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Abstract. This work focuses on identifying a distributed parameter in a saddle point problem with ap-
plication to the elasticity imaging inverse problem. We examine three optimization formulations for the
inverse problem, namely, the output least-squares (OLS), the modified output least-squares (MOLS), and
the energy output least-squares (EOLS). The OLS functional and the EOLS functional are, in general,
nonconvex; however, we show that the MOLS functional is convex. We provide existence results for op-
timization problems involving the regularized variants of the OLS, the EOLS, and the MOLS functional.
We give first-order and second-order adjoint methods in the continuous setting to compute the first-order
and the second-order derivative of the OLS/EOLS functionals. The derivative of the MOLS objective
does not involve the derivative of the solution map and hence does not require the adjoint approach. We
provide numerical experimentation on tissue phantom data.

Keywords. Saddle point problems; Parameter identification: Regularization; Output least-squares; Elas-
ticity imaging.

1. INTRODUCTION

Soft tissue cancers are among the deadliest forms of the disease, and early detection is cru-
cial for a successful treatment. A change in soft tissue’s stiffness is attributed to tissue health,
making palpation an ancient practice of detecting tumors, which is limited to finding hard nod-
ules near the skin’s surface. Elasticity imaging inverse problem is a quantitative substitute for
palpation and uses the difference in elastic properties of healthy and diseased tissue to locate
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tumors. The following isotropic linear elasticity system provides the necessary mathematical
tools for the elasticity imaging inverse problem:

−∇ ·σ = f in Ω, (1.1a)

σ = 2µε(u)+λdivuI, (1.1b)

u = g on Γ1, (1.1c)

σn = h on Γ2. (1.1d)

Here the domain Ω is a sufficiently smooth subset of R2 or R3 with boundary ∂Ω = Γ1∪Γ2.
The vector-valued function u = u(x) is the displacement of the elastic object, f is the applied
body force, n is the unit outward normal, and ε(u) = 1

2(∇u+∇uT) is the linearized strain tensor.
The (spatially varying) Lamé parameters µ and λ quantify the elastic properties of the material.

The elasticity imaging inverse problem locates likely tumors by identifying the elasticity
parameters from a clinical measurement of the displacement u. For measuring the displacement,
one applies a sufficiently small external quasistatic compression force to the tissue and then
measures the tissue’s axial displacement field either directly or through the comparison of an
undeformed and deformed image.

The primary goal of this study is to develop an abstract framework for the elasticity imaging
inverse problem by treating the underlying elastic object as incompressible. The incompress-
ibility can be understood using the relationship λ := 2νµ

1−2ν
, where ν is the Poisson’s ratio. If

ν ≈ 0.5, then λ is large, and the elastic object is called nearly incompressible. If ν → 1
2 , the

elastic object is called fully incompressible. For fully incompressible case, (1.1) is not valid,
and an alternative formulation is derived via an explicit incompressibility constraint, see [18].

Taking Q = L2(Ω), V = {v = (v1,v2) ∈ H1(Ω)×H1(Ω) : v = 0 on Γ1 }, we recall that if the
body is nearly incompressible (λ � µ), then the variational form of (1.1) (g = 0 for simplicity)
reads: Find (u, p) ∈V ×Q such that reads∫

Ω

2µε(u) · ε(v)+
∫

Ω

p(div v) =
∫

Ω

f v+
∫

Γ2

vh, for every v ∈V, (1.2a)∫
Ω

(div u)q−
∫

Ω

1
λ

pq = 0, for every q ∈ Q. (1.2b)

Although (1.1) is not valid for the fully incompressible case (λ → ∞), an alternate penalty
formulation (see [18]) leads to the variational problem of finding (u, p) ∈V ×Q such that∫

Ω

2µε(u) · ε(v)+
∫

Ω

p(divv) =
∫

Ω

f v+
∫

Γ2

vh, for every v ∈V, (1.3a)∫
Ω

(divu)q = 0, for every q ∈ Q. (1.3b)

The elasticity imaging inverse problems is often studied in the nearly incompressible medium
under the simplifying assumption that λ is a large constant. However, without such modeling
assumption, in (1.2), both µ and λ are space dependent. This formulation, yet, results in non-
trivial technical obstacles when computing the derivatives of the solution map. Although (1.3)
also has drawbacks, it seems more suitable for developing a rigorous mathematical framework
for the elasticity imaging inverse problem. Some results related to the elasticity imaging inverse
problem can be found in [1, 2, 3, 4, 7, 8, 16, 17, 21, 24, 28] and the references cited therein.
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1.1. Main contributions. Although our motivation stems from the elasticity imaging inverse
problem for a fully incompressible elastic medium, we conduct this study in the context of
a general saddle point problem. Therefore, the given results are not limited to this specific
application and can be applied to numerous other models that lead to saddle point problems.

The fundamental approach and the main contributions of this work are as follows:

(1) Inverse problems are most commonly studied using optimization tools that offer a con-
venient way of incorporating regularization. Following this trend, we examine three
optimization formulations to investigate the inverse problem, namely, the output least-
squares (OLS), the modified output least-squares (MOLS), and the energy output least-
squares (EOLS). The OLS formulation’s underlying principle is to minimize the gap
between the computed solution and the measured data. In contrast, the philosophy of
the MOLS/EOLS objectives is to find an optimal solution by minimizing the energy
associated with the saddle point problem. The OLS functional and the EOLS functional
are, in general, nonconvex; however, we show that the MOLS functional is convex.

(2) We give existence results for optimization problems involving the regularized variants
of the OLS, the EOLS, and the MOLS functional. We use a quadratic regularization to
counter the adverse effects of the ill-posedness of the inverse problem at hand.

(3) Besides the lack of convexity of the OLS/EOLS functionals, another drawback is the
need to compute the derivative of the solution map for evaluating the derivative of the
OLS/EOLS functionals. Adjoint methods provide efficient schemes to circumvent this
difficulty. We give first-order and second-order adjoint methods in the continuous set-
ting to compute the first-order and the second-order derivative of the OLS/EOLS func-
tionals. The derivative of the MOLS objective does not involve the derivative of the
solution map and hence does not require the adjoint approach.

(4) We provide numerical experimentation on tissue phantom data.

We organize the contents of this paper into six sections. Section 2 introduces the inverse
problem and explores the smoothness of the solution map. Section 3 investigates the inverse
problem by using the OLS approach, the MOLS approach, and the EOLS approach. Sections
4 and 5 are devoted to the first-order and the second-order adjoint approaches for the OLS and
the EOLS objectives. In Section 6, we report the outcome of some experiments.

2. INVERSE PROBLEM FORMULATION

First off, we formulate the saddle point problem, which is the direct problem in this study,
and then introduce the inverse problem of parameter identification. In this work, the parameter
space B is a real Banach space which contains the nonempty, closed, convex, and bounded set
A of admissible parameters. We pose the saddle point problem in real Hilbert spaces V and
Q whose topological duals are V ∗ and Q∗. We take the measured data in real Hilbert spaces
V and Q and assume that V ×Q is continuously embedded in V×Q. We specify the strong
convergence by →, the weak convergence by ⇀, and denote the norm of a normed space N
by ‖ · ‖N . Assume that a : B×V ×V → R is a trilinear form which is symmetric in the last
two arguments, that is, a(·,u,v) = a(·,v,u), for every u,v ∈V, b : V ×Q→ R is a bilinear map,
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f ∈V ∗, and g ∈ Q∗. Assume that there are positive constants α,β ,γ, and τ such that

|a(`,u,v)| ≤ β‖`‖B‖u‖V‖v‖V , for all ` ∈ B, u,v ∈V, (2.1a)

|b(v,q)| ≤ γ‖v‖V‖q‖Q, for all v ∈V, q ∈ Q, (2.1b)

a(`,v,v)≥ α‖v‖2
V , for all ` ∈ A, v ∈V, (2.1c)

inf
q∈Q

sup
u∈V

b(u,q)
‖u‖V‖q‖Q

≥ τ. (2.1d)

Throughout this paper, we will work under the above setting and assumption (2.1).
Consider the saddle point problem: Given ` ∈ A, find (u(`), p(`)) := (u, p) ∈V ×Q such that

a(`,u,v)+b(v, p) = f (v), for every v ∈V, (2.2a)

b(u,q) = g(q), for every q ∈ Q. (2.2b)

Our objective is to study the inverse problem of identifying a parameter ` ∈ A such that the
solution (u(`), p(`)) is closest to the given data (z̄, ẑ) ∈ V×Q. Under the set of assumptions
(2.1), for ` ∈ A, the parameter-to-solution map ` 7→ (u(`), p(`)) is well-defined and single-
valued. More precisely, we have the following well-known result:

Lemma 2.1. For any ` ∈ A, the saddle point problem (2.2) has a unique solution (u(`), p(`)).
Furthermore, there is a positive constant c such that the following estimate holds:

‖u‖V +‖p‖Q ≤ c(‖ f‖V ∗+‖g‖Q∗) . (2.3)

Proof. See Girault and Raviart [11, Theorem 4.1]. �

Remark 2.1. Lemma 2.1 holds under a weaker assumption that (2.1a) is valid not on the entire
space V but only on the closed subspace M := {u ∈V | b(u,q) = 0, for all q ∈ Q}.

The following result establishes the Lipschitz continuity of the map ` 7→ (u(`), p(`)) :

Theorem 2.1. For `1, `2 ∈ A, let (u(`1), p(`1)) and (u(`2), p(`2)) be the unique solutions of the
saddle point problem (2.2). Then, for a constant L > 0, the following estimate holds:

‖u(`1)−u(`2)‖V +‖p(`1)− p(`2)‖Q ≤ L‖`1− `2‖B. (2.4)

Proof. By the definitions of (u(`1), p(`1)) and (u(`2), p(`2)), we have

a(`1,u(`1),v)+b(v, p(`1)) = f (v), for every v ∈V, (2.5a)

b(u(`1),q) = g(v), for every q ∈ Q, (2.5b)

and

a(`2,u(`2),v)+b(v, p(`2)) = f (v), for every v ∈V, (2.6a)

b(u(`2),q) = g(v), for every q ∈ Q. (2.6b)

We set v = u(`1)−u(`2) and q = p(`1)− p(`2) in (2.5) and (2.6), and rearrange them to obtain

a(`1,u(`1)−u(`2),u(`1)−u(`2))+b(u(`1)−u(`2), p(`1)− p(`2))

= a(`2− `1,u(`2),u(`1)−u(`2)),

b(u(`1)−u(`2), p(`1)− p(`2)) = 0,
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which, by using (2.1) and the estimate (2.3), implies that

α‖u(`1)−u(`2)‖2
V ≤ a(`1,u(`1)−u(`2),u(`1)−u(`2))

= a(`2− `1,u(`2),u(`1)−u(`2))

≤ β‖`1− `2‖B‖u(`2)‖V‖u(`1)−u(`2))‖V
≤ cβ (‖ f‖V ∗+‖g‖Q∗)‖`1− `2‖B‖u(`1)−u(`2))‖V ,

and consequently
‖u(`1)−u(`2)‖V ≤ c1‖`1− `2‖B, (2.7)

where c1 := cβα−1 (‖ f‖V ∗+‖g‖Q∗) .
Now, using (2.5) and (2.6), we also have

a(`1,u(`1)−u(`2),v)+b(v, p(`1)− p(`2)) = a(`2− `1,u(`2),v),

which, due to the inf-sup condition (cf. (2.1d)), yields,

τ‖p(`1)− p(`2)‖Q ≤ sup
v∈V

b(v, p(`1)− p(`2))

‖v‖V
≤ βc1‖`1− `2‖B +β‖`1‖B‖u(`1)−u(`2)‖V ≤ c2‖`1− `2‖B,

where c2 is a positive constant. Consequently,

‖p(`1)− p(`2)‖V ≤ c2τ
−1‖`1− `2‖B. (2.8)

The desired estimate follows by combining (2.7) and (2.8). The proof is complete. �

The following result gives the smoothness properties of the parameter-to-solution map.

Theorem 2.2. For each ` in the interior of A, the map `→ (u(`), p(`)) is infinitely differentiable
at `. The first-order derivative (δu,δ p) = (Du(`)δ`,Dp(`)δ`) is the unique solution of the
saddle point problem:

a(`,δu,v)+b(v,δ p) =−a(δ`,u,v), for every v ∈V (2.9a)

b(δu,q) = 0, for every q ∈ Q. (2.9b)

The second-order derivative (δ 2u,δ 2 p) = (D2u(`)(δ`1,δ`2),D2 p(`)(δ`1,δ`2)) is the unique
solution of the following saddle point problem so that, for every v ∈V and q ∈ Q,

a(`,δ 2u,v)+b(v,δ 2 p) =−a(δ`2,Du(`)δ`1,v)−a(δ`1,Du(`)δ`2,v), (2.10a)

b(δ 2u,q) = 0. (2.10b)

Proof. We begin by introducing the following notations:

δw := u(`+δ`)−u(`),

δ r := p(`+δ`)− p(`).

Then, we have

a(`+δ`,u+δw,v)+b(v, p+δ r) = f (v), for every v ∈V, (2.11a)

b(u+δw,q) = g(q), for every q ∈ Q, (2.11b)
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which, when coupled with (2.2), yields

a(`+δ`,δw,v)+b(v,δ r) =−a(δ`,u,v), for every v ∈V, (2.12a)

b(δw,q) = 0, for every q ∈ Q, (2.12b)

Combining (2.12) and (2.9) we have

a(`,δw−δu,v)+b(v,δ r−δ p) =−a(δ`,δw,v), for every v ∈V, (2.13a)

b(δw−δu,q) = 0, for every q ∈ Q. (2.13b)

We take (v,q) = (δw−δu,δ r−δ p) in the above system and obtain

a(`,δw−δu,δw−δu)+b(δw−δu,δ r−δ p) =−a(δ`,δw,δw−δu), (2.14a)

b(δw−δu,δ r−δ p) = 0, (2.14b)

and it follows that

‖δw−δu‖V ≤
β

α
‖δ`‖B‖δw‖V ≤ c‖δ`‖B.

Hence
‖u(`+δ`)−u(`)−δu‖V

‖δ`‖B
=
‖δw−δu‖V
‖δ`‖B

≤ c‖δ`‖B = O(‖δ`‖B),

which proves that Du(`)(δ`) = δu.
Now using, (2.13b), we have

b(v,δ r−δ p) =−a(`,δw−δu,v)−a(δ`,δw,v), for every v ∈V,

and hence

τ‖δ r−δ p‖Q ≤ sup
v∈V

b(v,δ r−δ p)
‖v‖V

≤ β‖`‖‖δw−δu‖V +β‖δ`‖B‖δw‖V
≤ O(‖δ`‖2

V ).

As a consequence, Dp(`)(δ`) = δ p. The proof for the second-order and higher-order deriva-
tives follows by combining the above arguments and the arguments given in [14]. �

3. OPTIMIZATION FORMULATIONS OF THE INVERSE PROBLEM

It is a well-known fact that the nonlinear inverse problem of parameter identification is se-
verely ill-posed, and some regularization must be incorporated for a stable inversion. The right
choice of the regularization space is crucial and depends on the regularity of the coefficient. A
regularization by the aid of the square of a suitable norm, the so-called quadratic regularizer,
has been a common choice for smooth coefficients. On the other hand, for rapidly varying or
even discontinuous coefficients, the total variation regularization, an example of the nonsmooth-
nonquadratic regularization, has rendered promising results. For simplicity, in this work, we
resort to the quadratic regularization. For this, we assume that the set A of feasible coefficients
belongs to a Hilbert space H that is compactly embedded in the space B. A typical example is
B = L∞(Ω) and H = H2(Ω), for a suitable domain Ω.
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In this work, for the given ` ∈ A, we will study the following three objective functions:

JO(`) =
1
2
‖u(`)− z̄‖2

V+
1
2
‖p(`)− ẑ‖2

Q, (3.1)

JM(`) =
1
2

a(`,u(`)− z̄,u(`)− z̄)+b(u(`)− z̄, p(`)− ẑ), (3.2)

JE(`) =
1
2

a(`,u(`)− z̄,u(`)− z̄). (3.3)

Here (u(`), p(`)) is a solution of saddle point problem (2.2) for `∈ A, (z̄, ẑ)∈V×Q is the given
data. In the following, we will consider the regularized analogues of the above functionals.

The functional JO is the most commonly used output least-squares (OLS) objective func-
tional, which aims to minimize the gap between the computed solutions (u(`), p(`)) of (2.2)
and the measured data (z̄, ẑ) ∈ V×Q. It turns out that the OLS objective is nonconvex, and
hence it is only suitable to investigate local minimizers. Inspired by the shortcomings of the
OLS, an abstract convex variant of the OLS was proposed in [14] by minimizing the energy of
a general variational problem. However, since saddle point problems involve a coupled system
of equations, the two ways of combining them to obtain a single variational problem and then
minimizing the associated energy, give rise to two different functionals; namely, the MOLS JM

and the EOLS JE. Interestingly, the MOLS objective and the EOLS objective have two different
features; the MOLS functional preserves the convexity of the original functional (that is, the
MOLS proposed in [14]) but loses positivity, whereas the EOLS objective retains positivity, but
it is nonconvex, in general.

Note that the MOLS/EOLS functionals require that measured data (z̄, ẑ) ∈ V ×Q, which is
a stronger regularity assumption in comparison to the OLS formulation of the previous section
which only requires that (z̄, ẑ)∈V×Q. We note that in many applications, such as the elasticity
imaging inverse problem, we only have the displacement component data. In this sense, the
EOLS has the slight advantage of not involving the pressure variable data. On the other hand,
the OLS functional can be considered without the pressure term. We note that studies related to
the MOLS/EOLS functional and its extensions can be found in [5, 9, 10, 12, 13, 15, 19, 20, 25].

3.1. Inverse problem by the regularized output least squares approach. We now introduce
the following regularized output least-squares (OLS) based optimization problem:

min
`∈A

Jκ
O(`) :=

1
2
‖u(`)− z̄‖2

V+
1
2
‖p(`)− ẑ‖2

Q+κ‖`− ˆ̀‖2
H , (3.4)

where (u(`), p(`)) is a solution of (2.2) for ` ∈ A, (z̄, ẑ) ∈ V×Q is the data, κ > 0 is a regular-
ization parameter, ‖ · ‖2

H is the regularizer, and ˆ̀ is a-priori estimate of the sought parameter.
We first prove the solvability of the original OLS problem.

Theorem 3.1. For each fixed κ > 0, the optimization problem (3.4) has a solution.

Proof. For each parameter `∈ A, due to Lemma 2.1, saddle point problem (2.2) has a unique so-
lution (u(`), p(`)), and consequently the OLS-based optimization problem (3.4) is well-defined.
Since, for each ` ∈ A, the functional Jκ

O(`) is bounded from below, there exists a minimizing
sequence {`n} in A such that limn→∞ Jκ

O(`n) = inf{Jκ
O(`), ` ∈ A}. By the aid of the regular-

ization, the minimizing sequence {`n} is bounded in H. By using the compact embedding of
H into B, there exists a subsequence, which converges strongly in ‖ · ‖B. By keeping the same
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notation for subsequences as well, let {`n} be the subsequence, which converges in ‖ · ‖L to
some ¯̀∈ A. Let (un, pn) := (u(`n), p(`n)) be the unique solution of (2.2) that corresponds to
`n. It can be shown that the sequence {(un, pn)} remains bounded, and therefore it possesses a
weakly convergent subsequence. Let {(un, pn)} be the subsequence which converges weakly to
some (ū, p̄) ∈V ×Q. We claim that (ū, p̄) = (u( ¯̀), p( ¯̀)). Note that the definition of (`n,un, pn)
implies

a(`n,un,v)+b(v, pn) = f (v), for every v ∈V,

b(un,q) = g(q), for every q ∈ Q.

We rearrange the above saddle point problem to obtain

a(`n− ¯̀,un,v)+a( ¯̀,un− ū,v)+a( ¯̀, ū,v)+b(v, pn) = f (v), for every v ∈V,

b(un,q) = g(q), for every q ∈ Q,

which when passed to the limit n→ ∞, due to the properties of a and b, implies that

a( ¯̀, ū,v)+b(v, p̄) = f (v), for every v ∈V,

b(ū,q) = g(q), for every q ∈ Q,

prove the claim. The optimality of ¯̀ now is a consequence of the weak-lower-semicontinuity of
any norm. The proof is complete. �

3.2. Inverse problem by the regularized modified output least squares approach. We shall
now focus on the following regularized MOLS-based constrained optimization problem

min
`∈A

Jκ
M(`) :=

1
2

a(`,u(`)− z̄,u(`)− z̄)+b(u(`)− z̄, p(`)− ẑ)+κ‖`− ˆ̀‖2
H , (3.5)

where (u(`), p(`)) is a solution of (2.2) for ` ∈ A, (z̄, ẑ) ∈V ×Q is the data, κ > 0 is a regular-
ization parameter, ‖ · ‖2

H is the regularizer and ˆ̀ is a-priori estimate of the sought parameter.
We shall first give the following useful result.

Theorem 3.2. The modified output least-squares functional (3.2) is convex in A.

Proof. Let us first compute the derivatives of JM. For any direction ˆ̀∈ B, we have

DJM(`)( ˆ̀) =
1
2

a( ˆ̀,u(`)− z̄,u(`)− z̄)+a(`,Du(`)( ˆ̀),u(`)− z̄)

+b(Du(`)( ˆ̀), p(`)− ẑ)+b(u(`)− z̄,Dp(`)( ˆ̀)). (3.6)

Moreover, by using the derivative characterization (2.9), we obtain

a(`,Du(`)( ˆ̀),u(`)− z̄)+b(u(`)− z̄,Dp(`)( ˆ̀)) =−a( ˆ̀,u(`),u(`)− z̄),

b(Du(`)( ˆ̀), p(`)− ẑ) = 0,

and hence (3.6) yields

DJM(`)( ˆ̀) =
1
2

a( ˆ̀,u(`)− z̄,u(`)− ẑ)−a( ˆ̀,u(`),u(`)− z̄)

=−1
2

a( ˆ̀,u(`)+ z̄,u(`)− z̄).
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Furthermore,

D2JM(`)( ˆ̀, ˆ̀) =−1
2

a( ˆ̀,u(`)− z̄,Du(`)( ˆ̀))− 1
2

a( ˆ̀,u(`)+ z̄,Du(`)( ˆ̀))

=−a( ˆ̀,u(`),Du(`)( ˆ̀))

= a(`,Du(`)δ`,Du(`)( ˆ̀))+b(Du(`)( ˆ̀),Dp(`)( ˆ̀))

= a(`,Du(`)( ˆ̀),Du(`)( ˆ̀)),

where we used the following consequence of the derivative formula:

a(`,Du(`)( ˆ̀),Du(`)( ˆ̀))+b(Du(`)( ˆ̀),Dp(`)( ˆ̀)) =−a( ˆ̀,u(`),Du(`)( ˆ̀)),

b(Du(`)( ˆ̀),Dp(`)( ˆ̀)) = 0.

We notice, in particular, that the following inequality holds for all ` in the interior of A

D2JM(`)( ˆ̀, ˆ̀)≥ α‖Du(`)( ˆ̀)‖2
V , (3.7)

and consequently the convexity of JM follows. �

We have the following existence result.

Theorem 3.3. For each fixed κ > 0, the optimization problem (3.5) has a solution.

Proof. Since the proof is quite similar to the proof of Theorem 3.1, we only point out the
differences in the two proofs. First of all, we note that Jκ

M is not positive. However, due to
the boundedness of the solution of saddle point problem (2.2), it remains bounded from below.
Furthermore, we can show that JM(`n)→ JM( ¯̀) for any sequence {`n} converging to ¯̀ in ‖ ·‖B.
Because of these observations, the proof follows at once. �

3.3. Inverse problem by the regularized energy output least squares approach. We now
introduce the following regularized EOLS-based optimization problem:

min
`∈A

Jκ
E (`) :=

1
2

a(`,u(`)− z̄,u(`)− z̄)+κ‖`− ˆ̀‖2
H , (3.8)

where (u(`), p(`)) is a solution of (2.2) for `∈A, z̄∈V is the given data, κ > 0 is a regularization
parameter, ‖ · ‖2

H is the regularizer and ˆ̀ is a-priori known estimate of the sought parameter.
We have the following existence result:

Theorem 3.4. For each fixed κ > 0, the optimization problem (3.8) has a solution.

Proof. The proof is similar to the proof of Theorem 3.3 and hence omitted. �

4. EVALUATION OF FIRST-ORDER AND SECOND-ORDER DERIVATIVES OF THE OLS

One of the shortcomings of an OLS-based approach is the evaluation of the derivatives of
the OLS functional, which demands computationally expensive evaluation of the solution map.
Adjoint methods render a framework for computing the derivatives of the OLS functional, and
have been explored intensively. Recent developments in adjoint methods can be found in [6,
22, 23, 25]. Furthermore, in [19], first-order and second-order adjoint methods were applied to
nearly incompressible elasticity imaging.
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4.1. Evaluation of the first-order derivative. The OLS objective, without the regularizer,
with the saddle point problem as the constraint, reads

min
`∈A

JO(`) :=
1
2
‖u(`)− z̄‖2

V+
1
2
‖p(`)− ẑ‖2

Q, (4.1)

where (u(`), p(`)) is the unique solution of the saddle point problem:

a(`,u(`),v)+b(v, p(`)) = f (v), for each v ∈V, (4.2a)

b(u(`),q) = g(q), for each q ∈ Q. (4.2b)

The derivative of JO at ` ∈ A in a direction δ` is given by

DJO(`)(δ`) := 〈Du(`)(δ`),u(`)− z̄〉V+ 〈Dp(`)(δ`), p(`)− ẑ〉Q ,

where (Du(`)(δ`),Dp(`)(δ`)) is the derivative of the coefficient-to-solution map ` 7→ (u, p)
computed at ` in the direction δ`.

For an arbitrary (v,q) ∈V ×Q, we define the map L : B×V ×Q→ R by

L(`,v,q) = JO(`)+a(`,u(`),v)+b(v, p(`))+b(u(`),q)− f (v)−g(v).

Since (u(`), p(`)) is the unique solution of (4.2), the following identity holds

L(`,v,q) = JO(`), for every (v,q) ∈V ×Q,

and consequently, for every (v,q) ∈V ×Q, the following identity holds for any direction δ`:

∂`L(`,v,q)(δ`) = DJO(`)(δ`) . (4.3)

The primary obstacle in computing the derivative of the OLS objective is the involvement of the
solution map. The adjoint method chooses the test function (v,q) to avoid its direct computation
as we shall see shortly. First, we note that

∂`L(`,v,q)(δ`) = 〈Du(`)(δ`),u(`)− z̄〉V+ 〈Dp(`)(δ`), p(`)− ẑ〉Q+a(δ`,u(`),v)

+a(`,Du(`)(δ`),v)+b(v,Dp(`)(δ`))+b(Du(`)(δ`),q). (4.4)

For ` ∈ A, let (w(`), t(`)) be the unique solution of the adjoint problem

a(`,w(`),v)+b(v, t(`)) = 〈z̄−u(`),v〉 , for every v ∈V, (4.5a)

b(w(`),q) = 〈ẑ− p(`),q〉 , for every q ∈ Q, (4.5b)

where (u(`), p(`)) solves (4.2) for the given ` and (z̄, ẑ) is the given data.
We set (v,q) = (w(`), t(`)) in (4.4) and after a simplification obtain

∂`L(`,w(`), t(`))(δ`)

= 〈Du(`)(δ`),u(`)− z̄〉V+ 〈Dp(`)(δ`), p(`)− ẑ〉Q+a(δ`,u(`),w(`))

+a(`,Du(`)(δ`),w(`))+b(w(`),Dp(`)(δ`))+b(Du(`)(δ`), t(`))

= 〈Du(`)(δ`),u(`)− z̄〉V+ 〈Dp(`)(δ`), p(`)− ẑ〉Q+a(δ`,u(`),w(`))

+a(`,w(`),Du(`)(δ`))+b(w(`),Dp(`)(δ`))+b(Du(`)(δ`), t(`))

= 〈Du(`)(δ`),u(`)− z̄〉V+ 〈Dp(`)(δ`), p(`)− ẑ〉Q+a(δ`,u(`),w(`))

+ 〈z̄−u(`),Du(`)(δ`)〉V+ 〈ẑ− p(`),Dp(`)(δ`)〉Q
= a(δ`,u(`),w(`)),
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which at once gives the formula for the first-order derivative of JO:

DJO(`)(δ`) = a(δ`,u(`),w(`)). (4.6)

In summary, we deduce the following scheme to compute DJO(`)(δ`) :

(1) Compute (u(`), p(`)) by solving the regularized saddle point problem (4.2).
(2) Compute (w(`), t(`)) by solving the regularized adjoint problem (4.5).
(3) Compute DJO(`)(δ`) by using (4.6).

4.2. Evaluation of the second-order derivative. We now provide a second-order adjoint method
for the evaluation of the second-order derivative of the OLS objective. The objective of the
second-order adjoint approach is to give a formula for the second-order derivative that does
not involve the second-order derivative of the regularized parameter-to-solution map u. The key
idea of the second-order method is to compute the derivative δu directly by using its character-
ization while the computation of the second-order derivative is avoided by the strategy of the
adjoint method.

We recall the derivative characterization of the regularized parameter-to-solution map:

a(`,Du(`)δ`,v)+b(v,Dp(`)δ`) =−a(δ`,u(`),v), for all v ∈V, (4.7a)

b(Du(`)δ`,q) = 0, for all q ∈ Q. (4.7b)

For any (v,q) ∈V ×Q, (u(`), p(`)) ∈V ×Q, and for a fixed direction δ`2, we define

L (`,v,q) := DJO(`)(δ`2)+a(`2,Du(`)δ`2,v)+b(v,Dp(`)δ`2)+a(δ`2,u(`),v) (4.8)

+b(Du(`)δ`2,q)

= 〈Du(`)(δ`2),u(`)− z̄〉V+ 〈Dp(`)(δ`2), p(`)− ẑ〉Q+a(`,Du(`)δ`2,v)

+b(v,Dp(`)δ`2)+a(δ`2,u(`),v)+b(Du(`)δ`2,q). (4.9)

Using the definition of L , for every (v,q) ∈V ×Q, and for any direction δ`1, we have

∂`L (`,v,q)(δ`1) = D2JO(`)(δ`1,δ`2), (4.10)

By computing the right-hand side of the above identity and using (4.9), we obtain

∂`L (`,v,q)(δ`1)

=
〈
D2u(`)(δ`1,δ`2),u− z̄

〉
+ 〈Du(`)(δ`2),Du(`)(δ`1)〉

+
〈
D2 p(`)(δ`1,δ`2), p− ẑ

〉
+ 〈Dp(`)(δ`2),Dp(`)(δ`1)〉

+a(δ`2,Du(`)(δ`1),v)+a(δ`1,Du(`)(δ`2),v)+a(`,D2u(`)(δ`1,δ`2),v)

+b(v,D2 p(`)(δ`1,δ`2))+b(D2u(`)(δ`1,δ`2),q).
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By setting (v,q) = (w(`), t(`)); the solution of (4.5), we obtain

∂`L (`,v,q)(δ`1)

=
〈
D2u(`)(δ`1,δ`2),u− z̄

〉
+ 〈Du(`)(δ`2),Du(`)(δ`1)〉

+
〈
D2 p(`)(δ`1,δ`2), p− ẑ

〉
+ 〈Dp(`)(δ`2),Dp(`)(δ`1)〉+a(δ`2,Du(`)(δ`1),w(`))

+a(δ`1,Du(`)(δ`2),w(`))+a(`,D2u(`)(δ`1,δ`2),w(`))

+b(w(`),D2 p(`)(δ`1,δ`2))+b(D2u(`)(δ`1,δ`2), t(`))

=
〈
D2u(`)(δ`1,δ`2),u− z̄

〉
+ 〈Du(`)(δ`2),Du(`)(δ`1)〉+

〈
D2 p(`)(δ`1,δ`2), p− ẑ

〉
+ 〈Dp(`)(δ`2),Dp(`)(δ`1)〉+a(δ`1,Du(`)(δ`2),w)+a(δ`2,Dū(`)(δ`1),w)

+
〈
z̄−u,D2u(`)(δ`1,δ`2)

〉
+
〈
ẑ− p,D2 p(`)(δ`1,δ`2)

〉
= 〈Du(`)(δ`2),Du(`)(δ`1)〉+ 〈Dp(`)(δ`2),Du(`)(δ`1)〉+a(δ`1,Du(`)(δ`2),w)

+a(δ`2,Du(`)(δ`1),w).

Therefore, using (4.10), we get the following formula for the second-order derivative of the
OLS that has no explicit involvement of the second-order derivatives of the solution map:

D2JO(`)(δ`1,δ`2) = 〈Du(`)(δ`2),Du(`)(δ`1)〉+ 〈Dp(`)(δ`2),Du(`)(δ`1)〉
+a(δ`1,Du(`)(δ`2),w)+a(δ`2,Du(`)(δ`1),w).

In particular, we have

D2JO(`)(δ`,δ`) = 〈δu,δu〉+ 〈δ p,δ p〉+2a(δ`,δu,w). (4.11)

In summarizing, we obtain the following scheme to compute D2JO(`)(δ`,δ`) :

(1) Compute (u(`), p(`)) by solving the saddle point problem (2.2).
(2) Compute (δu,δ p) by solving the regularized saddle point problem (4.7).
(3) Compute (w(`), t(`)) by solving the regularized adjoint problem (4.5).
(4) Compute D2JO(`)(δ`,δ`) by (4.11).

We note that the second-order adjoint approach given above is based on evaluating the
second-order derivative of regularized OLS by a direct computation of its first-order deriva-
tive. However, if we employ the first-order derivative formula of the OLS obtained from the
first-order adjoint approach, we devise a different second-order adjoint approach.

5. EVALUATION OF FIRST-ORDER AND SECOND-ORDER DERIVATIVES OF THE EOLS

We will now develop adjoint methods for the EOLS functional given by

JE(`) :=
1
2

a(`,u− z̄,u− z̄).

As before, we define the Lagrangian as follows

LE(`,v,q) := JE(`)+a(`,u,v)+b(v, p)+b(u,q)− f (v)−g(q), for every (v,q) ∈V ×Q,

and notice that LE(`,v,q) = JE(`), for every (v,q) ∈V ×Q, and consequently, for every (v,q) ∈
V×Q, and for every feasible direction δ`, we have DJE(`)(δ`) =D`J(`,v,q)(δ`). Furthermore,
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we have

D`J(`,v,q)(δ`) =
1
2

a(δ`,u− z̄,u− z̄)+a(`,δu,u− z̄)+a(δ`,u,v)+a(`,δu,v)

+b(v,δ p)+b(δu,q). (5.1)

Let (w, pw) be the unique solution of the following adjoint saddle point problem:

a(`,w,v)+b(v, pw) =−a(`,u− z̄,v), for every v ∈V, (5.2a)

b(w,q) = 0, for every q ∈ Q. (5.2b)

By setting (v,q) = (w, pw) in (5.1) and using (5.2), we obtain

D`J(`,w, pw)(δ`) =
1
2

a(δ`,u− z̄,u− z̄)+a(`,δu,u− z̄)+a(δ`,u,w)+a(`,δu,w)

+b(w,δ p)+b(δu, pw)

=
1
2

a(δ`,u− z̄,u− z̄)+a(δ`,u,w). (5.3)

Summarizing, the following scheme computes the derivative DJ(`)(δ`):

(1) Compute (u, p) by solving saddle point problem (2.2).
(2) Compute (w, pw) by solving adjoint saddle point problem (5.2).
(3) Compute DJE(`)(δ`) by (5.3).

5.1. Second-order adjoint method for the EOLS. We shall now develop a second-order ad-
joint method for the computation of the second-order derivative. As in the case of the OLS,
the derivative δu is computed directly while the computation of the second derivative δ 2u is
avoided by using the adjoint method philosophy.

Let δ`2 be a fixed feasible direction. Then, for any (v,q) ∈V ,

LE(`,v,q) := DJE(`)(δ`2)+a(`,Du(`)(δ`2),v)+b(v,Dp(`)(δ`2))

+b(Du(`)(δ`2),q)+a(δ`2,u,v)

=
1
2

a(δ`2,u− z̄,u− z̄)+a(`,Du(`)(δ`2),u− z̄)+a(`,Du(`)(δ`2),v)

+b(v,Dp(`)(δ`2))+b(Du(`)(δ`2),q)+a(δ`2,u,v).

Furthermore, we have

∂`LE(`,v,q)(δ`1) = a(δ`2,Du(`)(δ`1),u− z̄)+a(δ`1,Du(`)(δ`2),u− z̄)

+a(`,D2u(`)(δ`1,δ`2),u− z̄)+a(`,Du(`)(δ`2),Du(`)(δ`1))

+a(δ`1,Du(`)(δ`2),v)+a(`,D2u(`)(δ`1,δ`2),v)+b(v,D2 p(`)(δ`1,δ`2))

+b(D2u(`)(δ`1,δ`2),q)+a(δ`2,Du(`)(δ`1),v). (5.4)
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Let (w, pw) be the unique solution of (5.2). By setting (v,q) = (w, pw) in (5.4), we obtain

∂`LE(`,w, pw)(δ`) = a(δ`2,Du(`)(δ`1),u− z̄)+a(δ`1,Du(`)(δ`2),u− z̄)

+a(`,D2u(`)(δ`1,δ`2),u− z̄)+a(`,Du(`)(δ`2),Du(`)(δ`1))

+a(δ`1,Du(`)(δ`2),w)+a(`,D2u(`)(δ`1,δ`2),w)

+b(w,D2 p(`)(δ`1,δ`2))+b(D2u(`)(δ`1,δ`2), pw)+a(δ`2,Du(`)(δ`1),w)

= a(δ`2,Du(`)(δ`1),u− z̄)+a(δ`1,Du(`)(δ`2),u− z̄)+a(`,Du(`)(δ`2),Du(`)(δ`1))

+a(`,D2u(`)(δ`1,δ`2),u− z̄)+a(δ`1,Du(`)(δ`2),w)+a(`,D2u(`)(δ`1,δ`2),w)

+b(w,D2 p(`)(δ`1,δ`2))+b(D2u(`)(δ`1,δ`2), pw)+a(δ`2,Du(`)(δ`1),w)

= a(δ`2,Du(`)(δ`1),u− z̄)+a(δ`1,Du(`)(δ`2),u− z̄)+a(`,Du(`)(δ`2),Du(`)(δ`1))

+a(δ`1,Du(`)(δ`2),w)+a(δ`2,Du(`)(δ`1),w)

= D2JE(`)(δ`1,δ`2).

In particular, we have

D2J(`)(δ`,δ`) = 2a(δ`,δu, ū− z̄)+a(`,δu,δu)+2a(δ`,δu,w). (5.5)

Summarizing, the following scheme computes the derivative D2J(`)(δ`,δ`) :
(1) Compute (u(`), p) by solving saddle point problem (2.2).
(2) Compute (δu,δ p) by solving derivative characterization (2.9).
(3) Compute (w, pw) adjoint saddle point problem (5.2).
(4) Compute D2J(`)(δ`,δ`) by (5.5).

6. NUMERICAL EXPERIMENTS

In this paper, we acquired simulated displacement data using a finite element model of a
tissue like phantom designed to simulate the homogenous soft tissue of an organ surrounding
a stiff tumor. The simulated phantom and experimental conditions are shown in Figure 1. The
model simulated an incompressible (ν = 0.495), plane strain phantom with a 1 cm calibration
pad situated in the bottom of the imaged domain. The stand-off pad had a shear modulus
value 3 times that of the background material. This phantom was designed with a cylindrical
inclusion of 1.5 cm of diameter and a shear modulus contrast of 2.5 relative to the background
modulus. The center of the inclusion is situated 3.25 cm from the bottom of the phantom and
centered laterally. The overall size of the phantom was 8 cm tall and 10 cm wide. In the forward
simulation, a 3% axial compressive strain with no slip was applied to the top boundary of the
phantom. The bottom of the phantom was fixed and the lateral walls of the phantom were
traction free. Two dimensional displacement vector data was extracted starting at the bottom of
the phantom, as if imaged from underneath, with a resolution in both the axial (y) and lateral
(x) directions of approximately 0.12 cm. The forward simulation was done using ANSYS.

Following [26, 27], we consider Dirichlet boundary conditions in the top and bottom bound-
aries of the imaged domian. We set the vertical direction/component of the remaining boundary
conditions to be Dirichlet and allow the lateral components to be traction free. We solve the
problem with IPOPT and take lb = 0.5, ub = 5 as the lower and the upper bound for the param-
eters. Since we are dealing with a discontinuous parameter, we have chosen the standard TV
regularizer, see [20].
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FIGURE 1. Schematic diagram of the finite element, forward simulation setup.
An overall 3% compressive strain was applied at the top of a 2D plane strain
phantom (blue) with a 1.5 cm diameter, cylindrical inclusion (red) and a 1 cm
calibration pad (green). Data was interpolated from the finite element mesh at
regularly sampled points ( 0.12 cm spacing in x and y) within the “imaged”
region (yellow). The relative shear modulus of the background, inclusion and
standoff pad are 1, 2.5 and 3, respectively.

Numerical results are presented in Figure 2 and Figure 3 for different choices of regulariza-
tion parameters. The selection of the regularization parameter is purely heuristic; we considered
four parameters κ ∈ {1e− 04,1e− 05,1e− 06,1e− 07} and choose the one producing better
results. Here we provide the comparison only between the MOLS and the OLS objectives.
Both approaches identify the location of the standoff pad and inclusion correctly. Furthermore,
both methods can recover the circular shape of the inclusion. However, the estimation obtained
by MOLS seems superior, while MOLS shows certain artifacts close to the boundary. On the
contrary, for the chosen regularization parameters, OLS is better for determining the contrast
of inclusion concerning the standoff pad and the background. However, MOLS still gives a
reasonable measure.
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(A) (MOLS) κ = 1e−05 (B) (MOLS) κ = 1e−06

(C) (OLS) κ = 1e−06 (D) (OLS) κ = 1e−07

FIGURE 2. Estimated inclusion for the two approaches.
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(A) (MOLS) (B) (OLS)

FIGURE 3. Vertical cut (x = 0) for different regularization parameters.
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