG matrix at
N = 50 at infinite time limit for a comparison with other data. The green triangles show the OTOC time average of the bulk spin operator σ z

7

at N = 14 for a time interval tJ = π

4 10
3 ∼ 800. (b) The OTOC dynamics F (t ) with respect to tJ . Blue circle and orange diamond lines are

the OTOC of edge σ z
1 operator for h = 0.1 and 0.9, respectively. Yellow cross and purple triangle lines are the OTOC of bulk σ z

25 operator for
h = 0.1 and 0.9, respectively. All curves are computed in t-DMRG for a system size of N = 50, averaged over ten random product states to
generate β = 0 results. The error bars stand for 1σ variation of OTOC in this set of random states. (c) Robustness of order against changing
the boundary conditions: a strong field is applied to the first spin only for N = 13 and tJ ∼ 8 (blue circles); and to the edge fermions in the
noninteracting fermion chain for N = 50 and tJ → ∞ (yellow squares). The edge modes shifted to the nearest site that is free of pinning field,
F̄ of σ z

2 spin (red diamonds) and F̄33 of a3 Majorana fermion (purple asterisks), respectively.

104415-4



TOPOLOGICALLY INDUCED PRESCRAMBLING AND … PHYSICAL REVIEW B 101, 104415 (2020)

without quantum fluctuations or nontrivial dynamics, and thus
information cannot scramble, F (t ) = 1.

The results above can be easily understood by using the
Majorana basis, which transforms the spin Hamiltonian into a
noninteracting Majorana chain

H = −iJ
N−1∑
j=1

a2 ja2 j+1 − ih
N∑

j=1

a2 j−1a2 j, (8)

where we used Eq. (4). In contrast to the XXZ model dis-
cussed above, Eq. (8) only contains quadratic terms, hence
noninteracting, and thus can be easily diagonalized, which
enables us to compute infinite-temperature OTOC saturation
values F̄ exactly. This exact solution agrees perfectly with
numerical simulations in Fig. 5(a). More interestingly, as will
be shown below, the analytical result exhibits that F∞ is solely
contributed by Majorana zero modes, while the contributions
from all other finite energy excitations fade away at large t .

B. Exact solution

We compute the OTOC of an edge spin using the Ma-
jorana basis in this section. In the Majorana basis, the
OTOC of Majorana fermions can be defined as F2i−1,2i−1(t ) =
Tr(a2i−1(t )a2i−1a2i−1(t )a2i−1)/2N , where we set W = V =
a2i−1 = ci + c†i . Since it can be easily showed that the OTOC
of edge Majorana fermions must be identical to the OTOC
of edge spins, σ z

1 = (c1 + c†1) = γ1 and σ z
N = P (cN − c†N ) =

iPγ2, where P = ∏N
j (1 − 2c†j c j ) is the parity operator, here

we focus on F11 with W = V = a1.
The Majorana-fermion OTOC F2i−1,2i−1(t ) can be con-

veniently computed by utilizing the Bogoliubov-de Gennes
(BdG) basis, as detailed in Appendix B. With fermion opera-
tors defined for a space of double spectrum, we write the BdG
Hamiltonian and calculate F2i−1,2i−1(t ) at site i,

F2i−1,2i−1(t )

=
[

2N∑
α

(|ψα,i|2 + ψα,iψ
∗
α,i+N ) cos(Eαt )

]2

+
[

2N∑
α

(|ψα,i+N |2 + ψα,i+Nψ∗
α,i ) cos(Eαt )

]2

− 1, (9)

where Eα and ψα are eigenenergy and eigenstate of the BdG
Hamiltonian, while the sum goes over all energy eigenstates
α = 1, . . . , 2N . In the long-time limit, only the nonoscil-
lating terms (i.e., Eα = 0) contribute to the saturation value
of F2i−1,2i−1(t ), i.e., only zero modes need to be considered
for t → ∞. For h < J in the Ising ordered phase, the BdG
Hamiltonian describes a topological superconductor with Ma-
jorana zero modes at the two ends, and hence we only sum
over the two Majorana zero modes, e.g., α = m j. In the
disordered phase (h > J), the BdG Hamiltonian describes a
topologically trivial superconductor without any zero modes.
Thus in the absence of zero modes, Eα = 0, F2i−1,2i−1(t ) →
−1, explaining F̄ approaching to −1 in the Ising model
results (Fig. 5). By calculating Eq. (9) as t → ∞, we plot
F11 = Fm j in Fig. 5(a) with orange pentagrams, which matches
well with the Ising model results. To conclude, the derived

relation, e.g., Eq. (9) rigorously proves that the saturation
value of an OTOC with Majorana fermions (W = V = a2i−1)
is contributed only by Majorana zero modes (Eα = 0), while
the contributions from any excited states (Eα �= 0) vanish at
long times. Since the Ising model can be exactly mapped to
a 1D Majorana chain, the infinite-temperature OTOC of the
edge spins directly probes the presence or absence of the
Majorana zero modes. This is one of the key conclusions in
our manuscript.

Motivated by this observation, we pinpoint the phase
boundary of the topological phase transition in the following.
Since the OTOC F11(t → ∞) has a continuous transition from
topologically nontrivial to trivial phase, we focus on its second
derivative d2F̄11(t → ∞)/dh2 with respect to external field h.
The maximum of the second derivative pinpoints the transition
point, Fig. 4(a). Then the system-size scaling provides the
transition point in the thermodynamic limit as h∞

dc = 1.0069
in a power-law scaling hdc ∼ N−0.7189 + 1.0069 [Fig. 4(b)].
For further details, see Appendix D. We note that the results
obtained in the noninteracting limit (Ising model) are valid
at the infinite time in the thermodynamic limit since topo-
logically induced prescrambling plateau persists indefinitely
(Appendix D).

C. Robustness against varying the boundary conditions

Although the phenomenon discussed above relies on utiliz-
ing edge degrees of freedom, all the key conclusions are robust
against any local perturbations and independent of boundary
conditions. Because, the physics is based on topological edge
modes. To demonstrate this robustness, we vary the boundary
condition of the transverse-field Ising chain by introducing a
constant magnetic field (along the x direction) for the edge
spin only, i.e., h1/J = h/J + 6 where h1 is the strength of
the transverse field for the first site, while the rest of the
spins have the same transverse field h. This strong field at
the edge site introduces a strong pinning to the first spin and
hence F̄ oscillates significantly, being featureless across the
phase boundary [blue circles in Fig. 5(c)]. However, if we
choose the spin operator at the second site instead, the physics
discussed above is recovered as shown in Fig. 5(c) with orange
diamonds. This is because such a local field cannot destroy the
Majorana zero mode, which is topologically protected by the
nontrivial bulk. Instead, it can only move the location of the
zero modes, and thus, utilizing the second site, the conclu-
sion remains the same. We additionally show the results for
noninteracting fermion chain with an additive field affecting
only the fermion at the edge. Yellow squares in Fig. 5(c) show
F̄m j [Eq. (9)], the OTOC of edge Majorana mode γ1 at the
infinite-time limit, hence demonstrating no transition point.
Purple asterisks, on the other hand, show F̄33, the OTOC of
Majorana mode a3 at site i = 2 at the infinite-time limit, which
is observed to match with F̄ of the Ising model, implying an
agreement between numerics and analytics.

IV. THE INTERPLAY BETWEEN TOPOLOGICAL
ORDER AND SCRAMBLING

The default expectation for generic systems in 1D is scram-
bling over a time interval where the OTOC decays fast or slow
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FIG. 6. Coherence times of prescrambling plateau at (a) and
(b) 	 = −0.1, (a) deep in the topologically nontrivial phase h/J =
0.3 and (b) at h/J = 0.7 showing negative prescrambling plateau
values; (c) 	 = −0.5 at h/J = 0.3 showing negative prescrambling
plateau values. N = 60 is computed via t-DMRG with 25 random
initial states to have the infinite-temperature OTOC. (d) Prescram-
bling plateau deep in the topologically nontrivial phase of the XXZ
model with Jz/J = 10 persists indefinitely.

but saturates to a residue close to zero, both depending on
the set of symmetries existing in the system and the size of
the Hilbert space [9,12,14,33,49]. An exception to this obser-
vation is the models that possess a symmetry-breaking phase
transition with a long-range ordered phase at zero temperature
regardless of the interactions [19] or the nonintegrability [18].
However, could order in such generic systems be captured at
higher temperatures, preferably at infinite temperature? Now
we systematically study the detection of topological order in
generic systems at infinite temperature, and show that the
machinery for the detection of the topological order with
simpler correlators can also be used for OTOCs. In fact, this
encourages us to devise a method to show if and how the
dynamical imprint of topological order on information scram-
bling could differ from the one on thermalization dynamics.

A. Coherence times of prescrambling plateaus

Z2 topological degeneracy does not only slow down the
scrambling process, but also temporarily freezes the dynam-
ics for generic nonintegrable models, causing topologically
induced prescrambling. Hence we observe that the topolog-
ical order has a profound effect on the dynamics of sys-
tems [28,29], suggesting a new timescale for information
scrambling in our case. In this section, we explore the coher-
ence times of the prescrambling plateaus to understand the
associated timescales in the thermodynamic limit.

Figure 6(a) shows how the coherence times of the pre-
scrambling plateau in a near integrability model, see Eq. 15,
(	/J = −0.1) exponentially increase until around N = 15
where the increase halts, suggesting that the curves of the
systems with larger sizes possibly collapse on each other.

Better examples can be seen in Figs. 6(b) and 6(c) of h/J =
0.7 of near-integrability model and deep in the nontrivial
phase of the model with stronger interactions 	/J = −0.5,
respectively. Therefore prescrambling plateau has a finite
lifetime in generic systems, including the vicinity of noninter-
acting limit. When the model becomes integrable, prescram-
bling plateau persists indefinitely, meaning that a system in
thermodynamic limit never scrambles. Figure 6(d) shows the
exponential increase of full scrambling decay times in the
XXZ model, thus implying that the observed scrambling is
a finite-size effect. Similar behavior can be found for different
Jz/J parameter (Appendix E) as well as the noninteracting
limit (Appendix C).

A natural question is how a generic system could host a
prescrambling plateau for mostly long but finite amount of
time. Finite coherence times of edge-spin two-time correlators
in generic systems have been recently based on spectrum
characteristics [28]. Hence these findings should be applicable
to information scrambling. The notion of easy spin flips are
introduced by Ref. [28] to demonstrate that these spin flip
processes destroy the perfect pairing of energy eigenstates
that are caused by zero modes. Such perfect pairing, meaning
exponentially close eigenstates, happen in the integrable case
and is dubbed as strong zero modes. When integrability break-
ing interactions are introduced, due to the poles appearing in
the perturbation theory, also called resonances, degeneracies
are no longer exponentially close, but polynomially in system
size. Hence there is not perfect pairing anymore, and strong
zero modes turn into almost-strong zero modes as called by
Ref. [28]. The processes of easy spin flips are the reason
behind such a change in the degeneracy structure. Due to
the poles in the perturbation theory, certain basis states with
spin flips are equally energetically favorable with the Kramer
partner. When the external transverse field is on, these states
mix and one ends up with eigenstates that are comprised of not
only a state and its Kramer partner as expected in a doubly
degenerate spectrum, but a state, its “easy spin partners”
and the Kramer partners of all. These now polynomially
close eigenstates, depending on the external field strength
as well as where the poles are, could cause bigger regions
of degeneracy compared to double degeneracy. However we
stress on the fact that these degeneracies are, so to speak,
weaker than the degeneracies when there are no integrability
breaking interactions, hence they indeed deserve the name
almost-strong zero modes. Again we emphasize that these
eigenstates are still Kramer partners of each other, as would
be expected from a system that obeys Z2 symmetry. Hence
the Z2 topological imprint is not lost, but instead reduced
to a signature that could survive only for finite times. Such
a profound effect on dynamics by zero modes is shown
with two-time correlators by Refs. [28,29]. Hence our results
are an intuitive extension of this effect to the dynamics of
information scrambling and OTOCs. In this regard, our results
demonstrate that the scrambling could be slowed down in
nonintegrable systems, introducing a two-step timescale to
scrambling dynamics, with the name prescrambling, analo-
gizes with prethermalization as the name correctly implies.
This encourages us to question how much OTOCs are really
different than their simpler cousins, e.g., two-time correlators.
An immediate observation shows us that Figs. 6(a) and 6(b)
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of the near-integrability model behave considerably different:
the former has a positive-valued plateau, paralleling with the
behavior of two-time correlators, whereas the latter has a
negative-valued plateau. To better understand such distinct
behavior appearing in OTOCs and further elaborate on related
questions, we introduce a method in the next section.

B. Dynamical decomposition method

In this section, we develop a framework that can provide us
more insight about detecting topological order in generic sys-
tems via OTOCs, as well as the saturation regime of OTOCs
in general. Since we can already derive the OTOC saturation
value analytically in the noninteracting regime (Sec. III B), we
need a framework that works in nonintegrable models; a limit
that is in general not analytically tractable. This framework
is an application of dynamical decomposition to OTOC [19]
and we aim to calculate F̄ with a term that becomes the
dominant contribution in F̄ and a correction to it, as we move
away from the noninteracting limit. Dynamical decomposition
method is previously utilized to find a leading-order term
in F̄ (of arbitrary bulk spins) at zero temperature to probe
zero-temperature symmetry-breaking phase transitions [19].
Here we generalize the idea to infinite temperature and put
forward a conjecture in analogy to the eigenstate thermal-
ization hypothesis (ETH), as explained in the following.
Our motivation for putting forward this method is twofold:
(i) this approach provides us an approximated solution of the
saturation regime for a generic system; and (ii) it also offers
us a common ground to compare the saturation regime of
OTOCs with the saturation regime of two-time correlators to
further understand if they differ in reflecting the dynamics
of zero modes. We note why the point (ii) is interesting for
our purposes: OTOCs at infinite-temperature are well-known
probes of quantum chaos [2,4,7,9,11,14], whereas two-time
correlators seem to be featureless to reflect such property
of the system [10,12]. Even though intuitively related, ther-
malization and scrambling seem to be different from each
other, motivated by their different timescales, Refs. [7,10,50].
Hence finding where OTOC points to additional information
about the system, and where it can be reduced to two-point
correlators, could prove useful to understand the relations
between scrambling and thermalization. In the cases where
such a reduction is possible, reminding of Wick’s theorem
but for OTOCs, the hope is that one can use two-point
correlators instead of OTOCs to determine the scrambling
in an experimental setting, because implementing an OTOC
protocol is unarguably harder than measuring a two-point
correlation function [5,8,14,51–53]. In the opposite situation
where OTOCs provide additional information, we could know
how scrambling dynamics differ from thermalization, at least
for the model under study.

By utilizing the energy eigenstates as a complete basis
of the Hilbert space, OTOC at infinite-temperature can be
written as

F (t ) = 1

M

∑
α,β,γ ,δ

WαβVβγWγ δVδαei(Eα−Eβ+Eγ −Eδ )t , (10)

where Wαβ and Vαβ are defined as Wαβ = 〈ψα|W |ψβ〉 and
Vαβ = 〈ψα|V |ψβ〉 with |ψα〉 and |ψβ〉 being the energy

eigenstates with associated energies Eα , . . ., Eδ . To keep the
notation simpler, we do not explicitly specify the degeneracies
in Eq. (10).

In the long-time limit (t → ∞), only the static terms with
Eα − Eβ + Eγ − Eδ = 0 contribute to the saturation value,
while the rest of the terms dephase. Then the saturation value,
and equivalently the long time average F̄ , of OTOC [19] reads

F̄ = 1

M

⎛
⎜⎜⎜⎝

∑
Eα = Eβ ,

Eγ = Eδ

+
∑

Eα = Eδ ,

Eβ = Eγ

−
∑

Eα = Eβ =
Eγ = Eδ

+
∑

Eα �= Eβ �=
Eγ �= Eδ

⎞
⎟⎟⎟⎠,

×WαβVβγWγ δVδα, (11)

where
∑

Eα=Eβ ,Eγ =Eδ
implies that we take the operator matrix

elements that satisfy the corresponding energy condition Eα =
Eβ, Eγ = Eδ . Since we look for a dominant contribution to
Eq. (11) as the interaction strength increases, the most suitable
dynamical decomposition is through a conjecture where F̄
is dominated by the diagonal contribution. This corresponds
to the contribution with the energy condition Eα = Eβ =
Eγ = Eδ on the spectrum. A way to see why we expect our
conjecture to hold is via remembering ETH. ETH, up to
exceptions [54,55], holds for nonintegrable systems whereas it
fails for integrable systems [56]. One of the conditions of ETH
is that the off-diagonal elements are suppressed compared to
diagonal elements of the local observable written in the eigen-
basis of the Hamiltonian. Therefore, based on the literature
of ETH, we know that a local operator should dominantly
populate its diagonal entries when the Hamiltonian is noninte-
grable. In parallel with this argument, we numerically observe
that our conjecture is indeed valid when an ansatz on the ma-
trix elements ofW andV is satisfied. This ansatz demands that
the off-diagonal elements of the operators (in the eigenbasis)
are suppressed with respect to the diagonal elements when
the spectrum is explicitly degenerate; and can be formulated
as |WEα �=Eβ

|2 � |WEα=Eβ
|2 for both W and V , as well as

|VEα �=Eβ
|2 � |WEα=Eβ

|2 and vice versa. When the ansatz is
satisfied, F̄ simplifies to the diagonal contribution Fdiag,

Fdiag = 1

M

∑
Eα = Eβ =

Eγ = Eδ

WαβVβγWγ δVδα. (12)

We note that the operator ansatz is the generalization of ETH’s
aforementioned criteria [56–58] to a degenerate spectrum.
However, since we do not need to assume that the diagonal
elements of the operator matrix are a smooth function of
energy WEα=Eβ

= g(Eα ), the other criteria of ETH [56] does
not need to be followed, hence our conjecture does not require
thermalization. This is reasonable, given that for a quantum
system to thermalize strictly (in ETH sense) the saturation
value should be predictable by the microcanonical ensemble
in a narrow energy window on the spectrum [56]. There is
not such a requirement for the saturation value of OTOCs.
In conclusion, we can anticipate that our conjecture should
be applicable for a wider range of systems, e.g., including
integrable but interacting systems.

If W and V are Majorana operators, i.e., a2i−1, the only
contribution to Fdiag comes from the degenerate energy levels
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which contain two eigenstates with opposite fermion parity.
Since the two-fold degeneracy arises in the entire spectrum,
a finite Fdiag is expected in the topologically nontrivial phase.
However in the topologically trivial phase, although it could
arise accidentally for some energy levels, two-fold degeneracy
is generically not expected implying F̄diag ∼ 0. Hence F̄diag

directly probes topological degeneracy in any system with
Z2 symmetry. Our conjecture can be rigorously proven for
two-time correlation functions, where the off-diagonal con-
tribution does not satisfy the corresponding energy condition
Eα − Eβ = 0 and thus, must vanish in long time. Hence, the
saturation value for a two-time correlator,

C̄ = Tr(W (t )W ) = 1

M

∑
Eα = Eβ

WαβVβα, (13)

already consists of only diagonal contribution with no need
to introduce an operator ansatz, unlike OTOC. For OTOC, if
the operator ansatz does not hold and hence the conjecture
fails, other contributions to F̄ might exist [Eq. (11)], which we
call off-diagonal contribution. Such cases, e.g., noninteracting
model, clearly make the saturation regime of OTOC distinct
than the saturation regime of two-time correlators, because the
off-diagonal contribution becomes comparable to the diagonal
contribution, and even dominates F̄ . On the other hand when
the conjecture holds, and hence off-diagonal contribution
sums up to ∼0, Fdiag becomes the approximated solution to F̄ ;
and since Fdiag [Eq. (12)] is related to C̄ [Eq. (13)], F̄ might
be predicted by C̄.

How Fdiag relates to C̄ can be seen better in the noninter-
acting limit. At infinite temperature, C̄ could be utilized to
straightforwardly come up with an analytical expression for
Fdiag. We calculate matrix elements of the edge operator W ,

Wαβ |Eα=Eβ
= 〈ψα| f (h)γ1

(
γ1 + iγ2√

2

)
|ψα〉

= 2 f (h)√
2

=
√
1 − h2, (14)

in the topologically nontrivial phase; Wαβ |Eα=Eβ
= 0 other-

wise. Here, f (h) is a smooth function of magnetic field h, that
can be extracted numerically for finite size systems, whereas
by using C̄ [35] we can determine an analytical expression
f (h) =

√
2(1 − h2)/2 in the thermodynamic limit. Hence

Fdiag = (1 − h2)2 can be written, while C̄ = 1 − h2 [35]. See
Appendix C for details and the numerical demonstration of
this relation.

Now we calculate F̄diag for three different scenarios:
(i) strongly interacting but integrable case (XXZ model),
(ii) nonintegrable models with different interaction strengths,
and (iii) noninteracting limit; and numerically determine the
bounds of our conjecture.

1. Strongly interacting but integrable case

We revisit the Fig. 3 of the XXZ model in Sec. II. Fdiag is
shown for an edge spin σ z

1 (obc) with red squares; whereas
the Fdiag of bulk spins σ z

1 (pbc) and σ z
7 (obc) operators are

with purple dots and light blue right-pointing triangles, re-
spectively. We observe that the diagonal contribution could
be used to approximate F̄ at the edge in the Ising phases,

0 0.5 1 1.5
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0 1 2
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FIG. 7. Comparison of F̄ and its diagonal contribution F̄diag at
different nonintegrability breaking term strength 	/J . (a) For a time
interval of tJ = 8 × 102 and size N = 14, F̄ (red triangles) and
F̄diag (green squares) of 	/J = −0.5; and F̄ (black circles) and
F̄diag (yellow diamonds) of 	/J = −2. Hence F̄ ∼ F̄diag holds for
a generic nonintegrable system. (b) F̄ (yellow triangles) and F̄diag

(green squares) of 	/J = −0.1 for a time interval of tJ = 2 × 103

and size N = 14; and F̄ (black circles) and F̄diag (red diamonds) of
noninteracting fermion model for a size of N = 200 at the infinite-
time limit. At the vicinity of the noninteracting limit, off-diagonal
contribution starts to be significant.

confirming the conjecture. Even though this model has in-
teractions between Majorana fermions Eq. (6), it is still an
integrable system which might explain why F̄ does not com-
pletely reduce to its diagonal contribution in the long-time
limit. However, the qualitative behavior is the same. The
diagonal (and hence topological) contribution in the XY phase
becomes zero which is consistent with a gapless phase. Hence
the sole contribution in the XY phase is the corrections,
which shows a steady nonzero residue F̄ �= 0. This residue
seems to be a consequence of the rotational symmetry of the
system, [H, Sz] = 0 and could be expected to vanish away in
the thermodynamic limit (Appendix F). Since the topological
order is not visible to bulk degrees of freedom, we see Fdiag ∼
0 for bulk operators.

2. From nonintegrable cases to noninteracting limit

A generic Ising model could be introduced as

H = −J
N−1∑
j=1

σ z
j σ

z
j+1 − 	

N−2∑
j=1

σ z
j σ

z
j+2 + h

N∑
j=1

σ x
j (15)

= −iJ
N−1∑
j=1

a2 ja2 j+1 + 	

N−2∑
j=1

a2ia2i+1a2i+2a2i+3

− ih
N∑

j=1

a2 j−1a2 j, (16)

where 	 is the next-nearest neighbor coupling between
spins in Eq. (15) and breaks the integrability of the model.
The strength 	 introduces interactions between Majorana
fermions in Eq. (16). We focus on three different 	 values
in our numerical analysis from weak to strong integrability-
breaking terms (i) 	/J = −0.1, (ii) −0.5, and (iii) −2.

As we increase the interaction strength, F̄ ∼ F̄diag holds
as expected from the conjecture. Figure 7(a) compares the
dynamic phase diagrams of 	/J = −0.5 and −2 where time
of averaging is fixed to tJ = 800 for a system size of N = 14.
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FIG. 8. Coherence times of the edge spins based on OTOC of
(a)	/J = −0.5 and (b)	/J = −2 closer to the critical point in their
respective topological phases at h/J = 1 for different system sizes.
The size N = 40 in both subfigures is calculated via t-DMRG by
averaging ten different random product states.

On the other hand, at the vicinity of the noninteracting limit
	/J = −0.1, F̄ differs from its diagonal contribution F̄diag

considerably [yellow triangles and green circles Fig. 7(b)].
Consistently, the operator ansatz in the noninteracting limit
fails, leading to F̄ �= F̄diag. Black circles and red diamonds
in Fig. 7(b) show F̄ and F̄diag calculated at N = 200 in the
infinite-time limit, respectively. Note that the difference is
the off-diagonal contribution, which increases towards the
phase boundary h/J → 1 and clearly is not bounded. The
off-diagonal contribution is robust, i.e., it does not vanish
at infinite-time in thermodynamic limit [Fig. 7(b)]. The off-
diagonal contribution also shows up in a generic model at
near-integrability limit (	/J = −0.1), seen in the observation
that F̄ diverges from F̄diag [Sec. IVA and Appendix D].

3. Outlook

In conclusion, deep in the interacting and/or nonintegrable
limit, our conjecture holds and hence F̄ ∼ F̄diag ∝ C̄. In near-
integrability, OTOC starts to exhibit distinct behavior from
two-time correlators and this becomes more apparent in the
noninteracting model. We revisit Figs. 6(a) and 6(b) where
the former is a point deep in the nontrivial phase with F̄ ∼
F̄diag [Fig. 7(b)] and hence shows similar behavior to C̄ with
a positive-valued plateau. Whereas Fig. 6(b) demonstrating
a closer point to hc gives F̄diag ∼ 0, hence the OTOC time
average is mainly contributed by the off-diagonal contribution
|F̄ | � F̄diag ∝ C̄, resulting in a negative-valued plateau.

C. Effect of scrambling on dynamic phase diagrams

The topological transition for 	/J = −0.5 and 	/J =
−2 occurs at h/J ∼ 1.7 and h/J ∼ 3.78, respectively
(Appendix E). On the other hand, Fig. 7(a) demonstrates
the dynamic transition boundaries early on, hdc/J < 1. Even
though one might argue for finite-size effects, such a dra-
matic shift begs for additional reasons. The observation that
prescrambling plateau has a finite lifetime in a nonintegrable
model also suggests that the dynamic phase diagrams would
significantly depend on the interval of the time averaging
(Appendix D for demonstration). Hence it is not clear even if
a dynamical phase transition boundary could be well-defined.
Given such technical problems, instead of finite-size scaling to
mark a transition point, we aim to bound the dynamic phase
boundaries in these models. Figures 8 demonstrate very lim-
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FIG. 9. (a) OTOC time average of edge spin for the nonintegrable
Ising model with 	/J = −2 at zero temperature and N = 30 system
size. Blue circles and orange diamonds show F̄ real-time average
over tJ = N = 30 and the ground-state subspace contribution Fgs.
(b) The system-size scaling of the critical point determined by Fgs

as h∞
dc = 3.7 ± 0.05. All computations in (a) and (b) are done either

with t-DMRG or DMRG.

ited prescrambling plateaus whose lifetimes are around tJ ∼
20 for 	J = −0.5 and 	/J = −2 at h/J = 1. The curves of
multiple system sizes collapse on each other in a computation
performed with both ED (exact diagonalization) and DMRG.
Hence we can state that the dynamic phase boundary over a
relatively long period of time is bounded to hdc/J < 1, indeed
suggesting a significant shift from the zero-temperature phase
boundaries.

Such phase boundary shifts, although more mild than
demonstrated here, in dynamical phase diagrams with corre-
sponding symmetry-breaking transitions and that are initiated
with polarized states in near-integrable Ising chain have been
recently discussed [53]. These shifts seem to be linked to
exciting the system to higher energy levels when quenched
from a polarized state. Hence we can anticipate that working
at infinite-temperature possibly maximizes the amount of
shift from the zero-temperature phase boundary. Therefore we
lower the temperature to zero and compute F̄ and its diagonal
contribution which is simply the ground-state contribution
F̄gs in Fig. 9(a) at N = 30 and over a time interval of tJ =
30. The correspondence between F̄ and F̄gs motivates us to
apply system-size scaling on F̄gs. Figure 9(b) demonstrates
this system-size scaling which determines the critical point
as h∞

dc = 3.7 ± 0.05. Therefore the dynamical phase boundary
is very close to h∞

c ∼ 3.78(2) that is determined by two
independent methods (Appendix E). Hence the dynamical
phase diagram based on OTOC matches fairly well with the
topological phase transition boundary in low temperature,
suggesting that the shift observed in Fig. 7(a) is indeed an
effect from the excited state spectrum. This is perhaps not too
surprising, given the discussion on easy spin flips in Sec. IVA.
Since increasing the transverse field strength h (linked to
spin flip operator) enhances the effect of easy spin flips on
the spectrum [28], the dynamical signature of the topological
order is lost well before the field value reaches the critical
transition boundary hc.

In conclusion, we demonstrate the effect of almost-strong
zero modes on a dynamic phase diagram based on OTOC
showing significant shift in the phase boundaries. Whether
it is possible to find a functional dependence of the hdc on
temperature is an interesting question that can be studied
systematically in future studies.
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V. CONCLUSIONS AND DISCUSSIONS

We put forward a numerical observation on the XXZ
model, where we showed the infinite-temperature OTOC,
namely a correlator that probes the quantum chaos in inter-
acting many-body systems, is also susceptible to ground-state
phase transitions. The origin of this observation is demon-
strated to be Majorana edge modes existing in the system
with a systematic study of different models. This suggests the
appearance of strong zero modes in the dynamics of infor-
mation scrambling and OTOCs. We marked the topological
phase transition in the noninteracting limit via F̄ . We further
numerically studied the coherence times of the prescrambling
plateaus in the nonintegrable models and demonstrated the
effect of prescrambling in dynamic phase diagrams. We found
that F̄ continues to be an order parameter for the topologically
nontrivial phase even in the nonintegrable limit where the dy-
namic phase boundary is significantly altered by the temper-
ature. The dynamical decomposition of infinite-temperature
OTOC into diagonal and off-diagonal contribution exhibits the
differences and similarities between scrambling and thermal-
ization dynamics affected by (almost-)strong zero modes.

The observations on finite topological order detected via
OTOC point to edge spins that remain local for long times
in generic systems. Hence the scrambling of the edge spins
with the rest of the system is negligible when the Z2 topo-
logical order exists. Therefore we demonstrate how topo-
logically protected degrees of freedom fight against being
scrambled, either completely preventing (integrable systems)
or restricting (generic systems) the operator spreading and
thus exhibiting a clear interplay between the topological order
and scrambling. Nonintegrable systems at infinite tempera-
ture are almost always expected to scramble down to zero
where the decay rate depends on the symmetries existing in
the Hamiltonian. However, we see that this is not always
the case and the scrambling can be severely hindered by
the topological protection of information. Motivated by these
observations, we introduced a two-step scrambling process
with the new timescale being prescrambling time τpresc and
the associated process, topologically induced prescrambling.
Our conclusions in principle can be generalized to higher
dimensions for topological states with similar fraction excita-
tions and topological degeneracy [29], although the numerical
verification is yet to be found.

In principle, this probe allows experimental detection of
topological states without a need to cool down the system to
ultralow temperatures whether it is the OTOCs, Eq. (1) or two-
time correlators Eq. (13), when the control parameter is suf-
ficiently away from the zero-temperature phase boundary. In
particular, the infinite-temperature OTOCs are experimentally
more appealing than zero-temperature OTOCs [59], since it
can be challenging to prepare a ground state as the initial state
in certain experimental platforms.

Although surprising, the interplay between information
scrambling and topological order is an intuitive observation.
Beside the notion of strong-zero modes affecting the thermal-
ization dynamics [29], the entanglement entropy of a ground
state has a universal topological contribution in topologically
nontrivial phases [60–62]. Moreover, the connection between
OTOCs and the entanglement entropy of the time-evolved
states has been introduced too [33,63]. Hence here we make

another connection that relates a dynamical quantity to a static
property of the Hamiltonian.
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APPENDIX A: METHODS EXPLAINED

To determine the degeneracy in the spectrum, we need
to characterize the uncertainty in energy, 	E . This means
that we define an energy window around each energy level
with 	E as [Em − 	E , Em + 	E ] where we assume that the
states remain in this window are degenerate with the state
whose associated energy is Em. This process defines an energy
resolution and in a way coarse-grains the energy spectrum.

As discussed in Ref. [19], the energy resolution is related
to the interval of the time-evolution. Longer time evolution
translates to finer energy resolution, resolving the smallest
energy differences in the spectrum, T 	E ∼ 1, where T is
the total time of the evolution. Hence anytime we simulate
a system with a finite time interval, we define an energy res-
olution as 	E = π

4T . In return, the parameter 	E determines
the degenerate subspaces in the spectrum and hence helps us
to determine the diagonal contribution F̄diag in OTOC time av-
erage. Note that this reverse relation between the time interval
and energy resolution also implies that any degeneracy lifting
will be eventually captured by a long-time evolution.

We call an equation derived by the dynamical decomposi-
tion as a framework equation. If the operator in the eigenbasis
Wαβ can be calculated analytically for an integrable system,
that would present us the analytical expression of its OTOC
saturation value. However, one can numerically derive the
matrix elements Wαβ too and use them in the framework
of dynamical decomposition. Any brute force calculation of
the OTOC saturation value requires an estimation on the
time-dependent part in the dynamical Eq. (10), e.g., which
energy pairs are equal to each other. The energy resolution
	E is used here to define a threshold so that we could exert
the degenerate subspaces on the OTOC calculation. Crudely
speaking, this threshold determines whether the saturation
value is contributed by the found energy set {Eα, Eβ, Eγ , Eδ}.
In the end, the numerical incorporation of a finite energy
resolution into our framework equation that analytically deter-
mines the saturation value, also provides us the time average
of OTOC over any time interval up to dramatic transient
features [19]. Hence we equivalently call F̄ both for long-time
saturation value and the time average of OTOC.

When we numerically calculate the OTOC saturation
value, we do the summations in Eq. 11. This introduces an
approximation to the final OTOC saturation value in our
numerical result. We set a threshold where any term greater
than the threshold is found and summed over. We determine
our threshold based on the dimension of the Hilbert space,
∼1/M2, where M is the dimension of the Hilbert space. This
generally bounds the error on the order of ∼10−2 (we remind
the reader that |F | � 1).
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We utilize ITensor platform in C++ environment and MPS
(matrix product states) for our density matrix renormalization
group (DMRG) computations [64]. To prepare infinite temper-
ature states in MPS format, we average over random product
states. We restrict the bond numbers to m � 100. Since the
bond numbers increase rapidly as the system evolves in time,
this results less accuracy for the later times. Therefore, we
restrict our time-evolution with MPS at infinite-temperature
to tJ � 10. The t-DMRG of OTOC in low temperatures or
zero temperature present modest bond numbers, hence we are
able to simulate OTOC at zero temperature for longer times.

APPENDIX B: DERIVATION OF FERMIONIC OTOC

In order to (both analytically and numerically) solve Kitaev
chain, we double the Hilbert space of single-particles and
generate the BdG Hamiltonian. This Hamiltonian gives us a

symmetric spectrum around energy E = 0 where there are two
states at E = 0 when the chain is open due to the localized
Majorana fermions at two ends. Therefore, if we derive an
equation for OTOC in terms of single-particle states, via
summing over only E = 0 states (Majorana zero modes) due
to Eq. (9), we can calculate the OTOC in the infinite-time
limit.

We work with the fermion operator in doubled space, that
is, in addition to di = ci we also have di+N = c†i , hence di

has a dimension of 2N where N is the dimension of the
free fermionic system without pairing terms. Note that in
addition to the familiar anti-commutation relation {di, d†

j } =
δi j , we have {di, d j+N } = δi j and {d†

i , d†
j+N } = δi j . Hence,

a Majorana operator can be defined as a2i−1 = ci + c†i =
(di + d†

i + di+N + d†
i+N )/2. With this algebra in mind, we can

derive

F2i−1,2i−1(t ) = 1

2N
Tr(a2i−1(t )a2i−1a2i−1(t )a2i−1). (B1)

After the substitution of di operators,

F2i−1,2i−1(t ) = 1

22N

1

22
Tr(di(t )a2i−1di(t )a2i−1 + d†

i (t )a2i−1d†
i (t )a2i−1 + di+N (t )a2i−1di+N (t )a2i−1

+ d†
i+N (t )a2i−1d†

i+N (t )a2i−1 + 2(di(t )a2i−1d†
i (t )a2i−1 + di(t )a2i−1di+N (t )a2i−1 + di(t )a2i−1d†

i+N (t )a2i−1)

+ 2(d†
i (t )a2i−1di+N (t )a2i−1 + d†

i (t )a2i−1d†
i+N (t )a2i−1 + d†

i+N (t )a2i−1di+N (t )a2i−1)). (B2)

Since the dimension of the Hilbert space is 22N , the following identities hold:
Tr(did

†
i + d†

i di ) = 22N → Tr(did
†
i ) = 22N−1,

Tr(di+N d†
i+N ) = Tr(didi+N ) = Tr(d†

i d†
i+N ) = 22N−1,

(B3)
Tr(did

†
i (d

†
i di + did

†
i )) = 22N−1 → Tr(did

†
i did

†
i ) = 22N−1,

Tr(di+N d†
i+N di+N d†

i+N ) = Tr(didi+N didi+N ) = Tr(d†
i d†

i+N d†
i d†

i+N ) = 22N−1.

Equation (B2) takes a form of

F2i−1,2i−1(t ) = 1

22N

1

22

2N∑
k,l

[(Gik (t )Gil (t ) + Gi+N,k (t )Gi+N,l (t ) + 2Gik (t )Gi+N,l (t ))Tr(dka2i−1dl a2i−1) + H.c.]

+ 2

22N

1

22

2N∑
k,l

[(Gik (t )G
∗
il (t ) + Gik (t )G

∗
i+N,l (t ))Tr(dka2i−1d†

l a2i−1)

+ (G∗
ik (t )Gi+N,l (t ) + G∗

i+N,k (t )Gi+N,l (t ))Tr(d
†
k a2i−1dla2i−1)], (B4)

in terms of the matrix elements of the single-particle propagators G(t ) = exp (−iHBdGt ).
The term Tr(dka2i−1dla2i−1) is nonzero only when k = l = i or k = l = i + N where in both cases Tr(dka2i−1dla2i−1) = 22N .

The term Tr(dka2i−1d†
l a2i−1), on the other hand, vanishes for k = l = i and k = l = i + N , however survives for k = l �= i and

k = l �= i + N . In this case, Tr(dka2i−1d†
l a2i−1) = −22N . Note that none of these terms survives if k = i, l = i + N and vice

versa. Therefore we end up with

F2i−1,2i−1(t ) = 1

22
[(Gii(t ))

2 + 2(Gi,i+N (t ))
2 + (Gi+N,i+N (t ))

2 + 2(Gii(t )Gi+N,i(t ) + Gi,i+N (t )Gi+N,i+N (t )) + c.c]

− 1

2

2N∑
k �=i,k �=i+N

(|Gik (t )|2 + |Gi+N,k (t )|2 + Gik (t )G
∗
i+N,k (t ) + G∗

ik (t )Gi+N,k (t )). (B5)

The unitarity condition reads
∑2N

k |Gik|2 = 1, then

2N∑
k �=i,k �=i+N

|Gik (t )|2 = 1 − |Gii(t )|2 − |Gi,i+N (t )|2. (B6)
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Furthermore, we utilize the relation
∑2N

k=1 GikG∗
i+N,k = 0 which leads to

2N∑
k �=i,k �=i+N

Gik (t )G
∗
i+N,k (t ) = −Gii(t )G

∗
i+N,i(t ) − Gi,i+N (t )G

∗
i+N,i+N (t ). (B7)

When these relations are utilized, one can write the final result as

F2i−1,2i−1(t ) = (Re(Gii(t )) + Re(Gi,i+N (t )))
2 + (Re(Gi,i+N (t )) + Re(Gi+N,i+N (t )))

2 − 1, (B8)

for OTOC for a Majorana fermion of type a2i−1. Given Gi j (t ) = ∑
α exp (−iEαt ) 〈ψα, j |ψα,i〉 where ψα,i means the ith element

of the eigenstate α of HBdG, this result should eventually lead to the result stated in the main text,

F2i−1,2i−1(t ) =
[

2N∑
α=1

(|ψiα|2 + ψiαψ∗
i+N,α ) cos(εαt )

]2

+
[

2N∑
α=1

(|ψi+N,α|2 + ψi+N,αψ∗
i,α ) cos(εαt )

]2

− 1. (B9)

APPENDIX C: THE RELATION BETWEEN OTOCS
AND TWO-TIME CORRELATORS

Equation (13) shows that the saturation value of a two-time
correlator will always be governed by the diagonal elements
in the operatorW . ThenWαβ = 〈ψα|W |ψβ〉 can be straightfor-
wardly calculated in the noninteracting limit. Here, |ψβ〉 and
|ψα〉 are even and odd parity states in a doubly degenerate
subspace that is dictated by the Majorana zero modes. We
note that |ψγ 〉 = d|ψα〉 = f (h)( γ1+iγ2√

2
)|ψα〉, where f (h) is a

function of magnetic field h and f (h = 0) = 1/
√
2, however

decreases as h → 1. The quantity that we need to calculate
becomes 〈ψα|W f (h)(γ1 + iγ2)|ψα〉/√2. The effect appears
when we use edge spins, hence

W = σ z
1 = (c1 + c†1) = γ1. (C1)

W = σ z
N =

∏
j<N

(1 − 2c†j c j )(cN + c†N )

= P (cN − c†N ) = iPγ2, (C2)

0 0.5 1
10-4

10-2

100

FIG. 10. Diagonal contribution in the Ising model and noninter-
acting fermionic model after dynamical decomposition is applied.
Purple-circles show the diagonal contribution Eq. (12) at N = 14
in the Ising model (for a time interval tJ = π

4 10 ∼ 7.85), while the
blue right-pointing triangles (N = 14) and red left-pointing triangles
(N = 100) show Eq. (12) for HBdG in noninteracting fermion system
at infinite-time limit. The exact form is derived from the two-time
correlators of Majorana fermions (solid orange).

where P = ∏N
j (1 − 2c†j c j ) is the parity operator. Equa-

tions (C1) and (C2) show the operator W in Ising, Dirac and
Majorana bases, respectively. If we work with the operator
Eq. (C1),

〈ψα| f (h)γ1

(
γ1 + iγ2√

2

)
|ψα〉 = 2 f (h)√

2
, (C3)

where we utilized (γi )2 = I and −iγ1γ2|ψα〉 = −|ψα〉 since
|ψα〉 is an odd-parity state. Similarly for Eq. (C2),

i f (h)〈ψα|Pγ2

(
γ1 + iγ2√

2

)
|ψα〉 = 2 f (h)√

2
, (C4)

where we additionally use P |ψα〉 = −|ψα〉. Given each de-
generate subspace contributes equally, we write C̄ = 2 f (h)2.
A simple functional form of Eq. (13) is calculated as C̄ = 1 −
h2 for h < J and C̄ = 0 for h > J in Ref. [35]. We substitute
this analytical result into Eq. (13) and obtain Wαβ = √

1 − h2

for h > J in the topologically nontrivial phase. Hence we
observe that the diagonal contribution of OTOC is a direct
dynamical probe of topological order, giving a nonzero F m j

ex =
(1 − h2)2 in the nontrivial phase.

To demonstrate how F̄diag of Ising model can match with
Eq. (14) of noninteracting fermionic system whose calcu-
lation is purely based on Majorana zero modes, we plot
Fig. 10. Blue right-pointing triangles and orange left-pointing

100 105 1010
-1

-0.5

0

0.5

1

FIG. 11. Coherence time computation of the integrable Ising
model deep in the nontrivial phase h/J = 0.3. The coherence times
exhibit exponential increase with the system size which implies that
prescrambling lasts indefinitely.

104415-12



TOPOLOGICALLY INDUCED PRESCRAMBLING AND … PHYSICAL REVIEW B 101, 104415 (2020)

40 100 200
10-3

10-2

10-1

FIG. 12. The scaling of OTOC, F with the system size N at the
transition point determined by the second derivative of the OTOC
(see main text). The scaling parameters are F∞ ∼ N−1.5452 − 1 with
R2 = 0.9994.

triangles show F̄ m j
diag numerically computed via Majorana zero

modes from BdG Hamiltonian for system sizes of N = 14
and N = 100, respectively. Note that F̄ is

diag of the Ising model
(purple-squares) computed at N = 14 for a time interval of
tJ ∼ 8 matches well with F m j

diag at the same size, implying
that F is

diag could be used to detect the presence/absence of
Majorana zero modes. The difference between N = 14 and
100 sizes of F̄ m j

diag shows how finite size effects show up near
the transition point due to the divergent length scale associated
with the quantum critical point. Additionally we compare F̄ m j

diag

at N = 100 with the analytically derived result F̄ m j
ex that is

denoted by solid orange line in Fig. 10 and observe that they
match perfectly.

100 101 102
10-4

10-2

100

(a)

1000 1500 2000 25003000
10-4

10-2

100

(b)

100 101 102
10-4

10-2

100

(c)

1000 2000 3000
10-4

10-2

100

(d)

FIG. 13. The operator ansatz tested on the Ising model. Matrix
elements |Vβα|2 are plotted for (a) β = 1 and (b) 2000 with respect to
α for an edge operator σ z

1 (open boundary); same β [(c) and (d)] for
a bulk operator (periodic boundary) at a size N = 12. Blue circles,
red squares, and orange diamonds stand for field strength h/J = 0.1,
0.8, and 1.5, respectively for all subfigures.

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

(a)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

(b)

FIG. 14. Real-time dynamics of OTOC with both edge (red
solid) and bulk (blue dotted) spins in nonintegrable transverse-field
Ising model at h/J = 0.3 for (a) 	/J = −0.1 and (b) 	/J = −0.5
with size N = 14.

APPENDIX D: FURTHER RESULTS ON
THE ISING MODEL

Figure 11 shows that the prescrambling timescale scales
with the system size in the Ising model. Hence, in the ther-
modynamic limit, prescrambling continues to survive, giving
a finite OTOC saturation (time average) F̄ �= 0 at the infinite-
time limit.

Figure 12 shows the system-size scaling of fermionic
OTOC time average at the phase transition point that is also
determined by OTOC itself. The scaling parameters of the
phase transition point was already given in the main text. Here
we provide the scaling parameters of the OTOC amplitude
with respect to system size: F∞ ∼ N−1.5452 − 1, meaning the
OTOC in thermodynamic limit should saturate at F∞ = −1
in the transition point.

Now we explicitly demonstrate how operator ansatz is
satisfied or violated in the integrable Ising model. For this, we
plot the matrix elements |Vβα|2 for various β in the spectrum
at different h values in Fig. 13. Note that |ψβ〉 and |ψα〉 in
|Vβα|2 denote states sorted according to their energies.

The first two panels (a) and (b) are for an edge spin operator
σ z
1 , whereas the rest (c) and (d) are for a bulk spin operator.

We sample the ground state (a)–(c) and a state in the middle

(a) (b)

FIG. 15. Nonintegrable transverse-field Ising model. OTOC time
average of bulk spins in (a) small integrability breaking term 	/J =
−0.1 in linear and logarithmic (inset) scales. Red pentagrams, purple
diamonds, and light-blue crosses show Fdiag whereas the blue circles,
yellow squares and green triangles show F̄ for N = 12, N = 13
and N = 14, respectively. (b) The case of 	/J = −0.5 integrabil-
ity breaking term. F̄ and F̄diag for N = 12 (blue circles and red
pentagrams), N = 13 (yellow-squares and purple diamonds), and
N = 14 (green triangles and light-blue crosses). All curves have open
boundary conditions and a time interval of tJ ∼ 800.
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100 105 1010
-0.5

0

0.5

1

(a)

5 10 15 20

103

105

107

(b)

FIG. 16. (a) Coherence times of the edge spins based on OTOC
at 	/J = −2, deep in the topologically nontrivial phase h/J = 0.3
and (b) the system-size scaling of the coherence times in (a). Note
that different curves correspond to different threshold values η where
we look for the times that provide F (t ) = η. ξ is the exponent in the
exponential scaling and all of them are around ξ ∼ 1.

of the spectrum (b)–(d) in these subfigures. Deep in the topo-
logically nontrivial phase, h/J = 0.1, we see that the operator
ansatz is satisfied |VEα=Eβ

|2 � |VEα �=Eβ
|2 for an edge spin (blue

circles). For a bulk spin, the operator ansatz is valid only in the
ground state subspace with Eα = Egs, the condition put for-
ward by Ref. [19] for the dynamical detection of symmetry-
breaking phase transitions via OTOCs. This is how the edge
spins preserve the topological order in the OTOC throughout
the spectrum, while the bulk spins can preserve only the
symmetry-breaking order. Closer to the transition point, e.g.,
h/J = 0.8, the order |VEα=Eβ

|2, expectantly, decreases while
the off-diagonal elements |VEα �=Eβ

|2 grow, which is a signature
of integrability at this special noninteracting limit. Hence the
operator ansatz, still in the topologically nontrivial phase,
breaks down explaining how the OTOC saturation starts to
be dominated by off-diagonal contribution [Fig. 7(b)] where
F̄ �= F̄diag in the nontrivial phase). Note that this breakdown
of the operator ansatz in the ordered phase does not happen
for the bulk spin that is in its ground state, Fig. 13(c). The
operator ansatz in the topologically trivial phase, e.g., h/J =
1.5, continues to fail [compare orange-diamonds with blue
circles in Figs. 13(a) and 13(b)]. Eventually this causes a
nonvanishing OTOC time average F̄ �= 0 in the trivial phase,

0.5 1 1.5
-1

-0.5

0

0.5

FIG. 17. Demonstration of the time-dependence of the phase
diagram for the model with 	/J = −0.1 at N = 14 system size.
Blue circles, orange diamonds, yellow squares, purple triangles,
green pluses, red pentagrams, and black hexagrams stand for tJ =
10, 20, 40, 60, 80, 100, and 800, respectively.

101 102
-100

-10-1

-10-2

(a)

101 102

100

(b)

FIG. 18. The scaling parameters for the ground state phase tran-
sition of the model with 	/J = −2, calculated via DMRG. (a) The
system-size scaling of the critical point, giving h∞

c = 3.7746 in the
thermodynamic limit. (b) The system-size scaling of the energy gap,
giving an exponent of ∼ − 1 and showing that the gap closes in the
thermodynamic limit.

even though this time average value has nothing to do with
topological order (Sec. III B).

APPENDIX E: FURTHER RESULTS ON THE
NONINTEGRABLE ISING MODELS

We first compare the scrambling dynamics of edge (red
solid) and bulk (blue dotted) spins in real time, Fig. 14 in
the regimes of near-integrability 	/J = −0.1 and far from
integrability 	/J = −0.5. The edge and bulk spins behave
drastically different for significantly long times, even though
the size is considerably small, N = 14. Hence, we can still
observe the effect of zero modes in nonintegrable models,
however as discussed in the main text, in a weaker form than
in integrable models.

Now we plot a dynamic phase diagram for a bulk spin in
Fig. 15 and observe it is drastically different than of an edge
spin: as we increase the system size, both F̄ and F̄diag approach
to zero for all h, and hence gets even farther away from the
transition point. Figures 15(a) and 15(b) show the OTOC of
bulk spins in the models with 	/J = −0.1 and −0.5, respec-
tively. The coherence times of the edge spins at 	/J = −2
deep in the nontrivial phase [Fig. 16(a)] exhibit exponential
increase with the system size in Fig. 16(b) up to an apparent
odd-even effect. All different scaling samples collapse at
around ξ ∼ 1 for the exponent of the exponential scaling.
While it is highly expected that this increase should slow

0 0.02 0.04 0.06
3.78

3.785

3.79

3.795

3.8

FIG. 19. The Binder cumulant calculated for the Ising model
with 	/J = −2. The system size scaling gives h∞

c = 3.782.
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FIG. 20. (a) The saturation value for long times and different
system sizes (N = 8 to 14) are plotted for the gapless phase of the
XXZ model. (b) The system size scaling of the saturation value
where the error bars show the extend of the oscillations around the
average of the signals in (a). The scaling has a form of Re(F̄ ) ∝ N−ξ ,
where ξ ∼ 0.9.

down with bigger system sizes, based on our available data we
cannot state that this behavior is an example of prescrambling,
instead it looks like a finite-size effect up until N = 15 system
size. Hence it is not always easy to extract a curve collapse to
demonstrate prescrambling in systems with small sizes.

Figure 17 demonstrates the dependence of a dynamic phase
diagram on the interval of time averaging. The data are for the
model at near-integrability. The result with blue-circles that is
computed in a short-time interval of tJ = 10 converges to the
OTOC of noninteracting limit, while increasing the averaging
time from tJ = 10 to later times causes the phase diagram
to change significantly. Hence in the short-time limit, the
coherence times of the prescrambling plateau are significantly
contributed not only by the diagonal contribution, but also the
off-diagonal contribution. This additional contribution, that is
specific to OTOC, in fact survives until very long times, e.g.,
t � 2 × 103 [Fig. 6(b) in main text]. However, farther away
from the noninteracting limit the off-diagonal contribution
vanishes faster, whereas the diagonal contribution remains for
longer times.

We mark the ground state phase transition point in the
model with 	/J = −2 via (i) minimizing the energy gap at
the transition point and (ii) Binder cumulant. We first present
(i) the scaling parameters for the transition point read hc ∼
N−1.2467 + 3.7746 where the transition point in the thermo-
dynamic limit is found h∞

c = 3.7746 with R2 = 0.9997. The
scaling parameters for the energy gap read 	E ∼ N−0.9775

100 102 104
0.2

0.4

0.6

0.8

1

FIG. 21. The coherence times of prescrambling in the gapped
phase of the XXZ model, Jz/J = 5 for different system sizes. The
exponential increase in the prescrambling time intervals with the
system size suggests that the scrambling seen is a finite-size effect.

with R2 = 0.9999. So the system-size scaling exponent for
the energy gap is close to −1. See Fig. 18 for the scaling
figures. (ii) Figure 19 shows the system size scaling of Binder
cumulant,

U = 3

2

(
1 − 1

3

〈
S4

z

〉
〈
S2

z

〉2
)

, (E1)

where Sz = ∑N
i σ z

i , the total magnetization operator. This
method marks the phase boundary as h∞

c = 3.782.

APPENDIX F: FURTHER RESULTS ON THE XXZ MODEL

Figure 20 shows long-time dynamics of OTOC in the
gapless phase of the XXZ model and how the time average
of this signal scales with the system size. We see the scaling
has a form of Re(F̄ ) ∝ N−ξ where ξ ∼ 0.9. Hence in the
thermodynamic limit we expect F̄ → 0 in the gapless phase.

Figure 21 shows prescrambling timescales exponentially
increase with the system size, a similar figure to Fig. 6(d) in
the main text, however much closer to the transition boundary.
The exponential increase in system size implies that the
scrambling is a finite-size effect, hence in thermodynamic
limit, prescrambling plateau should persist, giving F̄ �= 0 in
the topologically nontrivial gapped phase.
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