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ABSTRACT

We study the inverse problem of parameter identification in
general saddle point problems. For saddle point problems, the
use of elliptic regularization is an essential component. Saddle
point problems, after discretization, lead to a non-invertible
system, whereas the regularized saddle point problems result
in an invertible system. Regularization methods, in the con-
text of saddle point problems, have also been used to mitigate
the role of the Inf-Sup condition, synonymously, also called
the Babuska-Brezzi condition. This work aims to analyze the
impact of regularizing the saddle point problem on the inverse
problem. We investigate the inverse problem by using the
output least-squares objective. To exploit the use of regular-
ization fully, we work under the assumption that the solution
map is nonempty. We regularize the saddle point problem
and consider a family of optimization problems using the out-
put least-squares objective for the regularized saddle point
problem where some noise contaminates the whole data set.
We give a complete convergence analysis showing that the
optimization problems, given for the regularized output least-
squares, approximate the original problem suitably. We also
provide the first-order and the second-order adjoint method
for the computation of the first-order and the second-order
derivatives of the output least-squares objective. We present
some heuristic numerical results. In the context of the elas-
ticity imaging inverse problem, we conduct detailed numer-
ical experiments on synthetic data (to study the role of the
regularization parameter) as well as on phantom data.
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1. Introduction

We study the inverse problem of identifying a parameter in saddle point prob-
lems, which provide a unified framework for analyzing numerous applied models
such as elasticity, Stokes equations, fourth-order boundary-value problems, the
pure Neumann boundary-value problem, and many others. In recent years, the
subject of inverse problems emerged as one of the most vibrant and expand-
ing areas of research because of its ever-growing inventory of applications to
biomedical sciences, finance, engineering, social sciences, and other related disci-
plines. For an overview of the recent developments in the dynamic field of inverse
problems, we refer the interested reader to [1-22].

1.1. Problem formulation

We begin by introducing the saddle point problem (the direct problem) and the
associated inverse problem of parameter identification. We denote the param-
eter space by B, which is a real Banach space. We denote the set of admissible
parameters by A, which is a nonempty, closed, convex, and bounded subset of B.
We pose the saddle point problem in real Hilbert spaces V and Q whose duals
are denoted by V* and Q*. We take the measured data in real Hilbert spaces V
and Q such that V' x Q continuously embeds in V x Q. We denote the norm of
a normed space N by || - ||y and specify the strong convergence by — and the
weak convergence by —. Assume that a: B x V x V — R is a trilinear form
which is symmetric in the last two arguments, that is, a(-, u, v) = a(-, v, u), for
every u,v € V,b: V x Q — R is abilinear form, f € V*, and g € Q*. Assume
that a and b are continuous, that is, there are constants kg > 0 and ¢y > 0 such
that

la(l, u,v)| < coll€lillullvlivllv, forall€ € B, u,veV, (1)

b(v,q)| < kollvllviiglle, forallve V, g€ Q. (2)

We consider the saddle point problem: Given ¢ € A, find (u, p) := (u(€),p(£)) €
V x Q such that

a(l,u,v) + b(v,p) = f(v), foreveryveV, (3a)

b(u,q) = g(q), foreveryqe Q. (3b)

For a fixed £ € B, the trilinear form a and the bilinear form b are related to the

linear maps A, € £L(V,V*) and B € L(V, Q") by the relationships (Au,v) =

a(l,u,v) forallv € V,and (Bu, q) = b(u, q) for all g € Q. Furthermore, let B*
L(Q, V*) be the dual map of B, that is,

(B*q,v) = (q,Bv), forallveV, forallg e Q.
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Then, (3a) can be equivalently written as the problem of finding (u,p) € V x Q
such that

A+ Bp =1, (4a)
Bu=g. (4b)

1.2. Motivation and objectives

Our objective is to study the inverse problem of identifying a parameter £ € A
such that the corresponding solution (u(€), p(£)) is closest, in some norm, to the
given data (z,2) € V x Q. Inverse problems are most commonly studied using
optimization tools which offer a convenient way of incorporating regularization.
Adhering to this trend, we pose this nonlinear inverse problem as an output least-
squares (OLS) based constrained optimization problem that minimizes the gap
between the computed solution and the measured data. Find £ € A by solving
the following optimization problem

inJ(£) -—ln 0 —zl% +1|| ) — 2|t (5)
1}1611{\1 =3 u Z|ly > p Zllg-

Here, for each ¢ € A, (u(£), p(€)) is a solution of saddle point problem (3a), that
is, (3a) is an explicit constraint to the above optimization problem; the set A being
an implicit constraint.

For (5) to be meaningful, the parameter-to-solution map ¢ — (u(€), p(£))
needs to be well-defined for each £ € A. The following well-known result is useful
in this regard (see [23]):

Theorem 1.1: Besides (1) and (2), assume that there are constants k1 > 0 and
¢1 > 0 such that

all,v,v) > g1||v||%,, forallt € A, vel, (6)
b(u,q)

sup -4 > k1llqlle,  forallg € Q, (7)
uev llully

where L := {u € V| b(u,q) = 0, forall q € Q}. Then saddle point problem (3a)
has a unique solution (u, p). That is, for £ € A, the map £ +— (u(£), p(£)) is a well-
defined and single-valued.

Saddle point problem (3a) is associated to the linearly constrained optimiza-
tion problem:

1
mi‘r} J(u) = Ea(ﬂ, u,u) — f(u), subjecttob(u,q) =g(q), foreveryqe Q.
ue

(8)
Indeed, if we define the Lagrangian L : V x Q > R by

L(u, p) := 3a(€, u,u) — f () + b(u, p) — g(p),
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then under the hypotheses of Theorem 1.1, L(u, p) has a unique saddle point
which solves (3a), see [24, p. 132]. Here p is the Lagrange multiplier.

Saddle point problem (3a) leads to a non-invertible system after discretization,
requiring specialized solution strategies. A commonly used technique is to regu-
larize (3a), an instant advantage being that the regularized saddle point problem
leads to an invertible system. Let c¢: Q x Q — R be a continuous and elliptic
bilinear form. That is, there are constants wy > 0 and w; > 0 with

c(q9) = woligllgy forallg € Q (9a)

c(p,q < wilploligllq. forallp,g € Q. (9b)

Given ¢ > 0, the regularized saddle point problem seeks (ug,p) := (u:(€),
pe(£)) € V x Qwith

a(l, ug,v) + b(v,pe) = f(v), foreveryveV, (10a)
b(ug,q) — ec(pe,q) = g(q), foreveryq e Q. (10b)

The regularized saddle point problem (10a) possesses some crucial computa-
tional advantages over (3a), and it has been studied extensively, see [23,25,26].

Associating ¢ with the linear map C € £(Q, Q") by the relationship (Cp, q) =
c(p, q) forevery p, q € Q, we can write (10a) into an equivalent problem of finding
(ug, pe) € V x Qsuch that

Aoue + B*p, =f, (11a)

A fundamental result, connecting (3a) and (10a), asserts that under hypotheses
(1), (2), (6), and (7), both (3a) and (10a) are uniquely solvable, and the regu-
larized solutions {(u.,p.)} converge to the unique solution of (3a), as ¢ — 0.
Some strengthening of ellipticity of a has been used to provide error estimates
in terms of the regularization parameter ¢, which also provide useful insight into
the discrete counterparts of (3a) and (10a). To be precise, we have the following:

Theorem 1.2: Besides (1), (2), and (7), assume that there is a constant w > 0 such
that for each € € A, we have

a(l,v,v) + (C™'Bv, Bv) > wl||v|%, foreveryv e V. (12)

Then, both (3a) and (10a) have unique solutions (u, p) and (ug, p. ). Moreover, there
is a constant K > 0 such that the following error bound holds for each e(< 1) :

lue — ullv + llpe — pllQ = Ke(llfllv- + liglle»)- (13)
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If v € L = ker(B), then (12) recovers ellipticity (6). Furthermore, under the
hypotheses of Theorem 1.1, the following estimate can be proved (see [27]): There
is a constant K > 0 such that

lue — ully + llpe — pllq < Kv/e. (14)

Condition (7), commonly termed as the Babuska-Brezzi or the Inf-Sup condi-
tion, is a natural substitute for the ellipticity condition and plays an essential role
in the theoretical as well as the numerical treatment of saddle point problems, see
[25,28-30]. In finite element discretization of (3a) for computing a solution, a dis-
crete analog of (7) is used, which imposes stringent compatibility restrictions on
the choices of the finite-dimensional subspaces of V and Q. Furthermore, there
are explicit examples when either the Inf-Sup condition cannot be verified or is
not entirely satisfactory from an analysis viewpoint. A classic example of the for-
mer is the Stokes problem for which the use of the liner elements for velocity and
the pressure fails to satisfy the Inf-Sup condition; see [26, Section IV.2]. Pertain-
ing to the latter, the following example, taken from [31], shows a scenario where
the Inf-Sup condition is not optimal:

Example 1.3: Let Q C R? be a bounded domain with sufficiently smooth
boundary, and I'y be a closed, simple, and smooth curve in Q2. We consider the
following saddle point problem:

/ (Vu - Vv —fv) dx + / pvds=0, forallve Hé(Q) (15a)
Q Lo

u=0, onT,. (15b)

The above saddle point problem, which fits (3a) with V = Hé(SZ), Qf =
H'Y2(T'y), and B the trace operator, is a necessary optimality condition of the
following optimization problem that has relevance to shape optimization prob-
lems:

min / (EIVMI2 — uf> dx, subjectto u = 0on Iy. (16)
ueH (@) Jo \2

The Inf-Sup condition holds and (15a) is well-posed in H}(2) x H~Y/2(Ty).
The discrete variant of the Inf-Sup also condition holds in suitable finite-
dimensional subspaces of V and Q*, and the convergence to the solution in
Hé () x H"Y2(I'y) can be proved. Since, for f € L?(2), the solution u of (15a)
exhibits H%(2) regularity in all subdomains not containing Iy, u is piecewise-
H?, implying that p € H'/2(T'p). Thus, the convergence for p is preferred to be
in a topology finer than that of H~'/2(I'y), such as L?>(Tg) or H'/2(I'y). How-
ever, the Inf-Sup condition does not hold for L?(I"y) as the trace operator from
Hé () onto L*>(I'p) is not surjective. In conclusion, the convergence analysis can-
not be obtained in L?(I"p) by the aid of the Inf-Sup condition, which only holds
in H-1/2(Iy).
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Remark 1.4: The unique solvability of (10a) holds without (7), and hence the
regularization approach can well be used for ill-posed saddle point problems.
Ito, Kunisch, and Peichil [31] used the regularization approach to circumvent
the absence of the Inf-Sup condition. They posed the saddle point problem
in Hilbert spaces X and Z*, and developed an abstract framework using three
Gelfand triples X < H — X*, Z < Y — Z*,and W — Y — W™, The first
Gelfand triple was used the describe the map defining the abstract variant of (16),
the second Gelfand triple to prove the existence of the Lagrange multiplier in
Z*, and the third Gelfand triple for analyzing the additional regularity of the
multiplier. In the context of Example 1.3, W = Z = H'Y2(Iy), Y = L*(Ty), and
X = Hé(Q). Saddle point problems (3a) and (15a) are related by the choices
V = Xand Q = Z*. Assuming that a multiplier resides in a smaller space, in par-
ticular, taking the considered saddle point problem in X x W, the authors proved
the convergence of the regularized solutions in the norm of X x W. Although
we refrain from incorporating the functional framework of [31] in this work, we
will present numerical results for the inverse problem of identifying a constant
function in (15a). For more details on Example 1.3, see [32,33].

1.3. Main contributions

The primary objective of this work is to assimilate, for the first time, the use-
fulness of the regularized saddle point problems into the OLS formulation of
the inverse problem of parameter identification in saddle point problems. The
OLS functional, although the most commonly used optimization formulation
for inverse problems, is typically nonconvex, and takes a large number of iter-
ations to converge to a (local) minimum. Since after discretization (3a) leads to a
non-invertible system, one has to reply on specific solution strategies that directly
impact the inverse problem as the underlying system needs to be solved hundreds
of times. Since regularization is a well-established technique for solving saddle
point problems, replacing the constraint (3a) in the optimization problem (5) by
its regularized variant (10a) has evident advantages. The approach consists of first
showing that for each ¢ > 0, there is an optimal parameter ¢,, and the goal then
is to study the convergence of the sequence {£,}. In a nutshell, one of the main
contributions of this work is an extension of Theorem 1.2 for the study of inverse
problems. We show in Theroem 2.5 that under the continuity of a and b and the
ellipticity of a and the Inf-Sup condition, the sequence {{,} of optimal parameters
converges to a minimizer of (5), as ¢ — 0.

Note that under the ellipticity and the Inf-Sup condition, both (3a) and (10a)
are well-posed. Hence, under these conditions, the regularization process pro-
vides a system with better properties to approximate the saddle point prob-
lem. On the other hand, for more general variational and quasi-variational
inequalities, it is known that the regularization approach is quite efficient even
for non-coercive problems. The key component of such studies is that if the
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solution set of an ill-posed variational problem is nonempty, then the regular-

ized solutions converge to a solution. Inspired by such studies, we develop an

abstract framework that does not explicitly rely on the ellipticity of a or the

Inf-Sup condition. These conditions, however, play a crucial role, as our gen-

eral assumptions can be verified when the Inf-Sup condition and the ellipticity

hold.

We now provide an outline of the main contribution of this work:

(i)

(ii)

(iii)

(iv)

We work under the assumption that the trilinear form a is positive and
continuous, the bilinear map b is continuous, and the saddle point prob-
lem (3a) is solvable for every parameter £ € A. Under these assumptions,
the parameter-to-solution map is set-valued, in general. At this juncture, we
note that under the ellipticity, the Inf-Sup condition is a necessary and suf-
ficient condition for the well-posedness of (3a). However, this result has no
direct impact on the present study, as we only work under the assumption
that a is merely positive, and hence (3a) is ill-posed.

There are numerous obstacles associated with a satisfactory theoretical
as well as numerical treatment of optimization problems that involve a
set-valued parameter-to-solution map. The regularization process circum-
vents this difficulty and results in a single-valued (regularized) parameter-
to-solution map. We prove the derivative characterization for this single-
valued map. We consider a variant of the OLS (cf. (5)) for which the
constraint is the regularized saddle point problem. We prove the solvabil-
ity of the optimization problem and show that the OLS-based optimiza-
tion problem, with the regularized saddle point problem as the constraint,
approximates the original OLS-based optimization problem when the reg-
ularization parameter diminishes. This result is valid for the general case
when the original saddle point problem has a set-valued solution map.
However, the imposed conditions simplify significantly if the original sad-
dle point problem is uniquely solvable. This happens when the inf-sup
condition holds, and a is elliptic.

One of the significant drawbacks of the OLS formulation is the need to
compute the derivative of the parameter-to-solution map in the computa-
tion of the derivative of the OLS objective. The so-called adjoint methods
provide efficient schemes to circumvent this difficulty. We give first-order
and second-order adjoint methods in the continuous setting to compute the
first-order and the second-order derivative of the OLS functional.

We provide the outcome of numerical experimentation for the saddle
point problem (15a). This example reflects the impact of the regularization
approach when the desired Inf-Sup condition does not hold. We also pro-
vide detailed numerical experimentation for an analytic example related to
the elasticity imaging inverse problem to show the role of the regularization
parameter. Finally, we test the applicability of the developed framework
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for the elasticity imaging inverse problem using the phantom tissue
data.

We organize the contents of this paper into five sections. Section 2 embeds the
regularization process into the OLS formulation and provides the convergence
analysis for the regularized solutions. Section 3 is devoted to the first-order, and
the second-order adjoint approaches. In Section 4, we report the outcome of some
preliminary numerical experiments. The paper concludes with some remarks.

2. An optimization framework for the inverse problem

In the following, besides (1) and (2), we assume that a is positive, that is,
all,v,v) >0, foralll e A velV. (17)

Moreover, we assume that saddle point problem (3a) is solvable. For a given
parameter £ € A, by U(¢) we denote the set of all solutions of saddle point
problem (3a). We begin with the following:

Lemma 2.1: For any £ € A, the solution set U({) of saddle point problem (3a) is
closed and convex.

Proof: The proof follows at once from the definition of the set-valued map I/ :
A=z VxQ. |

2.1. The output least-squares formulation

We define the set-valued output least-squares map J : A =2 R that relates to each
¢ € A, the set

J(0) = {3llu(®) =zl + 31p©) — 215 | (p©), u(t)) € UL},

where (u(£), p(£)) is a solution of (3a) for £ € A and (z,2) € V x Q is the given
data.

We now introduce the following output least-squares (OLS) based optimiza-
tion problem:

rgréi:‘l](ﬁ)- (18)

Anelement £ € A is called a minimizer of (18), if there exists (u(£), p(E)) eUl)
with

Hlu@ = Z15 + lp@ — 21§ < 3lu®) — 215 + 31p©) — 213, (19)

for _every (u(@),p®)) € Z/{(E),_ for_ every ¢ € A. To emphasize the role of
(u(€), p(£)), we often say that (¢, u(£), p(£)) € graph(lf) is a minimizer of (18).
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We will approximate a solution of (18) by a family of regularized OLS-based
optimization problems where the data set of the saddle point problem is con-
taminated by some noise in the sense described below. Let {¢,,}, {§,,}, and {v,,} be
sequences of positive reals. Foreachn € N,letf,, € V*,g, € Q" and(zs,,%s,) €
V x Q be the noisy data satisfying the following inequalities:

max{“fvn _f”V*) ”gvn _g”Q*} =V (20)

max {1125, — Zllv, |25, — Zllg} < 8n- (21)

Moreover, as n — 00, the sequences {&,}, {5}, and {v,} satisfy
8y v
{en, V> S> —5 —"} — 0. (22)
En En

We consider the following family of regularized saddle point problems: For
n € N, given the regularization parameter ¢, > 0 and € € A, find (uy, py) =
(un(£), pn(€)) € V x Q such that

all, un, v) + e4(uy — z5,,v)v + b(v,pn) = f,,(v), foreveryveV, (23a)

b(un, Q) — €nlpPn — 2s,-9)Q = gv,(q), foreveryq € Q. (23b)

As a direct consequence of the Lax-Milgram lemma, for fixed n € Nand £ € A,
regularized saddle point problem (23a) has a unique solution (u,(£),p,(£)).
Therefore, the regularized parameter-to-solution map £ — (u,(£), p,(€)) is well-
defined and single-valued. The following result sheds some light on the smooth-
ness of the regularized parameter-to-solution map:

Theorem 2.2: For n € N fixed, let £ be in the interior of A which we assume to
be nonempty. The first-order derivative (Du, (£)8¢, Dp,(£)8€) of the regularized
parameter-to-solution map £ — (u,(£), pn(£)) at £ in the direction §¢ € B is the
unique solution of the regularized saddle point problem:
a(¢, Duy,(£)8¢,v) + e,(Du, (£)8¢,v)y + b(v, Dp,(£)5¢€)
= —a(6€,u,(£),v), foreveryveV, (24a)
b(Du,(£)6¢€,q) — en(Dpn(£)8¢,q)g = 0, foreveryq € Q. (24b)
Moreover, the second-order derivative (Dzu,,(ﬁ)(SZl,Sﬁz),szn(ﬂ)((%l,(ﬁﬁz)) of
(un(€), pn(£)) at £ in the direction (8¢1,6€,) € B x B is the unique solution of the
regularized saddle point problem:
a(, D*u (€) (81, 8€2), ) +n(DPun(£)(8€1,8€2), V) v +b(v, D*pu(0)(8£1, 8¢2))
= —a(8€z, Du,(£)8¢1,v) — a(841, Duy(£)6€2,v), foreveryv eV, (25a)
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b(D*u, (£)(8€1,82),q) — ea(D*pn(£)(8L1,8€2),q)q =0, foreveryq € Q.
(25b)

Proof: The proof follows by similar arguments that were used in [34]. |

2.2. Theregularized output least-squares formulation

The nonlinear inverse problem of parameter identification is known to be ill-
posed, and regularization is necessary for a stable identification process. The
choice of the regularization space is quite vital and depends on the nature of the
sought coeflicient. A regularization by the aid of the square of a suitable norm,
the so-called quadratic regularizer, has been a common choice for smooth coef-
ficients. On the other hand, for discontinuous or rapidly varying coefficients, a
total-variation semi-norm has been used extensively in recent years. The suc-
cess of the total variation regularization comes at the cost that the optimization is
done in a non-reflexive Banach space, and the regularizer is nonsmooth. Hence,
the computations rely on some smoothing.

In the following, we describe two sets of assumptions for the regularizer; the
first one subsumes the total-variation regularization, and the second recovers
the quadratic regularizer. The nonsmooth regularization framework imposes the
following conditions on the regularizer.

(H1 (a)) The parameter space B, which is a Banach space, is continuously
embedded in a Banach space L. There is another Banach space B that
is compactly embedded in L. The set A of admissible parameters is a
subset of BN B, closed and bounded in B and also closed in L.

(H1 (b)) R:B— Riis positive, convex, and lower-semicontinuous in || - ||
such that

R({) > 11||£||g — 72, forevery £ € A, for some 71 > 0, 75 > 0.
(26)
(H1 (¢)) Forany{¢,} C Bwith¢, — £inL,anybounded {u,} C V,and fixed
vy € V, we have

ally, — C,uy,v) — 0. (27)
The following assumption is for the quadratic regularizer:

(H2) The set A belongs to a Hilbert space H that is compactly embedded in the
space B.

An example for (H2) is B = L°(R2) and H = H%(R), for a suitable domain
2. The properties (H1) are inspired by the use of total variation regularization
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in the identification of discontinuous coefficients (see [35]). Recall that the total
variation of f € L!(Q) reads

TV(f) = sup{/f(v.g) (g€ (c(l)(sz))N, lg(x)] < 1forallx € Q}
Q

where | - | is the Euclidean norm. Clearly, if f € W5 (Q), then TV(f) = [, [Vf].
Iff € L1(Q) satisfies TV(f) < oo, then f is said to have bounded variation, and
BV(Q) is defined by BV(Q) = {f € LY(Q) : TV(f) < oo} with norm If lev(e) =
IfllLi @) + TV(f). The functional TV(-) is a seminorm on BV(£2) and is often
called the BV-seminorm.
We set B = L®(Q), L = L'(Q), B = BV(Q), and R(¢) = TV (£), and define

A={LeL®0<c <l(x) <c aein, TV({) < c3 < 00}, (28)

where ¢y, ¢z, and c3 are positive constants. Clearly, A is bounded in || - ||5 and
compact in L. It is known that L>° () is continuously embedded in L! (Q2), BV(£2)
is compactly embedded in L!(2), and TV (-) is convex and lower-semicontinuous
in L'(€)-norm. Thus, (i) and (ii) hold.

In the following, for simplicity, we use R({) := || - ||12LI as the regularizer.
Minor changes in the proof allow incorporating the nonsmooth regularization
framework given in (H1).

We shall now approximate (18) by the following family of regularized OLS-
based optimization problems: For n € N, find ¢,, € A by solving

, 1 _ 1 .
min Ji,, (€) := llun(€) = 25, 15 + S 1pu(®) — 25,15 + kaR©),  (29)

where «;,, > 0 is the regularization parameter with «, — 0, and (u,(£), p»(£)) is
the unique solution of the regularized saddle point problem (23a), that is,

all, un, v) + enuy — z5,,v)v + b(v,pn) = f,,(v), foreveryve V, (30a)

b(un, Q) — €npPn — 2s,-9)Q = gv,(q)» foreveryq e Q. (30b)

The following result proves that the OLS-based regularized optimization problem
(29) approximates the original OLS-based optimization problem (18). To obtain
the necessary optimality condition, we assume that the admissible set is in the
interior of A, however, with an abuse of notation, we still denote it by A.

Theorem 2.3: Assume that for each £ € A,U(L) is nonempty, the sets A and U (A)
are bounded, and V =V and Q = Q. Then, the optimization problem (18) has
a solution, and for each n € N, the regularized optimization problem (29) has a
solution £,,. Moreover, there is a subsequence {£,} convergingin || - || g to a solution



12 (&) B.JADAMBAETAL.

of (18). Finally, for any solution £,, of (29), there is a unique (wy, t,) € V x Q such
that

a(ly, Wi V) + €n(Wi, V) v + b(v, 1) = (25,, —u,(£,), V)V , forallveV,

(31a)
bW, @) — enltn @)@ = (25, — Pn(ln)q)y> forallg € Q,

(31b)
a(l — Ly, un(£y), wy) > kn(R(€,) — R(E)), foreveryl € A.

(31¢)

Proof: We will divide the proof into several parts as follows:

(1) The OLS-based optimization problem (18) has a solution. By assumption,
for each parameter ¢ € A, the solution set /() is nonempty and consequently
the OLS-based optimization problem (18) is well-defined. Since for each € € A,
J(£) is bounded from below, there is a minimizing sequence {¢,} in A such that

lim J(£,) = inf{J(£), £ € A}.

By assumption, the set A is bounded in H, and hence the minimizing sequence
{¢,,} is bounded in H. By using the compact embedding of H into B, there exists
a subsequence which converges strongly in || - ||g. By keeping the same notation
for subsequences as well, let {¢,,} be the subsequence which converges in || - ||
to some £ € A. Let (uy, pn) € U(¢,) be arbitrarily chosen. Since by assumption
the set I/ (A) is bounded, the sequence {(u,, p,)} remains bounded, and therefore
it possesses a weakly convergent subsequence. Let {(u,, p,)} be the subsequence
converging weakly to some (u,p) € V x Q. We claim that (u,p) e U (£). Note
that the definition of (¢, uy, p,) implies that

a(ly, un,v) + b(v,py) = f(v), foreveryveV,
b(un,q) = g(v), foreveryqe Q.
We rearrange the above saddle point problem to obtain
a(l, — l, Uy, V) + a(@, Uy — u,v) + a(g, u,v) + b(v,py) = f(v), foreveryveV,
b(u,,q) = g(v), foreveryq e Q,

which when passed to the limit n — 00, due to the properties of a and b, implies
that

a(l,,v) + b(v,p) =f(v), foreveryveV,
b(u,q) = g(v), foreveryqe Q,

and hence (u,p) € U (¢). The optimality of € is a consequence of the weak lower-
semicontinuity of a norm.
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(2) Foreveryn € N, the OLS-based regularized problem (29) has a solution ¢,,.
The arguments used in the first part of this proof ensure that for any fixed n € N,
the regularized optimization problem (29) has a solution ¢,. In fact, we need to
notice that for any fixed n € N, the regularized saddle point problem (23a) is
uniquely solvable and the solution is bounded.

(3) The sequence {€,} of solutions of (29) and the regularized solutions
{(un(£n), pn(£,))} of (30a) are bounded. Indeed the sequence {¢,} is bounded
by the assumption that A is bounded in H.

To prove that the sequence {(uy, pn)}, where (1, pn) = (Un(€n), pn(£y)), is
bounded, we note that

aly, un, V) + en(un — zs,,V)v + b(v,pn) = f,,(v), foreveryveV,
b(un, Q) — €npn — 2s,,9)Q = gv,(q), foreveryq € Q.

We will prove that the sequence {(uy, p,)} is bounded by using the assumption
that for every £ € A, the solution set ¢/({) of the original saddle point prob-
lem (3a) is nonempty. For any n € N, and for ¢,, € A, we choose an element
(ttn, pn) € U(Ly) arbitrarily. Furthermore, since U/ (A) is bounded by assumption,
the sequence { (i1, p,,)} is bounded. Moreover, we have

a(lp, tin,v) + b(v,py) = f(v), foreveryveV,
b(iy,q) = g(q), foreveryqe Q.
We combine the above two saddle point problems and rearrange them to obtain
a(ln, Uy — tn, v) + Entin, V)v + bV p — pu) = (o, = )H(V) + €n(25,, V)V,
b(un — tin: @) — €n(Pn> P = &v, — @) — €n(2s,, P>

foreachv € Vandeachq € Q. Wesetv = u,, — i, and g = p, — p, in the above
system, combine the resulting equations, and use the fact that a(¢,, u, — uy, t1, —
uy) > 0 to obtain

enllunlly + enllpally
< en(thn, n)v + €n(PrsPn)Q + (fo, — ) (tn — ttn) + (§ — &v,) P — P)
+ £n(Zs,> Un — Un)v + €n(Z5,, Pn — Pn)Q
< enllunllvlitnllv + enllpullQPallo + (Wn + €nllZs, Q) [llpallQ + IPnllQ]
+ (vn + enllzs, Iv) Ulanllv + llualiv],

which further results in
2 2 ~ —1 =
lunlly + lpallg < llunlly [litnllv + vaey, " + 112, llv]

+ lpall [IBallq + vae, ' + 1125, llq]
+ ( + enllZs, 1) v + (v + enllZs, 11Q) | Pnll Qs
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and consequently, we have

lunlly + Ipalley < crllunllv + c2llpallq + c3
where

cr = max {[|llv + vae; " + 125, ] v}
c = max{llf)nllQ + vn8n_1 + ||28n||Q} ]
¢ 1= max { (v + £allZs, [ ally + 0 + £nllZs, Q) IPnllQ} »

are positive constants. We therefore deduce that {(uy, p,)} is uniformly bounded.

(4) The sequence {(€,,, uy(€n), pn(£,))} has a strong-weak limit point @, 1, p)
with (u,p) e U (¢). Since {¢,} is bounded in H, due to the compact imbedding
of H into B, there is a strongly convergent subsequence. Let {¢,} be a subse-
quence that converges strongly to some £ € A in || - ||p. Furthermore, since the
spaces V and Q are reflexive, the sequence {(uy, p,)} also has a weakly convergent
subsequence. Using the same notation for subsequences, let {(uy,, p,)} be a sub-
sequence converging weakly to some (i, p). We claim that (&, p) € U (¢). Since £,
is a solution of (29), we have

a(ly, tn, V) + en(tin — Zs,,V)v + (v, py) = f,(v), foreveryv eV,
b(un, q) — €nlpn — 2s,,9)Q = gv,(q), foreveryq € Q,

or equivalently,

a(ly — £,y v) + allyuy — i, v) + a(l, it, v) + e, (un — Zs,, V)v + b(v, pp)
=f,,(v), foreveryveV,

sb(un, q) — €nlpn — 25,,9)Q = §v,(q), foreveryq € Q,

which due to the imposed conditions, when passed to the limit # — oo, implies
that

a(Z, u,v) + b(v,p) =f(v), foreveryveV,
b(u,q) = g(gq), foreveryqe Q,
confirming that (i, p) € U (0).

(5) For £ € A, the sequence of the regularized solutions {(un(é), Pn (Z)} con-
verges to (2u(£),p(€)) € U(L) which is the unique solution of the following
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variational inequality:

(i) —z,v — ti(0)) v + (p() — 2,9 — p(€))g = 0, for every (v,q) € U(D).
(32)
By the definition of (u, (2), Dn (é)), we have

a(ly un(0),v) + en(un(£) — 25, V) v + b, pu(€)) = f,, (v), foreveryv eV,
(33a)

b(un(@),q) — sn(pn(é) —Z5,,9)Q = &v,(q), foreveryq e Q. (33b)

By the arguments used in the earlier in this proof, it can be shown that
{(uy (f), Dn (E))} is bounded and there is a subsequence converging weakly to
some (i1(0), p(0)) € U(D).

The solution set ((2) is closed and convex, and consequently we can consider
the following variational inequality: Find (ﬁ(é), [)(é)) eU (é) such that

(@1(0) — z,v — a(£)) + (p(£) — 2, — p(€)) = 0, for every (v,q) € U(D).
(34)
Variational inequality (34) has a unique solution (ﬁ(@), 13(2)). We set (v,q) =
(i1(£), p(£)) in (34) to get

(@(0) — 2, 4(0) — () + (p(&) — 2,p(0) — p(0)) = 0. (35)

Since (ii(€), p(£)) € U(E), we also have
a(l,i(0),v) + b(v,p(0)) = f(v), foreveryv eV, (36a)
b(iu(l),q) = g(q), foreveryq e Q. (36b)

We combine (33a) and (36a) to deduce that for every v € V and every q € Q, we
have

a(l, un(8) = 4(0),v) + en(un(€) = Zs,, V)v + b, pu(d) — p(D)) = (f,, — ),
b(un(0) — i1(0),q) — enlpn(D) =25, 2)Q = (§1,—8) (@)
We set v = u, (£) — ii(f) and g = p,(£) — p(£) in the above system to obtain
a(l, uy(0) — i(0), un(€) — 4(0)) + £n(1un (), un(£) (14)
— (D)) v + en(pa(®), pu(d) — p(D))q
= (fu, = Nwa(®) — 4(0)) = (gu, — &) (Pn(D) — (D))
+ en(Zs, — 2 un(@) — WD)y + en(Z un(0) — U(0))y
+ en(Zs, — 2pn(0) — pD)q + enlzpa@) — p(D))g.  (37)
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and by using the fact that a(l, u,(0) — u(0), uy(£) — (f)) > 0, further deduce
that

[vnen ! + 8u] lun(®) — 2D llv + [vae, + 8a] pn(©)
— D)l + (Z un(@) — u@))v
+ (2. pu () — P(D)) q + (un(©), (D)) v + (pa(0),p(D))q = (un(D), un(D))v
+ (Pu(©), pu(D)). (38)
Since any norm is weakly lower-semicontinuous, we have
121+ 1pOIIG < liminf |, (@)} + lim inf |p, (0) I3,
and, consequently by using (38), we obtain
(@(0) — z,a(0) — )y + () — 2,p(0) — p(0))q = 0, (39)
which, when combined with (35), implies that
0 > (#(f) — u(f), u(@) — u(@))v + (&) — p(E), p(€) — p(£))q
= |a(d) — @O} + 1pE) — pD) 1%
and hence 21(¢) = #(£) and ﬁ(@) = ﬁ(é). Since (ﬁ(é),ﬁ(é)) is unique, the whole

sequence {un(f), pn(f)} converges weakly to (ﬁ(é), f)(f)). The prove that the
convergence is strong, we rewrite (14) as follows

enllun (@) — (D)1} + eullpn(@ — PO
= en{un(€) — #(0), un(£) — 1)) v + £n(pn(@) — p(&), pu(d) — p(0))q
< (fo, = D un(®) = @(0)) — (g0, — &) Pu(®) — p()) + en(Z un () — (D)) v
+ n(2s, — 2 un(0) — WD) v + £n (2 pu(f) — p(D)q
+ enlZs, — 2 pa(0) — pD))q + enlii(D), un(d) — (@) y
+ en(p(0), pu(d) — p(D)

which after a simple calculation implies that
Jim Jlun(8) — @D + lim lIpa(f) = pOIG <0,

and consequently the strong convergence of {(uy, (f), Dn (f))} to (ﬁ(f), f)(f)) fol-
lows.



OPTIMIZATION 17

(6) For £ € A, the regularized solutions {(u,(£),pn(£))} converge to
((€), p(£)) € U(L) with

1i(d) — 2113 + 1p(0) — 21
< |li() — 21} + 1p@) — 2113, forall (i(d), p(0)) € UF).  (40)
As shown in the previous part, the sequence {(un(é), Dn (f))} converges strongly

to (ﬁ(é),ﬁ(é)) € U(¢) where (ﬁ(é),f)(é)) is the unique solution of (34). That is,
for an arbitrary (i1(£), p(£)) € U(L), we have

(@(l) — z,4(0) — (@) v + (p() — 2, p(€) — p(€))q > 0
which can be rearranged as
15(8) — zII5 + 1p@) — 2113
17(8) — Z||v[lit(€) — Zllv + 11p(E) — 2l llp(f) — Zlq

A

IA

ILoon 5 1o 0 L s L
SN0 = 21y + Sl = 2l + S1p6) — 21 + S 150 — Zlig
and consequently
13(8) — 211 + 11p(6) — 2113 < Nli(@) — ZII3 + 1) — 2113,

Q Q

whifh irpplies ttiat (Bu(D), 15(2)) is the closest element to (z,z) among all
@), pid)) € Ucd).

(7) The element ¢ is a minimizer of the OLS-based optimization problem (18).
We recall that {£,,} is the sequence of the regularized solutions of (29) which con-
verges in || - ||p to £ € A. For any fixed n € N, the optimality of £, € A for (29)
means that for each £ € A, we have

Jeu@n) = 3 lltn () — Z5, 1 + 3 1Pu(€n) — 25,11 + knR(Ln)
< 3llun (@) — 25,115 + 51pn(0) — 25,118 + kR (L), (41)

where (u,(£), pn(£)), is the solution of regularized saddle point problem (23a)
for the parameter ¢.

Let ¢ be a solution of (18), and let (2, p) be the corresponding solution of the
saddle point problem. We will use ¢ to generate a well-behaved feasible point
for (41). Indeed, we take the sequence {(u, (é), pn(é))} of the solutions of the reg-
ularized saddle point problem corresponding to the fixed coeflicient ¢, which
evidently renders a feasible point for (41). Moreover, the limit of {(u, (Z), Pn (Z))}
is characterized by (40).
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Therefore,
- 1 _ - _ 9 1 _ - .2
J(&) = EHM(E) —zlly + EHP(E) —Zzllg
< liminf { ~fn(Bn) — 25, 12 + ~lpn(E) — 25, 1% + knR(E
= 1111'2101;1) 5””71( n) _Z8n||V+E||Pn( n) _Z8n||Q+Kn n) >
U TS SO
< limsup — lun(€) — 21} + lim sup I (9) — 2113
n—o0 2 n— o0 2
N N T Ty T
= —[ul®) —zlly + 5||P(f) —Zllg

oou | A
lix(6) — zII5, + SO — 2018

N — N —

=<

for every (11(5),13(5)) € L{(z) and everyf € A. Consequently, ¢ € A is a mini-
mizer of (18).

(8) The conditions (31a) are valid. We begin by noting that a necessary opti-
mality condition for £, to be a minimizer of (29) is the following variational
inequality

DJu(€)(€ — £) > kn(R(Ly) — R(£)), forevery l € A, (42)

where

1 _ 1 N
Jn(y) = E””n(gn) - Z(Sn”%/ + Ellpn(gn) - Z(Sn”@zQ’

DJ(€)(86) = (Dun(€)(80), un(€) — Zs,)v + (Dpu(£)(86), pn(€) — Zs,)q-

For n € N, we consider the adjoint saddle point problem of finding (wy, t,) €
V x Q such that

a(ly, W, V) + en{wy, Vv + b(n, t,) = (2(3” - un(ﬁn),v>v, forallv e V,
(43a)

b(Wn @) — &nltns @) = (25, —pn(ﬂn),q)(@, forallg € Q.
(43b)

Clearly (43) has a unique solution (wy,t,) € V x Q. We substitute v =
Du,(£,)(¢ — £,) and g = Dp,(£,)(£ — £,) in the above identities and combine
them to obtain

(Dt (€n) (€ =€), tn(€n) — Z5,)v + (Dpn(€n) (€ — £), pu(Ly) — 25,1)@
= —a(lp, wn, Duy(£y) (€ — £1)) — n(Wp, Duy (L) (£ — £y)) v
— b(Duy (L) (€ — £y), ty) — b(Wn:Dpn(gn)(Z —£4))
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+ en(tn, Dpn(n) (€ — £n))q

= —a(ly, Duy(£n)(£ — £y), wn) — €n(Dun(€n) (£ — £n), wn)v
— b(Duy(Ln) (€ — €y), ty) — b(wn, Dpy(£,) (£ — £4))

+ en(Dpu(€n) (€ — £n), tn)Q

= a(l — Ly, un(£n), wn),

where we used the following identity which follows from (24a) by taking v = w,,
andg =t,

— a(l, Dup (&) (€ — £n), Wn) — €n(Duun(€)(€ — £n), Wn)v—b(Wn, Dpn(€) (£—Ly))
— b(Dup(O)(€ — £n), tn) + n(Dpp() (€ — £n), tn)q = a(l — Ly, un(£), Wn),

and (31c¢) follows by using the above expression in (42). The proof is complete.
[ |

Remark 2.4: The data in the regularized saddle point problem steers the regu-
larized solutions towards the solution of (3a) that is closest to (z, ). However, for
the following regularized problem

all, uny(€),v) + en(un(£),v)v + b(v, pa(€)) = f,,,(v), foreveryv e V, (44a)

b(un,q) — €npn(£),q)Q = gv,(q), foreveryq e Q,
(44b)

the regularized solutions converge to a minimum norm solution of (3a). We
also emphasize that the imposed conditions don’t ensure that the sequence of
the adjoint solutions (wy,, t,) is uniformly bounded. However, if the sequence of
(wn, ty) is bounded, then by passing (31a) to limit, we shall derive optimality
conditions for (18).

We will now give a particular case of Theorem 2.3 under the standard assump-
tions that the trilinear form a is continuous and elliptic (on V) and the bilinear
form b is continuous and satisfies the Inf-Sup condition. Then, we can regular-
ize (3a) by using the continuous, and elliptic bilinear form ¢ : Q x Q + R.In the
following, for simplicity, we don't involve data perturbation.

We consider the following OLS based optimization problem of finding £ € A
by solving

minJ(€) := 3 |u(®) = 2% + 3 Ip(0) = ZlIg + 1€l (45)

where, for £ € A, (u(£),p(€)) is the unique solution of (3a), (z,2) € Vx Q is
the given data, x > 0 is the regularization parameter, and || - II%{ is the quadratic
regularizer.
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We will approximate (45) by the following family of regularized OLS-based
optimization problems: For n € N, find £,, € A by solving

. 1 _ 1 .
minJ (0) = > llun(©) = ZI% + SlIpa(0) = 2llg + lCIF,  (46)

where k > 0 is the regularization parameter, and (u,(£), p,(€)) is the unique
solution of the following saddle point problem:

al,up,v) + b(v,pn) =f(v), foreveryveV, (47a)
b(un,q) — enc(pn,q) = g(q), foreveryq e Q. (47b)

The following particular case of Theorem 2.3 shows that (46) approximates (45):

Theorem 2.5: Assume that (1), (2), (6) (on V), and (7) hold. Then, the optimiza-
tion problem (45) has a solution, and for each n € N, the regularized optimization
problem (46) has a solution {,,. Moreover, there is a subsequence {£,} converging
in || - || to a solution of (45).

3. Evaluation of the first-order and the second-order derivatives

One of the significant drawbacks of employing an OLS-based approach is the
computation of the derivatives of the OLS functional, which involve computa-
tionally expensive evaluation of the solution map. Adjoint methods provide a
computationally efficient framework for computing the derivatives of the OLS
functional and have been explored intensively. Recent developments in adjoint
methods can be found in [36-40]. Furthermore, in [41], the first-order and the
second-order adjoint methods were applied to nearly incompressible elasticity
imaging.

In the following, we give a quick derivation of the first-order and the second-
order derivative formulas for the OLS objective by using the adjoint method.
We will use the discrete variants of these formulas to compute the gradient and
Hessian of the OLS objective.

3.1. Evaluation of the first-order derivative
We recall that the OLS objective (without the regularizer), with the regularized

saddle point problem as the constraint, reads

. 1 _ 1 )
rgél}\l]n(ﬂ) = Ellun(ﬁ) —Zs, I3 + Ellpn(ﬁ) - Za,,II%Q, (48)
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where (u,(£), pn(£)) is the unique solution of regularized saddle point prob-
lem (23a), that is,

a(l, un(£),v) + enun(£),v)v + b(v, pu(£))
= fu, () + €n(zs,,v)v, foreachveV, (49a)

b(un(£),q) — en(pn(£),q) = £,(Q) — €n(Z5,-q)q> foreachqe Q.  (49b)

As seen earlier, the derivative of ], at £ € A in a direction &£ is given by

DJa(€)(8€) = (Dun(€)(8), 4n(£) — 25, ), + (Dpu(D)(S0), pu(0) — 25,y

For an arbitrary (v,q) € V x Q, we define the Lagrangian L, : Bx V x Q - R
by

Lu(€,v,q) = Ju(€) + a(l, un(€),v) + eu(un(€), v)v + b(v, pn(£)) + b(un(£), q)
- sn(Pn(Z)’CI)Q _fvn ) — 8n<28n’ 1207 _gvn(CI) + 5n<28n)q>Q-
Since (u,(£), pn(£)) is the unique solution of (49a), the following identity holds
Ly(4,v,q) = Ju(€), forevery (v,q) € V xQ,

and consequently for every (v,q) € V x Q, the following identity holds for any
direction 6¢:

d¢Ln(€,v,q) (8€) = DJn(£) (80). (50)

The adjoint method chooses the test function (v, q) cleverly to avoid the direct
computation of the solution map as we shall see shortly. First, we note that

deLn(L, v, q) (8€)
= (Dun(€)(80), un(€) — Zs, )y, + (Dpu(€)(80), pu() — 25,), + a (8L, un(€),v)
+ a(l, Dun(£)(80), v) + en(Dun(£)(8€), v)v + b(v, Dp(£)(5))
+ b(Dun(£)(86), q) — en(Dpn(£)(60), 9)q- (51)

For £ € A, let (w,(£), t,(£)) be the unique solution of the adjoint problem

a(l, wy(£),v) + en(wn(£),v)qQ + b(v, t,(£)) = <55n—un(€), V>V , foreveryv e V,
(52a)

bwWn(0),9) — enlpu(0),q)Q = (25, — pn(0),q), foreveryge Q  (52b)

where (u,(£), pn(£)) solves (49a) for the given ¢ and (zs,, z5,) is the given data.
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We set (v,q) = (wn(£),t,(£)) in (51) and after a simplification obtain

e Ln (L, wn(£), ta(£)) (8€) = (Dun(€)(8), un(€) — 2s,),
+(Dpu(6)(30), pu(€) — 25, ),
+ a(84, un(£), wn(£)) + a(l, Duy(€)(8€), wn(€))+en(Dun(£)(80), wa(O)) v
+ b(wn(£), Dpn(£)(8€)) + b(Dun(£)(8£), tn(£)) — €x(Dpn(€)(8£), ta(€))q
= (Dun(©)(80), un(€) — Zs, ), + (Dpu()(80), pu () — Zs,)q,
+ a(8l, un(£), wn(£)) + a(l, wn(£), Duy (£)(8€))+en(wn(£), Dun(£)(86)) v
+ b(wn (), Dpn(£)(80)) + b(Dun(€)(6£), tn(£)) — en(tn(£), Dpu(£)(80))q
= (D1 (£)(80), un(£) — Zs,, ), + (Dpa(£)(8£), pu(€) — 2’5,1)@
+ a(8, un (£), wn(£)) + (25, — tn(£), Duy(£)(86))y,
+ (25, — Pn(©), Dpa(£)(80)),
= a(8¢, un(£), wa(0)),

which at once gives the formula for the first-order derivative of J,:
D] (€) (8€) = a(8€, un(£), wn(£)). (53)

In summary, we deduce the following scheme to compute DJ,,(£)(¢) :

(1) Compute (u,(£),pn(£)) by solving the regularized saddle point prob-
lem (49a).

(2) Compute (w,(£), t,(£)) by solving the regularized adjoint problem (52a).

(3) Compute DJ,(£)(6¢) by using (53).

3.2. Evaluation of the second-order derivatives

We now provide a second-order adjoint method for the evaluation of the second-
order derivative of the OLS objective. The second-order adjoint approach yields
a formula for the second-order derivative that does not involve the second-
order derivative of the regularized parameter-to-solution map. The key idea is
to compute the derivative directly via its variational characterization and avoid
the computation of the second-order derivative by the adjoint philosophy.

We recall the derivative characterization of the regularized parameter-to-
solution map:

a(t, Du,(£)8¢,v) + €,(Du,(£)8¢,v)y + b(v, Dp,(£)5£) (20a)

= —a(8l,u,(£),v), forallveV, (54a)
b(Du,(£)6€,q) — en(Dpn(£)8€,9)qg =0, forallge Q. (54b)
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Forany (v,q) € V x Q, (u,(£), pn(£)) € V x Q, and for a fixed direction §¢,, we
define

Ln(l,v,q) == DJn(£)(842) + a(la, Duu(£)842,v) + €4(Dun(£)élz,v)v  (55)
+ b(v, Dpn(£)8€2) + a8z, un(£),v)
+ b(Dun(£)8€3,q) — en(Dpn ()32, 9)q
= (Dun(€)(8€2), un(€) — Zs, )y, + (Dpu(€)(8€2), pu(€) — 25,)
+ a(l, Duy (€)842, v) + €4 (Dun(€)8L2,v)v + b(v, Dpu(£)8£2)
+ a(84y, uy(£),v) + b(Du,(€)6€2,q) — e4(Dpn(£)8€2,q)q. (56)

Using the definition of £, for every (v,q) € V x Q, and for any direction §¢;,
we have

3 Ln(L,v,9)(8€1) = D*J,(£)(8€1,8€7). (57)

By computing the right-hand side of the above identity and using (56), we obtain

3 Ln(€,v,9)(801) = (D*un(€)(8€1,8¢2), up — Zs,,)
+ (Duy (£)(8£2), Duy (£)(8£1))y
+ (D?pn(0)(8€1,82), pn — 25,)y + (Dpa () (8£2), Dpu(£)(3€1))
+ a(84,, Du, (£)(841),v)
+ a(641, Du, (£)(6¢4,),v) + a(Z,Dzun(Z)(Sﬁl, 843),v)
+ £n(DPun (£) (821, 8£2), vy
+ b(v, D?pu(£) (841, 862)) + b(D*u, (£)(8¢1,8¢2), q)
— £a(D*pu(£)(81,8£2), q)q-

\%

By setting (v, q) = (wn(£), t,(£)); the solution of (52a), we obtain

00L(0,v,9)(801) = (DPun(€)(3€1,86), uy — 25,
+ (D (€)(8€2), Dun(£)(801))y
+(D?pu(€)(8€1,8€2), pn — 25, )y + (Dpu(©)(8€2), Dpu(£)(8€1))
+ a(8¢2, Duy(€) (1), wn(£))
+a(801, Dut(£)(8€2), wn(0)) + a(l, D?un(£) (801, 8£2), wa(£))
+ en(D?un(£)(801,8€2), wa(0))v

\%
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+ b(wn(0), D*pn(£)(8€1,8€2)) + b(D*uy (£)(841,8€2), ta(£))
— £n(D*pn(£)(8£1,8£2), t(0)) @
= (D?un(£)(8€1,8€2), un — Zs, ), + (Dun(€)(8£2), Dun(£)(8€1))y
+(D?pu(0)(8€1,8€2), pn — 25,)
+{Dpu(0)(8€2), Dpu(£)(3€1)),
+ a(801, Dun(0)(8€2), wn) + a(8€2, Dia(€) (8£1), wy)

+ (25, — tn, D*un(€)(8€1,802)) + (25, — pn» D*pu(€)(8€1,8¢2))
= (Dun(£)(8€2), Dun(£)(8€1))y + (Dpn(£)(8€2), Dun(£)(8€1))g
+ a(61, Du,(£)(64,), wy)

+ a(4y, Du,(£)(641), wy).

Therefore, using (57) we get the following formula for the second-order deriva-
tive of the OLS that has no explicit involvement of the second-order derivatives
of the solution map:

D*J,,(0)(8¢1,8¢2)
= (Dup(£)(82), Dun(£)(8€1))y + (Dpn(€) (), Dun(£)(5€1))
+ a(8€1, Duy (£)(8€2), wy) + a(8€2, Duy(£)(8€1), wy).

In particular, we have
D?J,(£)(8¢,80) = (Sui, Sun)y + (8pn» 6pn)Q +2a(8¢, 8uy, wy).  (58)

Summarizing, we obtain the following scheme to compute D?],,(£) (8¢, 8¢) :

(1) Compute (u,(£),pn(£)) by solving the regularized saddle point prob-
lem (49a).

(2) Compute (§uy, 8py) by solving the regularized saddle point problem (20a).

(3) Compute (w,(£), t,(£)) by by solving the regularized adjoint problem (52a).

(4) Compute D*J,(£)(8¢,8£) by (58).

We note that the second-order adjoint approach given above is based on eval-
uating the second-order derivative of regularized OLS by a direct computation of
its first-order derivative. However, employing the first-order derivative formula
of the OLS obtained from the first-order adjoint approach results in an entirely
different second-order adjoint approach.
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4. An application to the elasticity imaging inverse problem
4.1. An analytical example

The following system describes the response of an isotropic elastic object to
known body forces and boundary traction is the mathematical basis for the
elasticity imaging inverse problem:

—V.o=fing, (59a)
o =2ue(u) +rdivul, (59b)
u=gonly, (59¢)

on=honT,. (59d)

Here the domain Q as a subset of R? and 9Q2 = I'; U T, as its boundary, the
vector-valued function u = u(x) is the displacement of the elastic body, f is the
applied body force, # is the unit outward normal, and € (1) = %(Vu + Vul)isthe
linearized strain tensor. The resulting stress tensor o in the stress-strain law (59b)
is obtained under the condition that the elastic body is isotropic and the displace-
ment is sufficiently small so that a linear relationship remains valid. Here u and
A are the Lamé parameters which quantify the elastic properties of the object.

In the numerical experiments, we will focus on the linear incompressible
elasticity model. We recall that if the Poisson’s ratio v 2 0.5, then due to the
relationship A :=2vpu /(1 —2v), A is large, and the elastic object is termed
nearly incompressible. On the other hand, if v — %, the elastic object is said to
fully incompressible. For incompressible materials, the relationship (59a) is not
valid, and an alternative formulation is derived involving the incompressibility
constraint.

By setting Q= L*(Q), and V= {v=(v,n) € H(Q) x H(Q) : v =0
on I'1}, the variational formulation of (59a) in the incompressible case reads:
Find (4, p) € V x Q such that

/ 2ue(u) - e(v) + f p(divy) = /fv+/ vh, foreveryve v, (60a)
Q Q Q I

/ (divu)g =0, foreveryqe Q, (60b)
Q

which corresponds to the saddle point problem (3a) by taking

a(,u,u,v):/ 2ue(u) - €(v), b(u,q) =/ qdiv u,
Q Q

where 1 = pu(x) is the sought parameter. We emphasize that inhomogeneous
boundary conditions can be incorporated by using the natural data shifting
technique.
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Let 2 = (0,1) x (0, 1) be the domain. The sought parameter is u(x,y) = 1 +
x%y + yx, and the chosen load function is

flx,y) = (2x3 + 4x2y +4xy — 2x + 2,6x2y + 4xy2 + 2y2 —2y+ 2) .

On the bottom and right boundaries (I';), we use Dirichlet boundary condi-
tions. On the bottom boundary, y = 0, we have g(x,y) = (0,x(1 — x)), and on
the right boundary, x = 1, we have g(x,y) = (y(1 — ¥),0). On the top and the
left boundaries we impose Neumann boundary conditions. On the top bound-
ary, y = 1, we have h(x,y) = ((—(x*y +xy + 1)(2x + 2y — 2),0)), and on the
left boundary, x = 0, we have h(x, y) = (0, (x*y + xy + 1)(2x + 2y — 2)). This
displacement vector in this case is u(x, ) = (y(1 — ), x(1 — x)). For simplicity,
we consider no data contamination.

For the finite element discretization, we use a simple regular triangulation 7"
(h is the diameter). For the discretization spaces, we consider P; elements for all
variables, that is, the pressure term p, the parameter u, and both components of
the displacement u = (uy, uz).

For discretization, we use the finite element library FreeFem+-+- [42]. We solve
the optimization problem by using the IPOPT optimization library integrated
with FreeFem+-+-. We recall that IPOPT is a software library for large scale non-
linear constrained optimization, which implements a primal-dual interior-point
method (see [43]). We approximate the Hessian by a BFGS update quasi-Newton
method. We recall that IPOPT permits box constraints, and as the lower bound,
we set [(x) = 1 and as the upper u,(x) = 3.5. In all numerical experiments, we
take H = H! () as the regularization space.

Numerical results are summarized in Tables 1-3. Table 3 shows the stability of
discretization error and Table 1 shows the effect of the regularization parameters

k and ¢ in the error for a fixed value ‘Z/TE of h. Table 2 shows the effect of k and h

for a fixed value 1e—10 of ¢. The identification error is measured by the quantity

”Mh - MHLZ(Q)
Il (@)

where 4 is the (interpolated) exact parameter, and u” is the computed solu-
tion. Given the collected data, the most stable option appears to be « €
{le—04, 1e—05}, which gave excellent reconstructions of the parameter for all
chosen values of €. For smaller values of x (1e—06, 1e—07), we observe a decline
in the quality of the reconstructions (see also Figure 1).

Remark 4.1: For a manageable dimension for the optimization problem, instead
of the compatible P,P; elements, we used IP;IP; elements. However, the identifi-
cation is still of satisfactory quality.
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Figure 1. Identified parameter w for different choices of regularization parameter «.

Table 1. Error ||u" — iz /Il 2(q) forh = *2/—05, and various values of k and ¢.

e\k Kk = le—04 K = 1e—05 K = 1e—06 K = 1e—07
1e—05 6.083e—03 2.615e—03 6.297e—03 1.436e—02
1e—06 6.054e—03 2.630e—03 6.784e—03 1.567e—02
1e—07 6.147e—03 3.104e—03 7.265e—03 1.209e—02
1le—10 6.092e—03 3.646e—03 8.576e—03 1.448e—02

Table 2. Error ||u" — w2/l 2 for e = 1e—10, and various values of hand «.

h\k Kk = le—04 Kk = 1e—05 Kk = 1e—06 Kk = 1e—07
ﬁ/m 8.593e—03 6.865e—03 8.854e—03 2.640e—02
V2/12 7.040e—03 5.374e—03 9.103e—03 2.260e—02
V2/14 6.344e—03 4.209e—03 6.668e—03 1.616e—02
ﬁ/16 6.065e—03 3.500e—03 5.507e—03 1.728e—02
V2/18 6.037e—03 3.210e—03 8.758e—03 1.536e—02
ﬁ/ZO 6.092e—03 3.646e—03 8.576e—03 1.448e—02

4.2. 3D reconstruction using a tissue phantom data

We will now test the developed framework on a 3D reconstruction of the elas-
ticity modulus o using a tissue phantom data. The phantom used was created
using gelatin, with silica added for acoustic scatter, to mimic elastic properties of
soft tissue (see Figure 2(a), which is taken from [44]). A complete description of
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Table 3. Regularized discretization error for e = 1e—10.

he = —he -
h lur® =0l 2 137° =02

h,e
o112, 0212, IP" Ml 12 (@)
V2/10 3.871e—04 7.560e—04 3.795e—03
V2/12 2.704e—04 5.304e—04 2.597e—03
V2/14 1.995e—04 3.924e—04 1.888e—03
V2/16 1.532e—04 3.020e—04 1.434e—03
V2/18 1.214e—04 2.396e—04 1.127e—03
V2/20 9.851e—05 1.947e—04 9.088e—04
e
~ |
TRANSLATION
TRANSP}JCER/;—» INCLUSION
P i / PHANTO! ’
i P

(a) Phantom. (b) Transducer.

Figure 2. (a) Phantom and (b) Transducer.

the phantom construction and experimental imaging setup is available in [44].
The whole phantom was cuboid in shape (60 x 60 x 50 mm in width, length,
and height, respectively) with an 8% by mass background gelatin concentration
and a centrally located, stiffer, cylindrical inclusion of 12% gelatin concentration
(4.80 mm in diameter and 5 mm in height). It led to an approximate inclusion
to background contrast of 1.89 4 0.11 as measured by an independent mechan-
ical test [44]. A bottom layer (approximately 10 mm of additional height) was
also added to the phantom. Ultrasound (US) image sequences were collected
using an Analogic AN2300 (Analogic Corp., 8 Centennial Drive, Peabody, MA
01960) with a Hz linear array transducer. Three dimensional, static images were
acquired by scanning the US transducer at a fixed rate while triggering the two-
dimensional US frame acquisitions at a fixed elevational distance of 0.14 mm
(see Figure 2(b)). Two, 3D images were acquired, a pre-deformation 3D image
at approximately no compression, and a second, post-deformation image, after
A~ 1-2% strain was applied to the phantom in the axial image direction. The
scanned volume measured approximately 27.44 mm X 55.62 mm X 27.44 mmin
the lateral (x), axial (y), and elevational (z) directions, respectively. The full 3D
displacement vector field was measured from the static images using an image
registration based, 3D displacement estimator described in [44].

We use a discretization scheme described in the previous (analytical) exam-
ple. We also take into account the practical aspects given in [44], see also [45]. In
the simulation, we used a data projected on a mesh of size 30 x 30 x 30 (full data
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(a) The central zy-slice (b) The central zx-slice

Figure 3. Five lines of parameter reconstruction for two central slices. (a) The central zy-slice and
(b) The central zx-slice.

available corresponds to a mesh of size 41 x 61 x 41). Another important aspect,
when dealing with phantom data, is the choice of boundary conditions. Following
[44,45], we considered Dirichlet conditions in the top and bottom boundaries.
We set the vertical direction/component of the remaining boundary conditions to
be Dirichlet and allow lateral components to be traction free. We solve the prob-
lem with IPOPT, and take [, (x) = 1 and up(x) = 3.5 as the lower and the upper
bound. Since we are dealing with a discontinuous parameter, we have chosen the
standard TV regularizer, see [44]).

The 3D simulation results are shown in Figures 3 and 4. In Figure 3, we see the
parameter p values along five lines on two central slices (by planes x = 12 and
y = 25). Figure 4 highlight the inclusion from different perspectives, and plane
slices in Figure 4 are coloured by the values of the identified parameter j. The
developed scheme isolates the inclusion very well, even from a data that is pro-
jected into a coarser mesh. In particular, one can recognize the cylindrical shape
of the inclusion in Figure 4(a). Certain artifacts that are close to the boundaries
and a stand-off layer correspond to the stiffer bottom part. The background con-
trast is approximately 1, corresponding to the lower bound, whereas the inclusion
contrast is between 1.3 and 1.5.

5. Identifying a constant coefficient in saddle point problem (15)

We shall now revisit Example 1.3 to identify (x) = 1 in the saddle point prob-
lem (15a) by taking a(u, u,v) = fQ uVu - Vv dx. Following [31, Section 5], we
take € = (0,1) x (0,1), while the curve Iy is defined by I'g = {(x,z(x)) : x €
(0,1)}, where z(x) = —x> + 1.5x% + 0.25. The subdomains below and above are
defined by Q™ and Q, respectively. We denote the restriction of u on Q1 by u™
and on 2~ by u~. We have

du—  dut
P=g ~ g SH .
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(c) An xy-plane slice (d) An yz-plane slice
Figure 4. A3Dvisualization of the inclusion. (a) Theinclusion. (b) An xz-plane slice. (c) An xy-plane
slice and An yz-plane slice.
As in [31, Section 5], we take

7y — Dy —z(x))
z(x) ’

and consider the problem with f = —Au on Q* andf = 0on Q™.

u(x, y) = sin(mwx) sin
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(a) Geometrical description of the domain. (b) Comparison between analytical p and numerical py.

ere¢00 r

(c) Identification. (h = V2/50, k =1e-05, £ =1e-04). (d) Three lines of vertical parameter reconstruction.
Figure 5. Numerical Results for Example 1.3. (a) Geometrical description of the domain. (b) Com-

parison between analytical p and numerical py,. (c) Identification. (h = ﬁ/SO, Kk = 1e—05,¢ =
1e—04) and (d) Three lines of vertical parameter reconstruction.

Table 4. Error behaviour.

h i = mnllzy /Il
V/2/10 4.019e—02
V2/20 5.006e—02
V2/30 3.949¢—02
/2/40 5.405e—02
V2/50 3.768e—02

Following [31], we take ¢ = 1le—04 in our numerical computations. We use
the L2-regularization, that is, c(p, q) = fol pq dx, for every p,q € L?(0,1). This is
the simplest of the four choices of the regularization used in [31]. Based on the
numerical experimentation, we choose the regularization parameter for the OLS
to be k =1-e05, which provides the best performance for the considered set of
discretization parameters. We give the numerical results in Table 4. Numerical
approximation of p in Figure 5, which corresponds to the optimal y obtained by
solving the inverse problem, is quite comparable with the corresponding solution
in [31, Figure 5.2]. The preliminary computations seem to provide a reasonable
reconstruction; it is in the range of 3-5% in the lower part @, which is slightly
better than in the upper part 2, where the primary error source is in the right
top corner. We refer the reader to [31] for any missing details and additional
information Example 1.3.
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6. Concluding remarks

We studied the inverse problem of parameter identification in general saddle
point problems by using the OLS objective. We advocated for the usefulness of
incorporating the regularization saddle point problems into the OLS formulation.
It would be of natural interest to develop error estimates involving the discretiza-
tion parameter and the regularization parameters. Such error estimates have been
developed for the direct problem. However, there is no parallel study for inverse
problems. Detailed numerical studies also need to be carried out for the cases
when the Inf-Sup condition is violated. In recent years, a great deal of attention
has been given to identification in the stochastic PDEs (see [1]) or to Bayesian
inverse problems (see [46]), and it is of interest to study the elasticity imaging
inverse problem when the sought elasticity parameters are random variables.
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