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In this paper, we study the interplay between symmetry and topology with a focus on the Z2 topological index
of two-dimensional and three-dimensional (2D/3D) topological insulators and high-order topological insulators.
We show that in the presence of either a two-fold-rotational symmetry or a mirror symmetry, a gauge-invariant
quantity can be defined for arbitrary one-dimensional (1D) lines in the Brillouin zone. Such 1D quantities provide
a new pathway to compute the Z2 index of topological insulators. In contrast to the generic setup, where the Z2

index generally involves 2D planes in the Brillouin zone with a globally defined smooth gauge, this 1D approach
only involves some 1D lines in the Brillouin zone without requiring a global gauge. Such a simplified approach
can be used in any time-reversal invariant insulators with a two-fold crystalline symmetry, which can be found
in 30 of the 32 point groups. In addition, this 1D quantity can be further generalized to higher-order topological
insulators to compute the magnetoelectric polarization P3.
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I. INTRODUCTION

In the study of topological states of matter, strong inter-
plays between symmetry and topology have long been known
to play an important role. In general, such interplays can be
largely classified into two categories: (1) some symmetries are
essential for the definition of a topological index, while (2)
some other symmetries, although not essential, can provide
an easy access to the topological index. For example, the time-
reversal symmetry T is essential for the definition of the Z2 in-
dex of topological insulators (TIs) [1–7]. The space-inversion
symmetry I , in contrast, is not necessary for the Z2 index,
but its presence can dramatically simplify the calculation of
this index. Without the space-inversion symmetry, it generally
requires information about the two-dimensional (2D) planes
in the Brillouin zone to determine the value of the Z2 index,
but in the presence of space inversion, it only requires parity
eigenvalues at a few discrete momentum points [6]. Similarly,
the topological monopole charge of topological nodal line
semimetals [8–14] requires the space-time inversion symme-
try IT , and it in general needs the wave functions of the
Brillouin zone to compute [11]. However, when additional
(nonessential) rotation symmetries are introduced, the index
can be easily computed using rotation eigenvalues at high
symmetry points [12,13], similar to the fact that the Chern
number can be computed by rotation eigenvalues [15]. In both
examples, nonessential symmetries simplified the topological
indices from relying on the entire Brillouin zone to only a
few limited momentum points. In particular, because these
indices often require a smooth global gauge, which is often
challenging to obtain, such symmetry-induced simplification
greatly reduces the complexity of the index calculation.

Similar ideas of using symmetries to simplify the calcula-
tion of topological indices have been explored extensively in
various types of topological states, which have led to many
intriguing results [15–30]. On the practical side, these results
provide a highly efficient way to determine the topological

properties of various materials and systems, independent of
the microscopic details of the band structure. In addition, on
the fundamental level, these efforts provide a bridge to link
various topological indices/phenomena with symmetry repre-
sentations at high symmetry momenta, such as the indicator
theory and topological quantum chemistry [16–24].

In this study, we focus on systems where symmetries are
not strong enough to allow high symmetry points to fully
dictate the topological index, e.g., a Z2 topological insulator
with a C2 point group symmetry, and try to understand the
role of nonessential symmetries in these systems. We show
that for an insulator with time-reversal symmetry in two or
three dimensions, as long as the system has either a two-fold-
rotational symmetry or a mirror symmetry, the Z2 index can be
simplified to involve only one-dimensional lines in the Bril-
louin zone. This result is an extension of the high-symmetry-
point-based approaches (e.g., the parity criterion [6]) from
zero-dimensional (0D) points to one-dimensional (1D) lines.
Here, the topological index can still be simplified by the
nonessential symmetry, although high-symmetry points are no
longer sufficient to dictate the index. This simplification is
achieved by a gauge-invariant line quantity g(k̃akb) that
we define below. For systems with only time-reversal sym-
metry, this line quantity provides a gauge-invariant way of
computing topological index similar to Fukui and Hatsugai
[31]. In the presence of an additional two-fold-rotational or
mirror symmetry, this quantity remains gauge-invariant for
any 1D path in the momentum space. By exploring its con-
nection to the Wilson loop approach [32,33], we show that
this line quantity has a physical meaning that it is a measure
of the relative phase of Pfaffian in the parallel transport
gauge [34]. Furthermore, this quantity also provides a gauge-
independent way to calculate the magnetoelectric polarization
P3 for higher-order topological insulators [35–49].

Our result also brings convenience to the calculation of Z2
index in practice because it only requires some 1D lines in the

2469-9950/2020/102(8)/085108(8) 085108-1 ©2020 American Physical Society



HEQIU LI AND KAI SUN PHYSICAL REVIEW B 102, 085108 (2020)

Brillouin zone to be evaluated, while the original definition of
the Z2 index requires a smooth gauge in higher dimensions.
Thus the evaluation can be further simplified into the parity
criterion if the space-inversion symmetry is present. This
approach applies generically to any time-reversal-invariant
insulators with a two-fold crystalline symmetry, such as a
two-fold-rotation C2, a mirror symmetry or space inversion,
which can be found in 30 of all the 32 point groups, with the
only exceptions being the C3 group and the trivial group C1.
It provides the same level of simplification as the approaches
based on the partial polarization [28,29], and it can be further
generalized to higher-order topological insulators.

II. GAUGE-INVARIANT QUANTITY FOR ARBITRARY
LINES IN THE BRILLOUIN ZONE

In this section we define a gauge-invariant line quantity
g(k̃akb) for systems with time-reversal symmetry T and dis-
cuss some general properties of it, and in the next section we
will show that with additional two-fold crystalline-symmetry-
like two-fold rotation or mirror reflection, this quantity can
be utilized to simplify the calculation of the Fu-Kane-Mele
(FKM) Z2 index [1–3], although the eigenvalues of the two-
fold symmetry are insufficient to determine the index. For an
arbitrary path k̃akb in the Brillouin zone (BZ) that connects
momenta ka and kb, we can define g(k̃akb) as

g(k̃akb) =
Pf[M(kb)]
Pf[M(ka)]

det[W (ka, kb)],

Wmn(ka, kb) = 〈um(ka)|
ka←kb∏

ki∈k̃akb

Pki |un(kb)〉,

Mmn(k) = 〈um(k)|T |un(k)〉. (1)

Here Pf refers to Pfaffian, m, n refer to occupied bands,
Pk =

∑
m∈occ |um(k)〉〈um(k)| is the projection operator to oc-

cupied bands and the product is path-ordered along k̃akb.
Time-reversal T acts on wave function |un(k)〉 as a unitary
operator times complex conjugation. The gauge invariance
of g(ka, kb) comes from the fact that for a general gauge
transformation |um(k)〉 → Unm(k)|un(k)〉, Pf[M(k)] changes
to Pf[M(k)] det[U (k)]∗, and det[W (ka, kb)] will be multi-
plied by det[U (ka)]∗ det[U (kb)], which cancels the change in
the Pfaffian. More details are shown in Appendix A. Aside
from the Pfaffian part, Eq. (1) is the determinant of the
Wilson line at path k̃akb. The determinant of a Wilson line
is gauge-dependent in general, contrary to a closed Wilson
loop [32,33]. The Pfaffian Pf[M(k)] is gauge-dependent as
well, but Eq. (1) shows the combination of the two is gauge-
invariant and thus smooth in any gauge. In the special case
when k̃akb is taken to be the straight line connecting time-
reversal invariant momenta (TRIM), for example, ka = ! =
(0, 0, 0) and kb = X = (π , 0, 0), Eq. (1) coincide with the
exponential of the partial polarization ν1D [2,26–29]:

ν1D = 1
π

[∫ X

!

dk Tr A(k)+ i log
Pf[ω(X )]
Pf[ω(!)]

]
mod 2

= 1
π
i log[g(!X )] mod 2. (2)

X

Y S

'Y S'

kpk

FIG. 1. The Brillouin zone for 2D insulator with time-reversal
symmetry. τ is represented by the shaded area enclosed by SYY ′S′.

Here A(k) is the Berry connection and ωmn(k) =
〈um(−k)|T |un(k)〉, and we utilized the fact that ω and M
coincide at time-reversal invariant momenta [2] due to the
periodicity of |un(k)〉. For a general path k̃akb, g(k̃akb) has a
physical meaning that it is a measure of the relative phase
between the Pfaffian at ka and kb in the parallel transport
gauge. To illustrate this point, we define the parallel transport
gauge [34] at path k̃akb so that for each k ∈ k̃akb,

|um(k)〉 =
k←ka∏

ki∈k̃ka

Pki |um(ka)〉. (3)

Here the product is path-ordered from ka to k along k̃akb.
With this gauge choice along the path, the determinant part
in g(k̃akb) becomes unity, leading to

g(k̃akb) =
Pf[M(kb)]
Pf[M(ka)]

. (4)

Hence g(k̃akb) represents the ratio between the Pfaffian Pf[M]
at kb and ka in the parallel transport gauge. This interpretation
is useful, because the topological index is related to the
winding of the phase of Pfaffian. For example, in a 2D system
as shown in Fig. 1, the FKM Z2 index is given by [1,2]

ν2D = 1
2π i

∮

∂τ

dk · ∇ log Pf[M(k)]. (5)

Here τ is the area enclosed by SYY ′S′ and ∂τ is its boundary.
The Pfaffian itself is gauge-dependent, making it challenging
to track its phase, therefore the evaluation of Eq. (5) implic-
itly requires a smooth gauge on τ . The quantity g(k̃akb) is
naturally gauge-invariant, therefore with the interpretation in
Eq. (4) it provides a convenient way to bypass the gauge issue
and track the phase of Pfaffian.

Now we will show that ν2D can be rewritten in terms of
the gauge-invariant quantity g. From now on it is sufficient to
restrict the path k̃akb to be the straight line kakb connecting ka
and kb and define

g(ka, kb) = g(kakb)

= Pf[M(kb)]
Pf[M(ka)]

det



〈um(ka)|
ka←kb∏

ki∈kakb

Pki |un(kb)〉



. (6)
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We construct a parallel transport gauge on τ as follows [34].
First, find a smooth gauge along straight line YY ′. This can
always be done by, for example, parallel transport from Y ′

upwards to Y , then perform a unitary transformation for the
wave functions at each momentum along the path YY ′ to
recover the periodic condition between Y and Y ′. Then for
each k ∈ τ , denote its projection to YY ′ as kp such that kpk is
parallel toYS, as shown in Fig. 1. The parallel transport gauge
is defined by setting the wave function at k to be

|um(k)〉 =
k←kp∏

ki∈kpk

Pki |um(kp)〉. (7)

The gauge constructed in this way is smooth on τ and satisfies
the periodic boundary condition betweenYS and Y ′S′ because
the wave function at YS and Y ′S′ are parallel transported from
the same set of wave functions atY andY ′. For each kp ∈ YY ′,
we have kp + π x̂ ∈ SS′ and Eq. (4) implies

g(kp, kp + π x̂) = Pf[M(kp + π x̂)]
Pf[M(kp)]

. (8)

This relation provides a way to reformulate the Z2 index ν2D in
terms of g. Define g(k) = g(k, k + π x̂), then Eq. (5) becomes

ν2D = 1
2π i

(∫ S

S′
−

∫ Y

Y ′

)
dk · ∇ log Pf[M(k)]

= 1
2π i

∫ Y

Y ′
dk · ∇ log

Pf[M(k + π x̂)]
Pf[M(k)]

= 1
2π i

∫ Y

Y ′
dk · ∇ log g(k). (9)

Here the final integral is along a time-reversal-invariant path
that connects Y,! and Y ′. Equation (9) shows that ν2D can
be expressed in terms of the line quantity g. Although Eq. (9)
is derived in the specific parallel transport gauge, the gauge-
invariance of g implies that this formula is valid in any gauge.
This means that the above construction of the smooth parallel
transport gauge is only a conceptual step which is never
needed in a real calculation. Importantly, the evaluation of
g itself does not require a smooth gauge to begin with. In
practice, to evaluate ν2D from Eq. (9), all we need is to make
a discrete mesh of k points in τ with randomly selected
phase for each wave function, and by definition in Eq. (6)
the function g(k) = g(k, k + π x̂) will be smooth in k, which
can lead to a well-defined result in Eq. (9). This formalism is
important for our later application to higher-order topological
insulators. Up to now Eq. (9) required only time-reversal
symmetry, which is the least requirement in symmetry to
protect the FKM Z2 topological index.

III. TOPOLOGICAL INSULATORS WITH TWO-FOLD
CRYSTALLINE SYMMETRIES IN ADDITION TO

TIME-REVERSAL SYMMETRY

Wewill show that if 2D or 3D time-reversal-invariant topo-
logical insulators (TIs) have an additional two-fold crystalline
symmetry, for example, two-fold rotation C2 or mirror σ , the
line quantity gdefined above in Eqs. (1) or Eq. (6) can simplify
the FKM Z2 index ν to involve only one-dimensional lines of
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FIG. 2. The plot of a 3D Brillouin zone. The red lines denote the
one-dimensional subspace that is needed to evaluate the FKM strong
Z2 index in Eqs. (15) and (18). (a) System with aC2 symmetry along
ẑ direction. The colored planes are theC2T invariant planes. (b) Sys-
tem with a C2 symmetry along x̂ + ŷ direction. There is only one
C2T invariant plane. (c) System with a mirror plane perpendicular to
ẑ. (d) System with a mirror plane perpendicular to x̂ + ŷ.

the BZ. Note that the eigenvalues of the spacial symmetry C2
or σ at high symmetry momenta are not sufficient to determine
the Z2 index because for a spin one-half system C2 or σ has
eigenvalues ±i and the two bands in each Kramers pair have
opposite eigenvalues ofC2 or σ . Therefore, at anyC2-invariant
momentum there are always a half of valence bands withC2 or
mirror eigenvalue+i and the other half with eigenvalue −i no
matter ν is trivial or not. Hence spacial symmetry eigenvalues
themselves are insufficient to determine the topological index.

A. Systems with additional two-fold rotational symmetry

When the system has additional spacial symmetries, the
line quantity g(ka, kb) has a useful property that if a point k
in the BZ is transformed to Ck under a symmetry operator
C which commutes with time-reversal T , then depending on
whetherC is unitary or antiunitary, g(ka, kb) in Eq. (6) satisfies

g(Cka,Ckb) = g(ka, kb), if C is unitary,

g(Cka,Ckb) = g(ka, kb)∗, if C is antiunitary. (10)

This property comes from the transformation properties of
the Pfaffian and the Wilson line operator. We give a detailed
proof of this property in the Appendix. This property is
important in evaluating g(ka, kb) at symmetry-related lines in
the BZ. Now we consider systems with a two-fold rotational
symmetry C2 in additional to time-reversal T . The combined
operator C2T is also a symmetry of the system which acts on
the momentum space like a mirror, therefore there are C2T
invariant planes in the BZ. Suppose there are two such planes
that include all eight time-reversal-invariant momenta (TRIM)
as in Fig. 2(a), where the C2 axis is along z direction and
C2T -invariant planes are colored in yellow. If ka, kb are taken
inside one of the C2T invariant planes, then Eq. (10) shows
g(ka, kb) = g(C2T ka,C2T kb)∗ = g(ka, kb)∗ so that g(ka, kb) is
real becauseC2T is antiunitary. If ka, kb are taken to be TRIM,
then g(ka, kb) should have a magnitude of 1 because the M
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matrices in Eq. (6) are unitary at TRIM. These two conditions
quantize g(K1,K2) to±1, where K1,K2 are TRIM in the same
C2T -invariant plane. Furthermore, as in Eq. (2), g(K1,K2) is
related to the partial polarization ν1D:

ν1D(K1,K2) =
1
π

[∫ K2

K1

dk Tr A(k)+ i log
Pf[ω(K2)]
Pf[ω(K1)]

]

× mod 2,

g(K1,K2) = eiπν1D(K1,K2 ) = ±1. (11)

It has been shown in Ref. [29] that the FKM Z2 index for a 2D
system is equivalent to the difference between the 1D partial
polarization ν1D at two pairs of TRIM:

ν2D(kz = 0) = ν1D(!,X ) − ν1D(Y, S) mod 2,

ν2D(kz = π ) = ν1D(Z,U ) − ν1D(T,R) mod 2. (12)

The FKM strong Z2 index in three dimensions is given by
ν3D = ν2D(kz = 0) − ν2D(kz = π ) mod 2. Combining with
Eq. (11) we have

(−1)ν3D = g(!,X )g(Y, S)g(Z,U )g(T,R) (13)

Therefore the 3D strong Z2 index is simplified by the line
quantity g(ka, kb) so that it involves only a 1D subspace of
the BZ.

Equation (13) assumes that all the eight TRIM are included
in some C2T invariant planes, which is not always true for
a general C2 rotation. For example, if the C2 axis is along
the direction x̂ + ŷ rather than ẑ for the same Brillouin zone
as in Fig. 2(b), there is only one C2T -invariant plane S1
passing through !, S′,R′,Z . Denote the other time-reversal-
invariant plane passing through X,Y,T,U as S2, Then ν3D =
ν2D(S1) − ν2D(S2) mod 2. We show that ν2D(S2) must vanish
due to the C2 symmetry. Denote the midpoint of XY as
M. Since C2 is unitary, from Eq. (10) we have g(X,M ) =
g(C2X,C2M ) = g(Y,M ) = g(M,Y )−1. Therefore g(X,Y ) =
g(X,M )g(M,Y ) = 1, which means the partial polarization
ν1D(X,Y ) is quantized to 0. The same argument can be
applied to TU . Hence ν1D(X,Y ) = ν1D(T,U ) = 0 due to the
C2 symmetry, therefore ν2D(S2) vanishes. We present a more
detailed proof of the triviality of ν2D(S2) in the Appendix
using the interpretation of g(ka, kb) as a measure of Pfaffian
in the parallel transport gauge. With this result, the strong Z2
index ν3D is determined only by lines in C2T -invariant plane
S1:

(−1)ν3D = (−1)ν2D(S1 ) = g(!, S′)g(Z,R′). (14)

The above proof for Eqs. (13) and (14) for different types
of C2 axis can be unified in a general framework, which is
also applicable to Brillouin zones that are not cube-shaped.
There are eight TRIM Ki, i = 1, . . . , 8 in a 3D BZ. Since
time-reversal operator commutes with C2, C2 must bring one
TRIM to itself or to another TRIM. For those TRIM non-
invariant under C2, let C2Ki = Kj and C2Kj = Ki, then the
midpoint M = (Ki + Kj )/2 must be invariant under C2, and
g(Ki,M ) = g(C2Ki,C2M ) = g(Kj,M ) = g(M,Kj )−1. There-
fore g(Ki,Kj ) = g(Ki,M )g(M,Kj ) = 1. This fixes the partial
polarization ν1D(Ki,Kj ) = 0, which does not contribute to
the strong index ν3D. Therefore we only need to consider
those TRIM that are also invariant under C2. Define the

C2T -invariant subspace in the BZ by SC2T = {k ∈ BZ|C2T k =
k + G} where G is any reciprocal lattice vector, and define
a set LC2T to be the set of straight paths inside SC2T such
that each path γ ∈ LC2T connects two C2-invariant TRIM,
different paths in LC2T do not cross with each other, and each
C2-invariant TRIM is connected by one path in LC2T . With
this definition, in Figs. 2(a) and 2(b) LC2T reduces to the
red lines {!X ,YS,ZU ,TR} and {!S′,ZR′}, respectively (or
equivalently {!Y ,XS,ZT ,UR} and {!Z, S′R′}, which does
not change the final result). Therefore Eqs. (13) and (14) can
be unified as

(−1)ν3D =
∏

γ∈LC2T

Sign[g(γ )]. (15)

Here the sign function Sign is added to take account of the
fact that the absolute value of g(γ ) can be smaller than 1 in
a practical numerical calculation in which the projection in
Eq. (6) is taken at discrete points. In this case g(γ ) is still
real, and the sign of it determines the index ν3D. Equation (15)
shows that for any topological insulator with an additional
two-fold rotational symmetry, the FKM strong Z2 index can
be computed through a well-defined one-dimensional sub-
space of the Brillouin zone. If there are multiple C2 axes in
the system, this simplification can be applied to any one of the
C2, independent of the presence of the other symmetries. This
calculation is applicable to 2D insulators as well, which can
be achieved by restricting LC2T to the 2D Brillouin zone. This
method is convenient to implement in the sense that it does
not require a smooth gauge because the definition of g(γ ) in
Eq. (6) is gauge-independent.

B. Systems with additional mirror symmetry

For systems with a mirror symmetry σ in additional to T ,
a similar analysis can be applied by evaluating g(ka, kb) in
the σT -invariant subspace defined by SσT = {k ∈ BZ|σT k =
k + G}. If the mirror is perpendicular to ẑ as in Fig. 2(c), then
SσT consists of four straight paths along the ẑ direction that
pass through TRIM. Since σT is antiunitary, Eq. (10) implies
g(!,Z ) = g(σT!, σTZ )∗ = g(!,Z )∗, therefore g(!,Z ) is
real and quantizes to ±1, so as g(X,U ), g(Y,T ), g(S,R).
Following the same argument as theC2 case, we have

ν3D = g(!,Z )g(X,U )g(Y,T )g(S,R). (16)

If the mirror plane is perpendicular to x̂ + ŷ as in Fig. 2(d),
SσT consists of two lines {SS′′,RR′′}. The TRIM !, S,Z,R
are invariant under the mirror symmetry σ but X ′,Y,U ′,T
are not. Following the same argument, g(X ′,Y ) and g(U ′,T )
are fixed to 1 because these two points interchange under σ ,
therefore they do not contribute to ν3D. In this case we have

ν3D = g(!, S)g(Z,R). (17)

In general, similar to the C2 case above, we can define LσT
to be the set of straight paths inside SσT such that each path
γ ∈ LσT connects two mirror-invariant TRIM, different paths
in LσT do not cross with each other, and each mirror-invariant
TRIM is connected by one path in LσT . In Figs. 2(c) and 2(d)
LσT reduces to {!Z,XU ,YT , SR} and {!S,ZR}, respectively.
Note that in Fig. 2(d) we cannot take {!Z, SR} because
these lines are not inside σT invariant subspace. With this
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definition, the index is written as

ν3D =
∏

γ∈LσT

Sign[g(γ )]. (18)

Here the sign function takes account of the fact that |g(γ )| can
be smaller than 1 in a real calculation on discrete momentum
points. With Eqs. (15) and (18), we developed a unified
method to calculate FKM strong Z2 topological index that
requires examining only a 1D subspace of the BZ, for systems
with two-fold rotation or mirror symmetry. If the system has
multiple mirrors orC2 axes, this method will work if we focus
on any one of them.

Our formalism is capable of calculating the weak topolog-
ical index as well because the weak index is obtained from
a 2D plane in the Brillouin zone passing through four of
the eight TRIM, and our line quantity g can be utilized to
calculate the 2D index, as in Eq. (9). Therefore, the weak
topological index can be obtained by applying Eq. (9) to the
corresponding 2D plane.

It is also worthwhile to explore the situation when the
system has space-inversion symmetry I in addition to T . It
turns out that our method is still applicable, although the Z2
index can be determined directly by inversion eigenvalues.
In this case Eq. (10) when applied to symmetry operator
IT shows that that g(ka, kb) is real everywhere since every
momentum point is invariant under IT . This implies g(Ki,Kj )
will be quantized to ±1 for any pair of TRIM Ki and
Kj . Therefore our method is applicable again and we have
(−1)ν3D =

∏
γ g(γ ), where the product ranges over the four

lines that connect the eight TRIM.

IV. HIGHER-ORDER TOPOLOGICAL INSULATORS
WITHC4T SYMMETRY

The Pfaffian formalism that describes the FKM Z2 index
for topological insulators has recently been generalized to
higher-order topological insulators [42]. We show that the line
quantity g(ka, kb) can be applied to calculate the topological
index for higher-order topological insulators as well. Consider
the chiral second-order topological insulator protected byC4T
symmetry. The topological index is the magnetoelectric po-
larization P3, which is quantized to 0 or 1

2 by C4T symmetry,
satisfying a Z2 classification. If P3 = 1

2 the system is topo-
logical, with gapless states localized at the one-dimensional
hinges, but the system remains gapped at the bulk and 2D side
surfaces. Time-reversal symmetry in this system is broken,
therefore the original FKM Pfaffian formalism which requires
time-reversal symmetry is not applicable. However, it has
been shown in Ref. [42] that with the definition of a com-
posite operator ) = C4T+C−1

4 T√
2

, the topological index P3 can
be represented by a Pfaffian formula in which T is replaced
by ):

2P3 =
1
2π i

∮

∂τ

dk · ∇ log Pf[M)(k)] mod 2, (19)

M),mn(k) = 〈um(k)|)|un(k)〉. (20)

Here τ is the colored area in Fig. 3 and theC4 axis is along the
ẑ direction. Equation (19) has the same form as Eq. (5) with
T replaced by ). We can make the same replacement in the

M

AZ

Z '
'A

FIG. 3. The plot of a 3D Brillouin zone for higher-order topo-
logical insulator protected by C4T symmetry. The C4 axis is along ẑ
direction and τ is the colored area.

definition of g(ka, kb) in Eq. (6) to define

g)(ka, kb) =
Pf[M)(kb)]
Pf[M)(ka)]

det



〈um(ka)|
ka←kb∏

ki∈kakb

Pki |un(kb)〉



.

(21)

The line quantity g)(ka, kb) defined in this way is gauge-
invariant as well. Following the same procedure that lead to
Eq. (9), we arrive at

2P3 =
1
2π i

∫ Z

Z ′
dk · ∇ log g)(k) mod 2. (22)

Here g)(k) = g)(k, k + π x̂ + π ŷ) and the integral is along
the straight path from Z ′ to Z . Therefore the magnetoelectric
polarization P3 can be expressed in terms of an integral of the
line quantity g)(ka, kb). The advantage of this method is that it
involves only gauge-independent objects, therefore a smooth
gauge is not needed.

V. CONCLUSION

We show that in systems where topological indices cannot
be reduced to high-symmetry-point symmetry eigenvalues,
certain symmetries can still help simplify the calculation of
the index. With the definition of the gauge-invariant line
quantity g(ka, kb), we present a unified way to calculate the
topological index by examining only 1D subspace of the Bril-
louin zone for systems with either C2 or mirror symmetry in
addition to time-reversal symmetry. Our method is applicable
to a wide range of systems because, among all the 32 point
groups, 30 of them contain such a symmetry, except forC3 the
the trivial groupC1. This approach also finds its application in
higher-order topological insulators.
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APPENDIX A: PROPERTIES OF g(k̃akb)

Here we prove some equalities involving g(k̃akb) defined
in Eq. (1). First we investigate the case when ka and kb are
infinitely close to each other, denoted as k1 and k2. In this case
we have g(k1, k2) = Pf[M(k2 )]

Pf[M(k1 )]
det[W (k1, k2)] and W (k1, k2)
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reduces to the overlap between the wave functions at k1
and k2: Wmn(k1, k2) = 〈um(k1)|un(k2)〉. g(k1, k2) is invariant
under gauge transformation |um(k)〉 → Unm(k)|un(k)〉. Since
under this transformation, Mmn(k) = 〈um(k)|T |un(k)〉 →
(U (k)†M(k)U (k)∗)mn, Wmn(k1, k2) = 〈um(k1)|un(k2)〉 →
(U (k1)†W (k1, k2)U (k2))mn, therefore

Pf[M(k)] → Pf[M(k)] det[U (k)]∗

det[W (k1, k2)] → det[W (k1, k2)] det[U (k1)]∗ det[U (k2)],

g(k1, k2) = Pf[M(k2)]
Pf[M(k1)]

det[W (k1, k2)] → g(k1, k2).

(A1)

This completes the proof that g(k1, k2) is gauge-invariant.
For a general path k̃akb, divide the path by small segments
(ki, ki+1) and by definition in Eq. (1), g(k̃akb) =

∏
i g(ki, ki+1).

For each small segment g(ki, ki+1) is gauge-invariant, there-
fore g(k̃akb) is gauge-invariant as well.

Next we prove Eq. (10). Suppose the system has an an-
tiunitary symmetry C such that it commutes with T and it
transforms momentum k to Ck, define the sewing matrix of
C as

Rmn(k) = 〈um(Ck)|C|un(k)〉. (A2)

Insert identity 1 = Pocc(k)+ Punocc(k) =
∑

i∈occ |ui(k)〉〈ui(k)|
+

∑
i∈unocc |ui(k)〉〈ui(k)| to each 1 in the identity below:

〈um(Ck)|T |un(Ck)〉 = 〈um(Ck)|C1T 1C−1|un(Ck)〉, (A3)

where Pocc and Punocc are projection to the occupied and un-
occupied bands, respectively, m and n belong to the occupied
bands. Since 〈um(Ck)|CPunocc(k) = 0, we can omit Punocc in
the insertion and get

〈um(Ck)|T |un(Ck)〉 =
∑

i, j∈occ
〈um(Ck)|C|ui(k)〉〈ui(k)|

×T |u j (k)〉∗〈uj (k)|C−1|un(Ck)〉, (A4)

where the conjugation is due to the fact that T andC are antiu-
nitary. Notice that 〈u j (k)|C−1|un(Ck)〉 = 〈un(Ck)|C|u j (k)〉,
the above equation implies

M(Ck) = R(k)M(k)∗R(k)T ,

Pf[M(Ck)] = det[R(k)] Pf[M(k)]∗. (A5)

To prove Eq. (10) we still need to compute W (Ck1,Ck2).
Using |um(Ck)〉 = R†

nm(k)C|un(k)〉 we get

Wi j (Ck1,Ck2) = Rin(k1)〈Cun(k1)|Cum(k2)〉R†
m j (k2)〉

= Rin(k1)〈un(k1)|um(k2)〉∗R†
m j (k2)〉,

det[W (Ck1,Ck2)] = det[W (k1, k2)]∗ det[R(k1)] det[R(k2)]∗.

(A6)

Therefore when C is antiunitary we have

g(Ck1,Ck2) =
Pf[M(Ck2)]
Pf[M(Ck1)]

det[W (Ck1,Ck2)]

= Pf[M(k2)]∗

Pf[M(k1)]∗
det[W (k1, k2)]∗ = g(k1, k2)∗.

(A7)

2U

2X '

1G
2G

1G
2G

Y

U T

X

' 3U

3X

( )a ( )b

XY

UT

FIG. 4. The plot of time-reversal-invariant planes obtained from
a cut in Figs. 2(b) and 2(d). We define the origin in these planes
to be at Y . The black dots in (a) are two-fold rotation centers. The
thin vertical lines in (b) are mirror planes. Note that none of these
two-fold rotation centers or mirror planes pass through the origin
at Y .

IfC is unitary instead, Eq. (A4) will be changed to

〈um(Ck)|T |un(Ck)〉 =
∑

i, j∈occ
〈um(Ck)|C|ui(k)〉〈ui(k)|T |u j (k)〉

× 〈u j (k)|C−1|un(Ck)〉∗, (A8)

Using 〈u j (k)|C−1|un(Ck)〉∗ = 〈un(Ck)|C|u j (k)〉 for unitary
symmetry C, we have

M(Ck) = R(k)M(k)R(k)T ,

Pf[M(Ck)] = det[R(k)] Pf[M(k)]. (A9)

ForW (Ck1,Ck2), Eq. (A6) will be

Wi j (Ck1,Ck2) = Rin(k1)〈Cun(k1)|Cum(k2)〉R†
m j (k2)〉

= Rin(k1)〈un(k1)|um(k2)〉R†
m j (k2)〉,

det[W (Ck1,Ck2)] = det[W (k1, k2)] det[R(k1)] det[R(k2)]∗.

(A10)

Therefore ifC is unitary we have

g(Ck1,Ck2) =
Pf[M(Ck2)]
Pf[M(Ck1)]

det[W (Ck1,Ck2)]

= Pf[M(k2)]
Pf[M(k1)]

det[W (k1, k2)] = g(k1, k2). (A11)

A general path k̃akb can be divided by small segments
(ki, ki+1) so that g(k̃akb) =

∏
i g(ki, ki+1). Eq. (10) is proved

by applying Eqs. (A7) or (A11) to each segment g(ki, ki+1).

APPENDIX B: TRIVIALITY OF TRIM THAT ARE NOT
INVARIANT UNDER C2 OR MIRROR SYMMETRY

In this section we give a more detailed proof of the asser-
tion that the Z2 index ν2D in the time-reversal-invariant plane
passing through X,Y,T,U in Fig. 2(b) and X ′,Y,T,U ′ in
Fig. 2(d) are trivial. These 2D planes are shown in Fig. 4,
which are obtained from a cut in Figs. 2(b) and 2(d), respec-
tively. This proof utilizes the interpretation of the line quantity
g(k̃akb) as a measure of Pfaffian in the parallel transport gauge.

In Fig. 4(a) the system has a two-fold rotational symmetry
C2 perpendicular to the plane which is inherited from the 3D
system. However, the C2 rotation centers are located at the
black dots that bisect two TRIM. This type of C2 operator is
different from the conventional two-fold rotation that can be
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realized by a 2D lattice in real space since, in that case, the
rotation center in the momentum space will always locate at
some TRIM. If we choose the origin to be at Y and denote
the components of k along G1 and G2 direction as kx and
ky, respectively, the C2 operator at the midpoint of XY gener-
ates a transformation (kx, ky) → (G1/2 − kx,−ky), and time-
reversal generates (kx, ky) → (−kx,−ky). Therefore the com-
bined operationC2T gives (kx, ky) → (kx − G1/2, ky). Define
g(k) = g(k,k +G2/2) for k ∈ XX2, then from Eq. (10) the
C2T symmetry requires

g(k) = g(k +G1/2)∗,

Im log g(k) = −Im log g(k +G1/2), k ∈ XX2. (B1)

Denote the colored region in Fig. 4 as τ and use the same
derivation that lead to Eq. (9), the Z2 index in this plane is

ν2D = 1
2π

Im
∫ X

X2

dk · ∇ log g(k),

g(k) = g(k,k +G2/2). (B2)

From Eq. (B1), the integrand in Eq. (B2) at k cancels that at
k +G1/2, which leads to ν2D = 0. Therefore the plane has a
trivial Z2 index due to the C2 symmetry.

In Fig. 4(b) the system has mirror planes inherited from the
3D system located at the thin vertical lines. The mirror plane
to the right has the transformation (kx, ky) → (G1/2 − kx, ky).
Define g(k) = g(k,k +G2/2) for k ∈ X ′X3, from Eq. (10)
the mirror symmetry requires

g(k) = g(G1/2 − k). (B3)

The Z2 index from Eq. (9) is

ν2D = 1
2π

Im
∫ X3

X ′
dk · ∇ log g(k). (B4)

Therefore Eq. (B3) requires the integrand at k to cancel that at
G1/2 − k, leading to ν2D = 0. Therefore the Z2 index for this
2D plane is trivial due to the mirror symmetry.
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