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Abstract

We investigate the self-assembly of hair-like fibers into twisted helices as they are pulled through the liquid
interface at a controlled rate. Capillary-induced spontaneous fiber twisting phenomena are observed from the nano-
to the millimeter scale. Here, we control the drain rate of the liquid and observe two regimes of self-assembly of
long hairs. At low drain rates, the hairs coalesce radially to form a dense aggregate. At higher drain rates,
spontaneous hair twisting occurs. We find that the drain rate corresponding to the twisting threshold scales with the
characteristic velocity of fiber coalescence set by a balance between liquid viscosity # and surface energy ¢ and
reads ~(o/) (S/I)> where S and [ are the spacing between hairs and their length respectively. At drain rates higher
than this threshold, liquid is entrained between the hairs as they emerge from the liquid surface, forming a circular
liquid column. Twisting is induced by the fast radial shrinking of this liquid column, combined with the nonlinear
resistance to the hairs’ radial versus tangential coalescence. Understanding the kinetics is crucial to control this
complex self-assembly and to engineer fiber drying processes at various length scales.



Introduction

Long and thin fibers of carbon nanotubes or 3D printed polymer
spontaneously self-organize into helical assemblies due to
capillary forces as shown in Figure 1. These assemblies are
retained due to van der Waals forces after drying. Helical micro-
and nanostructures have potential applications ranging from
manipulation of particles and biological cells', or in
metamaterials such those where the chirality of the helices
interacts with circularly polarized light.” Despite their potential
significance, the formation of these helices remains difficult to
control. This difficulty can be attributed partially to the lack of
understanding of the kinetics of their self-assembly. Simple
energetic and thermodynamic analyses were used to show that
the helical geometry of fiber assemblies balances the bending
strain energy and the van der Waals adhesion by maximizing
contact."** However, the kinematics of the self-assembly remain
obscure due to the challenges of imaging at such small scales and
appreciable speeds. In this study, we reveal the critical role of the
kinetics of hair-like fibers in their spontaneous self-organization
into helices.
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Figure 1. Fibers that twist. a, Fiber schematic top view (top) and side
view (bottom) before liquid drainage (left) and twisted after liquid
drainage (right). b, Fiber sample top view (top) and side view (bottom)
before drainage (left) and after drainage in helical formation (right).
White fibers give contrast to and thin lines on top-view images show the
twist. Scale bar 1 cm. ¢, Helical carbon nanotube structure formed by
liquid evaporation. Scale bar 10 pm. d, 3D-printed hairs, diameter 250
um, forming helical structures when drawn from resin bath. Scale bar 1
cm.

We have designed new hair assemblies that twist spontaneously
when removed from a liquid bath as shown in Figure 1b. The
hairs are made of carbon fibers, having diameter d = 5 um, thus
scaling the twisting phenomena by ~100 to 1000 folds compared
with nanotubes and nanowires. Thousands of commercially-
available carbon fibers are arranged perpendicularly to a base
and submerged in an acetone—water solution (see video S1, S2),
then removed from the liquid using a speed-controlled motorized
stage.” The fibers pierce the air-liquid interface as they emerge
from the bath. The Young’s modulus of each fiber is £ = 200

GPa. The length of the fibers (/ = 15-21 mm) is designed to be
much larger than the elastocapillary length, lpc = (Er'/o)"? = 9.8
mm, where 7 is the fiber radius and o is the surface tension.
Above the characteristic elastocapillary length, the fibers will
deform due to capillary forces. The spacing among fibers S ~ 200
um is much larger than their diameter S >> d, and much smaller
than the capillary length (I, = 1.88 mm), meaning that the
effects of gravity are insignificant compared with those of
surface tension. The fibers assemble into bundles of ~ 1 mm
diameter, which is on the same order as /.. As a result, these
hairs behave very similarly to nanotubes or nanowires, yet allow
high-speed imaging and observation of the kinematics of helices
formation.

Interestingly, we find that there exist two regimes of capillary-
induced behavior. The first regime is when the drain rate, set by
the speed of the stage, is below a critical or threshold drain rate
of vy = 3.1 mm/s. In this regime, the fibers coalesce as their
assembly shrinks radially, and no twisting is observed. The
second regime occurs when the drain rate is above the threshold
drain rate. Within this regime, the fibers self-assemble into
helices as shown in Figure 1a,b. This unusual twisting behavior
is clearly related to the dynamics of draining liquid, and not
static force balance arguments alone.! The restoring spring forces
of cylindrical fiber assemblies provide the required anisotropy
for helical twisting. In particular, the inward radial displacement
of fibers is resisted by nonlinear forces due to the successive
fiber contact—a behavior reminiscent of foam densification. On
the other hand, the tangential twisting of fibers is resisted by a
smaller force due to the local bending of fibers. As a result of
this anisotropy, the capillary forces can make the fibers twist
instead of merely coalescing. At low drain rates, the fibers
coalesce to a dense assembly; the liquid film entrained in the
bundles is thin and does not allow further fiber mobility or
twisting. However, at the threshold drain rate, sufficient liquid is
entrained between the fibers to lubricate the assembly, thus
providing the kinetic pathway for twisting instead of pure
coalescence.

Simple scaling analysis provides useful insight into the threshold
drain rate leading to spontaneous twisting. At very low drain
rates (v < vy), the fibers coalesce in the radial direction due to the
menisci between the fibers, as seen from the top-down. The rate
of this coalescence is limited by the viscous flow of the liquid
within the small spacing between the fibers. Below the threshold
drain rate, the fibers coalesce radially at a rate controlled by the
motion of the stage. We can find this intrinsic coalescent velocity
of two plates by considering the balance between the rate of
mechanical work done by the capillary forces, F, and the rate of
energy dissipation by the viscous flow as the plates coalesce and
squeeze out the liquid entrained between them.® The rate of work
done by the capillary forces scales with the product of the
capillary force between two fibers, F,, and the coalescent
velocity, v,, and scales with ~F_v.. The rate of viscous dissipation
scales like ~u(U/S)*V, where u is the dynamic viscosity of the
liquid, U is the flow velocity parallel to the fibers, and V' is the
volume of entrained liquid. Balancing the rate of work by
capillary forces and the viscous dissipation, we obtain F.v,
~u(U/S)*V. Calculating the capillary force as the product of
surface tension, o, and fiber length, /, we can write the balance as
ove ~uU % Applying the mass conservation as v/S = U/, an
expression is obtained for v, ~ (o/u)-(S/1)>. Numerically, taking
the surface tension of a 50% acetone—water solution ¢ = 32.33
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mNm™', dynamic viscosity x = 1.513 mPa-s, spacing S = 200 um,
and fiber length / = 21 mm, we estimate the coalescent velocity
of the fibers to be on the order of 1 mm/s. Values of liquid
constants are obtained from ’®. This coalescent velocity
describes the rate at which two fibers self-assemble radially, and
it can be used to estimate the characteristic time scale of the
shrinkage of the fiber assembly: 7 = D/v, ~ 9 seconds where D =
17.68 mm is the outer diameter of the dry assembly and the
initial distance between two fibers before coalescence. The
theoretical threshold vertical drain rate at which liquid is
entrained before coalescence is vq4 = //z = 2.3 mm/s. Being on the
order of a few millimeters per second, this theoretical value
agrees well with the threshold drain rate that we observe
experimentally of 3.1 mm/s, confirming our hypothesis about the
need for a sufficient amount of entrained liquid to lubricate the
fibers and form a helical assembly. To further understand this
twisting behavior, we use experiments and scaling analysis to
capture the role of the drain rate.

Experimental

Samples consist of 30 tows of carbon fibers having length / =
15-21 mm organized into rings (Figure 1b). The outer diameter
of the ring is D = 17.68 mm. Each tow has ~4600 fibers. Four
tows at one side of the assembly are made of glass fibers to
facilitate the motion tracking. We have confirmed that the glass
fibers do not change the results by testing assemblies of carbon
fibers only. Each sample is placed on a stationary bracket and
submerged in liquid acetone—water solution as shown in Figure
2a. The liquid is then drained from the sample at drain rate v,
ranging from 3 tol17 mm/s. During the liquid drainage, the
fibers self-assemble in one of two ways. At low drain rates v <
vy, the fibers coalesce radially. At and above the threshold drain
rate the fibers twist, forming helices as they coalesce. We
measure the twist by tracking the glass fibers observed from the
top view as displayed in Figure 2b. We observe that the angle of
twist and the twist rate depend on the drain rate, shown in
Figures 2c¢ and 2d. The twisted fibers retain their shape, even
when the sample has dried due to the coating on the fibers called
sizing.? This process is reversible and repeatable; when the fibers
are again submerged in the liquid, they return to their original,
vertical configuration and the self-assembly process can be
repeated (Video S2)

Results and Discussion

We tested samples of various fiber lengths. The shortest sample
having fiber length / = 15 mm did not twist for any drain rate.
The samples with larger lengths, i.e. / = 17-21 mm, all showed
twisting. The angle and twist rate dependence on drain rate for
all bundle lengths can be found in the supporting information
(Figure S6). We observe that the degree of twist and the twist
rate are dependent on the fiber length and drain rate. For a
constant fiber length, the degree of twist and twist rate increase
with increasing drain rate. For a constant drain rate, the degree of
twist and twist rate increase with increasing fiber length.

We study the relation between the instantaneous density of the
fiber assembly and the tangential velocity. At the instant of peak
twist rate of each experiment, we calculate the fiber volume
fraction, ¢, by dividing the total area of fibers by the cross-
sectional area of the fiber assembly, shown in Figure 2e. When
the drain rate is relatively low, the fibers coalesce to a greater
extent before twisting, resulting in larger fiber volume fraction

during twisting. For relatively high drain rates, the fibers twist
earlier with more liquid entrained between them, hence the
volume fraction is lower. As the drain rate is increased further,
the volume fraction levels off at this low density value.
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Figure 2. Experimental setup, post-experiment images, angle and
angular velocity dependence on drain rate for fiber length 21 mm. a,
The fiber sample is fixed in space and submerged in beaker of liquid,
which is mounted to a computer-controlled stage. During the experiment,
the beaker moves downwards and the liquid is drained from the fibers at
speed v. A high-speed camera captures a top view of the resulting fiber
motion. b, Top-view images of the sample after drainage of varying
rates. Yellow angles show the maximum angle of twist, measured by
position of white glass fibers. Scale bar 5 mm. ¢, Plot of maximum angle
vs. drain rate. d, Plot of maximum twist rate vs. drain rate. e, Plot of fiber
volume fraction vs. drain rate. f, Plot of nondimensional maximum twist
rate vs. nondimensional drain rate.

Non-dimensionalizing the maximum twist rate vs. drain rate
provides insight into the limits of the twisting rate, shown in
Figure 2f. The x-axis is the ratio of the drain rate to the threshold
drain rate, v/v4. The y-axis is made dimensionless by comparing
the maximum tangential velocity of the fiber assembly with its
instantaneous coalescent velocity v.. The tangential velocity is
calculated from the experiments as the product of the
instantaneous radius of the fiber assembly, R(#), and the
maximum twist rate, O, resulting in RE. The instantaneous
radius of the fiber assembly, R(f), changes throughout the
experiment due to coalescence; we use the instantaneous radius
of the fiber assembly at the moment of peak twist rate, R(6max)-
This radius depends on the amount of liquid that is entrained
between the fibers, which depends on the drain rate of the
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experiment; therefore, the radius R(fpmay) is different for each
experiment. The values of v, are calculated using the
instantaneous viscosity and fiber spacing of the liquid-entrained
fiber assembly at the time of maximum twist rate. The
instantaneous viscosity depends on the fiber volume fraction.
This dependence is approximately similar to the viscosity
dependence on hard sphere colloids at low volume fraction,
u=110(1-4/0.63) %, where u is the instantaneous viscosity, g is
the viscosity of the pure liquid, and ¢ is the instantaneous volume
fraction.” By non-dimensionalizing the twist rate data, we
observe a linear trend as v/v, increases. When v/vy reaches ~25,
the non-dimensionalized data become constant, indicating that
the ratio of the fibers’ tangential velocity to coalescent velocity
stays the same as drain rate increases. Also at this critical ratio of
drain rate, the volume fraction becomes constant (Figure 2e, v ~
62 mm/s), and hence the amount of liquid that the fibers can
entrain is maximum and cannot increase further with drain rate,
essentially limiting the extent and rate that the fibers are able to
twist. This clearly shows that the maximum twisting rate is
limited by the intrinsic coalescence velocity v.. Note that these
are scaling arguments, and with the correct pre-factor on the non-
dimensional twist rate (y-axis), we expect that the limiting twist
rate value will be equal to 1.

We analyze the twisting kinematics of fiber length / = 21 mm at
drain rates v = 6.2 mm/s, v = 12 mm/s, and v = 117 mm/s, fiber
length / = 19 mm at drain rate v = 117 mm/s and fiber length / =
17 mm at drain rate v = 117 mm/s (see video S3 to S8). With this
selection, we analyze a range of fiber length and drain rate
combinations as shown in Figure 3. For each experiment, a
reference point at the glass fibers is used to measure the radial
and angular position throughout the experiment. This data can be
found in Figure S4. From the radius and angle measurements,
the radial velocities and angular velocities are calculated. Figure
3 also shows the trajectory of the reference fibers during the
experiment and the time dependence of the radial and angular
velocities.

a /[=2lmm,v=62mm/s b /=21mmv=12mm/s C
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[=21mm,v=117mnv/s d
/2

The instantaneous radial and tangential velocity are extracted
from the videos and plotted versus drain time. These curves are
obtained by differentiating the fits to the radius and angle data
(see Figure S5). A fit of exponential form fits well to the radius
data. We use this form because the viscous damping effect of the
liquid causes the radial motion of the fiber to decay
exponentially. This damping also affects the twisting motion of
the fibers for the case of long fibers, fast drain rate (/ =21 mm, v
= 117 mm/s), so the exponential fit is also applied to this angle
data, corresponding to Figure 3c. The fit to the angle data of the
remaining four cases uses a sigmoid-type logistic function. The
logistic fit captures the angle’s dependence on the angular
velocity, and its derivative fits the bell-shaped increase and
decrease in the angular velocity during twisting. It is interesting
that a sigmoid-type function—typically used for complex
population evolution dynamics—captures the displacement
evolution of the fiber assembly.

The kinematics of the observed twisting is dependent on the fiber
length and the liquid drain rate. For the various combinations of
length and drain rate, the fibers always have initial radial motion
before they twist. The amount and rate of the initial radial motion
varies between each case. When the fibers are relatively long and
the drain rate is relatively low (v = 6.2 mm/s), the radial
coalescence and angular motion occur sequentially, and most of
the motion is the initial radial coalescence (Figure 3a). When the
drain rate increases by approximately a factor of two (v = 12
mmy/s), the fibers also coalesce before rotating, but the rotation
occurs earlier, at smaller radial displacement (Figure 3b). At
very fast liquid drainage (v = 117 mm/s), a very brief initial
radial assembly is followed by simultaneous coalescence and
twist (Figure 3c¢). As for the various-length study, we observe
that the initial radial coalescence increases as the fiber length is
decreased (Figure 3d, e).
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Figure 3. Kinematics of twisting. Trajectory of reference fibers (top), plot of radial velocity on left y-axis, angular velocity on right y-axis, time on x-axis,
with inset (bottom) for a, fiber length / =21 mm, drain rate v = 6.2 mm/s. b, fiber length / = 21 mm, drain rate v = 12 mm/s. ¢, fiber length / =21 mm, drain
rate v= 117 mmy/s. d, fiber length /=19 mm, drain rate v= 117 mm/s. e, fiber length / = 17 mm, drain rate v =117 mm/s.

The radial velocity at the onset of coalescence is on the order of
~20-60 mmy/s. It increases with the increase in drain rate. The
radial velocity of this order is also limited by the viscous drag

within the fiber assembly. At drain rates above the threshold

velocity, a column of liquid is formed with the fibers acting as a

scaffold for the liquid as shown in videos S3 to S7. In this case,
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the radial coalescence is driven mostly by the menisci between
two fibers along their length. The flow of the entrained liquid
perpendicular to the fibers can be modeled as perpendicular flow
through a square array of cylinders. To find the perpendicular
velocity, U1, we balance the drag force per unit length of the
fiber with the capillary force per unit length. The drag force per
unit length scales like (uUL/€)k, where u is the viscosity of the
acetone—water solution, € is the void fraction, and k is the
Kozeny constant.'® Knowing the dimensions of the ring sample
and its number of fibers, the void faction € = 0.988. The Kozeny
constant for our case of extremely low fiber volume fraction is k&
= —2/[(1-¢)In(1-€)], given in reference '° as a simplified
equation for Eqn. (24) for the case of low volume fraction.
Substituting this expression for & into the expression for the drag
force and balancing with the capillary force per unit length, we
arrive at the result that UL = —o[(1—¢)In(1—¢€)]/(8nu). Using the
known values of ¢ and u for 50% acetone—water solution, we can
theoretically estimate that UL = 45 mm/s, which is close to the
peak radial velocity observed. This confirms that at high drain
rate, the rate of coalescence is limited by the drag of flow
through the fiber array.

By studying the kinematics of fibers during liquid drainage, we
identify the forces that drive the self-assembly. Twisting is an
instability that stems from asymmetry in fiber arrangement,
capillary force direction, and fluid flow within the fibers. Any
small imperfection causes the capillary force to have an offset
angle from the pure radial forces expected for the ideal fiber
bundles. The tangential component causes a “twisting torque,”
reminiscent of the effect of offset forces on the lateral buckling
of elastic columns. The twisting torque and the intrinsic smaller
resistance to rotation than radial coalescence lead to the twisting
instability. For this self-organization to take place, the fibers
must be sufficiently lubricated as demonstrated by the rate-
controlled experiments. If the liquid is drained too slowly, the
fibers establish contact before they have sufficient time to twist.
The contact friction and surface adhesion eliminate the twisting
instability. On the other hand, when the drain rate is above the
threshold value, liquid remains entrained as the capillary force
assembles the fibers (Figure 4a). As the assembly shrinks, the
fibers become crowded and feel more resistance to motion in the
radial direction than the tangential direction, leading to twist
(Figure 4b). These insights are validated by the experimental
observation of the twist rate dependence on the drain rate.

We formulate a nonlinear force law to capture the complex
resistance to the fibers’ coalescence. A free-body diagram of the
fiber is shown in Figure 4c. We model the motion of a single
fiber of mass m subject to radial capillary force F, with an offset
angle a. We write a full equation of motion taking into
consideration the fiber mass, nonlinear stiffness, and drag-
induced damping. Equation (1) is the equation of radial fiber
motion, and equation (2) is the equation of tangential fiber
motion. We still write an inertia term in the equation of motion
as it has negligible effect on the results due to the fiber’s size.
The initial conditions that the fiber is given are the
experimentally-determined initial positions and velocities.

T

n
0~"D
r—rD] + Fcentripetal + FD,r + Fcapillary,r (1)

my = (Fkn + ka'r) [

mrf = ka,e + Feoriolis T FD,G + Fcapillary,e (2)

The forces that resist the motion of the fiber are the nonlinear
force in the radial direction, Fy,, resulting from the successive
contacts of the fibers as they assemble, and the linear force, Fig
resulting from the cantilever stiffness of the single fiber (Figure
S7). The forces Fp, and Fpy, in the radial and tangential
directions, respectively, are viscous drag forces that also resist
the fiber motion. The force Fy, is represented by a nonlinear
spring connecting the fiber to the origin, having equilibrium at ¢
= 0 when r = r,. The nonlinear radial stiffness is proportional to
the square of the radial displacement (Figure S8). The force F;
stems from a linear spring connecting the fiber’s initial position
to its current position with stiffness equal to its cantilever
bending stiffness. These two springs store the fiber’s elastic
energy as it deforms.

To further account for the effect of fiber densification and
compaction as the fibers crowd, we multiply a dimensionless
fiber densification factor by the two spring forces in the radial
direction. The form of the densification factor is that of the
force—displacement relation of the compression of cellular
foams.!" The densification factor diverges when the fibers are
fully dense to capture the transition from low-density foam to a
dense solid (see Figure S9). In the densification factor, 7y, 7(?),
and rp, are the initial radial position, instantaneous radial
position, and the radial position of complete densification of the
fiber, respectively. The values of ry, and rp are determined
experimentally; 7p is the smallest observed radius for a given
fiber length. The complex rheology of the lubricated fiber
assembly is captured by introducing an exponent, 7, on the fiber
densification term to modulate the densification rate. The values
of term Fyr and Fy, are estimated from the modulus, dimensions,
and spacing between fibers as detailed in the SI (Figure S7);
these values are used in all the numerical simulations. The
capillary force is calculated by F.=270(d/2)*cos?0/(S*—4(d/2)*)"?,
where d is the diameter of a fiber cluster, 0 is the contact angle
between the liquid and the fiber'? and S is the separation between
clusters, leading to F, ~10"7 N. The viscous drag forces Fp, and
Fpg are uD7 and uDr@ respectively, where D is the diameter of
the fiber ring assembly, leading to zD ~107> Ns/m.
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We numerically solve the differential equations using the
conditions of Figure 3a, ¢, corresponding to long fiber length
and low and high drain rates respectively. As shown in Figure
5a, the model captures very well the two-regime self-assembly
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behavior consisting of pure radial coalescence followed by pure
rotation observed experimentally in the slow drain case. For the
case of very fast drain rate (Figure 5b), the numerical solution
also predicts the two-regime kinematics, demonstrating the
fidelity of the model. More details of the model parameters are
listed in the SI (Table S1). In the model, the value of F, is
constant, which is an approximation. In reality, the value of F,
depends on the exact shape of the meniscus and spacing between
fibers and is constantly changing. The constant value used in the
model causes the tangential velocity in the numerical model to
keep a finite value at the end of the simulation because the model
does not take into consideration the drying of fibers after
drainage. However, the model still describes the kinematics of
motion with good fidelity and provides valuable insights. The
numerical solutions also confirm that, as expected, without
introducing an offset angle o only radial coalescence is observed.
On the other hand, twisting is obtained in the numerical model
for any angle a > 0. We also observe that the offset angle affects
the timescale of the twisting along with the fiber stiffness and
drag forces.
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Figure 5. Model-predicted kinematics. Fiber trajectory (top) and plot
of radial velocity vs. time and angular velocity vs. time (bottom) for a,
fiber length / = 21 mm and drain rate v = 6.2 mm/s. b, fiber length / =21
mm and drain rate v= 117 mm/s.

Conclusion

Using simple draining experiments, we have observed and
studied the capillary-induced twisting of slender fiber bundles. In
the experiments, we control the drain rate and observe the
kinematics of fiber twisting. Most notable, we observe that
twisting occurs at high drain rates. We also observe that the
fibers initially coalesce radially and then twist by rotating in the
tangential direction.

We use scaling arguments to demonstrate that the threshold
velocity can be related to the characteristic coalescence rate of
two fibers in a viscous fluid. We also show that the non-
dimensional twisting rate saturates at the value of the
coalescence rate. We constructed a simple first-order numerical
model that captures the twisting kinematics reasonably well. The

model considers only a single fiber, and replaces the effect of the
other fibers in the bundle by appropriate stiffness laws in the
radial and tangential directions. An interesting study would be
the stability analysis of the radially-coalescing fibers and the
emergence of twisting behavior. Nonetheless, this study provides
clear evidence on the dynamic nature of twisting and could lead
to more controlled nano-pillar and nano-tube twisting self-
assembly by controlling the drying rate.

Supporting Information

Experimental details and supplementary figures

Video 1/8 showing experimental setup

Video 2/8 showing repeated cycles of twisting/untwisting
Video 3/8 showing experiment of / =21 mm, v = 6.2 mm/s
Video 4/8 showing experiment of / =21 mm. v =12 mm/s
Video 5/8 showing experiment of / =21 mm. v= 117 mm/s
Video 6/8 showing experiment of /=19 mm. v= 117 mm/s
Video 7/8 showing experiment of /=17 mm. v =117 mm/s
Video 8/8 showing experiment of / =15 mm. v =117 mm/s
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