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We generalize the Pfaffian formalism, which has been playing an important role in the study of time-
reversal invariant topological insulators (TIs), to 3D chiral higher-order topological insulators (HOTIs)
protected by the product of fourfold rotational symmetry C; and the time-reversal symmetry 7. This
Pfatfian description reveals a deep and fundamental link between TIs and HOTIs, and allows important
conclusions about TIs to be generalized to HOTIs. As examples, we demonstrate in the Letter how to

generalize Fu-Kane's parity criterion for TIs to HOTIs, and also present a general method to efficiently
compute the Z, index of 3D chiral HOTIs without a global gauge.

DOI: 10.1103/PhysRevLett.124.036401

Introduction.—In comparison to the well-studied topo-
logical insulators (T1Is), which have a gapped d-dimensional
bulk and topologically protected gapless states on its d — 1
dimensional boundaries [ 1-7], the recently proposed higher-
order topological insulators (HOTIs) have a similar gapped
bulk, but the gapless states emerge at lower dimensions
[8-30], e.g., the 1D hinge of a 3D insulator. In this Letter, we
focus on second-order topological insulators characterized
by nontrivial magnetoelectric polarization Ps,e.g., 3D chiral
second-order topological insulators (CSOTIs) with gapless
chiral hinge states propagating in alternative directions. The
physical meaning of this topological invariant can be
understood by the theory of electric multipole moments
[8,9]. These second-order TIs have a strong connection to
TlIs, and, in particular, if the time-reversal symmetry 7T is
enforced, 2P5 recovers the Z, index of a TI [31]. If the time-
reversal symmetry is broken, 2P; still defines a Z, topo-
logical index, as long as a space inversion, rotoinversion, or
C,T symmetry is preserved [10-17.32,33], where C,
represents n-fold rotation with n =2, 4, 6, and this Z,
index, in the absence of time-reversal symmetry, character-
izes a second-order TI. For systems invariant under space
inversion or some rotoinversion, this topological index is
fully dictated by high-symmetry momenta [34-39].
However, in general, the diagnosis of higher-order topology
requires more sophisticated techniques like the nested
Wilson loops [8-10,40-42].

Although TIs and these second-order Tls are character-
ized by the same P;, which suggests a strong and deep
connection between the two, one important link between Tls
and second-order TIs is still missing, i.e., the Pfaffian
formula for TIs developed by Fu and Kane [4]. This
Pfaffian formula laid the foundation for many other impor-
tant conclusions about TIs. For example, in principle, to
compute the Z, index for a T1, it requires global information
about the entire Brillouin zone (BZ). In practice, this means
that a global gauge will be needed, such that wave functions
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are globally smooth and continuous in the entire Brillouin
zone. Although the existence of such a gauge is guaranteed,
finding it is not always straightforward. Based on the
Pfaffian formula, several shortcuts were developed to bypass
this complicated procedure of finding a global gauge, such
as Fu-Kane’s high-symmetry point approach for systems
with space-inversion symmetry [4], and numerical tech-
niques by Fukui and Hatsugai [43] and by Soluyanov and
Vanderbilt [44], which dramatically reduced the computa-
tional costs. For second order Tls, however, due to the
broken time-reversal symmetry, a Pfaffian formalism is still
absent, and thus knowledge that we accumulated from
studying T1s cannot be directly generalized.

In this Letter, we develop a Pfaffian formalism for higher-
order topological insulators, more precisely CSOTIs, utiliz-
ing a composite operator obtained from the C,T sewing
matrix. We find that in strong analogy to TIs, the topological
index of CSOTIs can also be determined via a Pfaffian
formula. This conclusion not only provides a new pathway
for computing topological indices, butalso makes it possible
to generalize existing Pfaffian-based knowledge about T1s to
high-order TIs, such as methods to obtain topological
indices without a global gauge. As examples, we will show
below that our Pfaffian formula provides a straightforward
generalization of the Fu-Kane’s parity criterion [6] to second
order TlIs if a fourfold rotoinversion symmetry is present,
which demonstrates a direct connection between P; and
symmetry indicators [36,38]. For general CSOTIs without
rotoinversion symmetry, our Pfaffian formalism indicates
that high symmetry points alone do not contain sufficient
information to fully dictate the topological index, but the
Pfaffian formalism allows us to get the index through
examining only a small part of the Brillouin zone without
using a global gauge, along a similar line as what has been
achieved for TIs [43.,44].

Generalization of the Pfaffian formalism.—We consider
aCSOTl invariant under C4T but without T or C4 symmetry,
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and we set the rotational axis to be aligned with the z
direction. The more generic systems will be covered in the
discussion. The half-integer spin leads to (C4T)* = —1,
instead of (C4T)? =—1, which has been studied in
Ref. [45]. Because of the anti-unitary nature of C4T and
the half-integer spin of fermions, in analogy to Kramers
doublets, all bands in our system shall show twofold
degeneracy at C,T-invariant momenta, denoted as K* =
{\M,Z,A}, where T =(0,0,0), M= (r,7,0), Z=
(0,0,7), A= (m,z,x). Without losing generality, we
assume that there is no accidental degeneracy beyond what
is required by these Kramers pairs, because accidental
degeneracy can always be lifted by perturbations without
changing topological indices. Thus, for a system with 2N
valance bands, a 2N x 2N unitary sewing matrix for the
symmetry operator C4T can be defined:

an(k) = (um(C4Tk)|C4T|un(k))’ (1)

where m, n are valence band indices, C4Tk = (ky ,—ky,—k;,),
and |u,(k)) is the periodic part of the Bloch wave function.
In the absence of accidental degeneracy as assumed above,
this B(k) matrix is 2 x 2 block diagonal due to the Kramers
pairs, i.e., B = diag(By, B, ..., By) with B,’s being 2 x 2
unitary matrices forr = 1,2, ..., N. According to Ref. [31],
there must exist a smooth gauge in our system such that
B, (k) is globally smooth and det[B, (k)] = 1. Therefore asa
function of momentum, each B,(k) defines a smooth
mapping from the 3D BZ to the linear space formed by
all SU(2) matrices. In the language of a differential mani-
fold, a 3D BZ is a three-torus T3, while SU(2) is diffeo-
morphic to a three-sphere S°, and thus B, defines a mapping
T3 — §°. For such a mapping, there exists an integer
topological index, i.e., the degree deg[B,], which measures
how many times the 7> wraps around the $°:

Pk .
deglB,] = - [ 3o el(B, 0181 (,0,81) (B, 0,81,

where 9; = 9/0k;.

The definition of magnetoelectric polarization P; can be
found in Refs. [2,10,11,31,46-49] and it is known that P;
can be computed via the sewing matrix [10,11,47]

2Py = — f kel Tr[(BO,BY)(BO;B) (BO,B')].
24n°
For a block diagonal B matrix, this integral reduces to
N
2Py =) deg[B,], 2)
r=1

where deg[B,] is the degree of the mapping B,: T? - §*
discussed above. It is worthwhile to emphasize that only the

FIG.1. Illustrationofamap f: S' — S! with degree 0. The black
circle is the target space and the blue line demonstrates the
mapping from the original space to this circle. To calculate
deg,[f], we can pick a nonsingular point like P; or P, in the
target space and count the number of points that are mapped to it.
There are four points mapped to P; and two points to P,, therefore
deg;[f] =4 mod 2 = 2 mod 2 = 0. Note that we cannot choose
P; to calculate the degree because the map at point E is singular.

module 2 of 2P3 (or deg[B,]) is gauge invariant and
thus has real physical meaning. This conclusion can be
easily checked by noticing that a gauge transformation
can change the degree by an even integer, i.e., under
|y (K)) = |u;(k)) U (K), B(k) - UT(C,Tk)B(k)U*(k)
and deg[B] — deg[B] + 2deg[U]. Therefore we will only
keep track of the mod 2 of the degree, which will be denoted
as deg,[B,] in the rest of the Letter.

The mod 2 of the degree can be easily calculated through
a counting technique, if we realize that the degree counts
how many times the original spaces wraps around the target
space. Here, we first demonstrate this technique using a
simple example: a mapping between 1-spheres f: §' — S!
shown in Fig. 1. To get deg,[f], we take any nonsingular
point in the target space and count how many points in the
original space are mapped to this target point under f. If this
number is n, then deg,[f] = n mod 2.

For B,: T3 — S, it turns out that a specific gauge can be
chosen, which allows the counting technique to be easily
adopted. Because C, = —(C,T)?, C, is also a symmetry of
the system, and therefore the 2N x 2N sewing matrix
D,y (k) = (1 (C2k)|Cy|u,(k)) is unitary, where Cok=
(—ky, —ky, k). The fact that C,=—(C,4T)? and (C,)*=-1
implies [50]

D(k) =—B(C,Tk)B*(k) and D(C,k)=-D'(k). (3)

Because C, does not give rise to nontrivial topology in the
presence of the C,T symmetry, there should be no
topological obstruction to smoothly deform the C, sewing
matrix D(k) to a constant matrix independent of momen-
tum k. In the Supplemental Material [50] we explicitly
construct a smooth gauge transformation to make D(k) =
diag(is,, io,, ..., ic,) while keeping B, (k) € SU(2). With
this gauge choice, Eq. (3) implies
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B,(C,TK) = —io, B (k). (4)

This condition has remarkable consequences. Ifk is a C,T
invariant point, Eq. (4) implies

B,(K)=+—(0,+0,)=A,, KeK* (5

i
V2
where K* = {I", M, Z, A} represents C,T invariant points
as defined early on, i.e., at C, T invariant points, B, can only
take one of these two distinct values A_.. On the other hand,
if k is not a C4T invariant point and if B,(k) = A_, then
Eq. (4) implies B,(C4Tk) = B,(k) = A.. Hence, if some
k ¢ K* is mapped to A,, there must be one (or three)
additional momentum point (related to each other by C4T)
which is also mapped to A, and the same is true for A_.
Therefore if we choose A, (or A_) as the special point to
perform the counting described above, as far as degy[B,] is
concerned, only the four C4T invariant points need to be
considered, because any other point contributes even
numbers to the counting. In summary, for each B,, we
only need to examine the four C4T invariant points (K*). If
n, of these four points are mapped to A, (and thus 4 — n, to
A_), then deg,[B,] = n, mod 2.
Now we relate this n, to a Pfaffian. Define

CisT+C;'T
\/i »

where m, n are valence band indices. Under the gauge chosen
above, at K € K*, M(K) is block diagonal M(K) =
diag(M,,M,, ..., My). Using the facts (C4)? = —(C,)2,
T2 = -1, and [(C4+ C3')/v2]* =1, we show in the
Supplemental Material [50] that M(k) is antisymmetric
MT(k) = —-M(k) for every k in the BZ, and at C,T
invariant points K € K*, M(K) is unitary and M(K) =
[B(K) — BT(K)]/+/2. From Eq. (5), we know that for
Kek® B, (K)=A, or A_ and thus, respectively,
Pf[M,(K)] = +1 or —1, ie., counting n, is identical
to counting the number of C,T invariant momentum
points with Pf[M,(K)] = +1, i.e., (=1)%&[B] = (-1)" =
[ Ikex Pf[M,(K)], and when contributions from all valence
bands are combined, we have

M (k) = (up(K)[Oluy(k)), O = (6)

Pf[M(K)]
-1 = T ——= 7
) Kll.‘ \/det[B(K)] )

This equation is one main conclusion of this Letter. It
generalizes the Pfaffian formula of Fu and Kane [4] to
systems without time-reversal symmetry, viareplacing the T’
operator with a new combination ® = (C,T + C;'T)/V2.

On the right-hand side (r.h.s.) of Eq. (7) we added by
hand a denominator v/det B. In the gauge we choose above,
this quantity is unity and thus does not contribute anything.

|

N

FIG. 2. Left: Schematic plot of the Brillouin zone. 7,, is the
colored rectangle and Jr,), is its boundary. The green line
represents the momenta with Pf[M (k)] = 0 for the Hamiltonian
shown in Eq. (16). The line of zero Pfaffian penetrates 7y,
resulting in a phase winding of 27 in Eq. (15), which implies that
P; = 1/2. Parameters used here are p = 0.5, ¢, =1, g, = 0.2,
q; = 0.3. Right: spectra of H as a function of &k, with open
boundary condition along k. and k, with the same parameters. The
existence of gapless hinge states suggests nontrivial topology.

However, this denominator is important, because it
makes the rh.s. gauge invariant. Thus, although our
conclusion is based on a specific gauge, it remains valid
regardless of gauge choices, as long as B(k) remains
smooth and a unique sign is chosen for the square root for a
continuous branch of /det[B(k)], which can always
be achieved because B(k) is unitary for every k. To
demonstrate this gauge invariance, here we perform a
generic gauge transformation |u,(k)) — |u;(k))U;,(Kk).
Because of Pf[BABT|= Pf[A]det[B] and detBABT| =
det[A] det[B]?, the gauge transformation implies that
Pf[M(K)] — Pf[M(K)|det{U(K)]* and +/det[B(K)] —
\/det[B(K)| det[U(K)]*. Hence the effect of the gauge
transformation cancels in Eq. (7).

3D index as a 2D integral.—In this part, we will show
that Eq. (7) can be expressed as a 2D integral, which greatly
reduces computational cost for evaluating P, similar to
what has been achieved in Tls [43,44]. We define another
matrix for the valence bands

mmn(k) = (um (—k)|®|u"(k)), (8)

with © defined in Eq. (6). @(k) is not unitary for a generic
k, but we are mainly interested in w(k) for k inside the
straight line formed by ZI'Z and AMA (Fig. 2). As shown
in the Supplemental Material [50], along these two lines
(k) is unitary and det[ow(k)] = det[B(k)]. Because
o(K)=M(K) for K € K4, Eq. (7) can thus be rewritten as

_Pflo(K)]
1) = 9
(-1) KH Nk 9)

As Fu and Kane [4] have shown for Tls, Eq. (9) can also
be expressed as an integral
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1
2Py =— [f Adf—/ d'rF} mod 2. (10)
2 i Ti2

Here 7, ;, refers to the rectangle ZZA A in Fig. 2 and 9z, ),
is its boundary. A and F are the Abelian Berry connection
and Berry curvature inside 7;/,. If we label each wave
function |u,(k)) as |ui(k)), where r =1,...,N labels
different Kramers pairs and s =1, 1 distinguishes the
two states in a Kramers pair, there is a gauge fixing
condition at the boundary ZZ and AA for Eq. (10) to be
valid:

|ur(~k)) = Oluy (k)), (11)

ul(=k)) = ~Oul (K)). (12)
The formula here is slightly different from the one
used in Ref. [4], because T is now replaced by ® =
(C4T + C3'T)/+/2. But for Egs. (11) and (12), because it
is evaluated only along ZZ and AA, where Ok =
Tk = —Kk, the difference between T and © vanishes and
thus derivations in Ref. [4] can be generalized to systems
studied here by simply replacing T by ©.

Equation (10) enables us to develop efficient numerical
techniques to calculate P; without the need for a global
gauge, following a similar line of thinking as has been
achieved for Tls [43,44]. The method proceeds as follows.
First, let us select a discrete mesh in 7,/, and define
Qmn(K) = (U, (K)|u,(k +5,)), where y = 1,2 and s, is
the mesh step size in the two directions in 7y/,. Apply
gauge fixing condition Eqgs. (11) and (12) to the boundary
d712. Let L, (k) =det[Q,]/|det|Q,]| and A, (k) =InL,(k),
F(k) =In[L;(K)Ly(k + s;)L7'(k + s2)L;'(k)], where
the imaginary part of all the logarithms are restricted to
(=, z]. Then 2P5 can be calculated through

2P, :%[k;ﬂﬁﬂ(k)— > F‘(k)} mod 2,  (13)

kE’l’]l.rz

where the direction u should be along the positive direction
of Ory/,. This numerical technique does not require a
smooth gauge and is thus convenient to implement. This
method has been well known for 2D and 3D TI, and is now
generalized to 3D HOTI without time-reversal symmetry.

S, symmetry and high-symmetry points.—We show here
that if the system has a fourfold rotoinversion symmetry S,
in additionto C4T, P5 can be directly obtained by evaluating
S, eigenvalues athigh symmetry points. This conclusion is a
generalization of the Fu-Kane's parity criterion [6] to
HOTIs, with a key observation that § = (S, +S3')/v/2

and @ = (C4T + C;'T)/+/2 can play the role of space
inversion [ and time reversal T, respectively. This corre-
spondence can be seen from the fact that (§)> =1 and

SO = IT = §,C4T, which is a consequence of (S;)* = —1
and S, = IC;!. Then the derivations shown in Ref. [6]

remain valid as long as we replace I by S and T by ©, leading
to an expression for P [50]:

(-0 = ]I

Kek* r=

17 (K). (14)

Here rruns over all occupied Kramers pairs, and K 4 is the set
of S, invariant points and 7. = +1 is the eigenvalue of
S = (84 + S7')/V/2. Equation (14) is a generalization of the
Fu-Kane parity criterion [6] to systems with S4 but no
inversion symmetry. It is also consistent with results
obtained using symmetry indicators [36,38].

Zeros of the Pfaffian.—Equation (7) also allows us to
determine P; though the zero of Pf[M (k)] = p;(k). In this
section, we no longer assume S, symmetry. Because M(k)
is antisymmetric at every momentum, its Pfaffian is a well-
defined function over the whole BZ. Under a smooth gauge
with det[B] = 1, p;(K) = %1 at K € K*. Hence, Eq. (7)
can be interpreted as the sum of phase change of p (k)
from Z to I and from M to A as shown in Fig. 2,
ie., 2Py = (zi)™' [, dk - VIn p (k). where L is the com-
bination of two straight paths (Z - T') + (M — A). As
proven in the Supplemental Material [50], ps(k) =
pf(CsTk)* det[B(k)], and thus when det[B] =1 and
k €L, ps(k)= ps(—k)*. Therefore the phase change
of ps(k) from Z to I is the same as that from I to Z.
With this fact we can extend the integration path L to be
01/, and divide by 2 to get 2P, which gives

1
2P, = Eﬁm dk - VInPf[M(k)]. (15)

This is a generalization of the result by Kane and Mele [7],
via replacing T by ©. The rh.s. of the equation measures
the phase winding of Pf[M (k)] around the boundary of the
2D area 7,;,. Because a nontrivial phase winding around
the 1D boundary implies nodal points in the 2D bulk with
Pf[M(k)] = 0, this equation implies that 2P; can be
obtained by counting the number of nodal points with
Pf[M(k)] = 0 in 7,/,. More details will be demonstrated
below using a tight-binding model. Interestingly, here we
have shown that for a 3D HOTI, its topological index P5
can be calculated by looking at the zeros of Pf[M(k)] in a
single 2D plane (7 /). This is in direct contrast to first order
3D TIs, where one needs to investigate two time reversal
invariant 2D planes to determine the Z, index [5].
Equation (15) also implies that if Pf[M(k)] is nonzero
OVer 7y, then P; will automatically be trivial.

Tight binding model.—Here we use tight-binding models
to demonstrate and to verify our conclusions. Consider a
four-band model with a Hamiltonian
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H(k) = (cosky + cos k, +cosk, — 2)7,0¢
+ q, Z sink;t,0;

i=x.y.z

+ q» z sin k; sin k,7,0; + 37,09

J=xy

+ p(cosk, — cos k,)z,00. (16)

Here Cy = 1pe~ /9% T = —izyo K, Sy = 7,6 (*/4°:_The
Hamiltonian satisfies C4TH(K)(C4T)™" = H(C4Tk). The
p term breaks C, and T symmetry but preserves S, and
C,T.If p vanishes then the system becomes a 3D TI. The
q» and g5 terms break S, symmetry. When g, = g3 =0, S,
symmetry is recovered and the model reduces to the one
shown in Ref. [10]. In this case the Kramers pair in the

valence bands at I' has § eigenvalue —1 and all other S

invariant points have S eigenvalue +1. Thus by Eq. (14),
we have P; = 1/2 and the system is a CSOTIL. When small
g, and g5 are turned on, the band gap does not close and the
system should still remain a CSOTI. We calculate the zero
of Pf[M(k)] as shown in Fig. 2. The zeros form a loop
penetrating 7, giving rise to a phase winding of 2z in
Pf[M(k)]. Therefore, from Eq. (15), P3 = 1/2. We also
apply Eq. (13) and get Py =1/2 as well. To verify our
prediction we diagonalize the system with open boundary
condition along k, and k,, and the spectra as a function of
k. is shown in Fig. 2. Gapless hinge states are found, which
confirms that the system is a CSOTI with Py = 1/2.
Conclusions and discussions.—In this Letter, we gen-
eralize the Pfaffian topological invariant to higher-order
topological insulators, utilizing a composite operator com-
posed of linear superposition of symmetry operators. In
addition to the C4T-invariant systems discussed above, this
construction applies generically to systems with symmetry-
enforced Kramers-like degeneracy (see S-6 in the
Supplemental Material [50] for more details). In addition,
this Pfaffian formula is directly related with the dipole
pumping and the nontrivial Wannier-band Chern numbers
[8,9], as shown in S-7 in the Supplemental Material [50]).
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