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Abstract. Total Variation (TV) is an effective method of removing noise in

digital image processing while preserving edges. The scaling or regularization
parameter in the TV process defines the amount of denoising, with a value of

zero giving a result equivalent to the input signal. The discrepancy principle is

a classical method for regularization parameter selection whereby data is fit to
a specified tolerance. The tolerance is often identified based on the fact that

the least squares data fit is known to follow a χ2 distribution. However, this

approach fails when the number of parameters is greater than or equal to the
number of data. Typically, heuristics are employed to identify the tolerance

in the discrepancy principle and this leads to oversmoothing. In this work

we identify a χ2 test for TV regularization parameter selection assuming the
blurring matrix is full rank. In particular, we prove that the degrees of freedom

in the TV regularized residual is the number of data and this is used to identify
the appropriate tolerance. The importance of this work lies in the fact that

the χ2 test introduced here for TV automates the choice of regularization

parameter selection and can straightforwardly be incorporated into any TV
algorithm. Results are given for three test images and compared to results

using the discrepancy principle and MAP estimates.

1. Introduction. Most image processing problems take a two-dimensional signal as input and
produce an improved image that comes in the form of a set of parameters related to the image.

Since the input signal typically contains noise or blurring, a regularization term is included in

the inversion. A regularization parameter that controls the amount of regularization is necessary
for the inversion. Unfortunately, the choice of regularization parameter is often overlooked and

an inversion is run many times with different parameter values until a clear image is produced.

This process can be improved by solving a sequence of regularized problems iteratively with the
regularization parameter decreasing to zero. In this case the initial inverse estimate is updated

at each iterate so that regularization is no longer necessary at the end of the iterative procedure.

Alternatively, we suggest solving a single regularized problem with an optimally chosen regular-
ization parameter. Solving a single regularized linear problem rather than iterating a sequence of
regularized linear problems is advantageous for nonlinear or computationally large problems.

The difficulty with choosing the optimal regularization parameter is that essentially the regu-
larization term contains prior information about the unknown parameters and there is potential to

add bias to the solution. This is addressed in Bayesian methods by identifying appropriate prior
probability models [38]. Bayesian methods find a range of parameter sets in the form posterior
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2 χ2 TEST FOR TV

distributions. Rather than estimate a posterior distribution for the parameters, we instead con-
sider the inverse problem as a statement about the prior and posterior means of the parameters

and input signal, and use standard deviations to weight them.

If the error in data and initial parameter estimates are assumed to be normal, the maximum
a posteriori probability (MAP) estimate is found solving a least squares problem with Tikhonov

regularization. Choice of regularization parameter for Tikhonov regularization is well studied

and common methods include the Discrepancy Principle, L-curve and generalized cross-validation
(GCV) [20]. The validity of all of these approaches relies on knowing the optimal solution of the

quadratic least squares functional, which is not possible for the TV functional. For example, in
the L-curve approach, the norm of the data residual vs. the solution can be plotted, but with the

TV functional there is no guarantee that the curve will be L-shaped with a corner containing the

optimal regularization parameter value.
Various authors have been able to exploit quadratic aspects of TV regularization to find reg-

ularization parameters. In [27, 37] the choice of scalar regularization parameter is made with the

discrepancy principle applied to the data residual. The discrepancy principle relies on estimates
of the data error or the standard deviation of data noise. In [41] they assume the noise is from

a Poisson or multiplicative Gamma distribution and use this property to find the expected value

of the data error. The discrepancy principle can lead to oversmoothing when data error is not
known because it is difficult to estimate the degrees of freedom in the residual. In [47] the discrep-

ancy principle is used with correct, equivalent degrees of freedom [44]. The equivalent degrees of

freedom can be found for a quadratic functional and while TV is not quadratic, such a functional
arises in their particular iterative primal-dual proximal point algorithm for TV optimization.

In [29] the Unbiased Predictive Risk Estimator (UPRE) is extended to TV regularization where

they approximate the TV term with a quadratic functional. Again the quadratic approximation
of the TV functional simplifies the degrees of freedom choice. As an alternative to approximating

the TV functional with a quadratic functional, SURE methods use Stein’s estimate for the correct
degrees of freedom in the predictive risk estimator. Stein’s degrees of freedom estimate involves

gradients which in [9] they calculate with finite differences. Alternatively, in [4] the SURE-

LET algorithm assumes the optimal parameter estimates are a linear combination of denoising
functions. This linear approximation allows for simpler estimates of the gradient calculation in

the degrees of freedom estimate.

The discrepancy principle and predictive risk methods rely on variance estimators of the data
and empirically give a Bayesian framework, at least for the observations. In [11] they use TV

regularization with the Richardson–Lucy algorithm, which takes into consideration the Poisson

nature of the noise, for 3D imaging of biological specimens. However, the TV regularization
parameter is chosen in an ad hoc manner. Alternatively in [24] they exploit GCV to determine

how to iteratively update the regularization parameter in a variable splitting algorithm. They use

GCV to determine the regularization parameter for the quadratic part of the split and then step
through regularization parameter values to identify the best choice in the TV minimization part

of the split.
Another approach to TV regularization parameter selection is bi-level optimization. Bi-level

optimization is similar to the discrepancy and predictive risk methods because there are two levels

of optimization. In the discrepancy and predictive risk methods, the low level optimization is the
regularized inverse problem that finds parameter estimates, and the high-level optimization prob-

lem finds the regularization parameter(s) according to a specified loss function. In the discrepancy
principle the loss function is mean-squared error while in UPRE and SURE methods the loss func-
tion is predictive risk. Bi-level optimization in [10, 26] also solves the regularized inverse problem
in the low level optimization but they set up the high-level loss function as training problem that

finds regularization parameters which minimizes the difference between the estimated parameters
and the training set value for the parameters. Another bi-level optimization method [21, 22] solves

the Fenchel-predual problem in a low-level optimization because it involves minimizing a smooth
objective function. The high-level problem optimizes a loss function so that weighted data residual
lies within upper and lower bounds of the data noise variance, which is similar to a discrepancy
type principle.

Here we derive an approach that does not rely on a quadratic interpretation of TV regular-

ization nor does it require training data. We identify correct degrees of freedom for predictive

risk but do not need to estimate degrees of freedom using Stein’s theorem because we use the
regularized residual. With the regularized residual no estimation procedure is necessary for the
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degrees of freedom as long as the smoothing operator A is full rank. Therefore the regularization
parameter selection algorithm proposed here using a χ2 test on the regularized residual can be

used with any TV optimization algorithm.

In Section 2 we first explain why the TV functional is a χ2 random variable. Then in Section 3
we derive the χ2 test for TV regularization using the TV regularized residual. Knowing the correct

degrees of freedom is crucial to the method and we use recent results on the degrees of freedom

of the Lasso method [13, 43] to derive the degrees of freedom with a full rank blurring matrix.
In Section 4 we show results from three different images, two types of noise, three different noise

levels and three TV algorithms: deconvtv [7], FTVd [46] and tvdeconv [15]. Successful image
reconstruction is measured through Improved Signal to Noise Ration (ISNR). Given the exact

image, the regularization parameter that gives the highest ISNR is calculated and compared to

the ISNR with regularization parameter selection algorithms for a MAP estimate, the discrepancy
principle and the χ2 test.

2. Least Squares Estimators. Regularization parameter selection is well studied for Tikhonov

regularization [20] in linear problems,. We will briefly review it in a framework that introduces

the χ2 test strategy proposed here for TV and explains how the Discrepancy principle can be
viewed as a χ2 test.

Linear inverse problems are often stated as

d = Ax+ ϵ (1)

where for two dimensional m × n greyscale image reconstruction problems d ∈ Rmn is a vector
of noisy observations, A ∈ Rmn×mn is a known model, and x ∈ Rmn contains the unknown

information about the true image that has m columns and n rows. The vector ϵ represents noise

in the observations and it is assumed it has zero mean with variance σ2. In image processing,
these vectors and matrix are specified by concatenating in a column- or row- wise fashion pixel

values for the image. The matrix A can use used to represent a shift in the image, in which case
the image is noisy, or A may represent a blur filter induced by motion in the image. In either

case, aij acts on the value of the image pixel at the point indexed by (i, j). For example an image

represented by 256× 256 pixels, has m = n = 256.
A least squares fit of the unknowns to the observation solves the minimization problem

min
x

∥d−Ax∥22. (2)

Typically this optimization problem is ill-posed so a regularization term, or constraints, are added
to it. The focus of this work is when the regularization term is a TV functional, but first we

discuss least squares regularization which takes the form:

x̂(α) = argmin
x

∥d−Ax∥22 + α2∥L(x− xp)||22. (3)

The matrix L is a q×mn shaping matrix with no restriction on q, while xp is an initial guess that

is often taken to be zero. If α2 is chosen large, the regularization term dominates and more weight
will be placed on the second misfit, hence the estimate x̂ will be ”close” to xp. If L is chosen to

be the identity, there can be significant smoothing of the solution which may not be desirable in
imaging applications. If L is diagonal or dense, non-smooth least squares estimates result [34], and
applying L has the effect of applying a spatially dependent regularization parameter [12]. This
regularization process can also be viewed as constrained linear inversion [8] or ridge regression

[30].
In Bayesian inference the unknown parameters x are treated as random variables. If xp is the

mean of x and α2LTL is the inverse error covariance, the optimal parameters found by Tikhonov

regularization can be viewed as the maximum a posteriori estimate when error in the initial
estimate and data are normally distributed. Using Bayes theorem, the optimal parameters are
described by the posterior distribution of x given by

p(x|d) = p(d|x)p(x).

In many applications it is often the case that the error distributions are not normal. Reasonable

estimates can still be found with Tikhonov regularization if the errors are not normal as long as bias
in the data and initial guess are removed, and the misfits are weighted by their inverse covariances.

In practice this can be done with M-estimators which use initial estimates of the parameters, and

data weighted with a diagonal matrix containing inverse variances of their errors. The difficulty
then lies in estimating variances for errors in initial parameter estimates. Estimating this prior
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information is the focus of many Bayesian methods, for example in [3] they use a hierarchal
Bayesian model for TV in blind deconvolution.

Estimation of initial parameter errors with a scalar can be viewed as equivalent to regularization

methods that focus on choice of parameter α2. The following χ2 tests are often used to find α.

Proposition 1. Suppose that (d − Ax)i ∼ N (0, σ) i = 1, . . . ,mn and L(x − xp)i ∼ N (0, α−1)

i = 1, . . . , q, with all elements independent, then

Jtik(x) =
∥d−Ax∥22

σ2
+ α2∥L(x− xp)∥22 ∼ χ2

mn+q .

Proof. It is well known that the first term in the sum is distributed as χ2
mn [5], since it is the sum

of squares of mn normally distributed random variables. Similarly the second term is distributed

as χ2
q , and since they are independent, their sum is χ2

mn+q .

The Discrepancy Principle can be viewed as a χ2 test using just the data misfit, i.e. a value
of α2 is found so that the optimal estimate x̂ defined by (3) satisfies

Jd(x̂) =
∥d−Ax̂∥22

σ2
= τmn (4)

where τ is a predetermined real number. If x̂ is independent of d then τ = 1 satisfies the χ2 test,

however this is not the case because x̂ is the least squares solution and depends on d. When there
is the same number of data as unknowns we cannot appropriately reduce the degrees of freedom

in the χ2 test because there no χ2 distribution with fewer than one degrees of freedom. In this

case we can use the regularized residual as a χ2 test [31, 32] for choice of α2. It is based on the
following theorem.

Theorem 1. Suppose that (d−Ax)i i = 1, . . . ,mn and L(x−xp)i i = 1, . . . , q are independent,
not necessarily normally distributed, but have mean zero and standard deviation σ and α−1,

respectively. Then for large mn

Jtik(x̂) =
∥d−Ax̂∥22

σ2
+ α2∥L(x̂− xp)∥22 ∼ χ2

q .

Proof. Shown in [32].

Theorem 1 shows that the regularized residual is a χ2 random variable and it gives the corre-
sponding degrees of freedom, q. This suggests the following χ2 test for choice of α2 in Tikhonov

regularization:

∥d−Ax̂(α)∥22
σ2

+ α2∥L(x̂(α)− xp)||22 ≈ q. (5)

A more general formula for the degrees of freedom is given in [14]

df(Ax̂) =

mn∑
i=1

cov((Ax̂)i, di)/σ
2. (6)

In particular for Tikhonov regularization the degrees of freedom is df(Ax̂(α)) = tr(N(α)) where
N(α) = A(ATA+αI)−1AT . This gives the χ2 test for the residual in the discrepancy principle:

∥d−Ax̂(α)∥22/σ2 ≈ mn− tr(N(α))

where mn− tr(N(α)) is the “effective degrees of freedom”.
The χ2 test for regularization parameter selection is similar to finding a parameter that min-

imizes an estimate of the predictive risk E
(
∥d−Ax̂∥22

)
. The unbiased estimate of the mean

squared error (MSE) is

E
(
∥d−Ax̂(α)∥22

)
= −2σ2df(Ax̂) +mnσ2.

For Tikhonov regularization the degrees of freedom are known (i.e. it is the effective degrees of
freedom), and the Unbiased Predictive Risk Estimator method (UPRE) finds

α ∈ argmin
α

{
∥d−Ax(α)∥22/σ2 + 2tr(N(α))−mn

}
.
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3. Least Squares with Total Variation Regularizaton. Ill-conditioning of the image recon-
struction problem defined by (2) is often alleviated by TV regularization because TV results in

reconstructions that maintain sharp edges in the image. With this type of regularization the prior

information is a gradient vector containing the finite difference approximation to partial deriva-
tives with appropriate boundary conditions. Here we use one sided differences at the boundaries

and the anisotropic discrete total variation functional denoted as

TV (x) = ∥Dx∥1
where D is a mn×mn matrix containing the stacking of the difference approximations. The TV

image reconstruction problem is typically written as

x̂ = argmin
x

λ

2
∥d−Ax∥22 + TV (x). (7)

We can still view the Discrepancy Principle for TV as a χ2 test since it only acts on the

residual. However, we must determine the reduced degrees of freedom. Since there is no closed
form expression for x̂ for nonlinear smoothers like TV, it is more difficult to find the effective

degrees of freedom than it is with Tikhonov regularization. In addition, based on the discussion
in Section 2, it may appear that the degrees of freedom are effectively zero for square matrices A

as is the case with the Tikhonov solution. However, we do not observe this in practice.

In cases where the reconstruction operator A is not linear, or regularization operators other
than quadratic Tikhonov are used, Stein’s Lemmas [Stein 1981] is often used to determine the

degrees of freedom in the predictive risk estimator. In particular, Stein shows that

df(Ax̂) =

mn∑
i=1

∂(Ax̂)i

∂di
/σ2.

Using this estimate of degrees of freedom gives Stein’s Unbiased Risk Estimation (SURE) methods.

The challenge with SURE methods is in estimating the gradient. In [9] they use finite differences
to estimate the gradient while in [4] they assume the optimal estimate x̂ is a linear combination

of denoising functions which simplifies the calculations.

Unbiased degrees of freedom estimates for TV are obtained in [13] using Stein’s lemma, while in
[43] they derived them from Karush-Kuhn-Tucker (KKT) conditions. Here’s we use the estimate

from [43]:

df(Ax̂(λ)) = E[dim(A(null(D−A)))], A = {i : (Dx̂(λ))i ̸= 0}, (8)

where A is the active set of the TV, or Lasso, estimate and consists of indices of Dx̂ that are

nonzero. In addition, D−A is the derivative matrix D after removing rows that are indexed by

A and null(D−A) is its nullspace. The expected value of the dimension of the linear subspace
A(null(D−A)) gives the degrees of freedom.

The degrees of freedom estimate in (8) may be used in a Discrepancy principle or SURE

method for TV to get the correct degrees of freedom, however, it can be difficult to compute. As
an alternative to just using the predictive risk estimator, i.e. the data residual, here we use the

degrees of freedom estimate (8) for the TV regularized residual λ
2
∥d −Ax̂(λ)∥22 + TV (x̂(λ)). In

particular when A is full rank, we have identified a χ2 test on the regularized residual that does
not require direct calculation of (8). This χ2 test will be developed in Section 3.1.

3.1. TV Functional and Laplacian distribution. TV can be viewed as a sparsity prior in

the gradient domain that conforms to a Laplacian distribution with zero mean. We assume that
pixel intensities are independent, which may not be accurate, but is a good first approximation

to reality. An important consideration in modeling the TV functional as differentially Laplacian
is the assumption that coefficients sum to zero, which is the case with pixel intensities.

Define yi = xi+1 − xi, and assume it follows a Laplacian distribution with probability density

function

f(yi|θ, β) =
1

2β
e−|yi−θ|/β

where θ is the mean of yi and 2β2 is the variance. In [16] they suggest that the standard deviation
can be estimated by the observed pixel differences. If we also assume the data are estimates of

the mean of Ax, and the errors follow a normal distribution, then the MAP estimate is

x̂ = argmin
x

∥d−Ax∥22
2σ2

+
∥y∥1
β

. (9)
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Lemma 2. TV regularization parameter λ defined by (7) gives the MAP estimate when λ = β/σ2.

Lemma 2 was observed in [16] and is the basis for a regularization parameter selection method
given in Algorithm 1.

Algorithm 1 TV as MAP estimate; Laplace hyperparameter from pixel differences.

1: input d, σ (data and its std. dev.)
2: D=diff(d); %The difference of adjacent elements in d.

3: β =std(D)/
√
2; %The standard deviation of elements in array D

4: λ = β/σ2

3.2. χ2 test for TV regularization parameter selection. We now develop a χ2 test for
TV regularization which intuitively may not be apparent because the TV term is in L1, not

L2. However, Laplace random variables can form a χ2 distribution as described in the next two

Propositions.

Proposition 2. If yi ∼ Laplace(θ, β) then

2|yi − θ|
β

∼ χ2
2.

Proof. Laplace random variables are equivalent to the difference of two exponential random vari-
ables, i.e. for random variable Y with same density as yi

Y = θ + β(X1 −X2)

where X1, X2 are exponentially distributed. This can be seen by manipulating the appropriate

characteristic functions [25].

Now the probability density function of a χ2 random variable h with 2 degrees of freedom is
f(h) = 1/2e−h/2, for h ≥ 0. This is also the exponential distribution with parameter 1/2 and we

can therefore write

Y = θ +
β

2
(H1 −H2)

where H1, H2 ∼ χ2
2 and i.i.d. [25].

Proposition 3. If yi ∼ Laplace(θ, β) i = 1, . . . , n, all independent, then

n∑
i=1

2|yi − θ|
β

∼ χ2
2n.

Proof. The sum of n independent χ2 random variables is also χ2 with degrees of freedom equal

to the sum of degrees of freedom of each term.

Theorem 3. Suppose that ϵi ∼ N (0, σ) and yi ∼ Laplace(θ, β) with ϵ = [ϵ1, . . . , ϵm]T and

y = [y1, . . . , yn]T , each containing independent elements, then

∥ϵ∥22
σ2

+
2∥y∥1

β
∼ χ2

m+2n. (10)

Proof. As described in Proposition 1 the first term in the sum is distributed as χ2
m while the

second term is χ2
2n by Theorem 3. Since they are assumed independent their sum is χ2

m+2n.

Theorem 3 is illustrated in Figure (1) where histograms of random variables sampled 5000
times are plotted together with theoretical probability distributions. The ϵi came from a normal

distribution with mean 0 and σ = 0.07, while yi came from a Laplace distribution with θ = 0 and

β = 100σ2. In addition there were 300 elements in ϵ and 1000 in y. In this idealized example, the
histograms give excellent agreement with the theoretical probability distributions.

Equation (10) gives a χ2 test for TV, however, if ϵ = d−Ax̂ and y = TV (x̂), then the terms
in the sum are not independent and the degrees of freedom must be reduced. In particular

Jtv(x̂) =
∥d−Ax̂(λ)∥22

σ2
+

2∥Dx̂(λ)∥1
β

∼ χ2
mn−df(Ax̂(λ))+df(Dx̂(λ)). (11)
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Figure 1. Example of Theorem 3
.

Theorem 4. Suppose that (d − Ax)i ∼ N (0, σ) and (Dx)i ∼ Laplace(θ, β) with A and D full
rank. Then

∥d−Ax̂(λ)∥22
σ2

+
2∥Dx̂(λ)∥1

β
∼ χ2

mn.

Proof. It was shown in [43] that

df(x̂(λ)) = E[nullity(D−A)))],

i.e. the degrees of freedom in the TV estimate is the expected value of the dimension of the
nullspace of D−A. They also show that when A and D are full rank

df(Ax̂(λ)) = df(Dx̂(λ)) = df(x̂(λ)).

This results in a regularized residual with degrees of freedom

mn− df(Ax̂(λ)) + df(Dx̂(λ)) = mn.

Note that Theorem 4 shows that when both A and D are full rank, we do not need to calculate
df(Ax̂(λ)) when using the regularized residual. This gives in the following χ2 test for choice of λ

in TV regularization:

∥d−Ax̂(λ)∥22 +
2

λ
TV(x̂(λ)) ≈ mnσ2. (12)
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Proposition 4. If x̂ has a bounded gradient then

f(λ) = ∥d−Ax̂(λ)∥22 +
2

λ
TV(x̂(λ))

decreases with increasing λ.

Proof. As λ increases, the data residual decreases since more weight is placed on the data fit in

the optimization problem. In addition, since TV(x̂) remains bounded, the second term in the sum
will approach zero for large λ.

Remark 1. When x̂ has a bounded gradient it may be the case that f(λ) > mnσ2 for all λ.

Given a large enough value of σ there will be a λ that passes the χ2 test which implies the data
are not as accurate as indicated by the standard deviation estimate σ. Similarily it could be that

f(λ) < mnσ2 for all λ whereby a smaller value of σ is needed for there to exist a root, meaning
the data are more accurate than anticipated. If it is possible to find a λ so that f(λ) = mnσ2

there is a unique λ that passes the χ2 test.

Remark 2. When x̂ does not have a bounded gradient there may not be a unique λ for which

f(λ) = 0 or f(λ) may have multiple extremum. For λ ≈ 0 TV regularization gives x̂ with TV(x̂)

small. As λ increases ∥d−Ax̂(λ)∥22 will decrease but TV(x̂) may increase. A smooth or piecewise
constant image results in a small value of TV(x) while large values of TV(x) indicate a highly

textured image. This prior understanding of the image can be used to choose a non-unique λ.

In particular if the image is assumed to be smooth the best choice of λ is the smallest value for
which f(λ) = 0.

The proposed method for TV regularization parameter selection is given in Algorithm 2. To
find the optimum we must solve the TV problem multiple times with different λ to determine

which satisfies the χ2 test. We also give an algorithm for the discrepancy principle in Algorithm 3

which similarly solves the TV problem multiple times with different λ, and automatically computes
the regularization parameter as is done in [27]. In both cases there is an outer iteration that finds

the regularization parameter according to a discrepancy or χ2 principle, and each also contains

an inner iteration that find the TV parameter estimates. In this work we have described why the
discrepancy principle has the incorrect degrees of freedom in Algorithm 3, and developed a χ2 test

for the regularized residual that contains the correct degrees of freedom for TV in Algorithm 2.
In both cases we tested the algorithms with inner iterations that find the TV parameter estimates

using three publicly available TV codes: deconvtv [7], FTVd [46] and tvdeconv [15]. The first

two codes use an augmented Lagrangian method while the third uses the Split Bregman method.
Numerical results from Algorithms 2 and 3 are presented in Section 4 along with results from the

MAP estimate and the estimate that gives maximum ISNR.

Algorithm 2 TV χ2 test.

1: input d, A, σ

2: λ ∈ argminλ
{
∥d−Ax̂(λ)∥22 + 2

λ
TV(x̂(λ))−mnσ2

}
where x̂(λ) ∈ argminx

{
λ
2
∥d−Ax∥22 + TV (x)

}

Algorithm 3 TV Discrepancy principle.

1: input d, A, σ
2: λ ∈ argminλ

{
∥d−Ax̂(λ)∥22 −mnσ2

}
where x̂(λ) ∈ argminx

{
λ
2
∥d−Ax∥22 + TV (x)

}

4. Numerical Results.
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4.1. Test images. The images on which we chose to test the Algorithms are gray-scale with
intensity values normalized to the range [0, 1]. They were artificially blurred with a discrete linear

blur filter A that is a convolution of the image with a point spread function. We blurred them

with Gaussian and uniform lowpass filters with variance 9 and a 15 × 15 grid respectively. Both
were implemented with the MATLAB command fspecial. In each case the noise was quantified

using the Blurred Signal to Noise Ratio (BSNR):

BSNR = 20 log10
∥Ax∥2
∥ϵ∥2

.

We compared BSNRs of 20, 30 and 40 dB, where the lower levels represent more noise.

The three images we chose to test the algorithms were the Camerman image, an artificial

MRI, and a Mountain image as seen in Figures 2-4. The blurred images are in the top row of the
Figures with BSNR 20, 30 and 40 ranging from left to right. The Camerman image with Gaussian

noise is shown in Figure 2 while the MRI and Mountain images are shown with uniform noise in

Figures 3-4. In all experiments the standard deviation used to generate noise in the images was
also used to reconstruct the images. Although this may not be realistic, it allows us to determine

the effectiveness of Algorithms 1-3 in the ideal case.

4.2. ISNR. The optimal value of λ was identified to be that which gives the best Improved
Signal-to-Noise Ratio (ISNR) defined by:

ISNR = 20 log10
∥d− x∥2

∥x̂(λ)− x∥2
. (13)

The ISNR is an estimate of the perceptual quality of an image with larger values indicating better
quality. The value of λ that gives the largest ISNR is also the value that gives the smallest mean

square error (MSE).

Since we have the exact image, we are able to determine the optimal value of λ that gives the
highest ISNR value. This is illustrated in Figures 5 and 6. In all Figures the graph associated

with the right vertical axis is the ISNR value for a range of λ. There is a clear maximum ISNR
value in all cases and the value of λ where this occurs is the λ used to reconstruct the images

labeled “Maximum ISNR”. The resulting ISNR from reconstructed images using this λ is also

reported in Tables 1-2.
Figures 5 and 6 also plot on the left vertical axis is the value the regularized residual in (12), or

cost function, for all possible λ along with the targeted value of the cost function which is mnσ2.

Where the cost function and the targeted value intersect will be the value of λ that satisfies the
TV χ2 test, and the value of λ chosen for the χ2 method. Results from reconstructed images

using this λ are reported in Tables 1-6.

4.3. Reconstructed Images. The images were reconstructed using regularization parameters
found by Algorithms 1-3 and the regularization parameter that gives the largest ISNR. These

regularization parameters were used to reconstruct the images in the bottom three rows of Figures
2-4. The left column shows results from BSNR of 20, the middle BSNR of 30 and the right BSNR
of 40. In all cases the MAP reconstruction looks the worst, while the χ2 reconstruction has a

higher contrast than the reconstruction that produces the best possible ISNR. The reconstructed
image using the discrepancy principle looks similar to the χ2 reconstruction, even though the

discrepancy principle has the incorrect degrees of freedom, so the reconstructed image is not

shown here.
The resulting ISNR values from the reconstructions are given in Tables 1 and 2. Algorithm

1, using the MAP estimate as suggested in [16], relies on estimating the Laplace distribution

parameter β with the data, and in all cases this gives the lowest ISNR value. We also note that
the resulting ISNR values when using the discrepancy principle are consistently less than when

using the TV χ2 test. This is to be expected because the discrepancy principle does not have the

correct degrees of freedom. However, the resulting ISNR values for the χ2 test and the discrepancy
principle are very close in value. This indicates that 2TV (x̂)/λ is small and does not significantly

change the value of the data residual.

The peak signal to noise ration (PSNR) was also calculated to measure how close the recon-
structed images are to the true image. A higher PSNR value indicates a better reconstruction

and these values are given in Tables 3 and 4. The regularization parameter that gives the highest
PSNR is the one that also gives the maximum ISNR. The PSNR values resulting from the reg-

ularization parameter found with the χ2 test are consistently larger than discrepancy principle.
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Blurred Image

MAP Reconstruction

χ2 Reconstruction

Maximum ISNR Reconstruction

Figure 2. Gaussian filter with variance 9. BSNR 20 (Left),
BSNR 30 (Middle), BSNR 40 (Right).
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Blurred Image

MAP Reconstruction

χ2 Reconstruction

Maximum ISNR Reconstruction

Figure 3. Uniform 15 x 15 filter. BSNR 20 (Left), BSNR 30
(Middle), BSNR 40 (Right).
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Blurred Image

MAP Reconstruction

χ2 Reconstruction

Maximum ISNR Reconstruction

Figure 4. Uniform 15 x 15 filter. BSNR 20 (Left), BSNR 30
(Middle), BSNR 40 (Right).

The PSNR values for both methods are very similar and have values close to the value when a

regularization parameter with maximum ISNR is used.
The structural similarity indices (SSIM) that result when using regularization parameters from

each of the methods are given in Tables 5 and 6. It measures the perceived difference between the

true and reconstructed images with possible values between 0 (no correlation in the images) and
1. With this metric the regularization parameter that gives maximum ISNR doesn’t always result
in the highest SSIM. For the cameraman and MRI images with BSNR of 20 and 40 there are

instances where the χ2 test results in a slightly larger SSIM. This difference is reflected in Figures
2-3 where we see more contrast in the figures reconstructed with regularization parameters found

by the χ2 test, than with the regularization parameters that give the best ISNR.
TV is often the preferred method to recover images with fine structures, details, and textures.

The mountain image has these properties and we see in Tables 5-6 that the SSIM is consistently
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(a)

Cameraman
20 BSNR

(b)

Cameraman
30 BSNR

(c)

Cameraman
40 BSNR

(d) MRI 20 BSNR (e) MRI 30 BSNR (f) MRI 40 BSNR

(g)
Mountain

20 BSNR

(h)
Mountain

30 BSNR

(i)
Mountain

40 BSNR

Figure 5. Left vertical axis: χ2 value (- -) and target value mnσ2

(··). Right vertical axis: ISNR (–). Gaussian filter with variance
9.

smaller for all methods as compared to the other images. The SSIM that results from the mountain

image for all BSNR values in largest when using the maximum ISNR method, while the SSIM is
smaller when using discrepancy principle than when using the χ2 test. However, values of TV (x̂)

are not large enough to significantly differentiate the discrepancy principle from the χ2 test.

5. Summary and Conclusions. The effectiveness of TV relies on appropriate choice of regu-
larization parameter λ as defined by (7). If λ is too small the image will not appropriately fit the

data while if it is too large, the image will be under smoothed. A suitable choice of λ is often
found by trying different values until one is found that results in a clear image. This is not the

most efficient way of choosing the parameter, and may not be an option if the TV optimization
problem is part of a greater iteration scheme, such as that for nonlinear problems. In addition,

when the exact image is unknown, it may be the case that even though the image is clear, it
does not correctly identify key features. Here we propose an automated method for regularization
parameter selection that utilizes statistical properties of TV and can be viewed as finding a value

of λ that passes a χ2 test.
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(a) Cam-

eraman 20
BSNR

(b) Cam-

eraman 30
BSNR

(c) Cam-

eraman 40
BSNR

(d) MRI 20 BSNR (e) MRI 30 BSNR (f) MRI 40 BSNR

(g) Moun-
tain 20

BSNR

(h) Moun-
tain 30

BSNR

(i) Moun-
tain 40

BSNR

Figure 6. Left vertical axis: χ2 value (- -) and target value mnσ2

(··). Right vertical axis: ISNR (–). Uniform filter 15 x 15

BSNR MAP estimate Discrepancy χ2 test Maximum

Camerman (m = n = 256)

40 3.8419 5.5893 5.6180 6.2762
30 2.1214 3.4184 3.4507 4.2052
20 1.4033 2.1465 2.1675 2.7272

MRI (m = n = 256)

40 5.2304 6.2520 6.3032 7.0209

30 2.5435 4.2183 4.2656 5.0079
20 1.4242 2.5236 2.5483 3.2903

Mountain (m = 480, n = 640)

40 2.0275 3.0206 3.0242 3.2735
30 0.9674 1.8473 1.8526 2.1171

20 0.5623 1.0222 1.0265 1.3306

Table 1. ISNR: Gaussian blur with variance 9.
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BSNR MAP estimate Discrepancy χ2 test Maximum

Camerman (m = n = 256)

40 5.0019 7.0914 7.1123 7.6329
30 2.8671 5.3398 5.3556 5.6426
20 1.8228 3.6031 3.6241 4.0441

MRI (m = n = 256)

40 5.6696 8.1718 8.2201 9.2978
30 3.2113 5.9225 5.9510 6.5944

20 1.7017 3.8260 3.8474 4.5641

Mountain (m = 480, n = 640)

40 2.8357 4.0904 4.0938 4.3440
30 1.6074 2.9915 2.9945 3.1432
20 0.9594 2.1004 2.1049 2.2803

Table 2. ISNR: Uniform 15 x 15

BSNR MAP estimate Discrepancy χ2 test Maximum ISNR

Camerman (m = n = 256)

40.0 25.3775 27.1479 27.1772 27.8249

30.0 23.6516 24.9772 25.0077 25.6775
20.0 22.6682 23.3500 23.3718 24.0393

MRI (m = n = 256)

40.0 27.7080 28.8271 28.8750 29.5010
30.0 24.9866 26.7687 26.8176 27.5807

20.0 23.6173 24.6765 24.7007 25.4519

Mountain (m = 480, n = 640)

40.0 19.0529 20.0588 20.0624 20.3040
30.0 17.9755 18.8666 18.8720 19.1485

20.0 17.4244 17.8787 17.8830 18.1806

Table 3. PSNR: Gaussian blur with variance 9.

BSNR MAP estimate Discrepancy χ2 test Maximum ISNR

Camerman (m = n = 256)

40.0 24.1719 (9.84) 26.3170 (1.84) 26.3371 (1.77) 26.8111

30.0 22.0192 (11.10) 24.4882 (1.14) 24.5037 (1.08) 24.7709
20.0 20.8288 (9.70) 22.5266 (2.34) 22.5493 (2.24) 23.0660

MRI (m = n = 256)

40.0 25.0072 (12.82) 27.5739 (3.87) 27.6225 (3.70) 28.6832
30.0 22.5294 (13.29) 25.1393 (3.24) 25.1710 (3.12) 25.9823

20.0 20.9540 (11.69) 23.1799 (2.31) 23.1974 (2.23) 23.7269

Mountain (m = 480, n = 640)

40.0 18.3899 (7.56) 19.6504 (1.22) 19.6538 (1.20) 19.8931

30.0 17.1524 (8.24) 18.5660 (0.68) 18.5688 (0.66) 18.6924
20.0 16.4198 (7.48) 17.5595 (1.06) 17.5633 (1.04) 17.7470

Table 4. PSNR: Uniform 15 x 15. The value in parentheses is
the percent relative difference from the PSNR obtained with the λ
that achieves maximum ISNR.

The TV estimate is the MAP estimate if the regularization term is viewed as prior information

about pixel differences from a Laplace distribution. This prior information assumption is common

in the statistical modeling of natural images [40]. In this work we exploit this assumption to
show that the objective function for TV regularization follows a χ2 distribution. The discrepancy

principle similarly exploits χ2 properties of the least squares data residual. However, when data
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BSNR MAP estimate Discrepancy χ2 test Maximum ISNR

Camerman (m = n = 256)

40.0 0.7956 0.8402 0.8408 0.8379
30.0 0.7393 0.7809 0.7818 0.7855
20.0 0.7024 0.7271 0.7278 0.7327

MRI (m = n = 256)

40.0 0.8496 0.8717 0.8725 0.8767
30.0 0.7846 0.8279 0.8288 0.8332

20.0 0.7246 0.7686 0.7693 0.7607

Mountain (m = 480, n = 640)

40.0 0.5301 0.6197 0.6201 0.6343
30.0 0.4440 0.5156 0.5160 0.5377
20.0 0.3868 0.4348 0.4352 0.4526

Table 5. SSIM: Gaussian blur with variance 9.

BSNR MAP estimate Discrepancy χ2 test Maximum ISNR

Camerman (m = n = 256)

40.0 0.7571 0.8281 0.8285 0.8158
30.0 0.6766 0.7660 0.7662 0.7628

20.0 0.6300 0.6931 0.6938 0.6984

MRI (m = n = 256)

40.0 0.7683 0.8341 0.8349 0.8270

30.0 0.6732 0.7694 0.7702 0.7553
20.0 0.6037 0.6934 0.6938 0.6706

Mountain (m = 480, n = 640)

40.0 0.4609 0.5834 0.5837 0.5965

30.0 0.3602 0.4801 0.4804 0.4906
20.0 0.3060 0.3901 0.3904 0.4003

Table 6. SSIM: Uniform 15 x 15

are used to find a regularization parameter, the degrees of freedom in the χ2 test must be reduced,
otherwise the image will be over-smoothed. For Tikhonov regularization the analytical expression

for the minimum of the objective function can be used to determine the equivalent degrees of

freedom [45]. Since there is no such analytical expression for the TV minimizer it has been an
open problem to determine the appropriate degrees of freedom for the TV χ2 test. Here we use
recent results concerning the degrees of freedom for the lasso fit [43] to derive a χ2 test with
appropriately reduced degrees of freedom for TV regularization parameter selection.

Results were shown for three different images, two types of noise, three noise levels and three

TV algorithms: deconvtv [7], FTVd [46] and tvdeconv [15]. In each case the χ2 test for
regularization parameter selection, Algorithm 2, performed best. In addition, since the exact

images are known, we also computed regularization parameters that gave optimal ISNR and
showed that the χ2 test gives near optimal parameters.

In all test cases Algorithm 1, which uses a rough estimate of the hyperparameter in TV as a
MAP estimate, gave the worse results. Algorithm 3 uses the discrepancy principle with incorrect

degrees of freedom and it consistently performed worse than the χ2 test in Algorithm 2. However,
the improvement was not significant because TV (x̂) is typically small compared to the L2 norm

of the data residual. While the discrepancy principle with incorrect degrees of freedom gave
similar results to the χ2 test we do not recommend using the discrepancy principle in this manner
because images with large TV (x̂) will be over-smoothed. In addition, there is no significant
increase in computational cost to use the correct χ2 test over the discrepancy principle since the
only difference in the methods is evaluation of the TV regularization operator at the parameter

estimate.
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