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Joint Inversion of Compact Operators

Jodi L. Mead and James F. Ford

Abstract. Joint inversion of multiple data types was studied as early as 1975 in [21],
where the authors used the singular value decomposition to determine the degree of ill-
conditioning of joint inverse problems. The authors demonstrated in several examples that
combining two physical models in a joint inversion, and by effectively stacking discrete
linear models, improved the conditioning as compared to individual inversions. This work
extends the notion of using the singular value decomposition to determine the conditioning
of discrete joint inversion to using the singular value expansion to determine the well-
posedness of joint operators. We provide a convergent technique for approximating the
singular values of continuous joint operators. In the case of self-adjoint operators, we give
an algebraic expression for the joint singular values in terms of the singular values of the
individual operators. This expression allows us to show that while rare, there are situations
where ill-posedness may be not improved through joint inversion and in fact can degrade
the conditioning of an individual inversion. The expression also quantifies the benefits of
including repeated measurements in an inversion. We give an example of joint inversion
with two moderately ill-posed Green’s function solutions, and quantify the improvement
over individual inversions. This work provides a framework in which to identify data types
that are advantageous to combine in a joint inversion.
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1 Introduction

Joint inversion involves inverting one or more data sets that share common pa-
rameters x, e.g. Ax = d1 and Bx = d2 where d1 and d2 are distinct data sets
while A and B are distinct bounded linear operators. Both systems are typically
ill-posed, the data contain noise and hence regularization is required to estimate
the parameters. For example, using Tikhonov regularization with the first equation
we optimize

min
x

{
∥Ax− d1∥2

2 + α2∥Lx∥2
2
}
.

Introducing regularization means we solve a nearby well-posed problem that adds
bias to the parameter estimates [5].
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Alternatively, to make the problem less ill-posed, we could introduce additional
data through joint inversion and optimize

min
x

{
∥Ax− d1∥2

2 + ∥Bx− d2∥2
2
}

with appropriately weighted data and operators. Additional data has the potential
to regularize and hence reduce ill-posedness as compared to individual systems.
This is advantageous over regularization methods like Tikhonov because the bias
introduced by the additional term comes from a physically motivated model, rather
than initial estimates of the parameters or their derivative values.

Joint inversion has become common in Geophysical applications. For example,
electromagnetic and seismic data can be jointly inverted for geophysical param-
eters [14, 17]. Even though the physics describing each data set may not share
the same parameters, data can be combined in an inversion using petrophysical
relationships [1] or by the cross-gradient approach [10]. Cross-gradient regular-
ization assumes the parameters from each data set are structurally similar and has
also been used to combine gravity and magnetic data [6], and resistivity and seis-
mic data [7, 19]. In all cases numerical results show that joint inversion improves
separate inversions.

In this work we discuss methods to quantify the amount by which joint inversion
improves individual inversions. Ill-posedness in each system can be measured by
analyzing their singular values. Using discrete representations A ∈ Rm1×n and
B ∈ Rm2×n of the linear operators A and B, the singular values of the stacked
matrix

C ≡

[
A

B

]
give the degree of ill-conditioning of the joint inverse problem. In particular, if the
singular values σk decay like k−q, we call q the degree of a mildly or moderately
ill-posed problem. Larger values of q indicate larger degrees of ill-posedness and
in severely ill-posed problems σk decays like e−qk [2].

In this work we consider continuous compact linear operators that represent
physics from the data collection process, rather than discretized versions of them.
By considering the continuous problem, we can better understand the effects fo
combining physical models because discretization is a form of regularization. There-
fore, in Section 3.1 we extend the notion of a vertically concatenated matrix to the
process of combining compact linear operators. This process is understood for
Tikhonov regularization [8] and we extend it to the more general direct sum of
integral operators on Hilbert spaces [11].

We give a practical approach to calculating the singular values in Section 3.2
using a Galerkin method. If the operators are self-adjoint operators we show in
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Section 3.3 that it is possible to get a closed form expression for the joint singular
values in terms of the singular values of the individual operators. Understanding
the ill-posedness of data collection techniques before data is collected opens the
door to experimental design. We illustrate this on joint inversion of two simple
one-dimensional ordinary differential equations in Section 4.

2 Background

2.1 Singular Value Expansion

The singular value decomposition is the tool of choice for rigorous analysis of least
squares solutions to discrete linear inverse problems. The continuous extension of
this tool is the singular value expansion (SVE) [8, 12, 15, 16, 20]. It decomposes a
compact linear operator into orthogonal functions.

Theorem 2.1 (Singular Value Expansion). Let H , HA be Hilbert spaces, and let
A : H → HA be a compact linear operator. Then there exists orthonormal se-
quences {ϕk} ⊂ H and {ψk} ⊂ HA and positive numbers σ1 ≥ σ2 ≥ · · ·
converging to zero, such that

A =

∞∑
k=1

σkψk ⊗ ϕk, and A∗ =

∞∑
k=1

σkϕk ⊗ ψk.

We define ψk ⊗ ϕk as
(ψk ⊗ ϕk)h = ⟨h, ϕk⟩Hψk,

for all h ∈ H . Note that A∗ is also a compact linear operator and denotes the
adjoint of A. Furthermore,

Aϕk = σkψk for all k

and

Ah =
∞∑
k=1

σk⟨ϕk, h⟩Hψk for all h ∈ H.

Additionally, {ϕk} is a complete orthonormal set for N (A)⊥ and {ψk} is a com-
plete orthonormal set for R(A).

Proof. See [8] or [9].
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The SVE yields a family of singular function, singular value pairs {(σk, ϕk)}∞k=1
that satisfy

A∗Aϕk = σ2
kϕk.

The operator A∗A may not be invertible and we express the generalized inverse as

A† =

∞∑
k=1

σ−1
k ϕk ⊗ ψk. (2.1)

The least squares solution that minimizes ∥Ah− f∥2
HA

is given by

h = A†f =
∞∑
k=1

σ−1
k (ϕk ⊗ ψk) f =

∞∑
k=1

⟨ψk, f⟩HA

σk
ϕk for all f ∈ D

(
A†
)
.

However, A has an infinite sequence of singular values decaying towards zero.
Therefore, σ−1

k increase in an unbounded manner andA† is not a compact operator
[13, 15].

Example: Define the compact linear operator A : H → HA, where H = HA =
L2(0, 1), by Ah(t) =

∫ t
0 h(s)ds. Then the adjoint operator A∗ : HA → H

is A∗f(t) =
∫ 1
t f(s)ds while the self-adjoint operator A∗A : H → H is

A∗Ah(t) =
∫ 1
t

(∫ s
0 h(τ)dτ

)
ds. The singular values and right-singular func-

tions of A are σk = 2
(2k−1)π and ϕk(t) =

√
2 cos t

σk
; k ∈ N. Thus σk → 0 and

A† is not compact.

In discrete problems, the condition number is defined as the ratio of largest to
smallest singular values. However, in infinite dimensions this is not a sufficient
metric by which to measure ill-posedness so we characterize the ill-posedness of
the problem in terms of the decay rate of its singular values. As in the discrete
case, it is clear that small singular values (relative to σ1) will disproportionately
amplify the contribution from corresponding singular vectors or functions. If there
is noise in the data, this too will be amplified, perhaps to an unacceptable level.

2.2 Tikhonov Regularization

The negative effect decaying singular values have on the parameter estimates in
an ill-posed problem can be alleviated with regularization. In infinite dimensional
Hilbert spaces, a truncated SVE approximation to the operator A requires trunca-
tion of infinitely many singular values, and we will not investigate this finite sum
approximation. Alternatively, we focus on Tikhonov regularization for compact
operators as it relates to joint inversion.
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Tikhonov regularization changes the problem to one which has an invertible
operator, and therefore has a well-defined inverse solution. This invertible operator
will require us to consider the spaceHA⊕H = {(hA, h) : hA ∈ HA, h ∈ H} [11].
This too is a Hilbert space under the inner product

⟨(hA,1, h1), (hA,2, h2)⟩HA⊕H = ⟨hA,1, hA,2⟩HA
+ ⟨h1, h2⟩H .

The Tikhonov operator Tα : H → HA ⊕H is defined by

Tαh = (Ah, αh)

and we minimize

∥Tαh− (f, 0)∥2
HA⊕H = ∥Ah− f∥2

HA
+ α2 ∥h∥2

H .

Theorem 2.2. Suppose α > 0. Then R(Tα) is closed and N (Tα) is trivial. There-
fore Tαh = (f, 0) has a unique least squares solution for all f ∈ HA, [8].

Proof. Consider the normal equation for this problem:

T ∗Th = T ∗(f, 0)

T ∗(Ah, αh) = T ∗(f, 0)

A∗Ah+ α2h = A∗f + α · 0

(A∗A+ α2I)h = A∗f.

For appropriate choice of α (A∗A + α2I) is invertible with a bounded inverse.
Therefore a unique solution to the normal equations exists.

Tikhonov regularization replaces the not necessarily invertible operator A∗A
with (A∗A + α2I) in the normal equations. The generalized inverse operator for
the modified least squares problem therefore can be written

A†
α = (A∗A+ αI)−1A∗ =

∞∑
k=1

σk
σ2
k + α

ϕk ⊗ ψk.

Since
σk

σ2
k + α

→ 0, as k → ∞

the operator A†
α is bounded, and inverse solutions depend continuously on f .
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Solution estimates found with this generalized operator depend strongly on the
regularization parameter α, which restricts the space of acceptable solutions. Al-
ternatively, joint inversion uses additional physics and the corresponding observa-
tions to restrict the solution space. This allows more physically relevant solutions
and restricts the parameters to ones that satisfy two or more mathematical mod-
els. Joint inversion does not contain a parameter such as α that guarantees a well
posed problem, but it will more likely require less regularization. This is explained
in detail in Section 3.

3 Joint Inversion

Joint inversion of compact operators minimizes

∥Ah− d1∥2
HA

+ ∥Bh− d2∥2
HB

= ∥Ch− (d1, d2)∥2
HA⊕HB

.

Similar to Tikhonov regularization, the joint operator maps into the Cartesian prod-
uct of two Hilbert spaces, i.e. C : H → HA ⊕HB. However, rather than consider
the mathematically defined space H in Tikhonov regularization, we use the new
physical space HB defined by an additional data collection technique.

Example: Define the Hilbert spaces H = L2 (0, 2π), and HA = HB = R.
Define the compact operators A : H → HA and B : H → HB as

Ah =

∫ 2π

0
h(y)δ(y − 5)dy, Bh =

∫ 2π

0
h(y)δ(y − 7)dy.

Then C : H → HA ⊕HB is defined as

Ch = (Ah,Bh) =

(∫ 2π

0
h(y)δ(y − 5)dy,

∫ 2π

0
h(y)δ(y − 7)dy

)
.

Consider the image of a subset of H under C: S =
{cos kx : k ∈ R, x ∈ [0, 2π]}. For each frequency k, the mapping of
cos kx under C is C(cos kx) = (cos(k · 5), cos(k · 7)) . Since the codomain of
C is HA ⊕ HB = R2, we can represent the image of S under C graphically,
see Figure 1.

The change in codomain of the joint operator as compared to the individual
operators is similar to the change when stacking matrices. In both cases, the
codomain of the joint operator or stacked matrix increases in dimension to the
sum of the codomains of the individual operators or matrices. In particular, the
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Figure 1. Example of joint operator C, a parametric curve defined by C(cos kx) for
k ∈ [−5, 5]

.

joint operator maps into all ordered pairs in HA ⊕HB. For the purposes of vi-
sualization, it is helpful to think of C as defining a parametric curve in the space
HA ⊕HB , e.g. Figure 1.

3.1 Singular Value Expansion

As mentioned previously, the decay rate of the singular values provide a metric for
the ill-posedness of an operator. If A and B are compact, we know that C admits
a singular value expansion as shown in the following Theorem. Then with A,B,
andC defined as above, we can compare the singular value decay rates of the three
operators to see if the joint operator yielded any improvement.

Theorem 3.1. LetA : H → HA andB : H → HB be compact operators from the
Hilbert space H to the Hilbert spaces HA and HB respectively. Then C : H →
HA ⊕HB with Ch = (Ah,Bh) admits a singular value expansion for all h ∈ H .

Proof. The Hilbert space direct sum

HA ⊕HB = {(hA, hB) : hA ∈ HA, hB ∈ HB} .

admits the inner product ⟨·, ·⟩ on HA ⊕HB with

⟨(hA,1, hB,1) , (hA,2, hB,2)⟩HA⊕HB
= ⟨hA,1, hA,2⟩HA

+ ⟨hB,1, hB,2⟩HB
.

C is thus a compact operator between two Hilbert spaces [3] and admits a SVE.
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Lemma 3.2. The family of singular function, singular value pairs {(σk, ϕk)}∞k=1
that satisfy

C∗Cϕk = σ2
kϕk

also satisfy
σ2
kϕk = A∗Aϕk +B∗Bϕk.

Proof. The adjoint C∗ : HA ⊕HB → H is given by

C∗ (hA, hB) = A∗hA +B∗hB.

Expanding we get

σ2
kϕk = C∗Cϕk

= C∗ (Aϕk, Bϕk)

= A∗Aϕk +B∗Bϕk.

Example: Let A and B be Green’s function operators

Ah =

∫
Ω

KAh and Bh =

∫
Ω

KBh

associated with the differential operations LA and LB , respectively, so that
LAA = ALA = I and LBB = BLB = I with similar identities for their
adjoints. Suppose we wish to find the singular values of the joint operator C
using Lemma 3.2. The corresponding integral equation for the singular values
and functions can be transformed to an equivalent ordinary differential equation
(ODE) by repeatedly applying the differential operators. In particular,

L∗
A

(
σ2
kϕk
)

= L∗
A (A∗Aϕ+B∗Bϕk) ,

and

LA

(
σ2
kL

∗
Aϕk

)
= LA (Aϕk + L∗

AB
∗Bϕk) ,

or

σ2
kLAL

∗
Aϕk = ϕk + LAL

∗
AB

∗Bϕk.

If LAL
∗
A and LBL

∗
B commute, and we apply L∗

B and LB in the same manner,
we eliminate all integrals and obtain an ODE in ϕk:

σ2
k (LBL

∗
BLAL

∗
A)ϕk = (LBL

∗
B + LAL

∗
A)ϕk.
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The approach to finding the singular value-singular function pairs described in
this example can be challenging. It produces an ODE with much higher order than
that of the given differential operatorsLA orLB, and introduces many more bound-
ary conditions. Alternatively, we suggest using a Galerkin method to approximate
the singular values as described in the next section.

3.2 Galerkin Method

The singular value expansion of an individual integral kernel KA(s, t) defined
over Ωs×Ωt, such as a Green’s function, can be approximated using the Galerkin
method. It has been shown that the singular values derived using the Galerkin
method converge to the true singular values [12, 18]. Here, we extend the method
to joint operators.

The idea of the Galerkin method is to approximate the integral operator A with
an integral operator whose kernel is degenerate. We accomplish this by restricting
ϕ and ψ to a the span of finitely many, n, orthonormal basis functions {qi(s)}ni=1
and {pj(t)}nj=1 for L2(Ωs) and L2(Ωt) respectively.

The matrix A(n) with entries a(n)ij approximates the operator A, and is defined
by

a
(n)
ij = ⟨qAi , ApAj ⟩

= ⟨qAi , ⟨KA, p
A
j ⟩⟩

=
∫

Ωs

∫
Ωt
qAi (s)KA(s, t)p

A
j (t)dtds. (3.1)

The SVDA(n) is denotedU (n)
A Σ

(n)
A

(
V

(n)
A

)T
with Σ

(n)
A = diag

(
σ1(A

(n)), σ2(A
(n)), . . . σn(A

(n))
)

containing the discrete singular values σk(A(n)) which approximate the continu-
ous singular values σk(A).

Definition 3.3. The singular values of an integral operator A with a real, square
integrable kernel K are the stationary values of the functional

F [p, q] =
⟨q,Kp⟩
∥p∥∥q∥

,

with the corresponding left and right singular functions given by p/∥p∥ and q/∥q∥
respectively.

The singular values of the degenerate kernel

K̃A =

n∑
i=1

n∑
j=1

a
(n)
ij q

A
i (s)p

A
j (t)
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are the stationary values of

F̃A[ϕ, ψ] =
⟨qA, K̃Ap

A⟩
∥pA∥∥qA∥

.

Using the discretization

pA(t) =
n∑
i=1

yA
i p

A
i (t) and qA(s) =

n∑
i=1

zA
i q

A
i (s)

the stationary values of F̃A are those of

GA[y
A, zA] =

(zA)TA(n)yA

∥yA∥∥zA∥

which are also the singular values of A [12].

Theorem 3.4. Let C(n) be the matrix with entries c(n)ij that approximate the oper-
ator C using the Galerkin method, then σk(C(n)) ≤ σk(C

(n+1)) ≤ σk(C), k =
1, 2, . . . n.

Proof. The basis functions {pAk}nk=1 and {qAk }nk=1 are orthonormal, and the singu-
lar values σk(A(n)) and σk(A(n+1)) are the stationary values of

FA[pA, qA] =
⟨qA,KApA⟩
∥pA∥∥qA∥

,

restricted to n-dimensional and n+1-dimensional function subspaces respectively.
Thus the approximate singular values σk(A(n)), where n is the number of basis
functions, are increasingly (with n) better approximations to the true singular val-
ues σk(A). A similar statement holds for σk(B(n)) and σk(B(n+1)) with basis
functions {pBk }nk=1 and {qBk }nk=1, and functional FB.

The kernel of the direct sum integral operator C = A ⊕ B is KA ⊕ KB [11].
Thus the singular values of the joint operator C are the stationary values of the
functional

FC [pA, qA, pB, qB] =

(
⟨qA,KApA⟩
∥pA∥∥qA∥

,
⟨qB,KBpB⟩
∥pB∥∥qB∥

)
.

The singular values of the discrete joint operator C(n) are the stationary values of
the functional

GC [y
A, zA, yB, zB] =

(
(zA)TA(n)yA

∥yA∥∥zA∥
,
(zB)TB(n)yB

∥yB∥∥zB∥

)
,
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which are also the singular values of C. Thus the approximate singular values
σk(C

(n)), where n is the number of basis functions, are increasingly (with n)
better approximations to the true singular values σk(C).

If the discretizations A(n) and B(n) are stacked to form
[
C(n)

]
=

[
A(n)

B(n)

]
we

get the following result.

Theorem 3.5. Define

(
∆
(n)
C

)2
= ∥KA ⊕KB∥2 −

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
[
A(n)

B(n)

]⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

F

=
∑∞

k=1 σk(C)
2 −

∑n
k=1 σk(

[
C(n)

]
)2.

Then
(

∆
(n)
C

)2
=
(

∆
(n)
A

)2
+
(

∆
(n)
B

)2
, i.e. the square of the joint error is the sum of

squares of the individual errors. Thus if limn→∞

(
∆
(n)
A

)2
= 0 and limn→∞

(
∆
(n)
B

)2
=

0, limn→∞

(
∆
(n)
C

)2
= 0.

Proof. (
∆
(n)
C

)2
= ⟨KA ⊕KB,KA ⊕KB⟩ −

[
∥A(n)∥2

F + ∥B(n)∥2
F

]
= ⟨KA,KA⟩+ ⟨KB,KB⟩ − ∥A(n)∥2

F − ∥B(n)∥2
F

= ∥KA∥2 − ∥A(n)∥2
F + ∥KB∥2 − ∥B(n)∥2

F

=
(

∆
(n)
A

)2
+
(

∆
(n)
B

)2
.

This says that if we stack the Galerkin approximations of the individual opera-
tors, as it typically done in a discrete joint inversion, the error in the approximation
to the singular values of the joint operator converges with n if the errors in the sin-
gular values approximations of the individual operators to go zero.

3.3 Self Adjoint Operators

If the operator A is self-adjoint, then ⟨Av,w⟩ = ⟨v,Aw⟩ for all v and w. This
means the singular functions are the eigenfunctions of the operator i.e. Aϕk =
σkϕk.
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Lemma 3.6. Let A be a self-adjoint, compact operator, then A(n) = Σ(n) where
A(n) is formed by the Galerkin method and Σ(n) is diagonal with entries σi(A(n))
that approximate the singular values σi(A).

Proof. Since A is self-adjoint, we use orthonormal bases equal to the eigenfunc-
tions ϕk in the Galerkin method to form A(n):

a
(n)
ij = ⟨ϕi, Aϕj⟩ = σi⟨ϕi, ϕj⟩

=

{
σi i = j

0 i ̸= j
.

When joint inversion combines self-adjoint operators, we can define the dis-
crete singular values for the joint stacked operator as a function of those from the
individual operators, as shown in the following theorem.

Theorem 3.7. If A and B are compact self adjoint operators, and σk(A(n)) and
σk(B

(n)) are discrete approximations of the singular values of A and B, respec-
tively, then the discrete approximation of the singular values of the joint operator
C are

σk(
[
C(n)

]
) =

√
σk(A(n))2 + σk(B(n))2.

Proof. Since A and B are self-adjoint, the Galerkin method produces the matrix
of approximate singular values

A(n) = Σ
(n)
A and B(n) = Σ

(n)
B .

The joint operator
[
C(n)

]
is thus[

A(n)

B(n)

]
=

[
Σ
(n)
A

Σ
(n)
B

]
.

The singular values of
[
C(n)

]
are the square roots of the eigenvalues of

([
C(n)

])T [
C(n)

]
=
[
Σ
(n)
A Σ

(n)
B

] [
Σ
(n)
A

Σ
(n)
B

]
=

[(
Σ
(n)
A

)2
+
(

Σ
(n)
B

)2
]
.
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It is very useful to have an analytical expression for the singular values of the
joint operator as a function of the singular values of the individual operators. It
allows us to determine the decay rate of the joint operator before the joint in-
version and characterize the joint problem as as mildly, moderately or severely
ill-conditioned.

Corollary 3.8. The characterization of the ill-conditioning (i.e. mild, moderate or
severe) of the discrete stacked joint problem

[
C(n)

]
is the same as that of the least

ill-posed problem A or B, as n → ∞. In this case, the conditioning of the joint
problem will never be worse than that of the individual problems.

Proof. We show this by considering different cases for the decay rates of the sin-
gular values of A(n) and B(n) and applying Theorem 3.7. A problem is mildly
or moderately ill-conditioned if the singular values σk decay like O(k−q) and
severely ill-conditioned if they decay like O(e−qk) for q > 0 [2].

(i) If σk(A(n)) = O(k−qA) and σk(B(n)) = O(k−qB ) then

σk(
[
C(n)

]
)2 ≤ cAk

−2qA + cBk
−2qB ≤ ck−2q

where q = min(qA, qB).

(ii) If σk(A(n)) = O(e−qAk) and σk(B(n)) = O(e−qBk) then

σk(
[
C(n)

]
)2 ≤ cAe

−2qAk + cBe
−2qBk ≤ ce−2qk

where q = min(qA, qB).

(iii) If σk(A(n)) = O(k−qA) and σk(B(n)) = O(e−qBk) then

σk(
[
C(n)

]
)2 ≤ cAk

−2qA + cBe
−2qBk ≤ ck−2qA .

The last inequality holds because as k → ∞ qA ≤ qB
k

ln(k) for any qA or qB
and hence e−qBk ≤ k−qA .

Corollary 3.9. For a finite set of singular values (e.g. the truncated SVD) if σk(A(n)) =
O(k−qA) and σk(B(n)) = O(e−qBk) with qB ≤ e1qA there is k for which k−qA ≤
e−qBk and hence the conditioning of the joint problem

[
C(n)

]
will be worse than

the better posed problem A.
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Proof. If qB ≤ ln(k)
k qA then there is k for which k−qA ≤ e−qBk and

σk(
[
C(n)

]
)2 ≤ cAk

−2qA + cBe
−2qBk ≤ ce−2qBk.

The result follows with qB ≤ ln(k)
k qA ≤ e1qA.

While combining multiple data sets in an inversion should produce a better
conditioned problem most of the time, a severely posed problem may degrade a
mildly or moderately ill-posed problem if the singular values are truncated in a
joint inversion. This does not mean that data from a severely posed problem are
not useful. We are only analyzing the conditioning or well-posedness of a problem,
and additional data may produce a more accurate estimate.

We can also use Theorem 3.4 to determine how collection of additional data
sets, that follow the same physics, improves the conditioning of a self-adjoint op-
erator.

Corollary 3.10. Let A be a compact self adjoint operator with discrete singular
values σk(A(n)). If multiple data sets di are collected withAh ≈ di, i = 1, . . . ,m,

and combined in a joint inversion by
[
C(n)

]
=

⎡⎢⎢⎣
A(n)

...
A(n)

⎤⎥⎥⎦ , then

σk(
[
C(n)

]
) =

√
mσk(A

(n)).

Proof. Using Theorem 3.4:

σk(
[
C(n)

]
) =

√
σk(A(n))2 + . . .+ σk(A(n))2 =

√
mσk(A

(n)).

Corollary 3.10 says that a second set of data improves conditioning by a factor
of

√
2. As the number of data sets collected m increases, the benefits in improved

conditioning can be quantified by the rate of change of
√
m. We see that while ad-

ditional data sets will always improve the conditioning of the problem, the benefits
decrease like 1

2
√
m

.
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4 Green’s Functions Example

We show results from combining data from two distinct boundary value problems

−u′′(x) = h(x), u(0) = u(π) = 0

u′′(x) + b2u(x) = h(x), u(0) = u(π) = 0, b /∈ Z

withLAu = −u′′ andLBu = u′′+b2u. The Green’s functions for both differential
operators are given in [4]. In particular for A : L2[0, π] → L2[0, π] we have

Ah(x) =

∫ π

0
KA (x, y)h(y)dy,

with

KA =

{
1
π (π − x) y, 0 ≤ y ≤ x ≤ π,
1
π (π − y)x, 0 ≤ x ≤ y ≤ π

and Ah(x) = u(x). Similarly for B : L2[0, π] → L2[0, π] we have

Bh(x) =

∫ π

0
KB (x, y)h(y)dy,

with

KB =

{
− sin(by) sin[b(π−x)]

b sin(bπ) , 0 ≤ y ≤ x ≤ π

− sin(bx) sin[b(π−y)]
b sin(bπ) , 0 ≤ x ≤ y ≤ π

and Bh(x) = u(x).
A is a self-adjoint compact operator, it admits an eigenvalue expansion and

the singular values of A are the absolute value of its eigenvalues. The equation
Aϕ = λϕ is equivalent to∫ π

0
KA (x, y)ϕ(y)dy = λϕ (x)

with ϕ (0) = 0 and ϕ (π) = 0. Differentiating both sides twice with respect to x
and applying the Leibniz integral rule gives

λϕ′′(x) =
d

dx

(∫ x

0
− 1
π
yϕ(y)dy +

∫ π

x

1
π
(π − y)ϕ(y)dy

)
= − 1

π
xϕ(x)− 1

π
(π − x)ϕ(x)

= −ϕ(x).
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This yields the eigenvalue-eigenfunction pairs (λk, ϕk(x)):

ϕk(x) =

√
2
π

sin (kx) , λk =
1
k2 k = 1, 2, . . . ,∞.

The singular values for A are thus σk(A) = 1
k2 for k = 1, 2, . . . ,∞. This means

the decay rate of the singular values are O(k−2) and the problem is moderately
ill-posed [2].
B is also a self-adjoint operator and its eigenvalues are

λk = 1
k2+b2 , for k = 0, 1, . . . ,∞.

The singular values for B are thus σk(B) = 1
k2+b2 . We omit the eigenfunctions

since the decay rate of the singular values is the focus of this work. The singular
values have the same decay rate as that for A and this problem is also moderately
ill-posed.

4.1 Joint Singular Values

The joint operator C : L2[0, π] → L2[0, π]⊕ L2[0, π] is

Ch(x) =

∫ π

0
KA (x, y)h(y)dy ⊕

∫ π

0
KB (x, y)h(y)dy.

If we were to use the same approach to finding the singular values of A and B
to now find the joint singular values of C, the result would be a linear constant
coefficient ODE with a eighth order characteristic polynomial. Alternatively we
use the Galerkin method presented in Section 3.1.

The discretizations A(n) and B(n) approximate the operators A and B with
orthonormal bases. Since A and B are self-adjoint we use the eigenfunction bases
and apply Theorem 3.7. The singular values of the stacked joint operator are thus

σk(
[
C(n)

]
) =

√(
1
k2

)2

+

(
1

k2 + b2

)2

, k = 1, . . . , n.

This shows that the moderately ill-posed problems A and B are combined to form
a joint moderately ill-posed problem. While the overall conditioning of the prob-
lem has not changed through joint inversion, we will quantify the benefits of the
joint problem by determining the number singular values above a given threshold
in a truncated singular value expansion (TSVD) for each problem.

The TSVD is a regularization method whereby small singular values are dis-
carded so that the problem is well-conditioned. However, information is lost when
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singular values are discarded and therefore we wish to keep as many as possible.
Let the number of singular values in the TSVD be denoted by r with r chosen by
requiring that σr ≥ T for small threshold T . The further T is from zero the better
conditioned the problem, however the solution will also be less accurate. In our
example if the number of singular values in the TSVD for A are denoted by rA,
then rA ≤

√
T−1. Similarly, the number of singular values in the TSVD for B

satisfy rB ≤
√
T−1 − b2 with T−1 > b2.

For joint inversion using
[
C(n)

]
we have that the number of singular values rC

satisfy
1
r4
C

+
1

(r2
C + b2)2 ≥ T 2.

Solving we get

rC =

√√
4
√
T 2b4 + 1 + T 2b4 + 4 − Tb2

2T
.

Now for T ≪ 1 if b ≈ 1 we approximate
√
T 2b4 + 1 ≈

√
1 and√

4
√
T 2b4 + 1 + T 2b4 + 4 ≈

√
8

so that rC ≈
√√

8−Tb2

2T . The percent increase in number of singular values we
keep with jointly inverting A and B rather than just A is

rC
rA

=

√√
8 − Tb2

2
≈

√√
8

2
≈ 119%

so that there is about a 19% increase. A similar statement can be made for jointly
inverting A and B rather than just B.

The singular values for A(n), B(n) and
[
C(n)

]
with n = 35 are given in Figure

2. When b = 1.8 there is not much difference between the singular values of
A(n) and B(n), which is to be expected. Truncation often occurs about the point
where the singular values stop changing and we’ve indicated two values at which
to truncate, one on the left column of the Figure and another on the right column.

In Table 1 we give the number of singular values that are kept after truncating.
For b = 1.8 the TSVD for A(n) and B(n) results in the same number of singular
values, for both values of truncation. The number of singular values kept for TSVD
with the same threshold increases with joint inversion. This increase in number of
singular values is 23% when singular values are truncated at 10−2.5 and 19% when
truncated at 10−3.0.
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Increase in number of σ
Threshold T rA rB rC kept for C over (A,B)

b=1.8
10−2.5 17 17 21 (23%,23%)
10−3.0 31 31 37 (19%,19%)

b=15.2
10−2.5 17 9 18 (5%,100%)
10−3.0 31 27 36 (16%,33%)

Table 1. Number of singular values in TSVD for A(n) (rA), B(n) (rB) and
[
C(n)

]
(rC). The last column gives the increase in number of singular values that are kept
in the TSVD for the given threshold T .
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Figure 2. Singular values for the individual inversions with A and B and joint inver-
sion C for b = 1.8 (top row) and b = 15.2 (bottom row). Two different thresholds
for truncation are also represented, T = 10−2.5 (left) and T = 10−3 (right).

When b = 15.2 the singular values of B change behavior from those of A. The
singular values of B drop off more quickly and hence fewer are kept in a TSVD.
In Figure 2 the singular values σk start at k = 7 in all cases to make the graph
more readable.

We see in Table 1 that for b = 15.2 and with a lower threshold, only 9 of the
singular values are kept in the TSVD forB. In a joint inversion withA this number
is doubled and hence the increase in number of values kept with joint inversion
over those kept in B is 100%. The increase in the number of singular values over
those in A is much smaller and we see that data from this model better informs the
joint inversion. For a lower threshold with b = 15.2 more singular values are kept
in TSVD and the contributions from A and B are better balanced. This could be
at the cost of amplifying noise, and the conclusion of which threshold to use in the



124 J. L. Mead and J. F. Ford

TSVD is done the context of the noise of the data.
In this example we also see how analysis of the singular values as described

in this work can guide experimental design. The operator B contains a damping
parameter b that can be chosen before data are collected. Through this analysis we
see that for increasing values of b, there is a decrease in conditioning improvement
of the joint operator as compared to A. Therefore, if there is a desire to reduce
regularization, b should chosen as small as possible.

5 Conclusions

We have extended singular value analysis of discrete joint inversion to joint in-
version of compact linear operators. The analogous operation to stacking discrete
matrices is the direct sum of operators and we give results regarding the singular
value expansion of the joint operator. Joint inversion can be computationally ex-
pensive and in some instances it is not clear if it improves inversions of individual
operators. Therefore, we quantify improvement in jointly inverting two operators
by comparing the decay rate of the singular values of the joint operator to those
from the individual operators.

Tikhonov regularization with compact linear operators is also the direct sum of
operators. The regularization parameter can always be chosen so that an ill-posed
problem is made well-posed. However, the parameter selection process typically
restricts the solution space by enforcing a minimum norm solution. The minimum
norm solution may not always be optimal so alternatively, joint inversion restricts
the solution space using additional data. Additional data can make the solution
estimate more accurate and reduce the amount of regularization needed to solve
the problem, possibly eliminating regularization. This study shows how analysis
of singular values quantifies the change in conditioning of the joint problem as
compared to the individual problems, and effectively determines which types of
data “regularize" each other. With these tools we can identify which types of data
are best to combine before data are collected and hence the results in this work can
be used for experimental design.

We also developed a method for approximating the singular values of the joint
compact operator. The infinitely many singular values are approximated with a
Galerkin method. For self-adjoint operators we obtained an analytic formula for
the joint operator as a function of the singular values of the individual operators.
This formula shows that combining data sets from different physical models al-
most always improves conditioning, as compared to conditioning of the individual
problems. In addition, we showed that inverting additional data from the same
physical model, with m data sets, improves conditioning by a factor of

√
m.
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Lastly, we illustrated the results on a joint inverse problem involving Green’s
function solutions of two simple ordinary differential equations. We calculated
singular values arising from joint inversion of and compared them to the singular
values of the individual operators. In this example the conditioning of the joint
problem is not significantly better that that of the best conditioned problem. How-
ever, the conditioning of both moderately ill-posed problems are improved through
joint inversion. These conclusions confirm what was proved as the typical case of
joint inversion of self adjoint operators.
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