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Abstract. Various automated code compliance checking (ACC) systems have
been developed and used to check the compliance of building information
models (BIMs) with building codes, to reduce the time, cost, and errors of the
code compliance checking process. All these systems require some form of
code-BIM matching – matching of the concept representations in the codes to
those in the BIMs – which is a difficult task. Traditionally, semantic matching
was conducted in a highly-manual manner. To address this problem, more
recently, a limited number of efforts have proposed fully automated semantic
matching methods, which mostly rely on matching annotations and/or rules
developed by domain experts. Despite their relatively good performance, these
methods are by nature difficult to generalize or scale up (e.g., the matching rules
need to be updated, modified, or extended when switching from one type of
code to another). There is, thus, a need for semantic matching approaches that
are more generalizable and scalable. To address this need, this paper proposes a
new, machine learning-based approach to automatically match the building-code
concepts and relations to their equivalent concepts and relations in the Industry
Foundation Classes (IFC). The proposed approach consists of five primary tasks:
(1) prepare and process the training and testing data; (2) automatically identify
the domain word embeddings by learning from a large corpus of building-code
text and generate the final semantic representations by combining the domain
and general word embeddings; (3) match the building-code concepts to the IFC
elements; (4) match the building-code relations to the IFC relations; and
(5) evaluate the performance of the proposed approach using accuracy. The
proposed approach was implemented and tested on a number of chapters from
the 2009 International Building Code (IBC) and the Champaign 2015 IBC
Amendments. The preliminary results show that the proposed approach
achieved an accuracy of 77% for matching building-code concepts to IFC ele-
ments, and 78% for matching building-code relations to IFC relations, indicating
promising semantic matching performance.
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1 Introduction

To reduce the time, cost, and errors of compliance checking, various automated code
compliance checking (ACC) systems have been developed and used to check the
compliance of building information models (BIMs) with building codes. These systems
have used different methods for information representation and code checking, and
have achieved different levels of automation and performance. However, all of them
require some form of code-BIM matching – matching of the concept representations in
the codes to those in the BIMs. A certain level of matching can be conducted by simply
matching natural language words and/or searching through the domain ontology (e.g.,
match “beam” to “IfcBeamTypeEnum – Beam”). However, it is difficult to match the
regulatory information in building-code concepts represented by phrases and clauses,
and building-code relations represented by verbs and/or adjectives, to Industry Foun-
dation Classes (IFC) concepts (e.g., “return through” and “detoxification compound
facilities and spaces” each cannot be directly matched to an IFC concept). Thus, to
ensure the performance of the ACC systems, there is a need to develop an information
matching approach that is capable to deal with regulatory information carried in natural
language with diversified syntactic and semantic patterns.

In many cases, semantic matching was conducted in a highly-manual manner. With
the increasing opportunities and needs for automation, more recent ACC efforts have,
instead, proposed semi-automated (e.g., using machine learning algorithms to identify
candidate matches, and requiring a human user/expert to verify these matches) (Zhang
and El-Gohary 2016). Most recently, a limited number of efforts have also proposed
fully automated semantic matching methods, which mostly rely on matching annota-
tions and/or rules developed by domain experts (Zhou and El-Gohary 2018). Despite
their relatively good performance, these methods are by nature difficult to generalize or
scale up – when switching from one type of code to another, or from one chapter to
another in the same code, the matching rules might need to be updated, modified, or
extended. There is, thus, a need for semantic matching approaches that are more
generalizable and scalable.

To address this need, this paper proposes a new, data-driven approach to auto-
matically match the building-code concepts and relations to their equivalent concepts
and relations in the IFC. The proposed approach consists of five primary tasks:
(1) prepare and process the training and testing data; (2) automatically identify the
domain word embeddings of the building-code concepts and relations by learning from
a large corpus of building-code text and generate the final semantic representations by
combining the domain and general word embeddings; (3) match the building-code
concepts to the IFC elements using a similarity-based method; (4) match the building-
code relations to the IFC relations using a supervised learning-based method; and
(5) evaluate the performance of the proposed approach using accuracy.
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2 Background

2.1 Semantic Matching

Semantic matching aims to identify the information that is semantically related
(Fernández et al. 2011).Many research efforts have been undertaken tomatch information
from sources such as text and informationmodels other than building informationmodels
(BIMs) to the information from BIMs. For example, Cemesova et al. (2015) proposed
PassivBIM to integrate the geometric and building fabric information fromBIMswith the
energy information in building performance simulation (BPS)models. Karan et al. (2015)
used a semantic web-based method to identify the common entities among BIMs and
geographic information (GIS) systems. Zhang and El-Gohary (2016) proposed a semi-
automated learning-based method for matching the regulatory concepts and relations
extracted from building codes to their most-related IFC concepts (e.g., equivalent con-
cept, subconcept, superconcept) and relations for supporting ACC. Afsari et al. (2017)
proposed ifcJSON representations to map information in the IFC data format to infor-
mation in the JSON data format for facilitating web-based BIM data exchange. Zhou and
El-Gohary (2018) proposed a rule-based method for matching the semantic information
elements extracted from energy codes to the IFC concepts and relations for supporting
energy code compliance checking.

The majority of semantic matching methods require that the semantic similarities
between the concepts and relations are first established. To assess the semantic simi-
larities between the concepts and relations – which are in the form of natural language,
those concepts and relations need to be first represented in computer-processible
semantic representations. Word embeddings is one of the most widely used semantic
representations of natural language data. A word embedding is a vector representation
of the word in a specific context (e.g., building code) (Mikolov et al. 2013). Word
embeddings have been used for solving numerous text analytics tasks both in the
computational linguistic domain [e.g., social media text classification (Xiao et al.
2018), semantic discovery (Yao et al. 2018)] and in the construction domain [e.g.,
building-code requirement analytics (Zhang and El-Gohary 2019)].

2.2 Industry Foundation Classes

The Industry FoundationClasses (IFC) data format aims to describe, represent, exchange,
and share information typically used in the Architecture, Engineering, and Construction
(AEC) domain, and is the most commonly used format of building information modeling
(buildingSMART 2019). The IFC data format defines an object-based informationmodel
consisting of IFC elements and IFC relations. An IFC element is a physically existent
component of a project in BIM (buildingSMART 2019). The most important IFC ele-
ments include the spatial structure elements (e.g., IfcSpace) and the building elements
(e.g., IfcDoor). An IFC relation describes how the IFC elements are related to each other.
For example, the “spatial composition” relation describes the case where a spatial
structure element decomposes into other IFC elements. However, the IFC concepts do not
correspond to the concepts and relations used in the building codes, which creates a major
barrier for ACC. It makes the process of matching the building-code concepts and rela-
tions to the IFC elements and relations complex and challenging.
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3 Proposed Machine-Learning Approach for Semantic
Matching of Building Codes and Building Information
Models

The proposed approach consists of five main steps, as shown in Fig. 1: (1) data
preparation and preprocessing, (2) semantic representation generation, (3) similarity-
based matching of building-code concepts to IFC elements, (4) supervised learning-
based matching of building-code relations to IFC relations, and (5) method evaluation.

Step 1: Data Preparation and Preprocessing
For evaluating the matching of building-code concepts and relations, 80 sentences were
selected from the 2009 IBC and the Champaign 2015 IBC Amendments. The concepts
and relations in these sentences were manually extracted, resulting in a total of 97
building-code concepts and 73 building-code relations (including the two building-
code concepts associated by this building-code relation, Concept A and Concept B).
Each word in the names of the concepts and the relations was lowercased and singu-
larized. All the concepts and relations were manually matched to the equivalent or
super IFC elements or IFC relations, resulting in matching the 97 concepts to a total of
24 IFC elements and the 73 relations to a total of six IFC relations, as shown in
Tables 1 and 2, respectively. The six relations include five original IFC relations, in
addition to an added sixth relation, “complex relation”, which was added to represent
the case where a single building-code relation needs to be matched to multiple IFC
relations. Each IFC element was further transformed into a canonical form – which is a
lowercased English word, phrase, or sentence – for the purpose of semantic similarity
assessment (Step 3). The transformation was conducted following three steps: (1) re-
moving the prefixes in the IFC elements (e.g., “Ifc”), (2) referring to the explanations
provided by the IFC documentation, and (3) using engineering judgment. For example,
“IfcDoor” was transformed into “door”, and “IfcSpace” was transformed into “room,
space, or unit”.

Fig. 1. Proposed machine-learning approach for semantic matching of building-code concepts
and relations to Industry Foundation Classes (IFC) elements and relations
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Two types of data were prepared for generating the semantic representations (Step 2).
For identifying the domain word embeddings, a corpus of 6,000 sentences from the 2009
IBC and the Champaign 2015 IBC Amendments were used to train an unsupervised
learning algorithm. For the general word embeddings, the “pre-trained word embed-
dings” (Pennington et al. 2014) were used. Those word embeddings were learned from a
large, cross-domain corpus, using the Glove algorithm, and thus can provide additional
semantic information (Pennington et al. 2014) to enhance the robustness of the semantic
representations.

Step 2: Semantic Representation Generation
The semantic representations of the building-code concepts and relations, and the IFC
elements and relations, were generated based on word embeddings. The semantic
representation generation step consists of two substeps: (1) training the learning
algorithm for identifying the domain word embeddings, and (2) combining the domain
and the general word embeddings. First, the unsupervised learning algorithm,
word2vec, was trained on the domain-specific corpus of building-code sentences using
the Gensim (Rehurek and Sojka 2010) built in Python, in order to identify the domain
word embeddings. Second, for each word, the final word semantic representation was
computed as the weighted average of the domain and general embeddings, in order to
reflect both the domain-specific semantic meanings and the general semantic meanings
of the word. The domain semantic weight ranges from 0 to 1, where 0 represents only

Table 1. Industry Foundation Classes (IFC) elements used in the proposed semantic matching
approach

Type of IFC elements IFC elements

Spatial structure
elements

IfcSite, IfcBuilding, IfcBuildingStorey, IfcSpace

Building elements IfcBeam, IfcChimney, IfcColumn, IfcCovering, IfcCurtainWall,
IfcDoor, IfcFooting, IfcMember, IfcPile, IfcPlate, IfcRailing, IfcRamp,
IfcRoof, IfcSlab, IfcStair, IfcWall, IfcWindow

Furnishing elements IfcFurniture
Transportation
elements

IfcTransportElementTypeEnum – Escalator,
IfcTransportElementTypeEnum – Elevator

Table 2. Industry Foundation Classes (IFC) relations used in the proposed semantic matching
approach

IFC relations Definitions

Spatial composition A spatial structure element decomposes into other IFC elements
Spatial container A spatial structure element contains other IFC elements
Product placement An IFC element’s location relative to another IFC element
Material constituent An IFC element consists of a material element
Property An IFC element has a property
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using general semantic meanings and 1 represents only using domain semantic
meanings.

Step 3: Similarity-Based Matching of Building-Code Concepts to IFC Elements
The building-code concepts were matched to the IFC elements using a similarity-based
method, which consists of two substeps: semantic similarity assessment and concept-
element matching. First, the semantic similarities between the building-code concepts
and the canonical forms corresponding to the IFC elements were computed. Two
semantic similarities were proposed: phrase similarity and last-word similarity. Phrase
similarity is defined as the cosine similarity between the phrase semantic representa-
tions of the building-code concept and the canonical form of the IFC element. A phrase
semantic representation is formed by averaging the word semantic representations of all
words in the building-code concept or the canonical form. Last-word similarity is
defined as the cosine similarity between the semantic representation of the last noun in
the building-code concept – which typically carries important information about
building elements – and the phrase semantic representation of the canonical form of the
IFC element. Second, the building-code concepts were matched to the IFC elements
based on matching scores. For each pair of building-code concept and IFC element, the
higher one of the phrase and last-word similarities was used as the matching score. For
each building-code concept, the candidate IFC element having the highest matching
score was selected as the match.

Step 4: Supervised Learning-Based Matching of Building-Code Relations to IFC
Relations
The building-code relations were matched to the IFC relations using a supervised
learning-based method, which consists of two substeps: semantic feature development
and relation classification. First, four semantic features were selected: the phrase
semantic representations of the relation, Concept A, and Concept B, and the lettercase
of the words in Concept B. Similar to Step 3, the phrase semantic representations were
computed as the average of the semantic representations of the words in the relations
and the concepts. The fourth feature (i.e., the lettercase of the words in the object) is
binary, indicating whether there is a capitalized word in the object. Second, a relation
classification model was trained using the training data. Two types of classifiers were
tested and compared: a multilayer perceptron (MLP) and a multiclass support vector
machine (SVM) with a linear kernel. The trained relation classification model is able to
take new features and predict the corresponding IFC relations automatically.

Step 5: Evaluation
The performances of matching building-code concepts to IFC elements and matching
building-code relations to IFC relations were evaluated separately, both using accuracy
(Olson and Delen 2008). Accuracy is defined as the proportion of the testing building-
code concepts or relations that are correctly matched to their corresponding IFC ele-
ments or relations, in the entire testing building-code concepts or relations dataset.
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4 Preliminary Experimental Results

4.1 Performances in Code-BIM Matching

The performance of the proposed approach is summarized in Table 5. Based on the
testing results, the accuracy of matching the building-code concepts to the IFC ele-
ments is 77% and the accuracy of matching the building-code relations to the IFC
relations is 78%. Examples of the correctly matched pairs of building-code concepts
and IFC elements, and pairs of building-code relations (with associated concepts) and
IFC relations, are shown in Tables 3 and 4, respectively.

For matching the building-code concepts to the IFC elements and matching the
building-code relations to the IFC relations, different domain semantic weights were
tested and compared, including 0 (using general word embeddings only), 0.25, 0.50,
0.75, and 1 (using domain word embeddings only), as shown in Table 5. The optimal
performance for matching the building-code concepts to the IFC elements was
achieved when the domain semantic weight was 0.25; and the optimal performance for
matching the building-code relations to the IFC relations was achieved when the
domain semantic weight was 0.50. Compared to using only either domain word
embeddings or general word embeddings, the use of weighted word embeddings

Table 3. Example matched building-code concepts and Industry Foundation Classes
(IFC) elements

Building-code concepts (A) Matched IFC element
(B)

Type of match (relation of B
to A)

Horizontal sliding power-
operated door

IfcDoor Superconcept

Building IfcBuilding Equivalent concept
Permanently installed furnishing IfcFurniture Superconcept
Mezzanine IfcFloor Superconcept
Type A dwelling unit IfcSpace Superconcept

Table 4. Example matched building-code relations and Industry Foundation Classes
(IFC) relations

Building-code relations
(with associated concepts)

Matched IFC relations Type of match

Have, dwelling unit, room Spatial composition Equivalent relation
With, room, furred ceiling Spatial container Equivalent relation
To, egress, exit Product placement Equivalent relation
Have, corridor, ceiling height Property Equivalent relation
Accessory to, area, area Complex relation Equivalent relation
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(i.e., the proposed semantic representation) increased the accuracies by up to 22%,
which indicates the benefit of integrating both domain-specific and cross-domain
semantic information.

For matching the building-code relations to the IFC relations, the two tested
classification algorithms (i.e., MLP and SVM) achieved different performances for
different semantic weights, but achieved the same optimal performance when the
domain semantic weight is 0.50, as shown in Table 5.

4.2 Error Analysis

Two main types of errors were identified based on the experimental results. First, for
matching building-code concepts to IFC elements, the proposed method had errors
when dealing with building-code concepts that are less frequently appearing in the
building code, such as “casework”, which appears only once in the entire IBC 2009.
The generated domain word embeddings may not be able to capture the domain
semantic meanings of those concepts. In future work, a larger, more diversified corpus
of text from the construction domain could be used for training. Second, for matching
the building-code relations to the IFC relations, the proposed method misclassified
“spatial composition” as “spatial container” or “complex relation”. In future work,
more training data and features based on domain ontology could be used, in order to
enhance the ability of the relation classification model to distinguish such relation types
that are close or related.

Table 5. Performance of the proposed approach with different domain semantic weights

Domain
semantic
weights

Accuracy of matching building-code
concepts and Industry Foundation Classes
(IFC) elementsa

Accuracy of matching
building-code relations and
IFC Relationsa

Multilayer
perceptron

Multiclass
support vector
machine

0 76% 61% 56%
0.25 77% 69% 74%
0.50 71% 78% 78%
0.75 70% 69% 69%
1 66% 65% 69%
aBolded font indicates the highest performance
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5 Conclusions

This paper proposed a new machine learning-based approach for matching semantic
information in building codes and building information models for supporting auto-
mated compliance checking (ACC), by separately matching the building-code concepts
to the IFC elements and matching the building-code relations to the IFC relations. First,
the semantic representations were generated by combining the domain word embed-
dings and the general word embeddings to reflect both domain-specific and cross-
domain semantic information, in order to improve both accuracy and scalability of the
proposed approach. Second, a similarity-based method was proposed to match the
building-code concepts to the IFC elements. Third, a supervised learning-based method
was proposed to match the building-code relations to the IFC relations. The proposed
approach achieved a 76% accuracy of matching the building-code concepts to the IFC
elements, and a 78% accuracy of matching the building-code relations to the IFC
relations.

This paper contributes to the body of knowledge in two primary ways. First, the
paper proposed a new way to model the semantic meanings of the domain-specific text
by first generating the domain word embeddings and then combining both the domain
and the general word embeddings. The proposed approach makes use of both domain
and general semantic representations in semantic matching, and thus has potentially
better scalability in dealing with different types of building codes. Second, the initial
experimental results show that the proposed semantic representation successfully
captured the semantic meanings of both building-code concepts and relations, and IFC
elements and relations, in both similarity-based and supervised learning-based semantic
matching tasks.

In their future work, the authors first plan to improve the information matching by
including more IFC elements (e.g., IfcSanitaryTerminal), the properties of the IFC
elements (e.g., Pset_DoorCommon – IsExternal), the subconcepts of the IFC elements
[e.g., revolving door (a subconcept of IfcDoor)], and more IFC relations (e.g., element
filling); and including building-code concepts and relations described in complex
phrases (e.g., occupant evacuation elevator lobby) and sentences. Second, the authors
will explore further ways to improve the performance of the proposed information
matching approach, including using more training data for the domain word-
embedding generation, annotating more training data for relation classification, and
exploring different data similarities for matching the building-code concepts to the IFC
elements, and different supervised learning algorithms for matching the building-code
relations to the IFC relations. Third, and most importantly, the authors plan to integrate
the proposed information matching approach with machine learning-based information
extraction and transformation approaches, with an aim to develop a fully automated,
and highly scalable ACC system.
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