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Abstract—A key concept of software-defined networking (SDN)
is separation of the control and data plane. This idea provides
several benefits, including fine-grained network control and
monitoring, and the ability to deploy new services in a limited
scope. Unfortunately, it is often cost-prohibitive for enterprises
(and universities in particular) to upgrade their existing networks
to wholly SDN-capable networks all at once. A compromise
solution is to deploy SDN capabilities incrementally in the
network. The challenge then is to take full advantage of SDN-
based services throughout the network, in an integrated fashion
rather than in a few “islands” of SDN support. At the University
of Kentucky, SDN has been integrated into the campus network
for several years. In this paper, we describe two aspects of
this challenge, along with our solution approaches. One is the
general reluctance of campus network administrations to allow
novel or experimental (SDN-based) services in the production
network. The other is how to extend such services throughout
the legacy part of the network. For the former, we lay out a set
of principles designed to ensure that the production service is not
harmed. For the latter, we use policy based routing and a graph
database to extend our previously-described VIP Lanes service.
Our simulation results in a campus-like topology testbed show
that we can provide a host with custom path service even if it is
connected to a legacy router.
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network, campus network

I. INTRODUCTION

Software-defined networking (SDN) separates the logical,
software-based control of network switches from the hardware
used to implement packet forwarding. This enables rapid evo-
lution of network control software, and speeds up development
and deployment of new network services. This separation
typically translates into a network design that consolidates the
control plane software into a network controller that is respon-
sible for making decisions about how packets will be handled
according to policy, and then pushing those decisions—in the
form of match-action rules—to the switches that make up
the network. SDN-enabled switches simply use those rules to
forward, drop, modify, or otherwise process packets in the data
plane. Given an accurate “bird’s eye” view of the network,
the controller can ensure that network policies are enforced
consistently throughout the network. This simplifies network
management and monitoring for network administrators [1].

SDN controllers typically uses a protocol like OpenFlow [2]
or Open vSwitch Database (OVSDB) [3] to communicate
control information to/from SDN-enabled switches. In many

cases, SDN controllers also support a Northbound Interface
(NBI) that allows external applications to communicate with,
and influence the behavior of, the controller. Fig. 1 illustrates
the general architecture of an SDN network and the software—
both SDN controller and external applications—that drives the
network.
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Fig. 1. SDN controller and its Northbound and Southbound Interfaces

The benefits of SDN are most obvious within a single
“stub” administrative domain, especially one that has sub-
stantial intra-domain (“east-west”) traffic, as well as (“north-
south”) traffic to/from the rest of the Internet. Thus, data
centers were the early adopters of SDN, while campus and
enterprise networks have been somewhat slower to get on the
bandwagon.
Because of the heavy emphasis on distributed algorithms in

Internet control protocols (in particular routing), such networks
have traditionally relied on various layer 2 mechanisms and
vendor-supplied services to aid management. In a pure SDN
network (i.e., one in which all network elements are SDN-
capable), all control plane functionality would be implemented
in the controller(s) software. However, several factors prevent
wholesale conversion of enterprise networks to pure SDN. One
is simply cost. Another is the challenge of reimplementing all
control plane functionality, developed over decades, for a new
platform. (Moreover, it is not clear that all aspects of control
should be centralized.) As a result, SDN approaches typically



either (1) deploy SDN switches (with limited control plane
functionality) that interoperate with legacy network switches,
or (2) implement integrated SDN software that co-exists with
the conventional network control software embedded in SDN-
enhanced legacy switches.

In the first approach, the network is partitioned into SDN re-
gions and legacy regions—forming a hybrid network. Switches
in the SDN regions are controlled by SDN software, while
switches in the legacy regions execute standard distributed
control protocols (e.g., OSPF, LLDP, etc.) to control the
network. The SDN regions interconnect to the legacy regions
at clearly defined points and are configured to interoperate in
some way. Because the two regions are independent networks,
they can be controlled independently (i.e., no need for shared
control between SDN developers and IT network operators).
Cooperation is only needed at the interconnection points, and
can be achieved by defining a small, static, set of ways to ex-
change packets between SDN and legacy regions. For example,
one proposal has strategically-placed SDN switches act like a
legacy switch and send legacy control (e.g., ARP) messages
to neighboring legacy switches [4]. The obvious downside of
the hybrid approach is that advanced SDN services are limited
to the SDN regions of the network.

In the second approach, legacy network switches are en-
hanced with SDN capabilities (or simulations thereof), allow-
ing both forms of control to co-exist on the same switch. This
approach, which we call integrated, was largely the motivation
for the original OpenFlow design [2] which proposed that
SDN capabilities be added into legacy switches. In this case,
SDN-enhanced switches are able to support the plethora of
legacy control protocols while also allowing SDN controllers
to modify the forwarding behavior of switches. This approach
(i) leverages past investments in control functionality; (ii) en-
ables experimentation with, and development of, new control
functionality; and (iii) potentially allows SDN developers to
deploy services across the entire enterprise. It would therefore
seem to be the preferred approach. However, it seems to be
rarely used in practice.

There are several reasons (besides the cost of replac-
ing/upgrading the entire network) why enterprise and campus
information technology (IT) administrators might be reluctant
to adopt the integrated approach in production networks. First
and foremost, their job is to keep the production network
running smoothly. They therefore—quite understandably—
tend to be wary of new technology until it has proven itself
reliable, perhaps in a confined portion of the network (hence
the prevalence of the hybrid approach). Also, IT groups find it
challenging enough to keep up with legacy control protocols,
let alone develop new skills around SDN control software. And
while the integrated approach can support experimentation
with new network services [2], as noted above, IT groups
generally have no interest whatsoever in allowing experiments
on their production network. It should be noted that these
reasons for not embracing an integrated approach (or even
the hybrid approach) are not technical in nature. Instead they
are based on lack of funding, lack of knowledge, lack of trust,

and fear of disruption of production network services.
At the University of Kentucky (UK), we have been operat-

ing an integrated SDN network on the campus for several
years [5], [6]. The integrated approach has allowed us to
deploy new services across large portions of the campus
that would not have been possible if we had taken a hybrid
approach. Key to our ability to support an integrated model has
been the ability of researchers and SDN developers to work
cooperatively with our IT department. Achieving this level of
cooperative control and trust was the result of establishing
procedures and guidelines that shaped the way we built and
deployed SDN capabilities on campus. Moreover, although our
SDN deployment did require substantial funding to replace
legacy network equipment across much of the campus—which
would have been prohibitive without opportunities such as the
National Science Foundation’s Campus Cyberinfrastructure
(CC*) program [7]—we have recently developed the ability to
support certain key SDN capabilities using non-SDN-enabled
routers, thereby allowing us to extend the footprint of our SDN
services to the entire campus.
The agreements and procedures between our research group

and our campus IT network groups have been developed and
refined over several years. Our initial deployment had aspects
of a hybrid design, but over time has evolved to where we
can now envision providing advanced services at any point
where they are needed, even in parts of the network served
only by legacy routers. In addition to developing cooperative
procedures, we had to develop the software infrastructure
needed to support the procedures and enable shared control
over the network—which had to be based on trust that the
control could not be misused. In particular, we designed and
developed a unified controller that is capable of controlling
flows that traverse both SDN-enabled and non-SDN-enabled
switches.
The basic idea is to use policy-based routing supported

by legacy routers to make them behave like SDN-enabled
routers, allowing the SDN controller to control paths that
flows take across the campus network regardless of the SDN
capabilities of the campus switches. Moreover, in the case
where some nodes are SDN-enabled and some are not, we
leverage policy-based routing to forward packets from non-
SDN-enabled switches toward SDN-enabled switches where
more advanced SDN features (e.g., header modification) can
occur. As a result, our design supports an integrated control
framework that can deal with hybrid networks.
The rest of the paper is organized as follows. Section II

begins by discussing the challenges and the foundational
agreements and procedures between our IT groups and re-
search groups needed to support hybrid and integrated ap-
proaches. Section III then describes our early deployments that
utilize a combination of integrated and hybrid approaches to
support high-speed approved flows for big data transmission.
In Section IV, we describe the mechanisms that we developed
to support a fully integrated approach, including the use of
graph databases as well as the use of Policy Based Routing
(PBR). In Section V, we describe experimental results show-



ing the performance we are able to get over our integrated
network, including non-SDN-enabled switches. In Section VI,
we describe related work and other transitions from legacy
networks to SDN networks. We discuss drawbacks of our
solution and possible future work and wrap up with our
conclusions in Section VII.

II. SHARED CONTROL AND TRUST

While SDN networks have become common place in (com-
mercial) data centers, they have not been widely adopted by
enterprise or campus networks. As noted earlier, the reasons
for this are often non-technical, and instead arise from a lack
of policies and procedures for sharing control and establishing
trust between IT network administrators and SDN develop-
ers. In fact, offering the “ability for (application) software
to control the network” can be a scary thought for many
IT network administrators, who are tasked with the job of
ensuring the network is rock-solid and are all-too-aware of
“horror stories” in which small configuration errors have taken
down entire networks. While SDN provides many opportu-
nities for developing and deploying innovative applications,
the controllers and the applications they support (via their
Northbound Interface) essentially have complete control of
the data plane—so that even the smallest error could wreak
havoc on the network. The challenge is thus to persuade IT
decision-makers to allow SDN developers to create and deploy
new software-controlled services in the campus production
network—not just small segregated experimental networks.

It should be noted that while network vendors often sup-
port one or more SDN controllers [8]–[11], these controllers
typically have only the most basic, limited, capabilities and
thus offer relatively little added value in and of themselves.
The real value is created by writing SDN controller modules
or applications that talk to controllers. So while IT network
administrators may trust a vendor, there is little advantage to
an SDN network based on vendor-supported controllers alone.
To obtain the full benefits, IT/network administrators have to
trust and allow software from SDN developers (their own or
third parties) to control “their network”.

The costs of upgrading to SDN-equipment have become less
of an issue over time. Many of the production-grade switches
being sold today support some form of SDN, which means that
campus networks are becoming more SDN-capable as part of
their normal upgrade path. However, large portions of most
campuses networks have not been upgraded to SDN-enabled
equipment, and even when they are, IT network administrators
do not turn on SDN for the reasons mentioned earlier.

A. Principles of Cooperation

To address these issues, we have been developing a cooper-
ative model at the University of Kentucky that has enabled our
SDN developers (researchers) and IT Network Administration
to establish mutual trust based on procedures and policies for
shared control of the campus network infrastructure. A key
part of this has been the development of software that enforces

the polices, assuring IT staff that SDN developers can “do no
harm” (or will only harm themselves).
A key step toward assuring network administrators that

SDN developers will do no harm, is to establish the following
foundational principle of shared network control:

By default, the network will continue to be con-
trolled by IT using their existing procedures, and
packets will continue to be processed according to
IT policies as always. Only IT-approved traffic will
be eligible to be controlled by SDN developers (and
their software).

In other words, the default setting is that packets and flows
will be handled by network switches as they always have been.
SDN processing can only be applied to certain types of flows
known to (and approved by) IT as safe and non-threatening to
their normal operations.
To implement this principle, we developed controller soft-

ware that ensures a default SDN rule is inserted into all
campus network switches that says, “if the packet does not
match a flow approved by IT for SDN-processing, it must be
processed using the switch’s normal data path”—as if SDN
capabilities are not present. While this may appear obvious
and straightforward, it is not as simple to implement as it
may seem. For example, although the OpenFlow protocol
supports a so-called “normal rule” action that can be applied
as the default action, it is an optional part of the Openflow
protocol and is not supported by all switches. Even if a
switch supports OpenFlow, it may not support the “normal
rule” that we require. In other cases, the switch may support
the “normal rule”, but may take the packet off the switch’s
fast-path to carry out the normal rule action, thus incurring
a significant performance penalty on “normal” traffic. As a
result, it is important to identify which switches in the network
are capable of supporting the “normal rule” at line speed, and
which are not, and thus require other mechanisms to support
the “do no harm” objective.
Because the normal rule is used to catch and process all

network traffic by default, we maintain the following invariant:
All SDN processing rules are inserted at a higher
priority so that SDN traffic is effectively “picked off”
before it hits the normal processing path.

As a result, IT network managers can continue to manage
switches as they always have, knowing that any SDN packets
have been “picked off” and processed independent of the
switch’s normal data path. In other words, IT can continue
to manage the network without coordination with the SDN
developers (other than approving which flows are allowed to
be “picked off” for SDN processing).
To provide further assurance that SDN will not affect normal

traffic, our control software ensures the following:
SDN processing is only applied at the granularity
of a flow, specified as a five tuple (IP source and
destination, type UDP/TCP, and Port source and
destination). The flow must be approved by IT or
its delegate.



In other words, the only traffic that will be processed by SDN
software must match a flow spec approved by IT. The details
of our control software used to authorize SDN flows is outside
the scope of this paper, but is part of our VIP Lanes project [5].
In short, VIP Lanes allows IT to delegate administration
of portions of the flow space to other IT staff, faculty, or
students. For example, IT may delegate control of all ssh flows
(TCP port 22) to or from machines on the Computer Science
Department network (defined by an IP address range) to the
computer science network administrator to manage. The ability
to give out specific portions of the flow space, down to the
flow (i.e., port) level, allows campus IT to be assured that
SDN processing is limited to approved traffic, and cannot be
used to intercept other campus traffic.

Our control software further limits what type of processing
can be applied to flows. Although OpenFlow allows packets to
be forwarded out of certain ports, modified/rewritten, dropped,
etc., we maintain a conservative stance:

The set of actions that can be applied based on the
flow specification is limited.

For example, VIP Lanes flows are only allowed to redirect
a flow out of a certain port, possibly rewriting the VLAN
field and destination MAC address. In another SDN service
we run based on fail2ban [12], it only uses the drop operation
to dynamically block ssh attacks on port 22.

B. Enabling SDN Control of Non-SDN Switches

To address the hybrid network problem where our controller
software can only manage the SDN regions of the network,
we extended the capabilities of our SDN controller to view
legacy switches as SDN switches with limited capabilities. As
a result, our SDN controller is now capable of controlling
both SDN-enabled switches and non-SDN legacy switches—
making it possible for SDN developers to create new services
that reach the entire campus network. We have used this
feature to extend our VIP Lanes service [5] to support hosts
connected to areas of the campus network that do not have
SDN-enabled switches.

Our initial SDN controller had a bird’s-eye view of, and
control over, the SDN network topology, but lacked visi-
bility/control over the legacy regions of the network. While
legacy routers may not support SDN protocols like OpenFlow,
they typically support the ability to redirect traffic or drop
packets, which are the key capabilities needed by SDN ap-
plications. In particular, many legacy switches support policy
routing, which allows network administrators to configure
routes that take precedence over routes computed by the
control software (i.e., the intra-domain routing protocol such
as OSPF or Cisco EIGRP). We can leverage these capabilities
to allow our SDN control software to redirect traffic and define
alternate paths across the network. In addition, most switches
support access control lists (ACL) that define which packets
are allowed to pass through the switch. Strategic use of these
capabilities can be used to block or drop specific flows on
behalf of the SDN controller. Moreover, it is possible for a
centralized controller to communicate with legacy switches

either through SNMP or via remote login (ssh) to the switch’s
command line interface (CLI). Consequently, we have en-
hanced our controller to make use of these legacy features
to allow SDN applications to program legacy switches much
as they do on SDN-enabled switches, thereby opening up new
SDN capabilities to hosts located on legacy regions of the
network.

III. A MOTIVATING SDN SERVICE

A key motivation for converting our campus network to
an SDN-enabled network was a desire to support high-
speed flows both to/from the Internet (north/south) and across
campus (east/west). We observed that the primary bottle-
neck for high-speed flows was often the middleboxes that
are littered around campus, and, in particular, guard the
Internet/campus boundary in the form of firewalls, intrusion
detection/prevention systems, and NAT boxes. Our goal was to
create an SDN service that leveraged SDN to route high-speed
(pre-authorized flows) around performance-limiting campus
middleboxes.
Like most campuses, we began with a conventional campus

network architecture consisting of a campus core connected
to distribution nodes, which in turn connect to a hierarchy of
access switches as shown Fig. 2a. Unlike many other SDN
deployments, we decided against a separate SDN network
just for machines that needed high speed flows. Instead, we
decided to replace the production network in entire buildings
with SDN, allowing any machine in the building to create high
speed flows if desired. However, we were not able to replace
the equipment in all buildings, so we were still left with a
hybrid SDN network (see Fig. 2b).
More recently we have enhanced our control software and

VIP Lanes services to be able to control legacy switches
as well as SDN-enabled switches. As a result, we have the
potential to offer high-speed flows from anywhere on campus
using the integrated network shown in Fig. 2c.
In the following, we briefly describe our VIP Lanes ser-

vice and the way it uses SDN to route around middlebox
bottlenecks. We then show how we extended it from a hybrid
network to an integrated network.

A. Supporting High-speed Flows

In recent years the need to transfer big data at high speed has
been increasing. A key challenge to fast big data transfers are
the middleboxes (e.g., firewalls, NAT, and IDS systems) that
have become essential components of enterprise and campus
networks. These appliances provide valuable network services;
however, they also present “obstacles” that degrade the per-
formance of big data transfers. To address these middlebox
issues, our previous work developed and deployed a VIP
Lanes [5] SDN network on the campus of the University of
Kentucky. Trusted users can use the system to create pre-
approved flows that bypass middleboxes and traverse a path
directly to the campus edge router. Users are placed in groups
and are delegated the responsibility to manage portions of the
flow space, deciding which flows should be allowed to bypass



(a) Traditional Network (b) Hybrid SDN/Legacy (c) Integrated SDN Network
Fig. 2. Evolution of Campus Network

policy-enforcing middleboxes and be allowed to perform high
speed big data transfers. Unlike a science DMZ approach, VIP
Lanes assigns trust to users/groups as opposed to machines,
and can assign trust on a per-flow basis. The structure of the
VIP Lanes system is illustrated in Fig. 3.

To use the VIP Lanes system, an authorized user can
request the creation of a VIP Lane from the local machine
(identified by a local source IP address and port number) to a
destination machine (identified by a destination IP address and
port number), using a particular protocol (TCP or UDP). The
user’s credentials are first checked to verify they have been
authorized to create VIP Lanes for that portion of the flow
space. Once verified, the SDN controller – more specifically,
the VIP Lane Path Service [6] – can uses its knowledge
of the topology to compute a VIP Lane path that bypasses
middleboxes.

Recently we have enhanced our VIP Lanes service to
provide high-speed VIP Lane paths to the users in buildings
that are not SDN-enabled. As a first step, we physically
connected the legacy routers in those buildings (A and E) with
the SDN core shown in Fig. 2c. To help the SDN controller
obtain a view of the entire network topology – including
the legacy switches and connected hosts – we used a static
JSON-encoded configuration file in combination with a Neo4j
graph database. In our network graph, network devices (e.g.,
switches and routers) and hosts are vertices while the links
among them are the edges. The path service library first loads
the topology from the controller and creates an initial topology
graph in Neo4j. Then it takes advantage of the Simple Network
Management Protocol (SNMP) along with Cisco Discovery
Protocol (CDP) to search the information of the legacy Layer
3 (L3) switches based on the IP addresses provided in the static
files. It also queries the ARP table of the legacy switches to
find the information of potential hosts. After all the required
information of the legacy network is collected, a new graph
is created based on the collected information and is added to
Neo4j as a complement to the initial graph. The path service
library on the SDN controller then has a bird’s-eye view of
the entire hybrid network, including all the potential hosts
that may use the VIP Lanes system. With a view of the
entire topology, the path service library is able to compute

a hybrid SDN path for the hosts that are connected to a
legacy switch. To redirect traffic from nodes on the legacy
network into the SDN network, we developed a new controller
module designed to communicate with legacy switches using
Policy Based Routing (PBR) – i.e., the PBR Module – to
intercept VIP Lanes traffic and bypass performance limiting
middleboxes.

B. System Architecture

Fig. 3. Architecture of the VIP Lanes system

The system architecture of VIP Lanes is shown in Fig. 3.
The major components of the VIP Lanes system include the
VIP Lanes server, the path service library, the graph database,
the Policy Based Routing (PBR) module, and the VIP Lanes
modules on the SDN controller. The basic workflow looks like
this: (1) The big data researcher uses the VIP Lanes server for
a flow request. After the authentication for credentials, he/she
inputs (source IP address, destination IP address, protocol,
destination port, timeout) on the web GUI. (2) The VIP Lanes
server authenticates whether the source IP address can be
used by the user by checking the permissions of the groups
the user is in. (3) If the authentication process is successful,
the VIP Lanes server sends the request to the path service
library. The path service library communicates with the graph
database to fetch the information of the entire topology. Then



it puts together the request from the VIP Lanes server and
the topology information to calculate a path that bypasses the
middleboxes. This path may include those legacy switches that
connecting the researcher to the campus network. (4) The path
service library calls the module on the controller using the
REST API to insert SDN rules on all the SDN switches on
the path, and the PBR module to install policy-based routing
policies on legacy routers. For each calculated path, two VIP
Lanes are created for both the forward traffic and reverse
traffic. The user can also specify the timeout of the SDN
rules based on how much data he/she is going to transfer.
The policies installed on legacy routers have to be removed
explicitly by the PBR module when they are no longer needed.

IV. INTEGRATING TOPOLOGY DISCOVERY AND ROUTE
CONTROL FOR LEGACY NETWORKS

In this section, we present our efforts to complement the
SDN topology information discovered by the controller with
network devices and end-systems that are typically found in
portions of the campus legacy network, and describe how we
configured Policy-Based Routing (PBR) on legacy L3 devices
to redirect the traffic to the SDN network.

A. Topology Discovery

Unlike an SDN-only network, where the SDN controller has
both a complete view of the network and well-defined stan-
dardized southbound protocols to reconfigure network devices,
a hybrid network is more complicated to manage. Part of this
difficulty is the fact that the non-SDN portion of the network is
unknown to the SDN controller; legacy devices are designed
to behave independently based on their own (local) control
plane and information received from neighbors via distributed
(possibly proprietary) protocols. Fortunately, over the years,
these protocols that are used to discover neighbors or calculate
routes, and ultimately modify state data in legacy devices can
be polled from monitoring entities using the Simple Network
Management Protocol (SNMP). In fact, in our initial prototype
of VIP Lanes, we leveraged SNMP to obtain information
regarding the VLANs supported in the links connecting any
two SDN-enabled devices and whether a switch was layer 2
or layer 3 device. The information was useful to determine
the set of actions (i.e. packet header modification) that needed
to be included per rule. To deal with the legacy network, we
took a step further and extended this functionality by querying
additional Management Information Bases (MIBs) to discover
not only neighboring L3 legacy devices attached to SDN-
enabled switches but also the hosts connected to those legacy
devices. Similarly to what we did previously, we added all
the information to the topology database we use to calculate
paths, adding specific properties that allow our queries and
path computation library to be aware of the legacy portion of
a potential path. While this approach should work with any
vendor (SNMP is widely available in legacy switches), our
implementation used Cisco L3 switches. L3 is the right place
to redirect traffic using policy routing because flows in VIP
Lanes are defined based on IP addresses and other facotrs, and

in our setup, each Cisco L3 device was connected to both an
SDN-enabled switch and the normal campus core network.
Moreover, due to the campus policy, the Cisco Legacy

switches run Cisco Discovery Protocol (CDP) instead of the
Link Layer Discovery Protocol (LLDP). Given a set of IP
addresses of the potential Cisco legacy switches that need to
be integrated to SDN network, we performed SNMPWALKs
on each SDN switch using the CDP MIB. After parsing the
results, we check whether any IP address returned by SNMP
is in the predefined set of legacy switches. For connections be-
tween a legacy switch and an SDN switch, we used the existing
SNMP-based mechanism to get information such as the VLAN
ID, port numbers and their associated MAC addresses. This
step is unchanged because the fetched information is essential
to determine the packet header rewrite operations that SDN
switches must perform.
In terms of end-system discovery, we did not query informa-

tion beyond what was learned by the L3 device. For instance,
information about how the host is connected to the legacy L3
switch (e.g., how access switch(es) is (are) placed between
them). To get the information about the hosts, we make use
of the Address Resolution Protocol (ARP) table on the legacy
switch. The ARP table provides a mapping between the IP
address and the MAC address. We use SNMP along with the
ARP MIB to get the required information (IP, MAC address,
Name, Port, VLAN ID) and store it for each host. For the
link between the host and legacy switch, we store information
such as the MAC addresses of the interfaces on both ends of
the link as well as the VLAN where the host was discovered.
After getting all the essential information, we transformed that
information into nodes and links in the system’s topology
graph database in the same way we presented in [6] and
assigned a special label to the learned legacy devices.

B. Policy-Based Routing

In legacy network, the default routing mechanism is destina-
tion address based. To provide fine-grained control of routing
paths, we can use Policy Based Routing (PBR), which can
include source address and some other information for making
a decision. Since the syntax of PBR is vendor dependent, here
we only discuss the PBR for Cisco switches.
According to [13], Policy Based Routing allows us to define

a policy for a unicast flow. Access Control List (ACL) and
route-map are two important components of PBR. There are
two types of ACLs, standard and extended. A standard ACL
only matches on the source address while the extended ACL
can also match on the destination address as well as the ports.
In a PBR, the route-map first classifies the traffic based on the
access list and then defines the action such as setting the next
hop address. When the PBR is configured, it has to be applied
to the ingress interface where the traffic is coming from. Then
the matched class of traffic will be routed based on the action
in the PBR.
Since the users of the VIP Lanes system specify both the

source IP address and the destination IP address when they
request to create flows on the server, the SDN rules inserted



on SDN-capable switches also use both source and destination
IP addresses in the match statement. We then decide to use the
extended ACL in the PBR so that the granularity of the control
is the same as what is included in the SDN rules created on
SDN-capable switches. Fig. 4 shows a sample configuration
of PBR and the application on an interface. The access list
permits the TCP traffic from source IP address 172.23.7.194
to destination IP address 172.23.7.178. The route-map defines
the action for this class of traffic: sent to the next-hop address
of 10.1.5.1. Finally, this route-map is applied to interface
VLAN16 as an IP routing policy. So when the traffic arrives
on interface VLAN16 and match the access list, it will be
routed to the next-hop with address 10.1.5.1.

Fig. 4. An Example Configuration for Policy Based Routing

V. EXPERIMENT SETUP AND TEST RESULTS

In this section, we present the throughput measurements
for two types of experiments. In the first one, we analyzed
performance between two machines on campus (i.e., east-
west flows) using the iperf tool. Then, in the second
experiment, we were interested in analyzing the behavior of
flows from machines deep in our campus network to various
Internet2 sites using the perfSONAR tool. The results from
both experiments show that hosts in the legacy portion of the
network can enjoy the service provided by the VIP Lanes
system.

A. East-West Flow Experiment

For this experiment we set up a laboratory testbed as shown
in Fig. 5. The SDN portion of the testbed comprised Aruba
3800 series switches with OpenFlow enabled and running
in hybrid mode. In the legacy network portion, the Cisco
L3 switch was a Cisco 3750 running Cisco IOS version
12.2(55)SE7.

In this experiment, we first measured the throughput be-
tween two machines, la2-pc1 and la3-pc1, that were connected
directly to the SDN network. We used iperf to send TCP
traffic between these two machines and compared the results
between the default route (going through the Core switch)
and SDN route by turning VIP Lanes on/off. The result was
plotted in Fig. 6 and shows that the performance over the
default route between these two hosts under default conditions
was severely limited by the bottleneck links (dashed lines in

Fig. 5. Campus-like hybrid topology prototype

Fig. 5) connected to the Core switch (data fluctuating around
10 Mbps). However, when we enabled VIP Lanes and let the
traffic go through the SDN core we got throughput around 510
Mbps.
We performed a similar experiment to measure the through-

put between the Cisco-host and la3-pc1. In this case, the key
difference was that one of the end points (the cisco-host) was
attached to the legacy portion of the testbed. As the result
in Fig. 7 shows, the default throughput stayed around 10
Mbps whereas the SDN throughput got closer to the result we
obtained in our previous experiment, showing that VIP Lanes
involving PBR entries to reroute flows traversing the Cisco L3
switch to the SDN network did not impact negatively on the
performance.

Fig. 6. Iperf result between la2-pc1 and la3-pc1 (log scale)

B. North-south flow experiment
The VIP Lanes system has been deployed on the campus

production network for the researchers to move the big data
to/from the cloud storage. In this experiment, we tested on
the real campus production network to see whether trust and
control can be realized on the legacy portion of the network.



Fig. 7. Iperf result between Cisco-host and la3-pc1 (log scale)

Fig. 8. Sample part of campus network topology

Fig. 8 shows the difference between how SDN traffic and
normal traffic go out of campus. If we do not use VIP
Lanes, when the traffic arrives on SW2, it is directed to SW6
and then forwarded to the normal campus network, going
through performance-limiting middleboxes, the campus edge
router, and finally delivered out to the Internet. We notice
that the middleboxes on this normal path will reduce the big
data transfer performance. If the VIP Lanes system is used,
the traffic will go directly from SW3, SW4 to the campus
edge router, which bypasses the middleboxes. Similar to our
previous experiment, we applied PBR on the Cisco-L3 switch
to redirect flows towards the SDN core (SW4).

The reason for applying Policy Based Routing on the Cisco-
L3 switch was to make sure that the traffic matching on the
policy, such as the trusted flows, would be redirected to follow
a path that contains at least one SDN-capable switch. To fulfill
the goal, we took advantage of SW5, which was a switch
connected to the SDN-capable switch SW3. The path from
Cisco-L3 to SW5 was configured as a trunk for the same
VLAN so that the interface on SW5 (marked red) could be
used as the next-hop IP address in Policy Based Routing.
This was the configuration we used without modifying the
existing topology. By default, the traffic would go through the
normal campus network. After applying PBR, the traffic was

redirected to SW5 where SDN-capable switch SW3 was on
the path. When the traffic arrived on SW3, it followed the
SDN rules installed and was redirected to SW4. So the path
control has been realized by means of Policy Based Routing
and SDN rules.
In the experiment, we measured the throughput from

a host machine on the University of Kentucky (UK)
campus network to four remote machines that are located
at different sites of Internet2. We picked four remote
sites from the ESnet throughput test hosts list based
on their geographical distances from Kentucky. The
selected sites were chic-pt1.es.net (Chicago),
atla-pt1.es.net (Atlanta), hous-pt1.es.net
(Houston) and ga-pt1.es.net (San Diego). The tool we
used for the tests was perfSONAR, which internally runs
iperf3 for the measurement. For each site, we sent traffic
through both the UK campus core network and the SDN
network that bypasses the middleboxes. Both end-systems
were equipped with a 10Gbps network interface card (NIC).
For both the normal path going through the UK campus
network and the middlebox-free SDN path, we ran 10 tests
to each of the four remote sites, the duration per test was 30
seconds.

TABLE I
THROUGHPUT COMPARISON TO DIFFERENT SITES USING NORMAL AND

SDN PATHS

Sites Normal (Gbps) SDN (Gbps)
Mean SD Mean SD Speedup

San Diego, CA 1.28 0.26 7.97 0.01 6.2x
Houston, TX 1.90 0.29 8.78 0.46 4.6x
Atlanta, GA 1.97 0.28 8.74 0.31 4.4x
Chicago, IL 2.59 0.36 9.52 0.30 3.6x

As the results in Table I show, the average performance
we got for the traffic going through the SDN middlebox-free
path was much better than that of the traffic going through the
normal campus network. The best average performance we got
was for the traffic we sent to the Chicago site, which reached
9.52Gbps. This number is very close to the maximum speed
the network interface card (NIC) supports. The San Diego
site was the one to which we got the lowest performance
for both the SDN network and the normal campus network.
Even though it was expected, because San Diego is the most
far away site among the four from the UK campus, this site
yields the highest speedup factor across the four sites. For the
standard deviation, the results for the SDN path and the normal
path did not vary significantly, remaining to be consistent with
the measurements we presented in our initial prototype. We
also observed from the raw data (not shown here) that the
number of retransmissions for the SDN path was always very
low, while for the transfers going through the normal campus
network, a low throughput was always accompanied with a
large number of retransmissions. Our test results clearly show
that the control has been realized on the legacy portion of
the network for the hosts to get good performance when they
transfer big data.



VI. RELATED WORK

There are many topics in hybrid networks. Some focus more
on the architecture and design problem, while others focus
on the virtualization problem such as building controllers for
hybrid networks.

Levin et al. proposed the Panopticon [14] network archi-
tecture where at least one SDN-capable switch is deployed
on any source-destination path. In that way, every packet
that traverses the network is forced to go through an SDN-
capable switch and further forwarded to the SDN controller
for appropriate processing as if the packet were in a pure SDN
environment. Unlike their work, our hybrid SDN network does
not intercept packets at the control plane but rather proactively
deploys PBR and OpenFlow entries proactively to maximize
performance. HybNET [15] is a framework that automates
the management in a hybrid network environment where a
configuration mechanism translates legacy network configura-
tion into OpenFlow configuration. By means of virtualization
using VLANs, the SDN portion of the network is in charge of
network management whereas legacy switches are only used
as forwarding devices.

Telekinesis [16] provides fine-grained path control over
legacy paths. They use OpenFlow to instruct SDN switches
to send non-standard LegacyFlowMod packets to legacy
switches, forcing them to update their forwarding tables. The
authors addressed limitations regarding overhead and instabil-
ity of the calculated network paths in [4] but their approach
still relied on unconventional indirect management. Instead,
we leveraged existing mechanisms included in a limited set of
legacy switches to pick off flows and route them towards the
SDN network without indirect mechanisms.

Lastly, ClosedFlow [17] proposed an approach that lever-
ages the fact that each node in an OSPF network has informa-
tion about the entire network. Similar to our work, they used
remote access tools (SSH) and built-in PBR to deploy fine-
grained rules. However, we addressed topology discovery in
a less intrusive fashion by using SNMP to query information
gathered by discovery protocols such as CDP or LLDP (and
their MIBs) as opposed to their per-device configurations.

VII. CONCLUSIONS

Deploying SDN networks and applications in a production
network faces many non-technical and technical challenges.
We described our experience working with campus IT to build
a trust relationship and develop a set of principles so that
the campus IT department allows us to develop and deploy
applications that have a shared control over certain flows in the
production campus network. We used the VIP Lanes system
as an example to show that it can take advantage of the
shared control offered through SDN to provide high-speed data
transfer for big data applications on our campus network. We
demonstrated our approach to integrating the legacy region of
the campus network into our system so that it can provide the
same service to those users connected with legacy routers.
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