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ARTICLE INFO ABSTRACT

Keywords: Scallops (Pectinidae) are one of the most diverse families of bivalves and have been a model system in evolu-
Pectinoidea tionary biology. However, in order to understand phenotypic evolution, the Pectinidae needs to be placed in a
Pectinidae deeper phylogenetic framework within the superfamily Pectinoidea. We reconstructed a molecular phylogeny
Scallops B for 60 species from four of the five extant families within the Pectinoidea using a five gene dataset (128, 16S,
:;lzeamussudae 18S, 28S rRNAs and histone H3). Our analyses give consistent support for the non-monophyly of the

Propeamussiidae, with a subset of species as the sister group to the Pectinidae, the Propeamussiidae type species
as sister to the Spondylidae, and the majority of propeamussiid taxa sister to the Spondylidae + Pr. dalli. This
topology represents a previously undescribed relationship of pectinoidean families. Our results suggest a single
origin for eyes within the superfamily and likely multiple instances of loss for these characters. However, it is
now evident that reconstructing the evolutionary relationships of Pectinoidea will require a more comprehensive
taxonomic sampling of the Propeamussiidae sensu lato.

1. Introduction

Scallops Pectinidae Rafinesque, 1815 are one of the most ecologi-
cally and morphologically diverse families in the class Bivalvia. With
over 250 extant species currently considered valid, they are distributed
across polar, temperate, and tropical marine ecosystems of shallow
sublittoral reefs, sandy bays, sea grass beds and coarse substrates of the
continental shelves, with a smaller number of species restricted to
deeper water (Serb, 2016). Pectinidae is an ideal model to study the
evolution of complex traits due to the number and biological diversity
of extant species, the link between shell morphology and habitat use

(Stanley, 1970), and their high preservability in the paleontological
record (Valentine et al., 2006). Researchers have investigated the
evolution of traits such as shell shape (Serb et al., 2011, 2017; Sherratt
et al., 2016; Stanley, 1970), behavior (Alejandrino et al., 2011),
swimming mechanics (Guderley and Tremblay, 2013; Hayami, 1991;
Millward and Whyte, 1992; Tremblay et al.,, 2015), and photo-
transduction (Faggionato and Serb, 2017; Gomez et al., 2011; Kingston
et al., 2015; Porath-Krause et al., 2016; Serb et al., 2013). One com-
pelling set of phenotypes is the complex sensory systems, including
eyes, found in this family (Audino et al., 2015a, 2015b, 2015¢; Land,
1965; Speiser et al.,, 2011, 2016; Speiser and Johnsen, 2008). Most
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Fig. 1. Existing hypotheses of relationships among pectinoidean families: (A)
molecular data (Bieler et al., 2014; Matsumoto and Hayami, 2000); (B) pa-
leontological and morphological data (Waller, 2006); (C) paleontological and
morphological data (Waller, 1991); (D) morphological data (Waller, 1978).

work has concentrated on the eyes of scallops, which were first de-
scribed in 1791 (Poli, 1791). Subsequent research focused on the
anatomy and optics of these eyes to understand how the eyes capture
light and focus images (Land, 1965; Palmer et al., 2017; Speiser et al.,
2016; Speiser and Wilkens, 2016). Recent molecular approaches have
provided insights into the evolution of gene families involved in scallop
photoreception (Gomez et al., 2011; Kojima et al., 1997, Pairett and
Serb, 2013; Piatigorsky et al., 2000; Porath-Krause et al., 2016; Serb
et al., 2013). However, in order to understand the origin and evolution
of these and other traits, the family Pectinidae needs to be placed in a
deeper phylogenetic framework within the superfamily Pectinoidea.
The relationship of the Pectinidae to the other families in the
Pectinoidea has been highly contentious due to high levels of homo-
plasy in shell characters (Dijkstra and Maestrati, 2012; Hertlein, 1969)
and alternative interpretations of the fossil record (Waller, 2006, 1991,
1978) (Fig. 1). As a result, three families (Propeamussiidae, Spondy-
lidae, Entoliidae) singly or in combination have been proposed to be the
sister taxon to the Pectinidae by different authors at different times. The
prevailing view has been that the Propeamussiidae Abbott, 1954, or
glass scallops (~200 species), represent the closest relatives of the
Pectinidae. Propeamussiids possess very thin, often translucent shells
and inhabit the marine epipelagic (80 m) to the abyssal (4000 m) zones.
They appear to be a lineage of relict species that survived severe en-
vironmental changes at the end of the Cretaceous by inhabiting deep
and/or cold-water refugia (Waller, 1991) where most modern propea-
mussiids and the oldest extant lineage of Pectinidae (Camptonectinae:
Delectopecten) are still found. Additionally, propeamussiids and some
pectinid lineages have a similar shell shape. These data suggest a pos-
sible sister relationship between the two families, which has been
supported by other studies which include molecular data for their
phylogenetic analyses (Bieler et al., 2014, Fig. 30; Matsumoto and
Hayami, 2000) (Fig. 1A). Recently, one lineage of micro glass scallops
(1.5-6 mm as adults) was elevated to its own family, the Cyclo-
chlamydidae Dijkstra and Maestrati, 2012; however its phylogenetic
relationship to the Pectinidae is unknown. There remains two other
pectinoidean families: the Entoliidae Teppner, 1922, a mostly extinct
family with only two extant monotypic genera (Entolium, Pectinella)
(Waller, 2006), and the Spondylidae Gray, 1826 or thorny oysters (68
species), a cementing family with finger-like protrusions on the shell.
These less-studied families have been hypothesized to be the sister
group to the Pectinidae, either separately (Waller, 2006, 1991) (Fig. 1B
vs C) or together as the sister clade (Waller, 1978) (Fig. 1D). New data
on the age of first known fossil occurrences in conjunction with mor-
phological characteristics are the basis of a revised phylogenetic hy-
pothesis supporting the Spondylidae as the sister group to the Pecti-
nidae, with Entoliidae + Propeamussiidae forming a second clade
(Waller, 2006) (Fig. 1B). A molecular phylogeny based on a single
mitochondrial gene also supports the Pectinidae + Spondylidae re-
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gene datasets of mitochondrial and nuclear markers have recovered
Spondylidae + Propeamussiidae as the sister group to the Pectinidae
(Alejandrino et al., 2011; Puslednik and Serb, 2008). To date, no mo-
lecular phylogenetic analysis has included more than three pectinoi-
dean families (Plazzi et al., 2011; Plazzi and Passamonti, 2010; Sharma
et al., 2012; Sun and Gao, 2017), which has prevented more definitive
resolution.

We generated a 18S rDNA dataset for 60 pectinoidean species and
five species of Limidae to complement an existing multigene dataset
(Sherratt et al., 2016) and broadened the taxonomic representation to
include four of the five extant families of Pectinoidea. We then cali-
brated the multi-locus phylogenetic hypothesis using fossil data from
three families. Using this framework, our goal was clarify the phylo-
genetic relationships between Pectinidae and other families within
Pectinoidea.

2. Materials and methods
2.1. Specimens and samples

We assembled 60 taxa from four of the five extant families in the
superfamily Pectinoidea plus five species of Limidae to serve as the
outgroup. We sampled 18 species from the Propeamussiidae, 37 species
of Pectinidae, four species of Spondylidae, and a single extant species of
Entoliidae (supplementary Table 51). Due to the challenges of acquiring
samples, we were unable to include taxa from the newly described fa-
mily Cyclochlamydidae. Samples used in this study were obtained from
colleagues and museum collections (see supplementary Table S1 and
Acknowledgments). The majority of Indo-Pacific specimens included in
this study were obtained during expeditions organized by the MNHN
and Pro-Natura International as part of the Qur Planet Reviewed pro-
gram, and by the MNHN and the Institut de Recherche pour le Dével-
oppement as part of the Tropical Deep-Sea Benthos program. Species
identifications of the Indo-Pacific specimens were determined by Henk
H. Dijkstra at the Naturalis Biodiversity Center (Netherlands). All tis-
sues were preserved in ethanol and shell voucher specimens are avail-
able from museum collections listed in supplementary Table S1.

2.2. Molecular laboratory methods

Total genomic DNA (gDNA) was extracted from either mantle or
adductor tissues following the manufacturer's protocol of the Qiagen
DNeasy Blood and Tissue kit. A portion of the nuclear gene 18S ribo-
somal RNA (~700bp) was amplified using the 18S a2.0 forward (
5-ATGGTTGCAAAGCTGAAAC-3") and 18S 9R reverse (5-GATCCTTC
CGCAGGTTCACCTAC-3’) primers (Giribet et al., 1996; Whiting et al.,
1997). PCR reactions were carried out in 25 pl total volume reactions
containing 12.5 ul 2x MyTaq Red Mix (Bioline), 1 pl of 10 uM 18S rRNA
forward and reverse primers (18 s a2.0 and 18 s 9R, respectively), 9.5 ul
double distilled water, and 1 pl of template. Reactions underwent one
round of PCR consisting of an initial denaturation step (2 min at 95 °C)
followed by 30 cycles of chain denaturation (15s at 95°C), primer
annealing (15 s at 50 °C), and elongation (10 to 60s at 72 °C). Roughly
5 pl of the amplification products were visualized on a 2% agarose gel
using a 1kb size standard. Samples with the expected band size
(~700 bp) were sent to Iowa State University DNA Facility for Sanger
sequencing using Applied Biosystems 3730 x 1. In total, 18S rRNA se-
quences for 60 taxa (16 Propeamussiidae species, 35 Pectinidae species,
three Spondylidae species, one Entoliidae species, and five Limidae
species) were successfully generated.

The 18S rRNA sequences were added to a multigene dataset con-
sisting of two mitochondrial genes (125 and 16S rRNAs) and two nu-
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Alejandrino et al. (2011).
2.3. Phylogenetic analyses

DNA sequences for each gene portion were aligned separately in
MAFFT v7.222 (Katoh and Standley, 2013) using the automatic algo-
rithm to select the best alignment method and remaining settings/op-
tions set as default. Ambiguously aligned nucleotides due to large in-
sertion-deletions (indels) in 12S, 16S, and 28S rRNA genes were
removed using settings for a less stringent selection on the Gblock 0.91b
server (Castresana, 2000; Dereeper et al., 2008; Talavera and
Castresana, 2007). Individual gene alignments were concatenated in
Geneious v4.7.6 (Kearse et al., 2012) to produce a final dataset of five
gene regions: 12S rRNA (1-315 bp), 16S rRNA (316-674 bp), 18S rRNA
(675-1161bp), 285 rRNA (1162-1937bp), and histone H3
(1938-2276 bp). Mitochondrial-only (125 and 16S rRNAs) and nuclear-
only (185 rRNA, 28S rRNA and histone H3) datasets were also pro-
duced.

Phylogenetic analyses were carried out under maximum likelihood
(ML: (Felsenstein, 1981)) and Bayesian inference (BI: (Mau et al,
1999)). Nucleotide substitution model was determined using Parti-
tionFinder2 (Lanfear et al., 2016). For this analysis, the datablock was
defined by gene, as above, with branch lengths unlinked. All evolution
models and schemes were investigated using Akaike Information Cri-
terion with sample size correction (AICc) metric. ML analyses were
conducted using RAXML-HPC v8.2.9 on XSEDE (Stamatakis, 2014) as
implemented on the CIPRES Scientific Gateway v3.3 (Miller et al,
2010). Branch support was determined with 500 bootstrap iterations
for best-scoring ML tree. All other parameters were set at the program’s
default. BI analyses were conducted using MrBayes v3.2.6 (Ronquist
et al., 2012) as implemented on the CIPRES Scientific Gateway v3.3. We
ran three independent analyses, each with eight Markov chain Monte
Carlo (MCMC) chains sampling every 100 generations and the tem-
perature for heated chains set at 0.15. The MCMC analysis was set to
run for 50 million generations or until a standard deviation of split
frequency value of 0.01 was reached signifying convergence following
the stoprule after 4.2 million generations. The post-run analyses were
set with a 50% burn-in and all other parameters not mentioned above
were left at the program’s default. We then visually inspected the
combined trace files to confirm acceptable mixing and high ESS (ef-
fective sampling size) across all parameters (> 300) in Tracer v1.6
(Rambaut et al., 2018). Post-burn-in trees were used to construct the
50% majority rule consensus tree and to estimate posterior prob-
abilities.

We used the Approximately Unbiased (AU) test (Shimodaira, 2002)
to compare our results to six alternative phylogenetic hypotheses. These
alternative topologies were generated via ML in RAXML to constrain
either (1) a monophyletic Propeamussiidae or (2) a clade of Propea-
mussiidae that excluded Parvamussium ina. In addition, four hypotheses
from previous studies (Fig. 1) were compared. Site-wise likelihoods
were calculated in RAXML for the unconstrained and constrained ML
topologies and analyzed in CONSEL (Shimodaira and Hasegawa, 2001)
using default parameters for p-values.

Divergence time estimation was conducted using RevBayes version
1.0.9 under the Fossilized Birth-Death model (Hohna et al., 2016). A
relaxed molecular clock model was defined assuming an uncorrelated
exponential model on branch rates. Posterior probabilities were sam-
pled by Markov Chain Monte Carlo process (MCMC) for 500,000
iterations. Maximum clade credibility tree, with a burn-in of 10%, was
generated after pruning the five fossil taxa used to calibrate internal
nodes. Fossil ages were incorporated based on available data in Waller
(2006) and in the Paleobiology Database (https://paleobiodb.org/).
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considering the fossil record of Argopecten spp. (15.99-2.61 MYA), an
extant genera. The Spondylidae was constrained around 171.6-168.3
while Entoliidae was calibrated based on the fossil of Pectinella spp.
(251.3-247.2 MYA). Finally, the Limidae was also constrained between
330.9 and 323.2 MYA, based on Paleolima spp.

3. Results

A total of 111 sequences were generated in this study and 196 se-
quences were obtained from previous work (Sherratt et al., 2016) for 60
species across four families of Pectinoidea with five species of Limidae
serving as the outgroup. The lengths of each gene region after align-
ment were: 128 TRNA: 315 bp; 16S rRNA: 359 bp; 18S rRNA: 487 bp;
28S rRNA: 776 bp; histone H3: 339 bp. DNA sequences were deposited
in GenBank (NCBI accession numbers MH MH463998- MH464109;
Table S1). Our concatenated five-gene dataset had a total aligned length
of 2276 bp. The molecular dataset was complete for 54 of the 65 taxa,
while the remaining 11 taxa lacked at least one gene. Incomplete gene
sets occurred in some species from all four families of Pectinoidea, but
there was no pattern based on taxonomic membership (supplementary
Table 1). PartitionFinder 2 suggested a four partition scheme. A
GTR + G evolution model was suggested for 12S and 168S partitions and
a GTR + I+ G evolution model for 28S and 18S + H3 partitions.
However, after 200 million generations, the MrBayes analyses still had
not reached convergence suggesting the PartitionFinder scheme too
complicated given the dataset, requiring us to use a less complicated
substitution model. A general time reversible (GTR) model with
gamma-distributed rates across nucleotide sites was applied to ML and
both BI analyses using the gene partitions described above.

ML and BI analyses of the concatenated five gene dataset re-
constructed the same five lineages of pectinoidean taxa and produced
similar topologies (Fig. 2 for ML; Fig S1 for BI phylogram). The only
difference between the two topologies was that the Bayesian analysis
was unable to resolve the relationships among the five pectinoidean
clades. Interestingly, the relationships among these clades in the ML
topology did not match any of the proposed phylogenetic hypotheses
for Pectinoidea (Fig. 1). The single representative of Entoliidae (Pecti-
nella aequoris) was recovered as sister to the remaining pectinoideans in
the ML tree with high support (100% BS). The Propeamussiidae is not
monophyletic, with the majority of the species (n = 13) forming a clade
with low support (64% BS, 78 PP). The type species, Propeamussium
dalli was not a member of this clade, but rather the sister group (55%
BS, 72 PP) to a well-supported monophyletic Spondylidae (100% BS;
100 PP). A third propeamussiid lineage of three species was a moder-
ately supported clade that was the sister group to the Pectinidae (64%
BS, 86 PP), and a fourth was represented by Parvamussium ina nested
within the Pectinidae (66% BS, 89 PP). Thus, the Pectinidae as cur-
rently conceived is paraphyletic in our analyses, and the Propea-
mussiidae polyphyletic. Non-monophyly of the Propeamussiidae was
also supported in ML and BI analyses of the mitochondrial-only and
nuclear-only datasets (Figs. S2-S5).

Using the best tree from each ML analysis, AU tests were performed
to statistically compare our results against competing hypotheses that
constrain the Propeamussiidae as monophyletic and that constrain the
Propeamussiidae as monophyletic to the exclusion of Parvamussium ina.
Additionally, we compared our results with four alternative sister
groups for the Pectinidae described in previous studies (Fig. 1). The AU
test significantly rejected (p-values < 0.01) the hypotheses with a
monophyletic Propeamussiidae + Pectinidae (Fig. 1A), Spondy-
lidae + Pectinidae (Fig. 1B), and Entoliidae + Pectinidae (Fig. 1C)
(Table 1).

We estimated divergence dates among extant taxa using five fossil
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Table 1 First, the time-calibrated phylogeny recovered the Entoliidae taxon as

Summary of AU tests of alternative pectinoidean topologies. sister to largest Propeamussiidae clade with an inferred divergence time
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taxa led some to conclude a sister group relationship between the two
families (Fig. 1A). However, morphological comparison of fossil and
Recent taxa and re-interpretation of first occurances in the fossil record
have been the basis of three other possible topologies. Waller (1978)
proposed Spondylidae + Entoliidae (=Syncyclonemidae) to be the
sister taxon of the Pectinidae based on a single synapomorphy of lip
morphology, but noted that these taxa have many primitive features
and resemble the fossil precursors to the Pectinidae more than the ex-
tant members (Fig. 1D). Subsequently, Waller (1991) presented a re-
vised hypothesis with the Entoliidae alone as the sister to the Pectinidae
(Fig. 1C). Most recently, fossil evidence from the Mesozoic appears to
bridge morphological gaps among pectinoidean lineages (Waller,
2006). This and recognition of a “pectiniform” in an early stage of
spondyliid growth led Waller (2006) to propose the Spondylidae as the
sister lineage to the Pectinidae (Fig. 1B). Two of these hypotheses
(Fig. 1C, D) place the Propeamussiidae as sister to all other Pectinoidea.
Interestingly, molecular phylogenetics has largely supported a fifth
relationship, with the Propeamussiidae + Spondylidae as the sister
group to the Pectinidae. Our estimated phylogenies show both a pro-
peamussiid clade sister to the Pectinidae as well as a second propea-
mussiid lineage that shares a common ancestor with a monophyletic
Spondylidae (Figs. 2 and 3). Thus, our data support the traditional
hypothesis, in part, but highlights two important future directions.
First, the non-monophyly of the Propeamussiidae suggests that the
characteristics that have been used as synapomorphies for the family
should be re-examined. Second, if the relationship between Spondy-
lidae and Propeamussium dalli (the type species) holds, a taxonomic
revision of the Propeamussiidae will be necessary.

Few published time-calibrated phylogenies have included the
Pectinoidea, and those that do have been inferred from a small subset of
pectinoidean taxa (e.g., Bieler et al. 2014). In constrast, our estimation
of divergence times for the Pectinoidea is based on a larger taxonomic
sampling that includes four of the five families and fossil taxa from
three of these families (Entoliidae, Pectinidae, and Spondylidae).
Through this sampling strategy, we were able to independently esti-
mate age of the superfamily. Interestingly, our time-calibrated phylo-
geny supports a somewhat earlier origin of the Pectinoidea (Late De-
vonian, 395 MYA) than currently accepted date of the Early
Carboniferous period (358.9 MYA) when fPernopectinidae is regarded
as the stem group of the superfamily (see Waller 2006). Future inclu-
sion of fossil taxa in phylogenetically informed macroevoutionary
analyses will be critical for interpreting patterns of diversification and
extinction for the group.

Understanding relationships among the families of Pectinoidea
could give an interesting context to the evolution of eyes within the
superfamily. Eyes occur ventrally and often serially repeated on both
left and right mantle lobes, located at the end of short stalks on the
middle fold (Dakin, 1910). Scallops possess many single chambered
eyes with a mirror-like reflector lining the back of the eye which focuses
light back onto a double-retina system in the middle of the eye (Land,
1965; Palmer et al., 2017). Pectinidae and Spondylidae are known to
have this unique eye structure, while Propeamussiidae were thought to
lack eyes (Waller, 1972); however, the absence of eyes in propea-
mussiids may reflect their distribution in dysphotic (200-1000 m) or
aphotic (> 1000m) depths (Waller, 2006, but see Morton and
Thurston, 1989). There has been some debate regarding the presence or
absence of eyes in extinct entoliids. Eyes may be present in the extant
genus Pectinella [(Waller, 2006) images of the eyes were not illu-
strated], but with only two extant species, fluid-preserved specimens
are rare (e.g., no specimens in the largest US collection USNM, co-au-
thor EE Strong) and we have been unable to secure a specimen for
examination. If eyes are present in the Entoliidae (Waller, 2006) and
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be examined from both historical and habitat perspectives.
5. Conclusion

The results of these current analyses suggest a novel topology for
relationships within the superfamily Pectinoidea. Our results tenta-
tively indicate the Propeamussiidae may be polyphyletic, but the AU
test results do not reject all alternative hypotheses in which the family
is constrained to be monophyletic. The inclusion of molecular data for a
species of Entoliidae for the first time provides the first test of its
phylogenetic placement as the sister to all other Pectinoidea. Our
phylogenetic hypothesis also impacts the interpretation of trait histories
in the superfamily with implications to phenotypic evolution. For in-
stance, our data tentatively supports the hypothesis for a single origin
of eyes in the superfamily. Future work should focus on bolstering
support for this scenario through the examination of a more compre-
hensive molecular dataset. However, if the relationships recovered here
hold, a taxonomic revision of the Propeamussiidae is warranted.
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