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Our understanding of the earliest stages of crown bird evolution is hindered by an
exceedingly sparse avian fossil record from the Mesozoic era. The most ancient
phylogenetic divergences among crown birds are known to have occurred in the
Cretaceous period', but stem-lineage representatives of the deepest subclades of

crown birds—Palaeognathae (ostriches and kin), Galloanserae (landfowl and
waterfowl) and Neoaves (all other extant birds)—are unknown from the Mesozoic era.
Asaresult, key questions related to the ecology**, biogeography>*” and divergence
times"®'° of ancestral crown birds remain unanswered. Here we report a new
Mesozoic fossil that occupies a position close to the last common ancestor of
Galloanserae and fills a key phylogenetic gap in the early evolutionary history of
crown birds'®", Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian
age of Belgium (66.8-66.7 million years ago), is represented by a nearly complete,
three-dimensionally preserved skull and associated postcranial elements. The fossil
represents one of the only well-supported crown birds from the Mesozoic era’?, and is
the first Mesozoic crown bird with well-represented cranial remains. Asteriornis
maastrichtensis exhibits a previously undocumented combination of galliform
(Iandfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a
previously reported Ichthyornis-like taxon from the same locality” provides direct
evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in
the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan
origin of crown birds?, and its relatively small size and possible littoral ecology may
corroborate proposed ecological filters**° that influenced the persistence of crown
birds through the end-Cretaceous mass extinction.

By any measure, crownbirds (Neornithes) are among the most diverse
and conspicuous of the extant tetrapods, yet their early evolutionary
history is poorly understood. Apart from birds, all major groups of
extant tetrapods—lissamphibians', squamates®, turtles'®, mammals?”
and crocodylians'®—are well-known from pre-Cenozoic crown-group
fossils. By contrast, the Mesozoic record of well-supported crown
birdsis restricted to asingle latest Maastrichtian taxon, Vegavis iaai*.
Several fragmentary Mesozoic fossils have at times been referred to
Neornithes", although the justifications for such assignments are
questionable and these records have not unambiguously withstood
re-evaluation®®?,

We report a new crown bird from the Late Cretaceous of Belgium.
The fossil is between 66.8 and 66.7 million years old—making it the
oldest unambiguous crown bird fossil yet discovered—and provides
importantinsightinto the extent of Mesozoic neornithine diversifica-
tion before the end-Cretaceous mass-extinction event, 66.02 million
years ago (Ma)?. Uniquely among crown birds from the Mesozoic and
earliest Palaeocene, the new fossil includes a nearly complete, three-
dimensionally preserved skull, yielding direct insightsinto the nature
of the crown bird skull early in neornithine evolutionary history. The

specimen exhibits a previously unseen combination of features thatare
diagnostic of Galliformes and Anseriformes, which together form the
crown clade Galloanserae—one of the most deeply diverging clades of
crown birds and the sister group to the hyperdiverse extant clade Neo-
aves' . Our most parsimonious phylogenetic hypothesis suggests that
the fossil sits on the stem lineage of Galloanserae, which would make
it the only stem galloanseran yet known and would fill a conspicuous
phylogenetic gap in the neornithine fossil record.

Systematic palaeontology

Avialae Gauthier, 1986
Neornithes Gadow, 1892
Neognathae Pycraft, 1900
Pangalloanserae Gauthier and de Queiroz, 2001
Asteriornis maastrichtensis gen. et sp. nov.

Remarks. We use Avialae to refer to theropods crownward of Dromaeo-
sauridaeand Troodontidae. Neornithesis equivalent to the bird crown
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Fig.1|Digitally segmented skull of Asteriornis maastrichtensis.

a-c, Leftlateral view (a), right lateral view (b) and dorsal view (c) of the
A.maastrichtensis skull.d, Comparison of retroarticular processesin lateral
view of Anatalavis oxfordi (right side) and Asteriornis (left side, reflected).
Selected synapomorphies are denoted with numbers (red, Neornithes; green,
Galloanserae®>):1, bony mandibular symphysis; 2, toothless beak; 3, no

group (Aves sensu Gauthier,1986%). Pangalloanserae defines the most
inclusive clade including Anser anser and Gallus gallus but not Passer
domesticus (thatis, the galloanseran total group). Further phylogenetic
definitions are presented in the Supplementary Information.
Etymology. Asteriornis, from the name of the Titan goddess Asteria
and the Greek ornisforbird. In Greek mythology Asteriais the goddess
of falling stars and transforms herself into a quail—attributes that are
reflected by both theimpending Cretaceous-Palaeogene (K-Pg) aster-
oid impact and the galloanseran affinities of Asteriornis. The specific
epithet maastrichtensis reflects the provenance of the holotype—the
Maastricht Formation (the type locality of the Late Cretaceous Maas-
trichtian stage).

Holotype. Natuurhistorisch Museum Maastricht (NHMM) 2013 008,
anearly complete, articulated skull including mandibles and associ-
ated postcranial remains preserved in four blocks (Fig. 1, Extended
Data Figs. 1-7; see Supplementary Information for videos, character
information, measurements, additional description and discussion).
Preserved elementsinclude the premaxillae, maxillae, nasals, frontals,
laterosphenoid, basisphenoid, mesethmoid, left quadrate, left jugal,
right palatine and lower jaws. Associated postcranial elementsinclude
incomplete femora, tibiotarsi, tarsometatarsus and radius.

Locality and age. CBR-Romontbos Quarry, Eben-Emael, Liége, Belgium.
Valkenburg Member (66.8-66.7 million years old**), Maastricht Forma-
tion, Late Maastrichtian, Cretaceous. Additional details regarding the
locality and stratigraphic setting are presented in the Supplementary
Information.

Diagnosis. Asteriornisis unique among known taxa in exhibiting cau-
dally pointed nasals that overlie the frontals and meet at the midline
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coronoid bone; 4, bicondylar mandibular process of quadrate; 5, retroarticular
processlong, curving, strongly compressed mediolaterally; 6, dorsally
orientedinternal articular process of mandible; 7, maxillary process of
premaxilladorsoventrally deep and lateromedially compressed. Scale bars,
Smm.

of the skull, and a slightly rounded, unhooked tip of the premaxilla.
Additional character combinations from phylogenetic analyses that dif-
ferentiate Asteriornis are presented in the Supplementary Information.

Description

Asteriornis maastrichtensis is a small pan-galloanseran, with an esti-
mated mean body mass from hindlimb scaling regressions of 394 g
(around the 21st percentile among extant Galloanserae”; Extended
DataFig. 8). Complete measurements of NHMM 2013 008 are provided
inthe Supplementary Information.

Most major cranial components arein their original anatomical posi-
tions. The general appearance of the premaxillary beak resembles that
of extant Galliformes, particularly in its gently down-curved tip and
delicate construction, with no ossified joints among the rostral com-
ponents®. The contralateral frontal processes of the premaxillae are
unfused along their length, and the premaxillae and nasals are unfused
at both their tomial and narial contacts. The beak tip is unhooked,
whichdistinguishes Asteriornis from most Galloanserae except certain
Anatidae and Presbyornithidae.

The skulllacks a distinct nasofrontal hinge. As such, the architecture of
thisregionmore closely resembles that of extant Galliformes than Anseri-
formes. Atthe midpoint of the orbits the frontals are constricted, yielding
anhourglass-shaped cranial roof with wider rostraland caudal extremities.
Indorsolateral view, the right postorbital process sweeps strongly ventrally
before deflecting rostrally to define part of the ventral margin of the orbit.

Theleft quadrateis well-preserved inthree dimensions and is gener-
ally similar to the quadrate of the fossil pan-anseriform Presbyornis®
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Fig.2| Comparative quadrate and skull morphology of selected total-group
Galloanserae. a-d, Left quadrates (and reflected right quadrate of
Presbyornis) in medial view (left) and caudal view (middle). Skulls arein right
lateral view, except Alecturawhichisinreflected left lateral view. The skull of
Presbyornis USNM 299846 is shown. Scale bars, 5mm (quadrates); 1cm (skulls).
See Extended Data Fig. 4 for additional high-resolutionimages of these taxa
and other extant and fossil Galloanserae.

(Fig. 2, Extended Data Fig. 4). The prootic and squamosal heads are
divided by awell-developedincisure, asin almost all Neognathae; this
contrasts with the condition in crownward stem birds such as Ichthyor-
nis, inwhich the division between these condyles is poorly marked, and
Palaeognathae, in which the condyles merge into a single head. Two
pneumatic foramina pierce the quadrate: the foramen pneumaticum
rostromediale and the foramen pneumaticum basiorbitale. A tubercu-
lum subcapitulare is moderately developed on the lateral face of the
oticprocess. This characteristichas been considered aderived feature
of Galloanserae®; however, itis presentin many Neoaves, and giveniits
absence in Palaeognathae and Ichthyornis it might instead represent
asynapomorphy of Neognathae. The cotyla quadratojugalis of the
quadrateisfairly deep, withacomplete, un-notched rim. The pterygoid
articulation is more widely separated dorsally from the mandibular
condyle than in most extant Galloanserae, and is very similar to that
of Presbyornis.

Asin all known Galloanserae, the mandible of Asteriornis exhibits
two cotylae forarticulation with the bicondylar quadrate and ablade-
like retroarticular process. This process is strongly hooked, and in its
shapeand proportions bears astrong resemblance to the conditionin
the pan-anseriform Anatalavis oxfordi (Fig. 1d, Extended Data Fig. 5).
Anelongate, slightly dorsally oriented processus medialisis preserved
ontherightjaw, asin all Galloanserae.
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Fig.3|Relationships of A. maastrichtensis and stratigraphic provenance of
holotype. a, Cladogram showing the phylogenetic position of Asteriornis and
Vegavisinferred under parsimony (solid coloured lines) and tip-dated Bayesian
analyses (dashedlines). A position for Vegavisallied with Anseriformes, as
previously found'??%3 is also shown (curved branch). Numbers within clades
denote extant species richness. The analysisis based onanewly modified
dataset; see Extended Data Fig. 9 and Supplementary Information for full
phylogenetic results. Extinct taxaare denoted with daggers. b, Simplified
stratigraphy of the Maastricht Formation, exposedin the vicinity of the
holotypelocality and surrounding areas®. ¢, Location of the CBR-Romontbos
Quarry near Eben-Emael, Belgium.

The left distal femur is well-preserved, exhibiting a medial condyle
with abluntly angular profile between the articular surface of the con-
dyle and its cranial margin. A detailed anatomical description of the
skulland postcranium s provided in the Supplementary Information.

Phylogenetic analysis

Weinvestigated the phylogenetic position of Asteriornis under alterna-
tive optimality criteria, with and without molecular scaffolds'? using
amatrix of 39 taxa and 297 characters modified from previous stud-
ies™®? (Fig. 3, Extended Data Fig. 9; see Methods and Supplementary
Information). We added recently described taxa such as Protodontop-
teryx®, and revised the scorings for several taxa, including Anatalavis,
Presbyornis and Conflicto. Our analyses were uniformly consistent
with a position of Asteriornis near the last common ancestor of Gal-
loanserae. Under parsimony we recovered a single most parsimonious
tree with Asteriornis as the sister taxon to crown Galloanserae, and
analyses under atip-dated Bayesian framework recovered Asteriornis
asthe stemward-most pan-galliform. We are cautious inthe interpreta-
tion of this result because few unambiguous synapomorphies can be

Nature | Vol 579 | 19 March 2020 | 399



Article

optimizedinsupport of asister group relationship between Asteriornis
and Galliformes to the exclusion of Anseriformes. The few potential
synapomorphies for such a clade that are observable in Asteriornis also
occurinearly pan-anseriforms such as Conflicto (see Methods and Sup-
plementary Information). Likewise, only one or two steps are required
to move Asteriornisto an alternate placement as a stem anseriform or
stem galliform, respectively, in the parsimony analysis. The difficulty
inresolving the precise placement of the fossil, as well as its notable
combination of anseriform- and galliform-like anatomical features,
is consistent with Asteriornis occupying a short phylogenetic branch
proximal to the most recent common ancestor of Galloanserae—one
of the deepest nodes in the neornithine tree of life®.,

Discussion

Thelatest Cretaceous fossil record of crown birds is extremely sparse.
Other than Asteriornis, Vegavis iaai (dated to around 66.5 Ma*®) is the
only Cretaceous neornithine known from a partial skeleton to have
been thoroughly examined™. However, its phylogenetic position is
debated*—studies have suggested variable positions within Neog-
nathae'>**3 and even outside Neornithes**—emphasizing the impor-
tance of obtaining new information on Vegavis and Mesozoic crown
birds in general. Under parsimony, we recovered Vegavis as the sister
taxon toNeornithes (thatis, the crownward-most stem bird), whereas
under a Bayesian framework Vegavis was recovered in an unresolved
position at the base of Neognathae.

Galloanseran cranial anatomy

Alldiscernible character evidence is consistent with neornithine (crown
bird) affinities for Asteriornis, and supportsits hierarchical placement
within Neornithes (local synapomorphies such as atoothless beak; no
coronoid bone; abony mandibular symphysis), crown Neognathae
(for example, palatine-premaxilla contact; anincisure between the
prootic and squamosal cotylae of the quadrate) and Pangalloanserae
(for example, a dorsoventrally deep and lateromedially compressed
maxillary process of the premaxilla; palatines that are long, thin and
widely separated rostrally; a bicondylar mandibular process of the
quadrate; a long, dorsally oriented internal articular process of the
mandible; aretroarticular process that is long, curving and strongly
compressed lateromedially)**° (Fig. 1). Given the scarcity of three-
dimensional skulls fromthe earliest stages of the crown bird radiation,
Asteriornis provides akey reference point for understanding how the
marked variability of the crown bird skull came to be, and will inform
estimates of early neornithine cranial disparity and rates of phenotypic
evolution*®*,

With the exception of the autapomorphic morphology of the poste-
rior nasals, almost none of the discernible cranial anatomy of Asteriornis
falls outside of the range of variation that is exhibited by extant gal-
loanserans, despite the widely differing cranial morphology of extant
Galliformes and Anseriformes?®. Although galloanseran monophyly is
now widely accepted (and was first suggested on the basis of basicranial
morphology as early as the mid-nineteenth century*), the validity of
this clade has been questioned®*?, with some authors listing numerous
anatomical dissimilarities between these groups®. Notably, Asteriornis
reveals a previously undocumented combination of ‘galliform’ fea-
tures, suchasweakly fused rostral elements and rostrally forked nasals,
and ‘anseriform’ features, such as a rostrally projecting postorbital
process and a tall and strongly hooked retroarticular process (Fig. 1,
Extended Data Figs. 1-6)—revealing the plesiomorphic condition of
the galloanseran skull. The fact that such distinctive features of extant
galloanserananatomy are observable in this approximately 66.7-million-
year-old fossil corroborates the hypothesis of beak shape canaliza-
tionarising early in, or predating, crown bird evolutionary history***,
emphasizing the modular nature of the skull and bill of crown birds*.
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Biogeography and the origin of Neornithes

Much of the species-level and higher clade diversity of extant birds is
confined to vestiges of Gondwana, which suggests that crown birds
originated in the Southern Hemisphere?. Reports of Mesozoic crown
birdsin Antarctica appear to support this hypothesis>**. However, the
Palaeogene fossil record provides many examples of crown bird fossils
that are well outside of the ranges of their closest extant relatives®24647,
which casts some doubt on the hypothesis of a Gondwanan cradle for
crownbird evolution and suggests that factors such as Cenozoic climate
shifts may have overprinted ancestral neornithine biogeographical
patterns™®, As the oldest and one of the most deeply diverging crown
birds yetidentified, Asteriornis provides conclusive Mesozoic evidence
of Neornithes in the Northern Hemisphere, emphasizing that the dis-
covery of further Mesozoic fossils will be necessary to convincingly
identify the neornithine centre of origin.

Asteriornis provides a firm calibration point for the minimum age
of divergence of the major bird clades Galloanserae and Neoaves. We
recommend that aminimum age of 66.7 million yearsis assigned to this
pivotal neornithine nodein future divergence time studies, reflecting
the youngest possible age of the Asteriornis holotype including geo-
chronological uncertainty. The paucity of crown bird remains from the
Mesozoicissuch that our current understanding of the deepest stages
ofthe neornithine evolutionary timescale depends on the outcome of
molecular divergence time analyses’. However, molecular-clock-based
estimates for the deepest divergences of crown birds differ markedly
depending on factors such as node calibration decisions and alter-
native parameterizations of statistical probability distributions®'.
Furthermore, such estimates could be affected by the interplay of
nucleotide substitution rates and deep-time directional selectivity
on life history variables and body size, leading to disagreement as
to the extent of neornithine survivorship across the end-Cretaceous
mass-extinction event®°, We suggest that the terminal-Cretaceous
age and rootward phylogenetic position of Asteriornis are consistent
with a limited diversification of crown birds in the Late Cretaceous,
andrestricted survivorship of crownbirds across the end-Cretaceous
mass-extinctionevent. Thisinterpretationisinline with the emerging
consensus from molecular divergence time studies**°, as well as
evidence for a mass extinction of stem birds at the K-Pg boundary?°.
Furthermore, the oldest credible occurrences of crown birds in both
the Northern (this study) and Southern Hemispheres'? derive from ter-
minal Mesozoic sediments, which might confirm the recently proposed
nullexpectation of arapid evolutionary transition between stem birds
and crown birds®. The occurrence of a large Ichthyornis-like avialan®
from the same horizon and quarry as the Asteriornis holotype (with
temporal separation amounting to no more than tens of thousands
ofyears; see Supplementary Information) provides evidence of crown
birdsand avialanstem birds occurring in the same environmentin the
immediate lead-up to the K-Pg mass extinction.

Considerable discussion has focused on hypothetical scenarios of
neornithine survivorship across the end-Cretaceous mass extinction®.
A consensus hypothesis is emerging in which survivors are thought
to have exhibited a suite of features that proved selectively beneficial
through the extinction event, including a relatively small body size to
limit total metabolic requirements’, flying ability and a non-arboreal
ecology*™; an advanced digestive system*’; and dietary flexibility to
capitalize on sparse resources that might have included insects and
seeds’. However, owing to the scarcity of latest Cretaceous and earli-
est Palaeocene neornithine fossils, little direct fossil evidence can be
applied to this question. Asteriornis could therefore provide the best
directinsightinto the probable biology of neornithine K-Pg survivors,
and—notably—no discernible aspects of its palaeobiology are incon-
sistent with these hypothetical expectations. Indeed, its relatively
smallsize (less than 50% of the median body size of known latest Maas-
trichtian avialans®), narrow and elongate hindlimbs (Supplementary



Information) and provenance from nearshore marine sediments might
indicatealittoral ecology, which could validate an ecological—-though
not a phylogenetic—prediction of the hypothesis of ‘shorebird’-like
origins for much of crown bird diversity*°.

Fossils that clarify the Mesozoic origins of the extant bird radiation
areamong the rarest and most sought-after palaeontological discov-
eries. Asteriornis helps to fill a phylogenetic and stratigraphic gap
between the most crownward-known stem birds and the rich Cenozoic
neornithine fossil record. This record of aMesozoic neornithine from
Europe provides key insights into the origin of extant bird diversity,
and shows that future discoveries of even earlier Cretaceous neorni-
thines could be as likely to derive from the Northern as the Sourthern
Hemisphere.
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Methods

Preparation and imaging of specimens

Owingto the fragility of the Asteriornis holotype, only minor mechani-
cal preparation was performed to reduce the volume of rock matrix for
improved computed tomography (CT) scans. Scans of NHMM 2013 008,
UW Presbyornis specimens and all extant taxa were performed at the
Cambridge Biotomography Centre (CBC). Presbyornis UMNH.VP.29030
and UMNH.VP.29031 were scanned at the small-animal-imaging core
research facilities of the University of Utah Health Science Cores. Ana-
talavis oxfordiNHMUK PV A5922 was scanned at the Natural History
Museum London. All scanned material was digitally segmented and
rendered using VGStudio Max 3.3.0. Full CT scanning details are pro-
vided in the Supplementary Information.

Phylogenetic analyses

To assess the phylogenetic position of Asteriornis, we scored it into a
considerably modified version of a recent phylogenetic matrix that
targets deep neornithine divergences and focuses on Galloanserae®,
which in turn was modified from a previous study?. We also added
the crownward stem bird Ichthyornis dispar as an outgroup taxon
to improve the inference of character polarity at the base of crown
birds, on the basis of direct examination of specimens and previously
published literature®2, We scored the stem galliform Gallinuloides
wyomingensis through direct examination and reference to published
descriptions®***, and scored the pelagornithids Protodontopteryx
ruthae® and Pelagornis chilensis® on the basis of published literature.
The phylogenetic position of Pelagornithidaeis debated, and they have
been posited as early-diverging pan-neognaths or pan-galloanseransin
previous studies®*’. A right humerus and ulna associated with the Pro-
todontopteryxholotype are of questionable assignment to the taxon
and were therefore disregarded for the purposes of scoring. Additional
details of matrix modifications and taxon sampling are presented in
the Supplementary Information.

Maximum parsimony analyses were conducted in TNT v.1.5%. After
increasing the maximum number of trees to 10,000, a new technol-
ogy search was run in which a minimum length tree was found in 10
replicates and default parameters were set for sectorial search, ratchet,
treedrift and tree fusion. After this, the maximum number of trees was
set to 100 and a traditional search with default parameters was run
on the trees in RAM to explore treespace more extensively. Absolute
bootstrap frequencies were obtained from 1,000 replicates under a
traditional search with default parameters. The treelengthinduced by
alternative phylogenetic topologies was evaluated by unchecking the
‘lock trees’ optionin TNT and manually moving branches to alternative
phylogenetic positions.

Bayesian phylogenetic analyses were conducted in MrBayes* using
the CIPRES Science Gateway®’. Data were analysed under the Mkv
model®, taking into account the absence of invariant characters in
our dataset. To allow for variation in evolutionary rate across different
characters, gamma-distributed rate variation was assumed. Analyses
were conducted using four chains and twoindependent runs, withatree
sampled every 4,000 generations and aburn-in of 25%. We performed
Bayesian tip-dating under the fossilized birth-death model®, imple-
mented in MrBayes following established procedures®. Anindepend-
ent-gammarates (IGR) clock model was used. The clock rate prior was
setatadiffuse, uninformative rate, whereas the IGR variation, specia-
tion, extinction and fossilization priors were set at the MrBayes default
distributions: exp(10) for the former two parameters and beta(1,1) for
the latter two. These settings follow other recent tip-dating studies®*®.
Giventhat our extant taxon sample did not reflect the relative diversity
of extant bird groups—focusing primarily on galloanserans (which
represent 72% of our extant taxon sample, in contrast with around 4%
of extantbird diversity based onrecent species counts®®)—we assumed
arandom instead of a diversified sampling strategy. Taxon sampling

probability was assigned a value of 0.0023, based on the fact that our
extant taxon sample covers roughly 0.23% of extant bird diversity®®.

Toaccount for ongoing controversies about the timing of crown bird
diversification, two tip-dating analyses were run, each with different
prior age probability distributions. In one analysis, a soft-maximum
upper bound was set at 86.5 Ma for crown birds, following previous
justifications'. This represents the age of the Niobrara Formation, a
well-sampled Upper Cretaceous fossil-bearing formation from which
no crown bird fossils have been recovered despite an abundance of
smallvertebrates and crownward stem-bird fossils*>¢". A previous study®
found evidence forincreased nucleotide substitution rates at the base
of Neornithes. The authors suggested that this phenomenon mightbe
partially responsible for the older ages estimated by other studies®®*’
and outlined criteria under which the use of “appropriately conserva-
tive” age priorsarejustified, concluding that crown birds—like placental
mammals’®—are one clade for which such conservative treatment could
be warranted®. As such, a more restrictive soft maximum of 72.72 Ma
was used for the second tip-dating analysis, based on the estimated
age of crown birds in a previous study’. For both tip-dating analyses,
a soft maximum of 120 Ma was assigned to the root (the divergence
between Ichthyornis and Neornithes) reflecting the minimum age of
the Jiufotang Formation, the youngest phase of the Jehol Biota”. This
assemblage preserves an abundance of Lower Cretaceous avialan fos-
sils, but none that are phylogenetically crownward of Ichthyornis™.
Given that no fossil crown neoavians were included in our dataset, a
prior age probability distribution was assigned to the neoavian clade
Gruiformes, with a minimum age of 53.95 million years (the age of Pel-
lornis mikkelseni, the oldest well-established crown gruiform”) and a
soft maximum of 66 millionyears (the age of the K-Pg boundary, prior
towhich nowell-corroborated crownneoavian fossils have been identi-
fied”*). Anexponential distribution was used for all of these age priors,
allowingfora 5% prior probability of each clade having originated earlier
thanits specified soft maximum.

The ages of fossil taxa were fixed at the minimum age constraints
for the specimens that were used to score our morphological data-
set, in line with best practices™ and the results of experimentally
testing alternative calibrations on an empirical dataset’. Asteriornis
was accordingly assigned a minimum age of 66.7 million years. Most
minimum age calibrations for taxa previously included in our dataset
follow published ages®. Following the recommended ages of relevant
fossil-bearinglocalities, Gallinuloides fromthe Green River Formation
was assigned an age of 51.57 million years and Anatalavisfrom the Lon-
don Clay Formation was assigned an age of 53.5 million years*. Despite
being known from younger strata, Presbyornis was also assigned an
age of 51.57 million years because it had been scored into the dataset
onthebasis of specimens held at the National Museum of Natural His-
tory in Washington, DC”, which had primarily been collected from the
Green  River Formation. /chthyornis was assigned an age of 86.5 million
years’®, Conflicto was assigned an age of 61 million years®, Pelagornis
was assigned an age of 4.8 million years® and Protodontopteryx was
assigned an age of 61.5 million years.

Undated Bayesian analyses were run for 30,000,000 generations,
whereas tip-dated analyses were run for 60,000,000 generations. Ana-
lytical convergence was assessed using standard diagnostics provided
in MrBayes (average standard deviation of split frequencies < 0.02,
potential scale reduction factors =1, effective sample sizes > 200).
Results of independent runs of the same analyses were summarized
using the sump and sumt commands in MrBayes. Morphological syn-
apomorphies were optimized under parsimony onto resulting tree
topologies using TNT. Molecular scaffolds followed the consensus
from previous phylogenomic studies>”8!,

Estimation of body size
The minimum mediolateral cross-sectional diameter of the tarso-
metatarsus shaft (3.32 mm) was taken from high-resolution CT scans.



This measurement was incorporated into a published scaling equa-
tion for estimating the body masses of volant birds* (R*=0.93) and
compared with a published compilation of the body sizes of extant
galloanserans®.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The holotype specimen of A. maastrichtensis is deposited in the per-
manent collection of the Natuurhistorisch Museum Maastricht under
collection number NHMM 2013 008. Digital models of the A. maas-
trichtensis skull and postcranial elements, .tre files from phylogenetic
analyses and CT scans of the A. maastrichtensis holotype are available
at Zenodo (doi: 10.5281/zenodo0.3610226). The Life Science Identifier
for Asteriornisis urn:lsid:zoobank.org:pub:32192A46-4A43-48CE-8F17-
447900FCC6DF.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

X |:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X |:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
< D The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested

X X

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

D A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|X| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X[ X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection CT data segmentation was performed using VGStudio Max 3.3.0.

Data analysis Phylogenetic analyses were performed using MrBayes 3.2 and TNT 1.5.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The holotype specimen of Asteriornis maastrichtensis has been deposited in the permanent collection of the Natuurhistorisch Museum Maastricht under collection
number NHMM 2013 008. Tree files from phylogenetic analyses as well as digital models and CT scans of the A. maastrichtensis skull and postcranial elements are
available at Zenodo.org (10.5281/zen0do.3610226).
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Study description Description of fossil material from the new Cretaceous fossil bird Asteriornis maastrichtensis.
Research sample All known material from this taxon.
Sampling strategy Osteology of A. maastrichtensis was digitally extracted from CT scans (the original bones are embedded in matrix). All discernible

skeletal elements were sampled and described.

Data collection The primary interpretation of the fossil was performed by Daniel Field, Juan Benito, Albert Chen, and Daniel Ksepka using digital
reconstructions within the Field Palaeobiology Research Group in the Department of Earth Sciences at the University of Cambridge.

Timing and spatial scale  The specimen was CT scanned in December 2018, and segmentation and interpretation was carried out from January-November

2019.
Data exclusions No data were excluded.
Reproducibility Not applicable.
Randomization Not applicable.
Blinding Not applicable.

Did the study involve field work? [ ]Yes — [X]No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology |:| MRI-based neuroimaging

Animals and other organisms

Human research participants
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Clinical data

Palaeontology

Specimen provenance The holotype of Asteriornis maastrichtensis comes from the CBR-Romontbos Quarry, Eben Emael, Province of Liege, Belgium.
Valkenburg Member (66.8-66.7 Ma24), Maastricht Formation, Late Maastrichtian, Cretaceous.

Specimen deposition The holotype specimen of Asteriornis maastrichtensis is deposited in the permanent collection of the Natuurhistorisch Museum
Maastricht under collection number NHMM 2013 008.

Dating methods No new dates are provided; date estimates follow the most recent estimates for the type Maastrichtian (e.g., Keutgen 2018).

g Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.
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