PHYSICAL REVIEW LETTERS 123, 140602 (2019)

Detection of Quantum Phases via Out-of-Time-Order Correlators
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We elucidate the relation between out-of-time-order correlators (OTOCs) and quantum phase transitions
via analytically studying the OTOC dynamics in a degenerate spectrum. Our method points to key
ingredients to dynamically detect quantum phases via out-of-time-order correlators for a wide range of
quantum phase transitions and explains the existing numerical results in the literature. We apply our method
to a critical model, the XXZ model that numerically confirms our predictions.
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Out-of-time-order correlators (OTOCs) [1] probe infor-
mation scrambling in quantum systems of different nature
[2-9] and reflect the symmetries [4,7,9] or lack thereof
[2,7,10] of the underlying Hamiltonian. An OTOC, unlike a
time-ordered four-point (or two-point) correlator [11], can
determine the spatial and temporal correlations throughout
the system, thus giving rise to a bound on information
spread [9,12,13]. Through such bounds and the decay rate
of an OTOC, one can dynamically detect thermal [7-9] and
localized phases [4,7,9,11,14,15]. Recently OTOC has
been numerically observed to be susceptible to phase
transitions either signaling criticality in a diverging
Lyapunov exponent [16] or showing signatures of sym-
metry-broken phases in its saturation value [17]. The latter
led to more research that shows the relation emerging in
other forms, e.g., in excited states [18], or with more
experimentally relevant platforms and system parameters
[19]. The interest in providing more verification for such an
emergent relation is understandable, not only because the
relation points to a practical potential for OTOC in
dynamically probing quantum criticality, but also the
relation is received as unexpected [17]. It is indeed an
intriguing question how a chaos-detecting and out-of-time
ordered correlator that is contributed by presumably all the
spectrum could also probe ground state physics. The
reasons for this relation remain unknown, as well as an
answer to whether the relation is universal. Motivated by
these questions, here, we develop a method on OTOC
dynamics to obtain intuition for the emerging relation
between quantum phase transitions and out-of-time-order
correlators. Remarkably it is possible to dynamically
decompose OTOC and show that the ground state physics
is the leading order contribution to it under the criteria that
our method provides. This is the origin why the OTOC
saturation value could detect the ground state degeneracy.
Therefore, we reach to the conclusion that the OTOC is
susceptible to long-range order, while the quasilong-range
order is not visible to it. Our method provides additional
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insights regarding the relation; e.g., (i) the relation is not
restricted to already-studied models and one dimension
(ID) [17,19], and (ii) the relation can be extended to
include the phase transitions in other eigenstates [18].
Hence, our theory elucidates the reasons for this unex-
pected connection, and renders it intuitive and universal
with further insights. To verify our method, we study the
dynamics of the 1D critical XXZ chain, where there are
Ising and critical XY phases.

Method.—Our aim is to be able to come up with an
expression that predicts the saturation value of OTOC for
long times in the spirit of the eigenstate thermalization
hypothesis (ETH) [20,21]. The out-of-time-order correla-
tion function can be defined as

F(1) = (W (VI W()V), (1)

where V and W are local operators and the expectation value
is over an initial state |y(0)). This initial state could be
chosen as the ground state [6,17], or a random Haar-
distributed state [9,12] to approximate an equiprobable state
7 in Eq. (1) [22-24]. Eventually, the original definition that
is the commutator growth —=Tr{(exp (—pH)/Z)[W(t), V]*}
[10] could be reexpressed in terms of the OTOC of operators
W and V with an initial state at the inverse temperature /.
Therefore, we can probe the information scrambling through
OTOCs [6,8,9,31,32].

Given |y(1)) = 3, coe™E y,), where |y,) are eigen-
states of the Hamiltonian with the associated eigenvalues
E,, we define a modified initial state |y/(0)) = V|y(0))
and have |y'(1)) = > 5 bpe~"""|yy). Then the OTOC,
Eq. (1), can be recast to a fidelity measure of three-point
function, and with the help of completeness relation

>, lw,){w,| =T becomes

F(t) =) cibpe O EtEENWEVT W5,
apfyy
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where (y,|W|y,) = W,, are eigenstate expectation values
[33]. Now one can derive the saturation value for long times
as well as dynamical features, such as revival timescales in
integrable Hamiltonians [34].

We study the saturation value in long times, since this
value is expected to contain the signature of quantum
phases. For long enough times, equilibration in OTOC
dynamics can be obtained only when the phase decoheres.
Then the equilibration value can be obtained by requesting
E;—E,+ E,— E, = 0. This condition can be satisfied
with four different scenarios: (i) E, = Eg and E, = E,
(i) E,=E, and Eg=E,, (iii) E,=Es=E,=E,,
which is contained both in (i) and (ii), and
(iv) Eg—E, +E,—E, =0 with Eg #E, #E, # E,. If
a nondegenerate spectrum is assumed, ie., E, = Ej
implies @ = f, the OTOC reduces to

Froew =Y cabalWo Vi, + cibWhaVi Wy
ay ap

D cibgWh Vi Wy,

- ZfzbdwaaFV;a +
a atprr

()

with four terms corresponding to four conditions (i)—(iv),
respectively. We note that writing OTOC as in Eq. (2)
proved to be useful previously to understand the quantum
chaotic systems better, e.g., in chaotic spin chains with
conserved quantities that also obey ETH, decay to 0 is not
supposed to be exponential, but inverse polynomial in
system size [35] and OTOCs capture eigenstate correlations
that ETH cannot [36]. These correlations can readily be
seen in the first, second, and fourth terms of Eq. (2). See
Supplemental Material S5 [24] for some remarks that
immediately follow from Eq. (2) about systems with
nondegenerate chaotic spectra. Now we are going to
generalize Eq. (2) to a more generic form, which allows
degeneracy in the energy spectra, because a quantum
phase transition usually involves energy degeneracy, e.g.,
degeneracy from spontaneous symmetry breaking or other
sources [37]. We group all eigenstates of the Hamiltonian
into degenerate sets labeled by @, and each state in its
corresponding set is denoted by a for an eigenstate ypq)-
The OTOC can be reorganized with the new notation,
which is one main result of this Letter,

N 1 1 f f
F(t > o) = ; a;f Clo.a) (b[adg]W[ﬂ‘a][ﬂ‘"y]V[&"y][&"y’]w[‘?‘f] s t b[‘?ﬁ]W[ﬂ‘a][ﬂ"y]V[ﬂ‘y][ﬂ‘"y‘]w[&rf][&rﬁ])

N t t
+ z (_;C [a‘a]b[ﬂﬁ] W[ﬂ‘a] [0.r] V[G‘y] [0.7] Wigyje. +
aflyy’

Here, 6,6, ¢, ¢’ denote degenerate sets while a, 8,7,y
denote quantum states in their corresponding sets.
Equation (3) can predict the saturation value of OTOC
accurately if the OTOC saturates at a finite time. If the
OTOC does notsaturate orshowstransienteffects, Eq. (3)still
predicts the time average of OTOC signal F = 1/7 [ dtF (t)
over a time interval 7" with sufficient accuracy. In this sense,
Eq. (3) is not limited to long-time dynamics ¢ — oo [24].

We look for the criteria that the ground state subspace
contribution is leading order in the OTOC saturation value
Eq. (3). For this, we first set W = V as the order parameter
operator in Eq. (3) for convenience. Then we expand the
coefficients bjgy = Z” W9,k [x.«) in Eq. (3) by using
the initial state. If (i) the initial state is set to the state where
the phase transition is expected to happen, e.g., the ground
state(s) ¢;,;) = 1, and (ii) we apply an ansatz on the matrix
elements of the operator projected on this state, e.g.,
|W[1‘a][g‘ﬁ]|2 <« 1, where 8 # 1 is a different energy sub-
space than the subspace of the ground state(s), we observe
the following dynamical decomposition:

F(t > 00) = Fy(t > 00) + Fex(t > 0).  (4)

x i t
> f[a‘a]blwlW[aanmunw‘ﬂ“’wm)- 3)
OEG FE s’

|

Here, F(t — oo0) is the ground subspace contribution,
whereas the F,(f = o0) is the contribution of higher energy
excitations. The latter is a correction to the ground state
physics in the OTOC, when the criteria are satisfied. The
assumption on the initial state sets the scrambling discussed
in the rest of the paper to effectively zero temperature,
whereas the operator ansatz becomes even more specific for
the phase of interest. If there is a symmetry-broken long-
range order to capture, the fluctuations between the matrix
elements of the operator are suppressed in the ground state
subspace, meaning there is at least a pair of matrix elements
accumulating the order — |W[1‘a][1d9]|2 ~ O(1). This modi-
fies the operator ansatz as |Wiy 4 41> > [Wii ez [* for
the ordered phase. Thus, we derive the expression for
F 4(t = o0) in the ordered phase as

Foo(t > 00) ~ Y Wi Wit Wiy g Wi g,
By

(5)

while the operator ansatz simultaneously implies that the
OTOC is dominated by the ground state physics, F g > Fey

140602-2



PHYSICAL REVIEW LETTERS 123, 140602 (2019)

in the ordered phase. On the other hand, the fluctuations
between the matrix elements of the operator are maximal ina
disordered phase, implying Wi 4,4 ~0 for all in the
ground state subspace, which results in Fy(f = o0) ~ 0.
Therefore, the OTOC is dominated by the correction terms
that are contributed by the excitations in the spectrum
F.(t = o). This result is an important insight that orig-
inates from the dynamical decomposition method and
cannot be observed only via real-time dynamics simulations,
e.g., in Ref. [17]. In addition, the operator ansatz
|W(iq0,0] <1 guarantees a bounded correction term
F.(t— o) < 1. As a result, (i) the OTOC is able to
capture the degeneracy in the ground state [Eq. (5)] and
(ii) the correction of the excited states always remains
bounded, all of which explains why the OTOC differentiates
an ordered phase from a disordered one, e.g., in ground state
[17] or excited-state [18] phase transitions. A mixed initial
state (e.g., finite or infinite temperature) violates the initial
state assumption, hence suggesting a smoothed phase
boundary by washing away the sharp signature at the
transition point [19]. Hence the dynamical decomposition
method reveals the key ingredients of the emergent relation
between information scrambling and symmetry-breaking
phase transitions, rendering this unexpected numerical
observation [17] a fundamental connection.

Advanced numerical methods (Lanczos, tensor net-
works) can be employed to determine only the lowest-
lying states to give the leading order term in OTOC, Eq. (5).
In this sense, Eq. (5) provides us a low-cost alternative to
simulating the real-time OTOC dynamics in the computa-
tion of the OTOC saturation value when we use the OTOC
to probe criticality. Finally, we predict that the ground state
conftribution to the OTOC saturation cannot efficiently
distinguish quasilong-range order from a disordered phase.
Because the quasilong-range order produces zero expect-
ation value for the order parameter (per site), Wiy g);1.4 ~ 0,
similar to a disordered phase, and hence F(t — co) ~0
follows with correction term dominating the OTOC satu-
ration F(f — o). In the following we provide verification
for our method and theory on the 1D XXZ model.

Model and results.—The Hamiltonian of the XXZ model
reads

1=y (stots + el + Zoiot ) 53 e

where o7 are spin-1/2 Pauli matrices with energy scale set
to J and hence time scale set to 1/J; J,/J and h are the z-
axis spin coupling strength and the magnetic field strength,
respectively. The red lines in Fig. 1 show the phase
boundaries produced by an exact method (Bethe ansatz)
for an infinite-size system. Therefore, this model has three
phases: two gapped Ising phases (ferromagnetic and
antiferromagnetic) at large |J,/J| and a gapless XY phase
with quasilong-range order for small |J./J|, i.e., the
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FIG.1. Phase diagram based on the OTOC saturation values via
Eq. (3): the x axis is the spin interaction strength in the z direction
J. and the y axis is the magnetic field h, for N = 14 system size
and o; bulk spin operator, when periodic boundary conditions are
set and the initial state is a ground state. The red lines are the
phase boundaries based on the Bethe ansatz technique for
infinite-size system [40].

Berezinskii-Kosterlitz-Thouless transition [38,39]. We
choose the OTOC operators as o7 or oF for the spin at
the ith site, based on the order parameters of the ferro-
magnetic Ising phase ()_; %), antiferromagnetic Ising
phase [>_;(—1)i6?], and the XY phase (3 ;07%). Figure 1
shows the phase diagram based on the saturation values of
OTOCs with 67 [computed using Eq. (3) for a system of
N = 14 spins]. We numerically confirm our theory with
OTOC saturation values that are either nonzero or nearly 0
in the Ising and XY phases, respectively. In fact, the OTOC
recovers the phase boundaries of the Bethe ansatz solution:
the agreement is perfect at the ferromagnetic-XY phase
boundary and approximate at the antiferromagnetic-X¥Y
boundary due to significant finite-size effects [24].

We plot two cross sections from Fig. | in Fig. 2(a) where
the lines with orange squares (h/J = 0) and blue circles
(h/J = 4) are the saturation values, Eq. (3) for a short time
tJ ~ (n/4)10" (long-time results in [24]). We also plot the
leading order term in the saturation, Fg(f— o0) in
Fig. 2(a) with purple-cross (h/J =0) and red-diamond
(h/J = 4) lines. The OTOC saturation exactly reduces to
the ground state contribution with no correction F, = 0 in
the Ising ferromagnet, meaning that the saturation value in
the ordered phase is exactly predicted by Eq. (5). The
reason is as follows: the spins are fully polarized in
the ferromagnetic ground states, and they belong to the
opposite magnetization sectors of the Hamiltonian, which
has magnetization conservation [H,S,] =0 (S, =Y, 67).
Since they are the only states of their corresponding
magnetization sectors, the fluctuations in the matrix ele-
ments are exactly 0, |W; 40| = 0. This is why the system
does not scramble information at all F(r = co0) = 1, even
though the XXZ model is an interacting model.
We emphasize that this nonscrambling is not due to
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integrability of the XXZ model; rather it is the signature of
the critical order. The rotational symmetry also protects the
ferromagnetic ground states from hybridizing, all of which
results in no finite-size effects at the phase boundary from
the ferromagnet to the XV paramagnet. In the disordered-
XY phase (h/J = 0), the ground state contribution is 0,
Fy =0, leaving the correction term to dominate the
saturation value, however with a small magnitude as
explained above. This is the reason for the mismatch
between the OTOC saturation value and its leading order
term, seen in the XY phase of Fig. 2(a), while we are still
able to differentiate the disordered phase from the ordered
phases. Finally, in the Ising antiferromagnet the exact
agreement between Egs. (3) and (5) takes place only at
the J,/J — oo limit. As we approach the phase boundary
towards the XY phase, the fluctuations between matrix
elements gradually increase, [W(y 414| = 0 [24], result in
a nonzero but small correction term to the ground state
confribution, and eventually drive the phase transition.
Since the finite-size effect is significant for small sizes
with exact methods, we apply the density-matrix renorm-
alization group (DMRG) algorithm with MPSs [24.41]to a
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FIG. 2. (a) The OTOC saturation values for a periodic-boun-

dary chain with N = 14 size and a short time of tJ = (z/4)10" at
fields h/J = 0 [orange squares, Eq. (3); purple crosses, Eq. (5)]
and h/J = 4 [blue-circles, Eq. (3); red diamonds, Eq. (5)], for the
o; operator. (b) Real-time dynamics (blue circles) averaged over a
time interval ¢J = 10, F, and its ground state contribution Fy
(orange diamonds) with the DMRG algorithm and matrix product
state (MPS) for N = 60 at h/J = 0. (c) System size scaling of Fy,
shows J¢ = aN*® + J with exponent ¢ = —0.98 and J* = 1.02.
(d) The OTOC saturation values for the ¢ operator at 2/J = 0,
N = 13 [blue circles, Eq. (3); red diamonds, Eq. (5)] and N = 14
[orange squares, Eq. (3); purple crosses, Eq. (5)] for time
tJ = (n/4)10°. Inset: System-size scaling of Eq. (3) (blue circles)
and Eq. (5) (red diamonds) at J,/J = —0.9.

system with N = 60 and compute the real-time dynamics
averaged over a short-time interval of £tJ = 10 shown with
blue circles in Fig. 2(b) with orange diamonds being F,
Eq. (5). Note that the transition point significantly shifts
towards the equilibrium phase transition point, J_ /J = 1.
We extract the system-size scaling parameters from our
DMRG computations, Fig. 2(d), and observe that the
system indeed approaches the equilibrium transition point
when N — oo, JS = aN*® + J® with exponent £ = —0.98
and J® = 1.02 with a power-law scaling.

We plot the OTOC with o7 operator for N = 13 (blue
circles) in Fig. 2(d): the OTOC saturation remains small in
all three phases and thus the OTOC can hardly distinguish
the XY-ordered from XY-disordered phases. When the
chains with even number of spins are used (N = 14, orange
squares) in the theory, we do not even obtain any difference
between the phases. This is in agreement with our theo-
retical predictions discussed previously. Additionally, the
fluctuations between the matrix elements of quasilong-
range order parameter o7 are always maximal regardless of
the phase. Hence, we observe the mismatch between the
OTOC saturation and its ground state contribution (red
diamonds N = 13 and purple crosses N = 14). The inset of
Fig. 2(d) shows that the OTOC saturation value and its
ground state contribution both decrease with the system
size for odd-numbered chains, exhibiting that the OTOC
saturation cannot capture the quasilong-range order in
bigger systems and thermodynamic limit. We briefly note
that the detection of the order at J,/J = —1 is robust due to
the massive degeneracy in the ground state at this point of
different symmetry [SU(2) symmetry].

Conclusion.— Our theoretical predictions on the XXZ
model can be experimented with cold atoms [42]. Based on
the studies in the literature [17-19] and our results in the
XXZ model, our method seems to be universal in explain-
ing the reasoning behind the relation between scrambling
and the quantum criticality. In this sense, our method is an
analogue of the eigenstate thermalization hypothesis: It
tells us the criteria of how scrambling probes criticality,
though it is independent of the integrability of the system,
unlike the ETH. Dynamical decomposition of OTOC is a
complementary tool to the real-time evolution of a state in
determining the OTOC saturation value. However, in
addition to providing the saturation value, it also presents
to us the conditions for OTOC to show either order or
disorder. Based on this fact, the leading order term in our
theory, Eq. (5), could mark the phase transition points via
system-size scalings. In conclusion, given that the initial
state of OTOC is a state where the phase transition is
expected to happen and the off-diagonal matrix elements of
the operator are sufficiently suppressed in this state (or
degenerate state subspace), OTOC could be used to
dynamically detect the quantum phases with long-range
order and capture the symmetry-breaking quantum phase
transitions.
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