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Abstract 

We investigate the self-assembly of hair-like fibers into twisted helices as they are pulled through the liquid 

interface at a controlled rate. Capillary-induced spontaneous fiber twisting phenomena are observed from the nano- 

to the millimeter scale. Here, we control the drain rate of the liquid and observe two regimes of self-assembly of 

long hairs. At low drain rates, the hairs coalesce radially to form a dense aggregate. At higher drain rates, 

spontaneous hair twisting occurs. We find that the drain rate corresponding to the twisting threshold scales with the 

characteristic velocity of fiber coalescence set by a balance between liquid viscosity µ and surface energy σ and 

reads ~(σ/µ)·(S/l)
2
 where S and l are the spacing between hairs and their length respectively. At drain rates higher 

than this threshold, liquid is entrained between the hairs as they emerge from the liquid surface, forming a circular 

liquid column. Twisting is induced by the fast radial shrinking of this liquid column, combined with the nonlinear 

resistance to the hairs’ radial versus tangential coalescence. Understanding the kinetics is crucial to control this 

complex self-assembly and to engineer fiber drying processes at various length scales. 
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Introduction 

Long and thin fibers of carbon nanotubes or 3D printed polymer 

spontaneously self-organize into helical assemblies due to 

capillary forces as shown in Figure 1. These assemblies are 

retained due to van der Waals forces after drying. Helical micro- 

and nanostructures have potential applications ranging from 

manipulation of particles and biological cells1, or in 

metamaterials such those where the chirality of the helices 

interacts with circularly polarized light.2 Despite their potential 

significance, the formation of these helices remains difficult to 

control. This difficulty can be attributed partially to the lack of 

understanding of the kinetics of their self-assembly. Simple 

energetic and thermodynamic analyses were used to show that 

the helical geometry of fiber assemblies balances the bending 

strain energy and the van der Waals adhesion by maximizing 

contact.1,3,4 However, the kinematics of the self-assembly remain 

obscure due to the challenges of imaging at such small scales and 

appreciable speeds. In this study, we reveal the critical role of the 

kinetics of hair-like fibers in their spontaneous self-organization 

into helices.  

 

Figure 1. Fibers that twist. a, Fiber schematic top view (top) and side 
view (bottom) before liquid drainage (left) and twisted after liquid 

drainage (right). b, Fiber sample top view (top) and side view (bottom) 

before drainage (left) and after drainage in helical formation (right). 
White fibers give contrast to and thin lines on top-view images show the 

twist. Scale bar 1 cm. c, Helical carbon nanotube structure formed by 
liquid evaporation. Scale bar 10 µm. d, 3D-printed hairs, diameter 250 

um, forming helical structures when drawn from resin bath. Scale bar 1 

cm. 

We have designed new hair assemblies that twist spontaneously 

when removed from a liquid bath as shown in Figure 1b. The 

hairs are made of carbon fibers, having diameter d = 5 µm, thus 

scaling the twisting phenomena by ~100 to 1000 folds compared 

with nanotubes and nanowires. Thousands of commercially-

available carbon fibers are arranged perpendicularly to a base 

and submerged in an acetone–water solution (see video S1, S2), 

then removed from the liquid using a speed-controlled motorized 

stage.5 The fibers pierce the air–liquid interface as they emerge 

from the bath. The Young’s modulus of each fiber is E = 200 

GPa. The length of the fibers (l = 15–21 mm) is designed to be 

much larger than the elastocapillary length, lEC = (Er3/σ)1/2 = 9.8 

mm, where r is the fiber radius and σ is the surface tension. 

Above the characteristic elastocapillary length, the fibers will 

deform due to capillary forces. The spacing among fibers S ~ 200 

m is much larger than their diameter S >> d, and much smaller 

than the capillary length (lcap = 1.88 mm), meaning that the 

effects of gravity are insignificant compared with those of 

surface tension. The fibers assemble into bundles of ~ 1 mm 

diameter, which is on the same order as lcap. As a result, these 

hairs behave very similarly to nanotubes or nanowires, yet allow 

high-speed imaging and observation of the kinematics of helices 

formation.5 

Interestingly, we find that there exist two regimes of capillary-

induced behavior. The first regime is when the drain rate, set by 

the speed of the stage, is below a critical or threshold drain rate 

of vd = 3.1 mm/s. In this regime, the fibers coalesce as their 

assembly shrinks radially, and no twisting is observed. The 

second regime occurs when the drain rate is above the threshold 

drain rate. Within this regime, the fibers self-assemble into 

helices as shown in Figure 1a,b. This unusual twisting behavior 

is clearly related to the dynamics of draining liquid, and not 

static force balance arguments alone.1 The restoring spring forces 

of cylindrical fiber assemblies provide the required anisotropy 

for helical twisting. In particular, the inward radial displacement 

of fibers is resisted by nonlinear forces due to the successive 

fiber contact—a behavior reminiscent of foam densification. On 

the other hand, the tangential twisting of fibers is resisted by a 

smaller force due to the local bending of fibers. As a result of 

this anisotropy, the capillary forces can make the fibers twist 

instead of merely coalescing. At low drain rates, the fibers 

coalesce to a dense assembly; the liquid film entrained in the 

bundles is thin and does not allow further fiber mobility or 

twisting. However, at the threshold drain rate, sufficient liquid is 

entrained between the fibers to lubricate the assembly, thus 

providing the kinetic pathway for twisting instead of pure 

coalescence. 

Simple scaling analysis provides useful insight into the threshold 

drain rate leading to spontaneous twisting. At very low drain 

rates (v < vd), the fibers coalesce in the radial direction due to the 

menisci between the fibers, as seen from the top-down. The rate 

of this coalescence is limited by the viscous flow of the liquid 

within the small spacing between the fibers. Below the threshold 

drain rate, the fibers coalesce radially at a rate controlled by the 

motion of the stage. We can find this intrinsic coalescent velocity 

of two plates by considering the balance between the rate of 

mechanical work done by the capillary forces, Fc, and the rate of 

energy dissipation by the viscous flow as the plates coalesce and 

squeeze out the liquid entrained between them.6 The rate of work 

done by the capillary forces scales with the product of the 

capillary force between two fibers, Fc, and the coalescent 

velocity, vc, and scales with ~Fcvc. The rate of viscous dissipation 

scales like ~µ(U/S)2V, where µ is the dynamic viscosity of the 

liquid, U is the flow velocity parallel to the fibers, and V is the 

volume of entrained liquid. Balancing the rate of work by 

capillary forces and the viscous dissipation, we obtain Fcvc 

~µ(U/S)2V. Calculating the capillary force as the product of 

surface tension, σ, and fiber length, l, we can write the balance as 

σvc ~µU 2.  Applying the mass conservation as vc/S = U/l, an 

expression is obtained for vc ~ (σ/µ)·(S/l)2. Numerically, taking 

the surface tension of a 50% acetone–water solution σ = 32.33 
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mNm-1, dynamic viscosity µ = 1.513 mPa·s, spacing S = 200 µm, 

and fiber length l = 21 mm, we estimate the coalescent velocity 

of the fibers to be on the order of 1 mm/s. Values of liquid 

constants are obtained from 7,8. This coalescent velocity 

describes the rate at which two fibers self-assemble radially, and 

it can be used to estimate the characteristic time scale of the 

shrinkage of the fiber assembly: τ = D/vc ≈ 9 seconds where D = 

17.68 mm is the outer diameter of the dry assembly and the 

initial distance between two fibers before coalescence. The 

theoretical threshold vertical drain rate at which liquid is 

entrained before coalescence is vd = l/τ ≈ 2.3 mm/s. Being on the 

order of a few millimeters per second, this theoretical value 

agrees well with the threshold drain rate that we observe 

experimentally of 3.1 mm/s, confirming our hypothesis about the 

need for a sufficient amount of entrained liquid to lubricate the 

fibers and form a helical assembly. To further understand this 

twisting behavior, we use experiments and scaling analysis to 

capture the role of the drain rate. 

Experimental 

Samples consist of 30 tows of carbon fibers having length l = 

15–21 mm organized into rings (Figure 1b). The outer diameter 

of the ring is D = 17.68 mm. Each tow has ~4600 fibers. Four 

tows at one side of the assembly are made of glass fibers to 

facilitate the motion tracking. We have confirmed that the glass 

fibers do not change the results by testing assemblies of carbon 

fibers only.  Each sample is placed on a stationary bracket and 

submerged in liquid acetone–water solution as shown in Figure 

2a. The liquid is then drained from the sample at drain rate v, 

ranging from 3 to117 mm/s. During the liquid drainage, the 

fibers self-assemble in one of two ways. At low drain rates v < 

vd, the fibers coalesce radially. At and above the threshold drain 

rate the fibers twist, forming helices as they coalesce. We 

measure the twist by tracking the glass fibers observed from the 

top view as displayed in Figure 2b. We observe that the angle of 

twist and the twist rate depend on the drain rate, shown in 

Figures 2c and 2d. The twisted fibers retain their shape, even 

when the sample has dried due to the coating on the fibers called 

sizing.5 This process is reversible and repeatable; when the fibers 

are again submerged in the liquid, they return to their original, 

vertical configuration and the self-assembly process can be 

repeated (Video S2) 

Results and Discussion 

We tested samples of various fiber lengths. The shortest sample 

having fiber length l = 15 mm did not twist for any drain rate. 

The samples with larger lengths, i.e. l = 17–21 mm, all showed 

twisting. The angle and twist rate dependence on drain rate for 

all bundle lengths can be found in the supporting information 

(Figure S6). We observe that the degree of twist and the twist 

rate are dependent on the fiber length and drain rate. For a 

constant fiber length, the degree of twist and twist rate increase 

with increasing drain rate. For a constant drain rate, the degree of 

twist and twist rate increase with increasing fiber length. 

We study the relation between the instantaneous density of the 

fiber assembly and the tangential velocity. At the instant of peak 

twist rate of each experiment, we calculate the fiber volume 

fraction, ϕ, by dividing the total area of fibers by the cross-

sectional area of the fiber assembly, shown in Figure 2e. When 

the drain rate is relatively low, the fibers coalesce to a greater 

extent before twisting, resulting in larger fiber volume fraction 

during twisting. For relatively high drain rates, the fibers twist 

earlier with more liquid entrained between them, hence the 

volume fraction is lower. As the drain rate is increased further, 

the volume fraction levels off at this low density value. 

 

Figure 2. Experimental setup, post-experiment images, angle and 

angular velocity dependence on drain rate for fiber length 21 mm. a, 

The fiber sample is fixed in space and submerged in beaker of liquid, 

which is mounted to a computer-controlled stage. During the experiment, 

the beaker moves downwards and the liquid is drained from the fibers at 
speed v. A high-speed camera captures a top view of the resulting fiber 

motion. b, Top-view images of the sample after drainage of varying 

rates. Yellow angles show the maximum angle of twist, measured by 
position of white glass fibers. Scale bar 5 mm. c, Plot of maximum angle 

vs. drain rate. d, Plot of maximum twist rate vs. drain rate. e, Plot of fiber 
volume fraction vs. drain rate. f, Plot of nondimensional maximum twist 

rate vs. nondimensional drain rate. 

Non-dimensionalizing the maximum twist rate vs. drain rate 

provides insight into the limits of the twisting rate, shown in 

Figure 2f. The x-axis is the ratio of the drain rate to the threshold 

drain rate, v/vd. The y-axis is made dimensionless by comparing 

the maximum tangential velocity of the fiber assembly with its 

instantaneous coalescent velocity vc. The tangential velocity is 

calculated from the experiments as the product of the 

instantaneous radius of the fiber assembly, R(t), and the 

maximum twist rate, 𝜃̇max, resulting in  𝑅𝜃̇. The instantaneous 

radius of the fiber assembly, R(t), changes throughout the 

experiment due to coalescence; we use the instantaneous radius 

of the fiber assembly at the moment of peak twist rate, R(𝜃̇max). 

This radius depends on the amount of liquid that is entrained 

between the fibers, which depends on the drain rate of the 
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experiment; therefore, the radius R(𝜃̇max) is different for each 

experiment. The values of vc are calculated using the 

instantaneous viscosity and fiber spacing of the liquid-entrained 

fiber assembly at the time of maximum twist rate. The 

instantaneous viscosity depends on the fiber volume fraction. 

This dependence is approximately similar to the viscosity 

dependence on hard sphere colloids at low volume fraction, 

µ=µ0(1−ϕ/0.63)−2, where µ is the instantaneous viscosity, µ0 is 

the viscosity of the pure liquid, and ϕ is the instantaneous volume 

fraction.9 By non-dimensionalizing the twist rate data, we 

observe a linear trend as v/vd increases. When v/vd reaches ~25, 

the non-dimensionalized data become constant, indicating that 

the ratio of the fibers’ tangential velocity to coalescent velocity 

stays the same as drain rate increases. Also at this critical ratio of 

drain rate, the volume fraction becomes constant (Figure 2e, v ≈ 

62 mm/s), and hence the amount of liquid that the fibers can 

entrain is maximum and cannot increase further with drain rate, 

essentially limiting the extent and rate that the fibers are able to 

twist. This clearly shows that the maximum twisting rate is 

limited by the intrinsic coalescence velocity vc. Note that these 

are scaling arguments, and with the correct pre-factor on the non-

dimensional twist rate (y-axis), we expect that the limiting twist 

rate value will be equal to 1. 

We analyze the twisting kinematics of fiber length l = 21 mm at 

drain rates v = 6.2 mm/s, v = 12 mm/s, and v = 117 mm/s, fiber 

length l = 19 mm at drain rate v = 117 mm/s and fiber length l = 

17 mm at drain rate v = 117 mm/s (see video S3 to S8). With this 

selection, we analyze a range of fiber length and drain rate 

combinations as shown in Figure 3. For each experiment, a 

reference point at the glass fibers is used to measure the radial 

and angular position throughout the experiment. This data can be 

found in Figure S4. From the radius and angle measurements, 

the radial velocities and angular velocities are calculated. Figure 

3 also shows the trajectory of the reference fibers during the 

experiment and the time dependence of the radial and angular 

velocities. 

The instantaneous radial and tangential velocity are extracted 

from the videos and plotted versus drain time. These curves are 

obtained by differentiating the fits to the radius and angle data 

(see Figure S5). A fit of exponential form fits well to the radius 

data. We use this form because the viscous damping effect of the 

liquid causes the radial motion of the fiber to decay 

exponentially. This damping also affects the twisting motion of 

the fibers for the case of long fibers, fast drain rate (l = 21 mm, v 

= 117 mm/s), so the exponential fit is also applied to this angle 

data, corresponding to Figure 3c. The fit to the angle data of the 

remaining four cases uses a sigmoid-type logistic function. The 

logistic fit captures the angle’s dependence on the angular 

velocity, and its derivative fits the bell-shaped increase and 

decrease in the angular velocity during twisting. It is interesting 

that a sigmoid-type function—typically used for complex 

population evolution dynamics—captures the displacement 

evolution of the fiber assembly. 

The kinematics of the observed twisting is dependent on the fiber 

length and the liquid drain rate. For the various combinations of 

length and drain rate, the fibers always have initial radial motion 

before they twist. The amount and rate of the initial radial motion 

varies between each case. When the fibers are relatively long and 

the drain rate is relatively low (v = 6.2 mm/s), the radial 

coalescence and angular motion occur sequentially, and most of 

the motion is the initial radial coalescence (Figure 3a). When the 

drain rate increases by approximately a factor of two (v = 12 

mm/s), the fibers also coalesce before rotating, but the rotation 

occurs earlier, at smaller radial displacement (Figure 3b). At 

very fast liquid drainage (v = 117 mm/s), a very brief initial 

radial assembly is followed by simultaneous coalescence and 

twist (Figure 3c). As for the various-length study, we observe 

that the initial radial coalescence increases as the fiber length is 

decreased (Figure 3d, e). 

 

Figure 3. Kinematics of twisting. Trajectory of reference fibers (top), plot of radial velocity on left y-axis, angular velocity on right y-axis, time on x-axis, 
with inset (bottom) for a, fiber length l = 21 mm, drain rate v = 6.2 mm/s. b, fiber length l = 21 mm, drain rate v = 12 mm/s. c, fiber length l = 21 mm, drain 

rate v = 117 mm/s. d, fiber length l = 19 mm, drain rate v = 117 mm/s. e, fiber length l = 17 mm, drain rate v = 117 mm/s. 

The radial velocity at the onset of coalescence is on the order of 

~20–60 mm/s. It increases with the increase in drain rate. The 

radial velocity of this order is also limited by the viscous drag 

within the fiber assembly. At drain rates above the threshold 

velocity, a column of liquid is formed with the fibers acting as a 

scaffold for the liquid as shown in videos S3 to S7. In this case, 

a l = 21 mm, v = 6.2 mm/s b l = 21 mm, v = 12 mm/s c l = 21 mm, v = 117 mm/s d l = 19 mm, v = 117 mm/s e l = 17 mm, v = 117 mm/s
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the radial coalescence is driven mostly by the menisci between 

two fibers along their length. The flow of the entrained liquid 

perpendicular to the fibers can be modeled as perpendicular flow 

through a square array of cylinders. To find the perpendicular 

velocity, U⊥, we balance the drag force per unit length of the 

fiber with the capillary force per unit length. The drag force per 

unit length scales like (µU⊥/ε)k, where µ is the viscosity of the 

acetone–water solution, ε is the void fraction, and k is the 

Kozeny constant.10 Knowing the dimensions of the ring sample 

and its number of fibers, the void faction ε = 0.988. The Kozeny 

constant for our case of extremely low fiber volume fraction is k 

= −2/[(1−ε)ln(1−ε)], given in reference 10 as a simplified 

equation for Eqn. (24) for the case of low volume fraction. 

Substituting this expression for k into the expression for the drag 

force and balancing with the capillary force per unit length, we 

arrive at the result that U⊥ = −σ[(1−ε)ln(1−ε)]/(8πµ). Using the 

known values of σ and µ for 50% acetone–water solution, we can 

theoretically estimate that U⊥ ≈ 45 mm/s, which is close to the 

peak radial velocity observed. This confirms that at high drain 

rate, the rate of coalescence is limited by the drag of flow 

through the fiber array. 

By studying the kinematics of fibers during liquid drainage, we 

identify the forces that drive the self-assembly. Twisting is an 

instability that stems from asymmetry in fiber arrangement, 

capillary force direction, and fluid flow within the fibers. Any 

small imperfection causes the capillary force to have an offset 

angle from the pure radial forces expected for the ideal fiber 

bundles. The tangential component causes a “twisting torque,” 

reminiscent of the effect of offset forces on the lateral buckling 

of elastic columns. The twisting torque and the intrinsic smaller 

resistance to rotation than radial coalescence lead to the twisting 

instability. For this self-organization to take place, the fibers 

must be sufficiently lubricated as demonstrated by the rate-

controlled experiments.  If the liquid is drained too slowly, the 

fibers establish contact before they have sufficient time to twist. 

The contact friction and surface adhesion eliminate the twisting 

instability. On the other hand, when the drain rate is above the 

threshold value, liquid remains entrained as the capillary force 

assembles the fibers (Figure 4a). As the assembly shrinks, the 

fibers become crowded and feel more resistance to motion in the 

radial direction than the tangential direction, leading to twist 

(Figure 4b). These insights are validated by the experimental 

observation of the twist rate dependence on the drain rate. 

We formulate a nonlinear force law to capture the complex 

resistance to the fibers’ coalescence. A free-body diagram of the 

fiber is shown in Figure 4c. We model the motion of a single 

fiber of mass m subject to radial capillary force Fc with an offset 

angle α. We write a full equation of motion taking into 

consideration the fiber mass, nonlinear stiffness, and drag-

induced damping. Equation (1) is the equation of radial fiber 

motion, and equation (2) is the equation of tangential fiber 

motion. We still write an inertia term in the equation of motion 

as it has negligible effect on the results due to the fiber’s size. 

The initial conditions that the fiber is given are the 

experimentally-determined initial positions and velocities.  

𝑚𝑟̈ = (𝐹kn + 𝐹kf,r) [
𝑟0−𝑟D

𝑟−𝑟D
]

𝑛

+ 𝐹centripetal + 𝐹D,r + 𝐹capillary,r (1) 

𝑚𝑟𝜃̈ = 𝐹kf,θ + 𝐹coriolis + 𝐹D,θ + 𝐹capillary,θ  (2) 

 

The forces that resist the motion of the fiber are the nonlinear 

force in the radial direction, Fkn, resulting from the successive 

contacts of the fibers as they assemble, and the linear force, Fkf, 

resulting from the cantilever stiffness of the single fiber (Figure 

S7). The forces FDr and FDθ, in the radial and tangential 

directions, respectively, are viscous drag forces that also resist 

the fiber motion. The force Fkn is represented by a nonlinear 

spring connecting the fiber to the origin, having equilibrium at t 

= 0 when r = r0. The nonlinear radial stiffness is proportional to 

the square of the radial displacement (Figure S8). The force Fkf 

stems from a linear spring connecting the fiber’s initial position 

to its current position with stiffness equal to its cantilever 

bending stiffness. These two springs store the fiber’s elastic 

energy as it deforms. 

 

To further account for the effect of fiber densification and 

compaction as the fibers crowd, we multiply a dimensionless 

fiber densification factor by the two spring forces in the radial 

direction. The form of the densification factor is that of the 

force–displacement relation of the compression of cellular 

foams.11 The densification factor diverges when the fibers are 

fully dense to capture the transition from low-density foam to a 

dense solid (see Figure S9). In the densification factor, r0, r(t), 

and rD, are the initial radial position, instantaneous radial 

position,  and the radial position of complete densification of the 

fiber, respectively. The values of r0 and rD are determined 

experimentally; rD is the smallest observed radius for a given 

fiber length. The complex rheology of the lubricated fiber 

assembly is captured by introducing an exponent, n, on the fiber 

densification term to modulate the densification rate. The values 

of term Fkf and Fkn are estimated from the modulus, dimensions, 

and spacing between fibers as detailed in the SI (Figure S7); 

these values are used in all the numerical simulations. The 

capillary force is calculated by Fc=2πσ(d/2)2cos2θ/(S2−4(d/2)2)1/2, 

where d is the diameter of a fiber cluster, θ is the contact angle 

between the liquid and the fiber12 and S is the separation between 

clusters, leading to Fc ~10−7 N. The viscous drag forces FDr and 

FDθ  are µD𝑟̇ and µD𝑟𝜃̇ respectively, where D is the diameter of 

the fiber ring assembly, leading to µD ~10−5 Ns/m.   

 

Figure 4. Modeling twisting hairs. a, Schematic of showing effect of 

low drain rate (below threshold) vs. fast drain rate (above threshold). b, 

Schematic of fibers coalescing and twisting due to radial and tangential 

forces. c, Free-body diagram of a single fiber showing forces: capillary 

force, Fc; nonlinear spring force, Fkn; linear spring force, Fkf; radial drag 

force, FDr; tangential drag force, FDθ. 

We numerically solve the differential equations using the 

conditions of Figure 3a, c, corresponding to long fiber length 

and low and high drain rates respectively. As shown in Figure 

5a, the model captures very well the two-regime self-assembly 
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behavior consisting of pure radial coalescence followed by pure 

rotation observed experimentally in the slow drain case. For the 

case of very fast drain rate (Figure 5b), the numerical solution 

also predicts the two-regime kinematics, demonstrating the 

fidelity of the model. More details of the model parameters are 

listed in the SI (Table S1). In the model, the value of Fc is 

constant, which is an approximation. In reality, the value of Fc 

depends on the exact shape of the meniscus and spacing between 

fibers and is constantly changing. The constant value used in the 

model causes the tangential velocity in the numerical model to 

keep a finite value at the end of the simulation because the model 

does not take into consideration the drying of fibers after 

drainage. However, the model still describes the kinematics of 

motion with good fidelity and provides valuable insights. The 

numerical solutions also confirm that, as expected, without 

introducing an offset angle α only radial coalescence is observed. 

On the other hand, twisting is obtained in the numerical model 

for any angle α > 0. We also observe that the offset angle affects 

the timescale of the twisting along with the fiber stiffness and 

drag forces.   

 

Figure 5. Model-predicted kinematics. Fiber trajectory (top) and plot 
of radial velocity vs. time and angular velocity vs. time (bottom) for a, 

fiber length l = 21 mm and drain rate v = 6.2 mm/s. b, fiber length l = 21 

mm and drain rate v = 117 mm/s. 

Conclusion 

Using simple draining experiments, we have observed and 

studied the capillary-induced twisting of slender fiber bundles. In 

the experiments, we control the drain rate and observe the 

kinematics of fiber twisting. Most notable, we observe that 

twisting occurs at high drain rates. We also observe that the 

fibers initially coalesce radially and then twist by rotating in the 

tangential direction.  

We use scaling arguments to demonstrate that the threshold 

velocity can be related to the characteristic coalescence rate of 

two fibers in a viscous fluid. We also show that the non-

dimensional twisting rate saturates at the value of the 

coalescence rate. We constructed a simple first-order numerical 

model that captures the twisting kinematics reasonably well. The 

model considers only a single fiber, and replaces the effect of the 

other fibers in the bundle by appropriate stiffness laws in the 

radial and tangential directions. An interesting study would be 

the stability analysis of the radially-coalescing fibers and the 

emergence of twisting behavior. Nonetheless, this study provides 

clear evidence on the dynamic nature of twisting and could lead 

to more controlled nano-pillar and nano-tube twisting self-

assembly by controlling the drying rate.  

Supporting Information 

Experimental details and supplementary figures 

Video 1/8 showing experimental setup 

Video 2/8 showing repeated cycles of twisting/untwisting 

Video 3/8 showing experiment of l = 21 mm, v = 6.2 mm/s 

Video 4/8 showing experiment of l = 21 mm. v = 12 mm/s 

Video 5/8 showing experiment of l = 21 mm. v = 117 mm/s 

Video 6/8 showing experiment of l = 19 mm. v = 117 mm/s 

Video 7/8 showing experiment of l = 17 mm. v = 117 mm/s 

Video 8/8 showing experiment of l = 15 mm. v = 117 mm/s 
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