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ABSTRACT. Total Variation (TV) is an effective method of removing noise in
digital image processing while preserving edges. The scaling or regularization
parameter in the TV process defines the amount of denoising, with a value of
zero giving a result equivalent to the input signal. The discrepancy principle is
a classical method for regularization parameter selection whereby data is fit to
a specified tolerance. The tolerance is often identified based on the fact that
the least squares data fit is known to follow a x? distribution. However, this
approach fails when the number of parameters is greater than or equal to the
number of data. Typically, heuristics are employed to identify the tolerance
in the discrepancy principle and this leads to oversmoothing. In this work
we identify a x2 test for TV regularization parameter selection assuming the
blurring matrix is full rank. In particular, we prove that the degrees of freedom
in the TV regularized residual is the number of data and this is used to identify
the appropriate tolerance. The importance of this work lies in the fact that
the x2 test introduced here for TV automates the choice of regularization
parameter selection and can straightforwardly be incorporated into any TV
algorithm. Results are given for three test images and compared to results
using the discrepancy principle and MAP estimates.

1. Introduction. Most image processing problems take a two-dimensional signal as input and
produce an improved image that comes in the form of a set of parameters related to the image.
Since the input signal typically contains noise or blurring, a regularization term is included in
the inversion. A regularization parameter that controls the amount of regularization is necessary
for the inversion. Unfortunately, the choice of regularization parameter is often overlooked and
an inversion is run many times with different parameter values until a clear image is produced.
This process can be improved by solving a sequence of regularized problems iteratively with the
regularization parameter decreasing to zero. In this case the initial inverse estimate is updated
at each iterate so that regularization is no longer necessary at the end of the iterative procedure.
Alternatively, we suggest solving a single regularized problem with an optimally chosen regular-
ization parameter. Solving a single regularized linear problem rather than iterating a sequence of
regularized linear problems is advantageous for nonlinear or computationally large problems.
The difficulty with choosing the optimal regularization parameter is that essentially the regu-
larization term contains prior information about the unknown parameters and there is potential to
add bias to the solution. This is addressed in Bayesian methods by identifying appropriate prior
probability models [38]. Bayesian methods find a range of parameter sets in the form posterior
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distributions. Rather than estimate a posterior distribution for the parameters, we instead con-
sider the inverse problem as a statement about the prior and posterior means of the parameters
and input signal, and use standard deviations to weight them.

If the error in data and initial parameter estimates are assumed to be normal, the maximum
a posteriori probability (MAP) estimate is found solving a least squares problem with Tikhonov
regularization. Choice of regularization parameter for Tikhonov regularization is well studied
and common methods include the Discrepancy Principle, L-curve and generalized cross-validation
(GCV) [20]. The validity of all of these approaches relies on knowing the optimal solution of the
quadratic least squares functional, which is not possible for the TV functional. For example, in
the L-curve approach, the norm of the data residual vs. the solution can be plotted, but with the
TV functional there is no guarantee that the curve will be L-shaped with a corner containing the
optimal regularization parameter value.

Various authors have been able to exploit quadratic aspects of TV regularization to find reg-
ularization parameters. In [27] [37] the choice of scalar regularization parameter is made with the
discrepancy principle applied to the data residual. The discrepancy principle relies on estimates
of the data error or the standard deviation of data noise. In [41] they assume the noise is from
a Poisson or multiplicative Gamma distribution and use this property to find the expected value
of the data error. The discrepancy principle can lead to oversmoothing when data error is not
known because it is difficult to estimate the degrees of freedom in the residual. In [47] the discrep-
ancy principle is used with correct, equivalent degrees of freedom [44]. The equivalent degrees of
freedom can be found for a quadratic functional and while TV is not quadratic, such a functional
arises in their particular iterative primal-dual proximal point algorithm for TV optimization.

In [29] the Unbiased Predictive Risk Estimator (UPRE) is extended to TV regularization where
they approximate the TV term with a quadratic functional. Again the quadratic approximation
of the TV functional simplifies the degrees of freedom choice. As an alternative to approximating
the TV functional with a quadratic functional, SURE methods use Stein’s estimate for the correct
degrees of freedom in the predictive risk estimator. Stein’s degrees of freedom estimate involves
gradients which in [J] they calculate with finite differences. Alternatively, in [4] the SURE-
LET algorithm assumes the optimal parameter estimates are a linear combination of denoising
functions. This linear approximation allows for simpler estimates of the gradient calculation in
the degrees of freedom estimate.

The discrepancy principle and predictive risk methods rely on variance estimators of the data
and empirically give a Bayesian framework, at least for the observations. In [1I] they use TV
regularization with the Richardson—Lucy algorithm, which takes into consideration the Poisson
nature of the noise, for 3D imaging of biological specimens. However, the TV regularization
parameter is chosen in an ad hoc manner. Alternatively in [24] they exploit GCV to determine
how to iteratively update the regularization parameter in a variable splitting algorithm. They use
GCV to determine the regularization parameter for the quadratic part of the split and then step
through regularization parameter values to identify the best choice in the TV minimization part
of the split.

Another approach to TV regularization parameter selection is bi-level optimization. Bi-level
optimization is similar to the discrepancy and predictive risk methods because there are two levels
of optimization. In the discrepancy and predictive risk methods, the low level optimization is the
regularized inverse problem that finds parameter estimates, and the high-level optimization prob-
lem finds the regularization parameter(s) according to a specified loss function. In the discrepancy
principle the loss function is mean-squared error while in UPRE and SURE methods the loss func-
tion is predictive risk. Bi-level optimization in [I0, 26] also solves the regularized inverse problem
in the low level optimization but they set up the high-level loss function as training problem that
finds regularization parameters which minimizes the difference between the estimated parameters
and the training set value for the parameters. Another bi-level optimization method [21] 22] solves
the Fenchel-predual problem in a low-level optimization because it involves minimizing a smooth
objective function. The high-level problem optimizes a loss function so that weighted data residual
lies within upper and lower bounds of the data noise variance, which is similar to a discrepancy
type principle.

Here we derive an approach that does not rely on a quadratic interpretation of TV regular-
ization nor does it require training data. We identify correct degrees of freedom for predictive
risk but do not need to estimate degrees of freedom using Stein’s theorem because we use the
regularized residual. With the regularized residual no estimation procedure is necessary for the
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degrees of freedom as long as the smoothing operator A is full rank. Therefore the regularization
parameter selection algorithm proposed here using a x? test on the regularized residual can be
used with any TV optimization algorithm.

In Sectionwe first explain why the TV functional is a x? random variable. Then in Section
we derive the x? test for TV regularization using the TV regularized residual. Knowing the correct
degrees of freedom is crucial to the method and we use recent results on the degrees of freedom
of the Lasso method [I3] [43] to derive the degrees of freedom with a full rank blurring matrix.
In Section E| we show results from three different images, two types of noise, three different noise
levels and three TV algorithms: deconvtv [7], FTVd [46] and tvdeconv [I5]. Successful image
reconstruction is measured through Improved Signal to Noise Ration (ISNR). Given the exact
image, the regularization parameter that gives the highest ISNR is calculated and compared to
the ISNR with regularization parameter selection algorithms for a MAP estimate, the discrepancy
principle and the x? test.

2. Least Squares Estimators. Regularization parameter selection is well studied for Tikhonov
regularization [20] in linear problems,. We will briefly review it in a framework that introduces
the x2 test strategy proposed here for TV and explains how the Discrepancy principle can be
viewed as a x? test.

Linear inverse problems are often stated as

d=Ax+e€ (1)

where for two dimensional m X n greyscale image reconstruction problems d € R™" is a vector
of noisy observations, A € R™"X™M" ig 3 known model, and x € R™" contains the unknown
information about the true image that has m columns and n rows. The vector € represents noise
in the observations and it is assumed it has zero mean with variance ¢2. In image processing,
these vectors and matrix are specified by concatenating in a column- or row- wise fashion pixel
values for the image. The matrix A can use used to represent a shift in the image, in which case
the image is noisy, or A may represent a blur filter induced by motion in the image. In either
case, a;; acts on the value of the image pixel at the point indexed by (i, 7). For example an image
represented by 256 x 256 pixels, has m = n = 256.
A least squares fit of the unknowns to the observation solves the minimization problem

min ||d — Ax|)2. (2)

Typically this optimization problem is ill-posed so a regularization term, or constraints, are added
to it. The focus of this work is when the regularization term is a TV functional, but first we
discuss least squares regularization which takes the form:

(@) = argmin [|d — Ax|[3 + o[ L(x — xp)|I3. 3)
X

The matrix L is a ¢ x mn shaping matrix with no restriction on g, while x, is an initial guess that
is often taken to be zero. If o is chosen large, the regularization term dominates and more weight
will be placed on the second misfit, hence the estimate %X will be ”close” to xp. If L is chosen to
be the identity, there can be significant smoothing of the solution which may not be desirable in
imaging applications. If L is diagonal or dense, non-smooth least squares estimates result [34], and
applying L has the effect of applying a spatially dependent regularization parameter [12]. This
regularization process can also be viewed as constrained linear inversion [8] or ridge regression
[30].

In Bayesian inference the unknown parameters x are treated as random variables. If x, is the
mean of x and o2LTL is the inverse error covariance, the optimal parameters found by Tikhonov
regularization can be viewed as the maximum a posteriori estimate when error in the initial
estimate and data are normally distributed. Using Bayes theorem, the optimal parameters are
described by the posterior distribution of x given by

p(x|d) = p(d[x)p(x).
In many applications it is often the case that the error distributions are not normal. Reasonable
estimates can still be found with Tikhonov regularization if the errors are not normal as long as bias
in the data and initial guess are removed, and the misfits are weighted by their inverse covariances.
In practice this can be done with M-estimators which use initial estimates of the parameters, and

data weighted with a diagonal matrix containing inverse variances of their errors. The difficulty
then lies in estimating variances for errors in initial parameter estimates. Estimating this prior
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information is the focus of many Bayesian methods, for example in [3] they use a hierarchal
Bayesian model for TV in blind deconvolution.

Estimation of initial parameter errors with a scalar can be viewed as equivalent to regularization
methods that focus on choice of parameter a?. The following x2 tests are often used to find a.

Proposition 1. Suppose that (d — Ax); ~ N(0,0) i = 1,...,mn and L(x — xp); ~ N(0,a™1)
i=1,...,q, with all elements independent, then

d — Ax||?
Tiin(x) = 1d = Axlly 5 Iz +a

2IL(x = xp)lI3 ~ Xt

Proof. Tt is well known that the first term in the sum is distributed as x2,,, [5], since it is the sum
of squares of mn normally distributed random variables. Similarly the second term is distributed
as ng and since they are independent, their sum is X?nn+q‘ O

The Discrepancy Principle can be viewed as a x2 test using just the data misfit, i.e. a value
of o2 is found so that the optimal estimate % defined by satisfies

_ lld - Ax]3

Ja(%) s =Tmn (4)

o
where 7 is a predetermined real number. If %X is independent of d then T = 1 satisfies the x? test,
however this is not the case because X is the least squares solution and depends on d. When there
is the same number of data as unknowns we cannot appropriately reduce the degrees of freedom
in the x2 test because there no x2 distribution with fewer than one degrees of freedom. In this
case we can use the regularized residual as a x2 test [31}, [32] for choice of a?. It is based on the
following theorem.

Theorem 1. Suppose that (d —Ax); i =1,...,mn and L(x—xp); ¢ =1,...,q are independent,
not necessarily normally distributed, but have mean zero and standard deviation o and a~ !,
respectively. Then for large mn

o |ld - A%
Tiin(%) = lld = A%l g b +a

?IL(x = xp)l13 ~ x3-
Proof. Shown in [32]. O

Theorem [1] shows that the regularized residual is a x? random variable and it gives the corre-
sponding degrees of freedom, ¢q. This suggests the following x? test for choice of &? in Tikhonov
regularization:

ld— A%(@)[3 | 5o 2
PSR 4 @2 L((a) - xo)I ~ g )

A more general formula for the degrees of freedom is given in [14]
mn
df (A%) = cov((A%)i, di) /0. (6)
i=1
In particular for Tikhonov regularization the degrees of freedom is df (Ax(a)) = tr(IN(«)) where
N(a) = A(ATA 4+ aI)~'AT. This gives the x? test for the residual in the discrepancy principle:
ld — A%(a)||2/0? ~ mn — tr(N(a))

where mn — tr(N(«)) is the “effective degrees of freedom”.

The x? test for regularization parameter selection is similar to finding a parameter that min-
imizes an estimate of the predictive risk E (]/d — A%[|2). The unbiased estimate of the mean
squared error (MSE) is

E(||[d— Afc(oz)”%) = —202df (AX) + mno?.

For Tikhonov regularization the degrees of freedom are known (i.e. it is the effective degrees of
freedom), and the Unbiased Predictive Risk Estimator method (UPRE) finds

a € argcrknin {lIId - Ax(a)|%/0? + 2tr(N(a)) — mn}.
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3. Least Squares with Total Variation Regularizaton. Ill-conditioning of the image recon-
struction problem defined by is often alleviated by TV regularization because TV results in
reconstructions that maintain sharp edges in the image. With this type of regularization the prior
information is a gradient vector containing the finite difference approximation to partial deriva-
tives with appropriate boundary conditions. Here we use one sided differences at the boundaries
and the anisotropic discrete total variation functional denoted as

TV (x) = [|Dx]1

where D is a mn X mn matrix containing the stacking of the difference approximations. The TV
image reconstruction problem is typically written as

A
% = argmin EHd — Ax|3 + TV (). (7)

We can still view the Discrepancy Principle for TV as a x2 test since it only acts on the
residual. However, we must determine the reduced degrees of freedom. Since there is no closed
form expression for X for nonlinear smoothers like TV, it is more difficult to find the effective
degrees of freedom than it is with Tikhonov regularization. In addition, based on the discussion
in Section 2, it may appear that the degrees of freedom are effectively zero for square matrices A
as is the case with the Tikhonov solution. However, we do not observe this in practice.

In cases where the reconstruction operator A is not linear, or regularization operators other
than quadratic Tikhonov are used, Stein’s Lemmas [Stein 1981] is often used to determine the
degrees of freedom in the predictive risk estimator. In particular, Stein shows that

mn A

i=1

/o2

0d;

Using this estimate of degrees of freedom gives Stein’s Unbiased Risk Estimation (SURE) methods.
The challenge with SURE methods is in estimating the gradient. In [9] they use finite differences
to estimate the gradient while in [4] they assume the optimal estimate X is a linear combination
of denoising functions which simplifies the calculations.

Unbiased degrees of freedom estimates for TV are obtained in [I3] using Stein’s lemma, while in
[43] they derived them from Karush-Kuhn-Tucker (KKT) conditions. Here’s we use the estimate
from [43]:

df (Ax(A)) = E[dim(A(null(D_4)))], A ={i:(Dx(})); # 0}, (®)

where A is the active set of the TV, or Lasso, estimate and consists of indices of Dx that are
nonzero. In addition, D_ 4 is the derivative matrix D after removing rows that are indexed by
A and null(D_ 4) is its nullspace. The expected value of the dimension of the linear subspace
A(null(D_ 4)) gives the degrees of freedom.

The degrees of freedom estimate in may be used in a Discrepancy principle or SURE
method for TV to get the correct degrees of freedom, however, it can be difficult to compute. As
an alternative to just using the predictive risk estimator, i.e. the data residual, here we use the
degrees of freedom estimate for the TV regularized residual %Hd — AX(N)||3 + TV(%(N)). In
particular when A is full rank, we have identified a x? test on the regularized residual that does
not require direct calculation of . This x? test will be developed in Section

3.1. TV Functional and Laplacian distribution. TV can be viewed as a sparsity prior in
the gradient domain that conforms to a Laplacian distribution with zero mean. We assume that
pixel intensities are independent, which may not be accurate, but is a good first approximation
to reality. An important consideration in modeling the TV functional as differentially Laplacian
is the assumption that coefficients sum to zero, which is the case with pixel intensities.

Define y; = ;41 — x;, and assume it follows a Laplacian distribution with probability density
function

F(yil0,8) = %f\yi—ew

where 6 is the mean of y; and 232 is the variance. In [I6] they suggest that the standard deviation
can be estimated by the observed pixel differences. If we also assume the data are estimates of
the mean of Ax, and the errors follow a normal distribution, then the MAP estimate is

d — Ax|2
e orgmin 19 AXI3 Iyl
x 202 B

)
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Lemma 2. TV regularization parameter A defined by @ gives the MAP estimate when A = 6/0'2.

Lemmawas observed in [16] and is the basis for a regularization parameter selection method
given in Algorithm [I]

Algorithm 1 TV as MAP estimate; Laplace hyperparameter from pixel differences.

1: input d, o (data and its std. dev.)

2: D=diff(d); %The difference of adjacent elements in d.
3: B =std(D)/V2; %The standard deviation of elements in array D
4: X\ = B/o?

3.2. x2 test for TV regularization parameter selection. We now develop a x? test for
TV regularization which intuitively may not be apparent because the TV term is in Lj, not
Lo. However, Laplace random variables can form a x2 distribution as described in the next two
Propositions.

Proposition 2. Ify; ~ Laplace(0,B) then

2ly; — 0]
it g

Proof. Laplace random variables are equivalent to the difference of two exponential random vari-
ables, i.e. for random variable Y with same density as y;

Y =0+ p8(X1— X2)
where X1, X2 are exponentially distributed. This can be seen by manipulating the appropriate
characteristic functions [25].
Now the probability density function of a x? random variable h with 2 degrees of freedom is

f(h) = 1/26””2, for h > 0. This is also the exponential distribution with parameter 1/2 and we
can therefore write

Y:9+§(H1 — Hy)
where Hy, Hy ~ X% and i.i.d. [25]. O

Proposition 3. Ify; ~ Laplace(6,8) i =1,...,n, all independent, then

n

2|y; — 0]
pRE LI

=1

Proof. The sum of n independent x? random variables is also x? with degrees of freedom equal
to the sum of degrees of freedom of each term. O

Theorem 3. Suppose that ¢; ~ N(0,0) and y; ~ Laplace(6,3) with € = [e1,...,em]T and
Y = [y1,---,yn]T, each containing independent elements, then
lell3 | 2lyllr 2

2 + 3 ~ Xm+2n-

(10)

Proof. As described in Proposition [1] the first term in the sum is distributed as x2, while the
second term is X%n by Theorem [3] Since they are assumed independent their sum is X$n+2n' |

Theorem 3| is illustrated in Figure where histograms of random variables sampled 5000
times are plotted together with theoretical probability distributions. The €; came from a normal
distribution with mean 0 and o = 0.07, while y; came from a Laplace distribution with § = 0 and
B = 10002. In addition there were 300 elements in € and 1000 in y. In this idealized example, the
histograms give excellent agreement with the theoretical probability distributions.

Equation gives a x? test for TV, however, if € = d — A% and y = TV (%), then the terms
in the sum are not independent and the degrees of freedom must be reduced. In particular

d—Ax(N)||3  2|Dx(A
Tt = | = 2 2 ,3( W 2 arcason s (11)
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FiGURE 1. Example of Theorem

Theorem 4. Suppose that (d — Ax); ~ N(0,0) and (Dx); ~ Laplace(9, 8) with A and D full
rank. Then

ld— AV | 2D
2 mn*
o B

Proof. It was shown in [43] that
df (x(A)) = E[nullity(D— 4)))],

i.e. the degrees of freedom in the TV estimate is the expected value of the dimension of the
nullspace of D_ 4. They also show that when A and D are full rank

df (AZ(N)) = df (DX(N)) = df (X(N).
This results in a regularized residual with degrees of freedom
mn — df (AX(X)) + df (Dx(X)) = mn.
|
Note that Theorem@shows that when both A and D are full rank, we do not need to calculate

df (A%()\)) when using the regularized residual. This gives in the following x2 test for choice of A
in TV regularization:

ld — A%(N)|1% + §TV(:2(A)) ~ mno?. (12)
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Proposition 4. If X has a bounded gradient then
- 2 N
FO) =lld — AX(V)13 + S TVEX)
decreases with increasing \.

Proof. As X increases, the data residual decreases since more weight is placed on the data fit in
the optimization problem. In addition, since TV (%) remains bounded, the second term in the sum
will approach zero for large . O

Remark 1. When %X has a bounded gradient it may be the case that f(\) > mno? for all \.
Given a large enough value of o there will be a X that passes the x2 test which implies the data
are not as accurate as indicated by the standard deviation estimate o. Similarily it could be that
F(\) < mna? for all X whereby a smaller value of o is needed for there to exist a root, meaning
the data are more accurate than anticipated. If it is possible to find a \ so that f(\) = mno?
there is a unique \ that passes the x2 test.

Remark 2. When X does not have a bounded gradient there may not be a unique X for which
F(A) =0 or f(A) may have multiple extremum. For A = 0 TV regularization gives X with TV (X)
small. As X increases ||d—A%(\)||3 will decrease but TV (%) may increase. A smooth or piecewise
constant image results in a small value of TV (x) while large values of TV(x) indicate a highly
textured image. This prior understanding of the image can be used to choose a mon-unique \.
In particular if the image is assumed to be smooth the best choice of X is the smallest value for
which f(X) = 0.

The proposed method for TV regularization parameter selection is given in Algorithm @ To
find the optimum we must solve the TV problem multiple times with different A\ to determine
which satisfies the x?2 test. We also give an algorithm for the discrepancy principle in Algorithm
which similarly solves the TV problem multiple times with different A, and automatically computes
the regularization parameter as is done in [27]. In both cases there is an outer iteration that finds
the regularization parameter according to a discrepancy or x? principle, and each also contains
an inner iteration that find the TV parameter estimates. In this work we have described why the
discrepancy principle has the incorrect degrees of freedom in Algorithm and developed a x? test
for the regularized residual that contains the correct degrees of freedom for TV in Algorithm El
In both cases we tested the algorithms with inner iterations that find the TV parameter estimates
using three publicly available TV codes: deconvtv [7], FTVd [46] and tvdeconv [I5]. The first
two codes use an augmented Lagrangian method while the third uses the Split Bregman method.
Numerical results from Algorithms |Z| and@ are presented in Section E| along with results from the
MAP estimate and the estimate that gives maximum ISNR.

Algorithm 2 TV x? test.

1: input d, A, o
2: X € argmin, {||ld — Ax(V)|1Z + %TV(?{(A)) —mno?}

where %X(\) € argmin, {%Hd — Ax|)2 + TV(x)}

Algorithm 3 TV Discrepancy principle.

1: input d, A, o
2: X € argminy {[|/d — AX()\)||2 — mno?}

where %X(\) € argmin, {%Hd — Ax||3 + TV(x)}

4. Numerical Results.
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4.1. Test images. The images on which we chose to test the Algorithms are gray-scale with
intensity values normalized to the range [0, 1]. They were artificially blurred with a discrete linear
blur filter A that is a convolution of the image with a point spread function. We blurred them
with Gaussian and uniform lowpass filters with variance 9 and a 15 x 15 grid respectively. Both
were implemented with the MATLAB command fspecial. In each case the noise was quantified
using the Blurred Signal to Noise Ratio (BSNR):
[ Ax(l2

llll2
‘We compared BSNRs of 20, 30 and 40 dB, where the lower levels represent more noise.

The three images we chose to test the algorithms were the Camerman image, an artificial
MRI, and a Mountain image as seen in Figures The blurred images are in the top row of the
Figures with BSNR 20, 30 and 40 ranging from left to right. The Camerman image with Gaussian
noise is shown in Figure [2| while the MRI and Mountain images are shown with uniform noise in
Figures B} In all experiments the standard deviation used to generate noise in the images was
also used to reconstruct the images. Although this may not be realistic, it allows us to determine
the effectiveness of Algorithms 1-3 in the ideal case.

BSNR = 20log;,

4.2. ISNR. The optimal value of A was identified to be that which gives the best Improved
Signal-to-Noise Ratio (ISNR) defined by:

_ld=x|l2_
[[%(X) = x[l2°
The ISNR is an estimate of the perceptual quality of an image with larger values indicating better
quality. The value of X\ that gives the largest ISNR is also the value that gives the smallest mean
square error (MSE).

Since we have the exact image, we are able to determine the optimal value of A that gives the
highest ISNR value. This is illustrated in Figures [5| and @ In all Figures the graph associated
with the right vertical axis is the ISNR value for a range of A. There is a clear maximum ISNR
value in all cases and the value of A where this occurs is the A used to reconstruct the images
labeled “Maximum ISNR”. The resulting ISNR from reconstructed images using this X is also
reported in Tables

Figures and@ also plot on the left vertical axis is the value the regularized residual in , or
cost function, for all possible A along with the targeted value of the cost function which is mno?2.
Where the cost function and the targeted value intersect will be the value of A\ that satisfies the
TV x2 test, and the value of A chosen for the x?> method. Results from reconstructed images
using this A\ are reported in Tables IIHE

ISNR = 20log; (13)

4.3. Reconstructed Images. The images were reconstructed using regularization parameters
found by Algorithms 1-3 and the regularization parameter that gives the largest ISNR. These
regularization parameters were used to reconstruct the images in the bottom three rows of Figures
@-@ The left column shows results from BSNR of 20, the middle BSNR of 30 and the right BSNR
of 40. In all cases the MAP reconstruction looks the worst, while the x2? reconstruction has a
higher contrast than the reconstruction that produces the best possible ISNR. The reconstructed
image using the discrepancy principle looks similar to the x? reconstruction, even though the
discrepancy principle has the incorrect degrees of freedom, so the reconstructed image is not
shown here.

The resulting ISNR values from the reconstructions are given in Tables [1] and Algorithm
using the MAP estimate as suggested in [I6], relies on estimating the Laplace distribution
parameter 3 with the data, and in all cases this gives the lowest ISNR value. We also note that
the resulting ISNR values when using the discrepancy principle are consistently less than when
using the TV x? test. This is to be expected because the discrepancy principle does not have the
correct degrees of freedom. However, the resulting ISNR values for the x? test and the discrepancy
principle are very close in value. This indicates that 27V (X)/\ is small and does not significantly
change the value of the data residual.

The peak signal to noise ration (PSNR) was also calculated to measure how close the recon-
structed images are to the true image. A higher PSNR value indicates a better reconstruction
and these values are given in Tables and@ The regularization parameter that gives the highest
PSNR is the one that also gives the maximum ISNR. The PSNR values resulting from the reg-
ularization parameter found with the x2 test are consistently larger than discrepancy principle.
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Blurred Image

MAP Reconstruction )

i

x? Reconstruction

FIGURE 2. Gaussian filter with variance 9. BSNR 20 (Left),
BSNR 30 (Middle), BSNR 40 (Right).
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Blurred Image

FIGURE 3. Uniform 15 x 15 filter. BSNR 20 (Left), BSNR 30
(Middle), BSNR 40 (Right).

11
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Blurred Image

FIGURE 4. Uniform 15 x 15 filter. BSNR 20 (Left), BSNR 30
(Middle), BSNR 40 (Right).

The PSNR values for both methods are very similar and have values close to the value when a
regularization parameter with maximum ISNR is used.

The structural similarity indices (SSIM) that result when using regularization parameters from
each of the methods are given in Tables[5]and[6] It measures the perceived difference between the
true and reconstructed images with possible values between 0 (no correlation in the images) and
1. With this metric the regularization parameter that gives maximum ISNR doesn’t always result
in the highest SSIM. For the cameraman and MRI images with BSNR of 20 and 40 there are
instances where the x? test results in a slightly larger SSIM. This difference is reflected in Figures
[2H3] where we see more contrast in the figures reconstructed with regularization parameters found
by the x2 test, than with the regularization parameters that give the best ISNR.

TV is often the preferred method to recover images with fine structures, details, and textures.
The mountain image has these properties and we see in Tables that the SSIM is consistently
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9.

smaller for all methods as compared to the other images. The SSIM that results from the mountain
image for all BSNR values in largest when using the maximum ISNR method, while the SSIM is
smaller when using discrepancy principle than when using the x? test. However, values of TV (k)
are not large enough to significantly differentiate the discrepancy principle from the x2 test.

5. Summary and Conclusions. The effectiveness of TV relies on appropriate choice of regu-
larization parameter A\ as defined by . If A is too small the image will not appropriately fit the
data while if it is too large, the image will be under smoothed. A suitable choice of A is often
found by trying different values until one is found that results in a clear image. This is not the
most efficient way of choosing the parameter, and may not be an option if the TV optimization
problem is part of a greater iteration scheme, such as that for nonlinear problems. In addition,
when the exact image is unknown, it may be the case that even though the image is clear, it
does not correctly identify key features. Here we propose an automated method for regularization
parameter selection that utilizes statistical properties of TV and can be viewed as finding a value
of X that passes a x? test.
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BSNR MAP estimate Discrepancy x2 test Maximum
Camerman (m = n = 256)
40 3.8419 5.5893 5.6180 6.2762
30 2.1214 3.4184 3.4507 4.2052
20 1.4033 2.1465 2.1675 2.7272
MRI (m = n = 256)
40 5.2304 6.2520 6.3032 7.0209
30 2.5435 4.2183 4.2656 5.0079
20 1.4242 2.5236 2.5483 3.2903
Mountain (m = 480, n = 640)
40 2.0275 3.0206 3.0242 3.2735
30 0.9674 1.8473 1.8526 2.1171
20 0.5623 1.0222 1.0265 1.3306
TABLE 1. ISNR: Gaussian blur with variance 9.
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BSNR MAP estimate Discrepancy x2 test Maximum
Camerman (m = n = 256)
40 5.0019 7.0914 7.1123 7.6329
30 2.8671 5.3398 5.3556 5.6426
20 1.8228 3.6031 3.6241 4.0441
MRI (m = n = 256)
40 5.6696 8.1718 8.2201 9.2978
30 3.2113 5.9225 5.9510 6.5944
20 1.7017 3.8260 3.8474 4.5641
Mountain (m = 480,n = 640)
40 2.8357 4.0904 4.0938 4.3440
30 1.6074 2.9915 2.9945 3.1432
20 0.9594 2.1004 2.1049 2.2803
TABLE 2. ISNR: Uniform 15 x 15
BSNR MAP estimate Discrepancy x? test Maximum ISNR ]
Camerman (m = n = 256)
40.0 25.3775 27.1479 27.1772 27.8249
30.0 23.6516 24.9772 25.0077 25.6775
20.0 22.6682 23.3500 23.3718 24.0393
MRI (m = n = 256)
40.0 27.7080 28.8271 28.8750 29.5010
30.0 24.9866 26.7687 26.8176 27.5807
20.0 23.6173 24.6765 24.7007 25.4519
Mountain (m = 480, n = 640)
40.0 19.0529 20.0588 20.0624 20.3040
30.0 17.9755 18.8666 18.8720 19.1485
20.0 17.4244 17.8787 17.8830 18.1806
TABLE 3. PSNR: Gaussian blur with variance 9.
BSNR MAP estimate Discrepancy X2 test Maximum ISNR ]
Camerman (m = n = 256)
40.0 24.1719 (9.84)  26.3170 (1.84) 26.3371 (1.77) 26.8111
30.0 22.0192 (11.10) 24.4882 (1.14) 24.5037 (1.08) 24.7709
20.0 20.8288 (9.70)  22.5266 (2.34) 22.5493 (2.24) 23.0660
MRI (m = n = 256)
40.0 25.0072 (12.82) 27.5739 (3.87) 27.6225 (3.70) 28.6832
30.0 22,5294 (13.29) 25.1393 (3.24)  25.1710 (3.12) 25.9823
20.0 20.9540 (11.69) 23.1799 (2.31) 23.1974 (2.23) 23.7269
Mountain (m = 480, n = 640)
40.0 18.3899 (7.56)  19.6504 (1.22) 19.6538 (1.20) 19.8931
30.0 17.1524 (8.24)  18.5660 (0.68) 18.5688 (0.66) 18.6924
20.0 16.4198 (7.48)  17.5595 (1.06) 17.5633 (1.04) 17.7470
TABLE 4. PSNR: Uniform 15 x 15. The value in parentheses is

the percent relative difference from the PSNR obtained with the A
that achieves maximum ISNR.

The TV estimate is the MAP estimate if the regularization term is viewed as prior information
about pixel differences from a Laplace distribution. This prior information assumption is common
in the statistical modeling of natural images [40]. In this work we exploit this assumption to
show that the objective function for TV regularization follows a x? distribution. The discrepancy
principle similarly exploits x? properties of the least squares data residual. However, when data,
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BSNR MAP estimate Discrepancy x2 test Maximum ISNR ]

Camerman (m = n = 256)

40.0 0.7956 0.8402 0.8408 0.8379

30.0 0.7393 0.7809 0.7818 0.7855

20.0 0.7024 0.7271 0.7278 0.7327
MRI (m = n = 256)

40.0 0.8496 0.8717 0.8725 0.8767

30.0 0.7846 0.8279 0.8288 0.8332

20.0 0.7246 0.7686 0.7693 0.7607
Mountain (m = 480, n = 640)

40.0 0.5301 0.6197 0.6201 0.6343

30.0 0.4440 0.5156 0.5160 0.5377

20.0 0.3868 0.4348 0.4352 0.4526

TABLE 5. SSIM: Gaussian blur with variance 9.

BSNR MAP estimate Discrepancy x?2 test Maximum ISNR ]

Camerman (m = n = 256)

40.0 0.7571 0.8281 0.8285 0.8158

30.0 0.6766 0.7660 0.7662 0.7628

20.0 0.6300 0.6931 0.6938 0.6984
MRI (m = n = 256)

40.0 0.7683 0.8341 0.8349 0.8270

30.0 0.6732 0.7694 0.7702 0.7553

20.0 0.6037 0.6934 0.6938 0.6706
Mountain (m = 480, n = 640)

40.0 0.4609 0.5834 0.5837 0.5965

30.0 0.3602 0.4801 0.4804 0.4906

20.0 0.3060 0.3901 0.3904 0.4003

TABLE 6. SSIM: Uniform 15 x 15

are used to find a regularization parameter, the degrees of freedom in the x2 test must be reduced,
otherwise the image will be over-smoothed. For Tikhonov regularization the analytical expression
for the minimum of the objective function can be used to determine the equivalent degrees of
freedom [45]. Since there is no such analytical expression for the TV minimizer it has been an
open problem to determine the appropriate degrees of freedom for the TV x2 test. Here we use
recent results concerning the degrees of freedom for the lasso fit 3] to derive a x2 test with
appropriately reduced degrees of freedom for TV regularization parameter selection.

Results were shown for three different images, two types of noise, three noise levels and three
TV algorithms: deconvtv [7], FTVd [46] and tvdeconv [I5]. In each case the x? test for
regularization parameter selection, Algorithm performed best. In addition, since the exact
images are known, we also computed regularization parameters that gave optimal ISNR and
showed that the x? test gives near optimal parameters.

In all test cases Algorithm m which uses a rough estimate of the hyperparameter in TV as a
MAP estimate, gave the worse results. Algorithm [3| uses the discrepancy principle with incorrect
degrees of freedom and it consistently performed worse than the x2 test in Algorithm [2] However,
the improvement was not significant because TV (X) is typically small compared to the Lo norm
of the data residual. While the discrepancy principle with incorrect degrees of freedom gave
similar results to the x2 test we do not recommend using the discrepancy principle in this manner
because images with large TV (%X) will be over-smoothed. In addition, there is no significant
increase in computational cost to use the correct x? test over the discrepancy principle since the
only difference in the methods is evaluation of the TV regularization operator at the parameter
estimate.
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