Il

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

Dart: Divide and Specialize for Fast Response to
Congestion in RDMA-Based Datacenter Networks

Jiachen Xue, Muhammad Usama Chaudhry, Balajee Vamanan™'. T. N. Vijaykumar, and Mithuna Thottethodi

Abstract— Though Remote DNrect Memory Access (RDMA)
promises to redoce datacenter network latencies significantly
compared to TCP (e.g., 10x), end-to-end congestion control in the
presence of incasts is a challenge, Targeting the full generality of
the congestion problem, previous schemes rely on slow, iterative
convergence to the appropriate sending rates (eg., TIMELY
takes 50 RTTs). Several papers have shown that even in
oversubscribed datacenter networks most congestion occurs at
the receiver. Accordingly, we propose a divide-and-specialize
approach, called Dart, which isolates the common case of receiver
congestion and further subdivides the remaining in-network
congestion inte the simpler spatially-localized and the harder
spatially-dispersed cases. For receiver congestion, we propose
direct apportioning of sending rates (IDASR) in which a receiver
for e senders directs each sender to cut its rate by a factor of n,
converging in only one RTT. For the spatially-localized case, Dart
provides fast {under one RTT) response by adding novel switch
hardware for in-order flow deflection (I0FD) because RDMA
disallows packet reordering on which previous load balancing
schemes rely. For the nncommeon spatially-dispersed case, Dart
falls back to DCQOCN., Small-scale testhed measurements and
at-scale simulations, respectively, show that Dart achieves 605
(2.5%) and T (4.8x) lower ﬂﬂi“-pm'mntiln latency, and similar
and 58% higher throughput than InfiniBand, and TIMELY
and DCQUN.

Index Terms— Datacenters, RDMA, congestion control.

. INTRODUCTION

ANY modern, interactive datacenter applications have

tight latency requirements due to stringent service-level
agreements (e.g., under 200 ms for Web Search). TCP-based
datacenter networks significantly lengthen the application
latency. Remote Direct Memory Access (RDMA) substantially
reduces latencies compared to TCP by bypassing the operating
system via hardware support at the network interface (e.g.,
RDMA over InfiniBand and RDMA over Converged Ethernet
{RoCE) can cut TCP's latency by 10x [1], [2]). As such,
RDMA may soon replace TCP in datacenters [3]-[6].

Manuscript received November 27, 2018; revised June 14, 2019 and
October 8, 2019 accepted December 10, 2019 approved by [EEE(ACM
TRANSACTIONS ON NETWORKING Editor K. Tang, Date of publication
January 14, 2000 date of current version February 14, 2020, (Corresponding
author: Balajee Vamanan.)

Jiachen Xue was with the Department of Electrical and Computer
Engineering, Purdue University, West Lafayette, TN 47907 USA. He is
now with NVIDIA Corporation, Santa Clara, CA 95051 USA (2-mail;
xugjischen @ gmail.com).

Muhammad Usama Chawdhry was with the Depariment of Computer
Science, University of Wlinois at Chicago, Chicago, IL 60607 USA.
He is now with VMware Inc., Palo Alto, CA 94304 USA (e-mail:
chavdhryuswma @ gmail com).

Bualajee Vamanan is with the Department of Compuater Science, University
of Minois at Chicage, Chicago, IL 60607 USA {e-mail: bvamanan®@uic.edu).

T. N, Vijaykumar and Mithuna Thottethodi are with the Department of
Electrical and Computer Engineering, Purdue University, West Lafavette, TN
4TH0T USA (e-mail: vijay@ecn. purdue.edu; mithuna@® purdue.edu).

Dvigital Object Identifier 10,1109 TNET. 2019.2961671

Employing RDMA in datacenters, however, poses a
challenge. RDMA provides hop-by-hop flow control and
rale-based end-to-end congestion control [7], [8]. However,
RDMA’s congestion control is suboptimal for the well-known
datacenter congestion problem, called incast, where multiple
flows collide at a switch causing queuing delays and long
latency tails [9] despite good network design [10], [11].
Though such congestion affects only a small fraction of the
flows (e.g., 0.1%), datacenter applications” unique characteris-
tics imply that the average latency is worsened. For example,
because Web Search aggregates replies from thousands of
nodes, the 99.9'" percentile reply latency affects the average
response time; or alternatively, dropping the slowest replies
worsens the response quality. In TCP, incasts cause delays due
to packet drops and re-transmissions [9]. Though the lossless
RDMA does not incur packet drops, incast-induced queuing
delays lengthen RDMA's latency tail [12].

InfiniBand uses Early Congestion Notification (ECN) marks
to infer imminent congestion and cults back the send-
ing rates [7], [8]. While DCOQCN [12] proposes a similar
scheme for RoCE, TIMELY [13] uses round-trip times (RTT)
measurements, instead of ECN marks, for rate control in
user-level TCP. Unfortunately, because ECN marks and RTT
measurements need many round-trips to converge to the appro-
priate sending rates (e.g., 50 RTTs in TIMELY), the schemes
are too slow for the applications’ predominantly short flows
each of which lasts only a handful of round-trips. During
convergence, the schemes also lose throughput due o over-
and under-shooting the sending rates.

To speed up convergence, we leverage the result in several
papers [14]-[17] and reports from large datacenter operators
such as Facebook [18], Google [19] and Microsoft [20]: even
under typical oversubscription most congestion in datacenter
networks occurs at the network edge (i.e., at the link from
top-of-rack (ToR) switch to the receiver) as opposed to within
the network. Our simulations confirm this result which is
due to high-bandwidth network core [10], [11] and incast at
the receiver. We make the key observation that while general
congestion is complex and may require iterative convergence,
the simpler and common case of receiver congestion can be
addressed quicker via specialization; Withou! isolating this
case, previous schemes apply their iterative throftling to the
general case. Instead, our proposal, called Dart, employs a
divide-and-specialize approach to isolate receiver congestion
and significantly speeds up the convergence. Dart sub-divides
the remaining case of in-network congestion into the simpler
spatially-localized case and the harder spatially-dispersed case.
For the former where the network capacity is not under
pressure (e.g., due to imperfect ECMP hashing), Dart avoids

1063-6692 @ 2020 IEEE. Personal use is permitted, but republicationfredistribution requires 1EEE permission.
See hitpsyrwww.icee.orgpublications/ighis/index.himl for more information.

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7581-6624

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS 323

throttling which is unnecessary. For the latter where the
network capacity is under pressure (e.g., due to dynamic
network load spikes), Dart falls back on DCQCN's throt-
tling which may be unavoidable. Load balancing [21]-[28]
can alleviate localized in-network congestion but not receiver
congestion, and usually reorders packets which is not sup-
ported by RDMA.

To address receiver congestion, we make the key observa-
tion that unlike in a wide-area setting, datacenter applications
are co-operative where a receiver of n senders can direct each
sender to cul its rate by a factor of n, This mechanism, called
direct apportioning of sending rates (DASR), ensures thal the
critical, short flows get their fair share of (instantaneous)
throughput without being swamped by the background, long
flows. When a sender completes, the (instantaneous) sending
rate is adjusted as per the new sender count. Because DASR
piggybacks the count in the receiver’s acknowledgmenis to the
senders, DASR achieves accurate and one-RTT convergence
of sending rates without any repeated adjustments, unlike
previous schemes. Specifically, (1) RCP [29] proposes 1o
apportion the rates among the senders, but employs slow,
iterative convergence ar the switches because RCP {a) targets
peneral congestion without iselating receiver congestion and
i(b) uses general parameters to arrive indirectly at fair share
instead of directly counting flows which is hard fo do at Inter-
net scales; we evaluate RCP's convergence in Section VI-D.
{2) Eye(} [15] highlights edge congestion but applies RCP’s
iterative convergence, which takes 25-30 RTTs, without spe-
cializing for edge congestion. (3) NUMFabric [30] achieves
more flexible and faster bandwidth allocation than TCP but
still employs iterative convergence (e.g., 31 RTTs). And,
{4) while ExpressPass [31] and NDP [17] target general con-
gestion via receiver-based congestion control, neither scheme
isolates receiver congestion. ExpressPass employs BIC-TCP
iterative convergence which takes 20 RTTs for a datacenter
network (Section VI-D): ExpressPass shows results only for
a simple network. NDP fundamentally relies on (a) packet
spraying, which reorders packets, to reduce congestion and
ib) packet trimming, which removes payloads, to unclog
congestion notification to the receiver. Neither of these mech-
anisms is supported by RDMA which has no software stack
like TCP. Without these mechanisms, NDP would see more
congestion and slower feedback. DASR’s faster convergence
reduces latency tail (critical flows quickly get their share)
and improves throughput (fewer adjustments). In an additional
optimization, DASR leverages application-provided incast
degree to avoid counting the senders and converge even faster.

To address spatially-localized, in-network congestion, Dart
simply deflects the affected packets under the premise that an
alternate path is faster than being queved up in the shortest
path. To avoid livelock, Dart allows only a few deflections
for a packet after which the packet is not deflected even
at a congested switch., Dart avoids deadlocks via a widely-
used virtual-channel-based scheme [8], [32]. Because RDMA
does not support packet reordering, Dart provides hardware
support in the switch to keep a flow’s packets in order. While
deflection [33] is well known, our contribution is in-order flow
deflection (I0OFD) unlike previous load-balancing schemes
including DIBS [28]. As a congestion response, deflection is

much lighter-weight and quicker (well under one RTT) than
rate-cutting using iterative convergence and does not affect the
sending rates. For spatially-dispersed in-network congestion,
which is uncommon, Dart falls back to DCQCN's heavy-
weight rate modulation. By filtering out receiver congestion
and localized in-network congestion, Dart cuts the number
of ECN marks, which trigger DCQCN fall-backs, by 4x for
typical workloads.

We make four observations: First, receiver conges-
tion is easy to differentiate from in-network congestion
(Section IM-C). Second, DASR works only for receiver con-
gestion but not for in-network congestion (e.g., two flows col-
lide in the network but go to different receivers which cannot
detect the collision); and vice versa for IOFD (flows colliding
at the receiver should not be deflected). As such, one of our
contributions is identifying the specific case and applving the
appropriate specialization. Third, becanse DASR and 1OFD
separalely targel receiver congestion and localized in-network
congestion, respectively, they are more effective despite being
simpler than previous schemes which tackle the full generality
of the problem using a common mechanism. Finally, Dart
leverages RDMA's unique features. While DASR is applicable
to both RDMA and TCP, our DASE implementation relies on
EDMA’s discrete messages as opposed to TCP's continuous
flows (Section lI-B). 1OFD specifically addresses RDMA's
lack of support for packet reordering,

In summary, our key contributions are:

» employing a divide-and-specialize approach to congestion
control;

» addressing receiver congestion via direct apportioning of
sending rates by using the sender count to achieve accurate and
faster, one-RTT convergence of sending rates than previous
schemes which are iterative; and

» addressing spatially-localized in-network congestion via
in-order flow deflection whereas previous schemes reorder
packets which is not supported by RDMA.

A small-scale 16-node testbed implementation shows that
Dart converges to the desired sending rate in one BTT and
achieves 60% (2.5x) lower latency than and similar through-
put as InfiniBand. Datacenter-scale ns-3 simulations show
that Dart achieves 79% (4.8x) lower 99*"-percentile latency
and 58% higher throughput, on average, than TIMELY and
DCOCN for typical over-subscription and load settings.

Il. CHALLENGES AND OFPORTUNITIES

Modern datacenter applications demand both low latency
tails and high throoghput from the network. Interactive data-
center applications, such as Web Search, generate thousands of
short flows to lookup large distributed datasets for each user
query. As described in Section I, the overall response time is
bound by the 99'* - 99.9"* percentile of flow completion times
(i.e., the tail-latency problem) [34]. Further, the synchronous
nature of the lookup responses, which are aggregated in
subsets, implies that each subset arrives at a switch causing an
incast, which worsens when multiple queries” subsets arrive
at the same time. On the other hand, background applications
(e.g., Web Index update) demand high throughput for large
volumes of Internet data. These long flows colliding with the
short flows also exacerbate incasts,

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

324

The OS5 overheads in TCP drastically dilate network tail
latencies (e.g., 99*" percentile latency is 10-20x of median
latency [9]). Further, a slow response to congestion hurts
latency at the start of incasts and throughput at the end.
Similarly, an inaccurate response affects latency or throughput,
depending on whether the rate was less or more than the
optimum.

A RDMA

With RDMA, the application invokes the NIC directly
without involving the O5 — (1) At the sender, the NIC uses
DMA to copy data from the application memory to its buffers
using DMA and sends the data after some protocol processing:
(2) At the receiver, the NIC copies data into the receiving
application’s buffer. Thus, RDMA eliminates OS5 intervention
and accelerates protocol processing at both the sender and the
receiver. The buffers are pinned in physical memory and the
address translations are cached at the NIC during connection
establishment. RDMA-based transports [4], [5] show an order-
of-magnitude reduction in Aow latencies at low loads. As such,
RDMA, initially proposed for multiprocessor networks [33],
is finding its way into modern datacenters.

B. Challenges

Existing RDMA transports provide hop-by-hop flow control
to ensure lossless operation. For example, InfiniBand [36]
employs credit-based flow control and RoCE [37] uses
Priority-based Flow Control (PFC). InfiniBand provides rate-
based end-to-end congestion control using ECN marks [7], [8].
DCQCN [12] has shown that RoCE without end -to-end
congestion control degrades in both latency and throughput
at high loads.

As discussed in Section 1, previous schemes address the tull
generality of the congestion problem and end up with iterative
convergence to the appropriate sending rate upon congestion.
Unlike TCP's window-based rate control, RCP's [29] routers
iteratively calculate and convey the fair-share bandwidth to
the senders sharing a link, which slows convergence (see
Section VI-D). DCQCN [12] and TIMELY [13] improve end-
to-end congestion control at datacenter scales for RDMA
{RoCE) and user-level TCP respectively. Both DCQCN and
TIMELY directly control the sending rate by pacing the
packets sent out of the NIC, DCQCN starts a flow at the full
line rate, employs ECN marks as feedback and cuts the send-
ing rate in proportion to the exponentially-averaged fraction
of ECN-marked packets. To avoid some problems of ECN
{e.g., low-priority packets may not see ECN marks), TIMELY
employs RTT measurements as feedback and modulates the
sending rate {additive increase and multiplicative decrease)
based on RTT gradients bounded by thresholds at the extremes.

Despite these innovative ideas, because these schemes tackle
the general case with arbitrarily changing number of flows
which interact in arbitrary ways, the schemes rely on slow,
iterative convergence to the appropriate sending rates. As dis-
cussed in Section I, other schemes, including Eye(Q [15],
NumPFabric [30] and ExpressPass [31], also rely on iterative
convergence. Such convergence requires many round trips
je.g.. 60 RTTs in RCP, 50 RTTs in TIMELY, 31 RTTs in
NUMFabric, and 25-30 RTTs in EyeQ), as illustrated in

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

S I[N
far] >
L
= /\&/\M
= R=100% R = 80% A= B4% Rom51% R=a1%
Recalwer 3
e >
[1:]
] >
R = 100% R = 50% Sander
Fig. 1. Dart’s fast, one-RTT convergence.

Figure 1 for a sender whose initial sending rate is 100%
of the line rate and the target rate is 50%. The upper half
of Figure 1 shows the tuning of sender-inferred rates. Such
iterative convergence hurts both latency and throughput, as we
show in Section VI-B. Because DCQCN and TIMELY specif-
ically target RDMA (RoCE) and user-level TCP (which
bypasses the OS5 like RDMA), respectively, and are repre-
sentative of iterative convergence, we compare Dart to these
two schemes in our results.

C. Opportunities

Dart employs a divide-and-specialize approach to avoid iter-
ative convergence in the common case of receiver congestion
(i.e., multiple senders intentionally sending to a receiver).
For this case, Darl uses direct apporiioning of sending rafes
{DASR) which specifies the appropriate sending rate in one
RTT without repeated adjustments (see the lower half of
Figure 1). Thus, Dart achieves accurate and fast convergence
for receiver congestion. Dart further sub-divides the remain-
ing case of in-network congestion into two sub-cases: the
easier spatially-localized congestion and the harder spatially-
dispersed congestion. For the localized sub-case, Dart employs
in-order flow deflection (IOFD) which does not affect the
sending rates. Such deflection is a quicker, lighter-weight,
in-network response (well under one RTT) than the previous
schemes’ iterative convergence. For the dispersed sub-case,
which is uncommon especially after TOFD filters out localized
congestion, Dart falls back to DCQCN,

We start with direct apportioning of sending rates (DASR)
and describe in-order flow deflection (TOFD)) in Section TV.
We note that when contention is at the end-points, the fair
share of bandwidth for each of n (say) senders is well-defined
as % The fair share can be extended easily to weighted fair
shares.

In our description of DASR and 10FD, we use the term
‘flows' to mean RDMA messages. Short flows are effectively
small messages (e.g., those that contain small search queries
for web-search, or key-value lookup requests for memcached).
Long flows are effectively large messages that perform bulk-
copying of large sections of memory (e.g., for index-updates in
wehb-search). Both short and long flows may be packetized as
necessary. While flow sizes are not known to the TCP layer,
message sizes must be sent explicitly in RDMA and hence
the RDMA application messaging layer can identify long and
short flows.

RECEIVER CONGESTION

A. Direct Apportioning of Sending Rates

All Aows begin at the full line rate because (1) we want
to avoid penalizing the latency of short flows, and (2) Dart’s

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS 325

| ==

E -

= g

1% 58
a 3
2 [=]
5
A

5, v] 5;
(a) Timeline (b) Topology
Fig. 2. Direct apportioning of sending rates.

fast feedback can quickly throttle long flows if necessary.
Dart piggybacks the sender count, the n value, with ACEs
to all the senders; ACKs use high-priorily queues in Dart as
well as all the other schemes we compare. Such piggybacking
can be achieved via NIC firmware without hardware changes.
i{In practice, implementing firmware changes on proprietary
NICs is not feasible without vendor support. We discuss
our prototyping approach later in Section V.) As such,
senders receive continuous, fast — one-RTT — direction
from the receivers on their allowed transmission rate. Such
co-ordination is between the end-point NICs; the swilches
need not be modified.

Figure 2 shows an oversubscribed fat tree to illustrate
Dart’s operation in terms of fair-sharing among long flows.
Consider the example shown in Figure 2(a) wherein a single
receiver (1)) receives a steady long flow from one sender (5;)
at the line rate. That sender continues to transmit at the line
rate without throttling as it sees the n value remain 1 in the
ACK= from the receiver. When a second sender (53) initiates
another long flow to the same receiver (I}, there is contention
at the leaf-level switch, as shown in Figure 2(b) where the solid
and broken lines show the two flows. As the two flows’ packets
arrive interleaved at the destination node, the receiver’s NIC
piggy-backs the updated n = 2 value with the ACEs to each
sender. The ACKs cause the sender NICs to throttle the rate to
% = % of the line rate, which can be sustained in steady state.

The above discussion illustrates the two key benefits
of DASE. First, the continuous feedback mechanism means
that congestion control feedback to senders is fast, in one RTT.
Second, the senders are given an accurate and precise rate not
to exceed. The algorithm seamlessly handles flow “churn™ by
constantly sending updated n values.

B. Short Flows and Incasts Under DASR

The case of short flows, including incasts, interacting with
long flows uses the same mechanism (o ensure that the latency
of short-flows is not hurt (Figure 3(a)). A long flow that
contends with k other short flows from k& unique senders
is directed to reduce its sending rate to k+_1 because n =
k + 1. While this throttling helps the short flows’ latency,
such throttling is short-lived and does not hurt the long low’s
throughput. The presence of short flows can be treated as a
case of flow-churn; the long Aows throttle their rates according
to the number of short Aows, but only for the duration of the
short flows (Figure 3(b).

The rate throttling at the sender is staggered by the
time required for the receiver's ACE (with the piggy-backed
n value) to reach the sender. while DCQCN and TIMELY
also incur this ACK delay (Section IT), the previous schemes

E E E 10
‘é"lll & i
g 35 =
e 0 -
=
v "' Time
(a) Timeline (b) Throughput
Fig. 3. Shont flows mixed with long flows,
ROMA message
begin

L H
[.'1[1.5'5 = AU5E U [§] [lﬁsgtwfﬂlsr H]

ensgLourt{5)
=07

AUSE = AUSS — (3}

migCount(s) « 1 MEgCoUNHS] = <nibe

a] L]
Fig. 4. Active Unique Sender Set for sender 8 (in software).

require several iterations of RTT measurements or ECN marks,
involving several round trips, for the sender to infer the
appropriate rate (e.g., 50 RTTs in TIMELY). This delay
hurts both short flows” latency and long flows’ throughput,
In contrast, DASR converges in one RTT to the appropriate
sending rates.

Dart addresses one other challenge: accurale counting of
senders. Consider a case where two incasts 1o the same
destination (say I} begin close in time and there is an overlap
in the senders of the two incasts (sender S is part of both incast
groups). Because 5°s two incast flows would be serialized at
&'s NIC, [)'s NIC should count source 5 exactly once when
determining n. This case is handled naturally because Dwart
tracks in software the unique senders of active flows — in the
Active Unigue Sender Set (AUSS). Upon a new message/flow,
the sender of the message is added to the AUSS il not already
present (see Figure 4(a)). Further, Dart initializes a count of
in-flight messages associated with that sender to 1 (if not
previously present in the AUSS) or increment the in-flight
message count (if previously present in the AUSS and multiple
messages from the same sender are concurrently active). Dhart
finally decrements the sender count only when all the messages
from that sender terminate, as shown in Figure 4(b). With the
above tracking in place, DASR can use the number of elements
in the AUSS as the n value (ie., n = |AUSS)).

Finally, each sender in the AUSS is associated with a
timestamp of the flow’s last packet. Any flow that is idle for
long (e.g., 2 seconds) is assumed to be dead and eliminated
from the AUSS. This well-known soft-state approach ensures
that DASR does not artificially throttle active senders in
cases where other senders may fail after initiating message
transmission. Recall that RCP requires switch support to
handle the full generality. ln contrast, Dart requires extra state
only at the receiver (host) to specialize the common case of
receiver congestion.

RDMA’s connectionless nature (unlike TCP) and its clearly-
marked message start/end ensures that senders are not counted

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

326

ECA 5 (Faceive Thiughput == Line Feste]

ECH &&
[Fimceive Throughput
== Lins Fals)

S noon -
1 ECH &8 (Rucena Thi ==Line Raba

ECH &4 |Receiva Thioughput < | ’ T !

Line Rale) '

ECH &8 (Receisa Thiougho = Line Rale)

fallow ECH ini
ALK}

ECH &4 rReceive Throughput < Line Rste)

Fig. 5. Handling receiver and non-receiver congestion.
in idle periods (as shown in Figure 4). Because our DASR
implementation relies on RDMA’s message start/end markers
for accurate AUSS tracking, it does not extend to TCP which
views communication as a continuous stream without markers
making it hard to account for flow idleness.

C. Handling Non-Receiver Congestion

Figure 5 illustrates our state machine that exhaustively
handles receiver and non-receiver (in-network and at source)
congestion. Dart distinguishes between receiver and non-
receiver congestion based on two observable symptoms:
(1) throughput at the receiver, and (2) ECN marks. Changes in
either of the two trigger state changes as shown in Figure 5.

As long as no ECN marks are received, Darl remains in
the “No Congestion™ state. While DASR targets receiver con-
gestion, both receiver congestion and non-receiver congestion
{including network and source congestion at the sender’s NIC)
may result in ECN marks. For source congestion, we require
that the source NICs be capable of ECN marking, which
is possible in today's SmariNICs. For example, we can
programmatically set ECN on Netronome Agilio CX NICs
based on queue depth, which is accessible as intrinsic meta-
data [38]. Without any additional safeguards, the ECN-based
DCQCN fall-back may over-throttle the sending rates in
addition to DASR even for receiver congestion. To avoid such
over-throttling, we observe that during receiver congestion,
the throughput seen by the receiver is not affected as all Aows
headed to that receiver would be serialized anyway at the last
hop (i.c., the receive throughput is equal to line rate). This
condition triggers DASR, denoted by “Receiver Congestion”
state in Figure 5. In this state, Dart piggy-backs the n values
while suppressing the ECN marks on the returning ACKs. The
throughput is unaffected even if receiver congestion occurs at
an internal switch — it is still receiver congestion irrespective
of where it occurs,

In contrast, in the case of non-receiver congestion
{i.e, network and source congestion) where contending flows
are headed to different destinations, the bottleneck link capac-
ity would be shared by contending flows. As a result, when
the flows evenmally reach their destinations, the receivers
would observe throughputs that are less than the line rate.
In addition, the receiver would also observe ECN marks
due to congestion. Accordingly, Dart enters “Non Receiver

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

Congestion™ state when the receiver observes lower than line
rate as well as ECN marks, Because DASR cannot handle non-
receiver congestion, the receiver allows ECN marks, which
trigger DCQCN at the senders. Finally, to avoid DASR from
interfering with DCQCN, Dart sets n = 1 in this state. While
the above description handles receiver and non-receiver con-
gestion occurring separately, Dart naturally handles the case
of the two together in two steps. In the first step, Dart enters
the “Receiver Congestion™ state causing DASR to kick in.
For non-receiver congestion, however, DASR's apportioning
may cause the senders to underutilize their throughput share.
In that case, the receiver rate would fall below the line rate,
causing a transition to the “Non-Receiver Congestion™ state in
the second step, where DSQCN kicks in to avoid continued
thronghput loss. Thus, Dart exhaustively covers all cases of
congestion among the three states in Figure 5.

Dart’s convergence: From Figure 5, it is clear that
DASR covers only the special case of receiver congestion
and converges to the correct sender rate (ie., fair share).
During non-receiver congestion (i.e., in-network or source
congestion), Dart falls back to DCQCN. Dart’s convergence
is thus goaranteed by DCQCN's convergence in this case.
Owerall, because our state machine exhaustively covers all
congestion states, Dart converges to the correct sender rates
in all cases.

D Accelerated DASR

We further improve Dart's performance by having the
application provide a loek-afead notification of the upcoming
set of incast flows that are part of an incast group. For example,
il each incast message carries (1) information that it is part
of a 20-flow incast and (2) the list of the 20 senders, the
receiver NIC can advertise rate limits to the 20 senders after
just the first such message, even before the other senders’
packets arrive at the receiver. As with the n wvalue, such
lookahead notification can also be handled via NIC firmware.
Thus, the AUSS can be populated with the set of senders in
advance of actual packet arrival from all the senders. The
long Aows back off quicker with this look-ahead, as shown
by the dotted line in Figure 3(b). For accurate counting,
Dart treats any flow as if it begins when the look-ahead
notification first arrives. The ending of flows is handled as
without the look-ahead. The look-ahead overhead is reasonable
(eg., 20 two-byle sender-ids, each of which can address
64K sender NICs, amount to 40-byte or 2% overhead for
a 2-KB payload). Unlike generic applications, latency-sensitive
applications are specialized where the incast groups — static
in the application — are likely known to the programmer
(e.g., Web Search). Tdentifying the static groups is enough
even if they dynamically and unpredictably break into subsets
at different switches because eventually the whole static group
causes receiver congestion which is DASR's target.

E. Failures and Atfacks Under DASR

Because the AUSS tracking uses soft-state (as described
in Section IlI-B), Dart can handle failures seamlessly. Any
flow in the AUSS (irrespective of whether it uses look-ahead)
will naturally timeout and exit the AUSS when senders fail.
However, untrusted entities in multi-tenant datacenters may

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS 3z

5 5, D, D,

Fig. 6. Mismouting to avoid congested links.

attempt denial-of-service attacks by frequently sending look-
ahead notifications which results in other senders throttling
themselves. To ensure SLA compliance, datacenters typically
use rate-limiting to ensure that VMs of a tenant do not
exceed their fair share of bandwidth. Dart’s ATSS tracking
can be private to individual tenant’s flows. As such, any false
information from one lenant can not affect other lenants’
lows. As a last resort, the look-ahead oplimization can be
turned off in multi-tenant datacenters, while retaining the main
DASE which is not susceptible to such attacks. We isolate
the look-ahead’s performance from that of the main DASR
in Section VI-C,

I'V. LocALIZED IN-NETWORK CONGESTION

We now address in-network congestion, starting with the
easier spatially-localized congestion, including incasts, and
then discuss the harder spatially-dispersed congestion. Local-
ized in-network contention is usually the result of temporary
link contention in a small neighborhood of switches. Such
contention may result in packets being unnecessarily seri-
alized (e.g.. even though they may be headed to different
destinations). In such situations, Dart deflects all the packets
of selected short-flows to avoid this serialization penalty.
Consider the example shown in Figure 6 with two flows
between the source-destination pairs (Sq,) (solid arrows)
and (53, [)7) (dashed arrows). Assuming the second flow
{dashed arrows) finds one of the links congested, the flow
may take an alternate path, away from the congested link —
a response well under one RTT. While such deflection results
in additional hops (two in the example — one misroute and
another to recover from the misroute), Dart’s deflection poli-
cies ensure that (1) this penalty is far lower than that of the
serialization so that deflection significantly improves latency
over previous schemes' iterative convergence, and (2) the
relative overhead of extra link utilization is low {Section IV-B).
Further, our design is free from livelocks and deadlocks
(Section IV-B). We describe below Dart’s mechanisms and
policies for such deflection-based congestion avoidance.

A In-Order Flow Deflection Mechanisms

Deflection routing is a well-known technique for load bal-
ancing [33]. In general, deflection routing can cause reordering
of packets. As such, deflection is relatively straightforward to
use when either the application does not require ordered packet
delivery or there is a reassembly layer that reorders received
packets to be delivered in the correct order (e.g.. TCP).
Indeed, in addition to being well-explored in other contexts,
such packet-by-packet deflection has also been proposed for
congestion avoidance in data centers (DIBS [28]).

In contrast, for RDMA networks, there is no software stack
to reassemble out-of-order packets of a message/flow. Con-
sequently, the limited hardware support for packet reordering
are cases where re-ordering does not change the semantics.
For example, current support in ConnectX5 [39] is limiled
to readfwrite RDMA verbs. A bulk remote-wrile can be
broken into many pieces and the order among the pieces
is not important as long as they all complete. However,
such reordering can change the semantics in send/recv based
RDMA verbs. For example, a flow abstraction, if broken
up into pieces, needs (1) sequence numbers associated with
each piece, and (2) reassembly at the receiver to put the
pieces back together in sequence order. Note that send/recy
verbs are widely used and acknowledged as higher performing
than read/write for server applications [5]. Recent work by
Mittal er al [40] extends modest support even for reordering of
flows with such sequence numbers; but with a fixed hardware
window for reassembly. Such limited window size requires the
source to throttle packets to ensure that the sliding window
does not overflow, which reduces throughput. On the other
hand, packet-by-packet deflection would require the ability
to handle unbounded reordering (and not just the limited
reordering support in [40]), which can impose significant CPU
overheads [26].

To avoid such overheads, the network must guarantee
in-order delivery semantics. For such networks, Darl uses
novel in-order flow deflection (IOFD) instead of the above
packet-level deflection. The key challenge in IOFD is to ensure
that later packets of the flow traverse the same network path
as the header packet of the low. Further, the semantics do not
allow for any false-positives (i.e., the switch misidentifies a
non-deflected flow as a deflected flow) or false negatives (i.e.,
the switch “forgets” a misrouted flow to be one). Such strong
semantics may seem challenging especially when considering
router failures. We describe the fauli-free case below and
address faults in Section IV-C.

A naive solution would be to maintain rouling history in
the switch for every flow which may be many at a given time,
and look up the history for every packet. Fortunately, because
only short flows are latency-critical, lOFD applies only to short
flows only a few of which overlap at a swiich at any given time
(say 4 to 8). Long flows that collide at the receiver are handled
by DASR. Some spatially-dispersed in-network congestion due
to long flows is inevitable despite best-in-class hashing and
other schemes [21], [25], [26]. In our design, such collisions
trigger the DCQCN fall-back. Crucially, the latency-critical
short flows are deflected away from such collisions. Recall
that flow sizes are known in RDMA (Section I1).

IOFD} maintains the set of misrouted flows in a small
content-addressable memory (CAM) called the deflected flow
fable (DFT) at each router. Entries in the DFT are allocated
when the start packet of an RDMA message is chosen
for deflection amd a free eniry is available in the DFT.
Each entry includes the flow id or RDMA message id
(the searchable field) and a randomly-selected output port for
that flow (the data field of the table entry). Entries in the DFT
are de-allocated when the end packet of an RDMA message
passes through the switch. To ensure that the history of
misrouted flows is not lost, no DFT entry may be overwritten

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

I8

CFT CAR
~DE Port 7
D Port 20
lec—| Port12
Packs D2+ Port 2 Deflection
Flowld ":'k SEUIE
=BC -

Fig, 7. Packet routing with DFT lookup {in hardware),

excepl by natural deallocation. To avoid livelocks, 10FD
allows a packet only a limited number of misroutes which are
encoded as deflection foken bits in each packet header. The
switch removes a token from each misrouted packet. It either
DFT entries are unavailable or the flow has exhauosted its
tokens, the flow may not be deflected at the switch. Every
packet consults the DFT to determine its path, as shown in
Figure 7. If the packet's flow-identifier matches one of the
entries, the packet is deflected to the port indicated by the entry
{e.g., a packet matching DFT entry id = 0xBC is deflected to
port 12 in Figure 7). To ensure thal messages do not end up
at unintended end-nodes, leaf-level switches (ToR switches)
deflect messages back to the network and not to end-nodes.
MNote that, because the DFT is small (e.g., 8-entry CAM), the
delay and power overheads are negligible.

B. IOFD Policies

There are three policy decisions that IOFD makes to strike
a balance between over-aggressive deflection and inadequate
deflection. First, to determine if deflection is competitive
{i.e., the expected queuing delay at the switch is high
enough that a few additional network hops may be better),
IOFD compares the current queue position to an empirically-
determined deflection threshold. Deflection is allowed only if
the queue position is above the threshold. Second, to avoid
unnecessarily-long deflection chains and livelock caused by
loops, IOFD deflects only the packets with spare deflec-
tion tokens (Section IV-A). Once the deflection tokens
are exhausted, a packet incurs the full latency penalty of
waiting in the network queues. Finally, the possibility of
deadlocks must be carefully handled. Specifically, modern
DC networks (Clos variants [41]) typically use Valley-free
routing [42] or up®/down®* routing [43] to guarantee deadlock-
freedom. Although IOFD can violate the rules of valley-free-
routing, such violations are possible independent of I0FD.
Hu et al [44] show the violations of valley-free routing in real
data-center measurements for a RoCE network. As such, 10OFD
can leverage the same (or similar) mechanisms that are used to
handle failures to handle flow deflections. We employ one such
well-understood deadlock aveidance [32] technique by lever-
aging virtual channels (*virtual lanes’ (VL) in InfiniBand [8]).
Deadlock avoidance employs two class of VLs: (1) escape V0Ls
that are guaranteed to avoid cyclic buffer dependencies and
{2) non-escape VLs that may incur cyclic buttfer dependencies.
Packets/flows may move from non-escape VLs to escape Vs
{which ensures that flows in non-escape VLs can always make
forward progress) but nof vice versa. In our context, if traffic
on one virtual lane (VL) — the escape VL — is not deflected,

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

and flows that traverse the escape VLs never flow back to non-
escape VLs, deadlock-freedom is guaranteed. Unlike deadlock
prevention which places routing restrictions that avoid certain
turns (e.g.. [42], [45]), deadlock avoidance works without
preventing any turns [32], [43]: rather it takes the approach
that any turn may be allowed by at least some V0Ls. Recent
work [46] discusses deadlocks, other than routing dead-
locks, created by extraneous reasons such as SDN updates,
BGP re-routes, and misconfigurations. Such deadlocks can
occur despite deadlock-free routing and must be solved sepa-
rately (e.g., via sound SDN updates).

IOFD does not misroute long flows. Misrouting is a latency
optimization for short flows only. Unlike short flows, long
flows are sensitive (o throughput not latency. Also, long
flows are a dominant fraction of network load, and, therefore,
deflecting long flows to longer paths would overload the
network. We achieve this restriction by setting the number
of deflection tokens to zero for long-flow packets. Deflecting
only short flows only a few times ensures that the increase
in link utilization and path dilation due to I0FD are modest,
as shown in Section VI-B.

Finally, if 10FD succeeds in dissipating localized conges-
tion then DCQUCN does not kick in (i.e., no ECN marks).
Otherwise (e.g., deflection tokens exhausted), the flows incur
ECN marks which trigger the DCQCN fall-back. To ensure
that TOFD is activated before ECN marks are triggered,
TOFDY's deflection threshold is lower than the ECN threshold,
Owr resulis in Section VI-B show that Dart (DASR and 10FD)
cuts the number of ECN marks, which trigger DCQCN fall-
backs, by 4x (i.e., the fall-back is infrequent; otherwise, Dart
would not perform better than DCQCN).

C. Failures Under IOFD

Because each deflected flow’s meta-state is distributed
across multiple routers” DFT's, router failures must be correctly
handled. To understand how IOFD handles router failures,
let us consider how conventional RDMA handles failures.
The back pressure of InfiniBand/RDMA networks ensures that
packets queue up at upstream routers (and do not get dropped).
The neighboring routers detect a failed router and propagate
that information back to senders and etfectively cause the
in-flight packets to be dropped. For reliable (i.e., RC) com-
munication, the senders must re-transmit the messages whose
completion evenis have not been received). This approach
carries over to IOFD without changes irrespective of whether
flows have been deflected. As in the baseline case. flows
blocked by failures are not allowed to locally reroute around
the failed routers (which could cause ordering violations).
Instead, all such blocked flows are effectively dropped and
must be re-transmitted by the senders.

V. SMALL-SCALE MEASUREMENTS

Dart has two key componenis: DASR which does not
need any hardware swilch changes and 10FD which does.
Accordingly, we implement DASE in our small testbed as
we lack access to datacenter-scale networks (this section).
Because hardware changes are hard to implement for a paper,
we simulate TOFD, and the full Dart, at datacenter scales using
ns-3 (Section VI-A),

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS 39

DUpdate 'n' (1)
L Begin Burst
(t}
3 ACK with new ‘n’
(t:)

Fig. 8. DASR convergence lime measurement.

(3 ACK with new '
t,)

ial marker

packet (1)

=

Our testbed consists of 20 nodes, each consisting of four
eight-core AMD Opteron 6320 CPUs running at 2.8 GHz and
256 GB of memory, which connect to a 36-port Mellanox
SX6025 InfiniBand swilch using Mellanox ConnectX-3 Pro
HCA. The switch provides bidirectional bandwidth of 56 Gbps
per port. All the nodes run RHELS.T (kernel version 2.6.32)
and Mellanox OFED 3.3-1.0.4.

We conduct one experiment to evaluate DASR's con-
vergence (Section V-A) and another to evaluate DASR's
performance in the presence of incast (Section V-B). lmple-
menting DASR in our testbed via firmware changes on propri-
etary NICs is infeasible without vendor support. Fortunately,
because we do not have multiple applications in our lest-
bed, we implement AUSS in the application layer, in which
senders and receivers exchange n values using application-
level acknowledgements. Further, we evaluale accelerated
DASE only using simulations, and not in our testbed.

A. DASR's Convergence

We answer two key questions: (1) whether DASR converges
to fair share bandwidth, and (2) whether it converges fast.
We use two senders (Figure 8) — a long-flow sender (LFS)
and a short-flow sender (SFS) — and a receiver (R). While
LFS continuously sends to B, SFS starts a new transmission,
taking {; to reach R, which then takes {.p, to recalculate
the new n value. Finally, the updated n value is received
at both SFS and LF5S, which then adjust their sending rates,
all of which takes i;. The convergence time is the sum of
ty, topy, and ty. However, because the key events occur at
different servers with independent clocks, the ime components
cannot be determined accurately from the events. Therefore,
we map the multi-server events into meaningful single-server
measurements at R First, instead of measuring { r, we measure
t'. for a specially-marked message from LF5S to R indicating
lﬂal LFS has seen the new n value. {; and ¢/, are equal because
SFS and LFS are equidistant from R and those paths are not
congested (if anything, LFS to R may be loaded more than R to
SFS so that #} > ¢; making our measurements conservative).
Second, upon receiving SFS°s first message at R, we measure
tepu, tp, and t}, which also add up to the convergence time.

LFS constantly sends 64-KB messages to R. Later, SFS
sends periodic bursts, during which both SF5 and LFS drop
to 50% of the line rate. Each burst consists of 32K messages
of 64 KB each. We define the time 1o send such a burst as an
epoch. We measure throughput for groups of 1K messages
because per-message bandwidth measurement is extremely
noisy. SFS, LFS and R mn on separate nodes.

Figure 9(a) plots LFS’s throughput (Y-axis) over time in
epochs on the X-axis. The vertical grid lines correspond to
5F5's bursts. In the absence of contention, LFS achieves
43 Gbps which is the peak throughput achieved in our testbed

a5 100k -

o=
=

Thrcughgas (Ships|
[T
5 5 W
ummulathee fraction e
PN
5 =
I

=Dar
= =Hardwais Darl

b
=]

=]
I

10 Fal EL) 4l 1]

Corrergence 1imelgl

IEpm:hn:'
|21 Throughput

Fig. 9. Testhed measurements of DASR converzence,

(k] Absolute comergence time

for our message/baich size. However, when SFS sends its
periodic traffic, LFS near-instantaneously throttles itself to
approximately half the sending rate (22.5 Gbps). As soon as
SFS stops, LFS goes back 1o the maximum rate. We measured
IK bursts from SFS (which are seen as troughs in LFS’s
throughput) but show only five to avoid clutter.

Figure 9(a) is not a good indicator of the absolute conver-
gence time because the throughput is averaged over groups
of 1K messages. As such, we directly measure DASR's
absolute convergence times in each of the 1024 epochs.
Figure 9(b) shows the distribution (solid line) of our 1K
measurements of the convergence times (in ps on X-axis).
The 90, 99" and 99.9%" percentile convergence times
are 28 ps, 41 ps, and 44 ps, respectively. The unloaded
RTT is 15 p=. In contrast to DASR's one-RTT convergence,
TIMELY s convergence takes 50 1-ms RTTs. Figures 18 and 2
in TIMELY [13] show 50-ms convergence and the worst-
case RTT to be 1 s, respectively. Similarly, RCP [29] and
ExpressPass [31] require several RTTs to converge: we study
their convergence in Section VI-D.

The above convergence time is for our DASR implemen-
tation which maintains the AFS in software (Section 11I-B).
We also show a dashed line in Figure 9(b) which depicts
the convergence time for a NIC hardware implementation
of DASR. Here, RDMA's built-in completion queues notify
a sender that communication is complete which is faster than
in software. Then, our convergence time would approach the
hardware-RTT (12 us).

B. DASR's Incast Performance

We compare the completion times of short, incast flows
and throughput of long, background flows of InfiniBand
and DASR. We initiate short 256-KB incasts from a group
of servers every 100 ms to an aggregator server. Meanwhile,
we send continuous background traffic from another server to
the aggregator. We introduce random jitter of 0-100 gs among
the incast senders in each round. While InfiniBand uses its
congestion control [8], we implement DASR’s rate control by
staggering the messages in time at the application layer. Here,
we do not compare to DCQCN or TIMELY which require NIC
firmware changes and special timer hardware, respectively; we
simulate them in Section VI-A,

Figure 10 shows the median and tail (99" percentile)
flow completion times of DASR and InfiniBand (Y-axis), for
varying incast degrees (X-axis). As expected, higher incast
degrees lead to longer flow completion times and even longer
tails. DASR reduces the medians and tails by 2.5 - 3.3x.
DASR’s reductions in the tails are close to those in the medians
because the tails are only about 1.2x longer than the medians

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

330

--@—jnfimBard imsdmn) - ®--0A85A imedsn)
_ =s=lnlini Bard (96 %] =s=0A5R (98h %)

——nfiniand —DASR

>

20 l

Lno%
Bdri
&l

s

Curnmularse fracsbon

Flow compisson bims ()
s EEEZEER

200 g am 500
Flow Completicn Timelas)

{bp COF of Tiow comgiation Bmas

L] 1

2
Incpal degeres
(8) Migcian and 8% %-le fow complalion Sma

Fig. 10. Testhed flow completion latency.

in InfiniBand due to our testbed’s (small) scale. As the tails
grow at datacenter scales (e.g., 5-10x of the median), DASR
achieves greater tail reductions (e.g., 5x in Section VI-B).
Figure 10(b) shows the flow completion time distributions of
InfiniBand and DASR for the incast degree of 16. As compared
to InfiniBand, DASR reduces the spread and shifts the curve to
the left. Both DASR and InfiniBand achieve similar throughput
{within 0.5%) for long flows {not shown).

V1. AT-SCALE SIMULATIONS

We evaluate Dart ., DCTCP (includes OS overheads),
DCOQCN, and TIMELY using typical datacenter traffic
patterns [14].

A. Simulation Methodology

Simulared Nerwork: We simulate a datacenter with
1024 hosts that are connected in an over-subscribed Clos
topology [41]. As per common practice, we use (1) an over-
subscription factor of 4 [10], (2) 10 Ghps point-to-point links
with a propagation delay of 5 us so that the longest path is
6 hops or 30 ps, and (3) shallow, 225 KB switch buffers
and accordingly the ECN threshold of 22.5 KB (ie., 10%
of the buffer size) [47], [48]. To utilize all the fat tree
paths, we enable Equal Cost Multi-Path (ECMP) routing. Dart
adaptively deflects packets, in addition to ECMP.

Workload: We model our workloads based on real data-
cenler production traffic characteristics [14] and similar to
TIMELY’s [13]. Section 4 in [14] lists MapReduce and
Web applications as the applications that create the traffic.
Specifically, we follow both the flow size distribution as
well as the background/foreground tratfic mix from [14].
To model background traffic (e.g., Web Index update), each
server initiates a long flow of size 1 GB with a randomly-
chosen receiver. Our foreground traffic that models interactive
applications uses short flows of size uniformly chosen among
[2KB.4KB, and 8 K B} with a default incast-degree of 16
{varied later). Further, groups of randomly-chosen servers send
to randomly-chosen receivers causing multiple incasts which
are typical (e.z., in Web Search). Further, we vary both the
overall network load and the split between background (long)
and foreground (short, incast) flows,

DCTCP:; Our DCTCP implementation is built over TCP
New-Reno. We set the initial congestion window to be 10 seg-
ments and the re-transmit timeout to 10ms (typical). We model
an 08 overhead of 300 ps for each data transfer and calibrate
our DCTCP latencies to match those reported by DCQCN.

TIMELY: We implemented TIMELY on ns-3 where the RTT
measurements are precise (i.e., we avoid the measurement
issues discussed in the TIMELY paper). While TIMELY

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

uses 64-KB sepments to amortize the cost of NIC offioad
which is not modeled in ns-3, we use smaller 1460-byte
segments which provides finer rate control and only improves
TIMELY s performance in our runs. To reduce implementation
complexity, we use a window-based implementation which
sets the window size based on TIMELY's desired sending
rate. We set TIMELY"s parameters as per the TIMELY paper:
Tiow = 50 ps, Thign = 500 pes, 0 = 1 Mbps, and 7 = 0.8,
We also modeled Hyperactive Increment (HAT) for flows to
quickly ramp-up their rates.

DCOCN: DCQCN utilizes ECN to infer congestion, sim-
ilar to DCTCP but with different thresholds. On receiving
ECHN, our simulated receivers run the MNotification Point
(NP} algorithm and generate Congestion Notification Pack-
ets (CNP) back to the sender if needed using high-priority
queues. The receivers generate at most one CNP packet every
S0ps, as specified by DCQCN. On receiving a CNP packet,
the senders calculate their target rate based on DCQCN's
Reaction Point (RP) algorithm. Following DCQCN's rec-
ommendations, we set the exponential averaging factor, g,
to 1,256, the byte counter and Timer to be 10 M B and 55 s,
respectively. Flows starl at the line rate (i.e., there is no slow
start). Finally, similar to TIMELY's HAIL there is a hyper-
increase phase to quickly ramp-up the sending rates.

Dart : Dart leverages DASE and starts flows at the full
line rate (Section [II). We use an 8-entry deflected flow table
(DFT); because we enable 1OFD only for short flows (i.e., 2 -
& KB flows), only a few misrouted flows co-exist at a switch
(Section TV-A). To ensure that the light-weight TOFD occurs
before the ECN-hased heavy-weight response (Section 1V-B),
we sel the deflection threshold to be 15 KB (ECN threshold is
22.5 KB). Because we experimentally found that our I10FDs
benefits diminish after four misroutes, we set the deflection
token count to be 4 (Section I'V-A).

To avoid congestion in the reverse (i.e., ACK) path for
ECN marks in DCTCP and DCQCN, RTT measurements in
TIMELY, and » values in Dart, we use high-priority queues
only for ACEs, as suggested by TIMELY.

B. Latency and Throughput

Figure 11 plots the 99" percentile flow completion latency
(Y-axis) for all the schemes (individual curves) under various
load mixes using 8-KB short flows (the three sub graphs)
and load levels (X-axis). We show the B-KB flows out of the
mix of 2-, 4-. and 8-KB flows as described in Section VI-A;
we cover the others in Section VI-C. Note that the scales of
both axes are different for the subgraphs because the network
saturates differently across load levels. Figure 12 is similar to
Figure 11 but it shows the median latency on the Y-axis.

Latency: For the typical load-mix (40% short flows, 60%
long flows), as shown in Figure 11{a), Dart consistently
achieves the lowest tail latency at the pre-saturation loads
of 20% and 40% with a mean reduction in tail latency of
82% (5.6x): the range varies from 79% — 89% reduction over
all the other schemes. Dart’s (mean) reduction in tail latency
is T9% (4.8x) when compared with DCQCN and TIMELY
(i.e., ignoring DCTCP). Dart’s DASE avoids iterative con-
vergence for receiver congestion to arrive accurately and
quickly — in one RTT - at the appropriate sending rate.

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS 331

(bh Light Mix (105 short / 90% long)

F 0y 18) Typical Mix (40% short/ 60% long) g T L (€1 HEAVY Mix (70% short ! 30% long]
¥ =2 —
pe s.:'_’af = e e - = auoco -4-DCTCP
g /4 g e 5o el & TIMELY
3 o000 J;? 3 oo e 3 20 o -x-DGOCN
. e = e
I uw e | 2 = s Bt | et = & 10000 - Dart
£ o .__....—-—""'H g . i "
] @
20 40 a0 = 20 40 &0 a0 20 40
Load (%) Load (%) Load (%)
Fig. 11. 99*" percentile flow completion latency,
F ya0p () Typical Mix (40% short /60% long) () Light Mix {10% short 90% long) F ygqq \C) Heavy Mix (70% short 30% lang)
L — i = 6on e R . N % - '___,..-4 ~k-DCTOP
] :$ PR o e H:::. ?4@ i - ’;?_,u“ —& TIMELY
5 227 & 30 . . § o i =%=DCOCN
5 mo '._-_-__f_tﬁi—-‘—"" = | e e 3 & - —+Dart
T 200 g 100 - E
] V] E] i o
= =
0 40 [214] = 20 40 &l 80 20 40
Load (%) Laad (%) Load (%)
Fig, 12 Median flow complation latency.
. {a) Typical Mix (40% short/60% lorg) _ (b} Light Mix (10% short'80% long) _ {c) Heavy Mix [T0% short!30% lang)
g4 26 g3 o TIMELY
=] Fal
23 @ 4 24 r-’”‘,‘ & DCTCP
i 2 § i - -w-DCCN
& = 2 51 s —=Dart
g 2 3 e i
£0 £ E0
20 40 &l 20 40 &0 Bl 20 A
Load (%) Load (%) Load (%)
Fig. 13. Throughput.

We found that 72% of ECN marks in DCTCP occur at the
ToR-receiver links confirming the key result that receiver con-
pestion is the common case [14]-{20]. Further, Dart’s IOFD
provides quick response to avoid spatially-localized in-network
congestion. Thus, Dart’s divide-and-specialize approach using
these two techniques achieves lower latency than TIMELY
and DCQCN. Further, Dart delays the point of saturation past
60% load where DCQCN, TIMELY, and DCTCP saturate.
DCQCN and TIMELY are similar because both rely on
iterative convergence of the sending rates differing only in
the congestion signals (ECN marks versus RTT measurements
as mentioned in Section II-B); their median latencies and
throughputs differ more (analyzed later). As expected, both
are better than DCTCP, which incurs high operating system
{O8) overhead avoided by the other schemes.

Figure 11 (b) and (c) illustrate the behavior when the load
mix is made lighter or heavier, respectively, in terms of short
fows (incasts). For the light load mix (Figure 11(b)), DCQCN,
TIMELY, and Dart perform comparably because there is not
much room for improvement. Due to its high OS overhead,
DCTCP’'s latency penalty remains qualitatively similar to that
for the typical load mix. For the heavy load mix (Figure 11{c)),
Dart achieves T7% to 83% lower tail latency than the previous
schemes. Further, while the previous schemes saturate above
20% load, Dart’s latency increase is more modest as Dart
extends the point of saturation.

One trend across the load mixes is that the network
saturates earlier at higher short-flow fractions. This trend is
not surprising as short flows do not offer sufficient time to take
reactive action. (On the other hand, proactive methods such
as slow-start would introduce unnecessary latency for short
Nows.)

Dart achieves significantly lower median latency at all load
levels and load mixes as well (Figure 12). On average, Dart
achieves 30% (1.4x) lower latency than DCQCN and TIMELY
and 66% (3x) lower latency than DCTCP for the typical load
mix. For the light mix and the heavy mix (Figure 12{b) and
Figure 12{c), respectively), the latency reductions are 36%
and 29%, respectively. Dart’s improvements in median and
tail latencies are higher here than in our testbed experiments
(Section V-B) primarily because the larger scale provides more
opportunity. DCQCN and TIMELY differ modestly in the
median latencies in some cases. Median latency reduction
indicates throughput improvements, as we see next.

Throughput: Figure 13 shows the throughput achieved for
the same set of load levels and load-mix ratios. Figure 13(a)
shows that Dart consistently outperforms the DCQCN and
TIMELY. The mean improvement in throughput is 48% and
68%, (mean across all load levels) over DCQCN and TIMELY,
respectively. DASR’s accurate and one-RTT convergence is
the key reason for Dart's higher throughput. IOFD directly
improves only the latency and affects the throughput only
indirectly by avoiding DCQCN fall-back which would cut
the sending rates. As with latency, DCQCN and TIMELY
outperform DCTCP in throughput due to DCTCP's OS5 over-
heads. With the heavy mix (Figure 13(c)). Dart is 173% better
(on average) than DCQCN and TIMELY. This improvement is
not surprising as both DCQCN and TIMELY saturate at such
heavy loads. Though the relative ordering with the light mix
(Figure 13(b)) remains the same as that with the typical mix,
the absolute throughputs are higher, as expected. We see the
correspondence between Dart’s median latency and throughput
at high loads. Like the median latencies of DCQCN and
TIMELY, their throughputs also differ slightly.

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

332

TABLE I
SHORT-FLOW PACKETS WITH ECN MARKS
Traffic mix | Typical Mix Light Mix Heavy Mix
! Load T4 aD [20 40] 60 [8O [20 40
DCOQCN 1741 |67 | 5 [14| 36 | 48 | 233 70
Dart 6|11 [14 4 | 9 |21 |28) 9 18
TABLE Il
TOFD'S LOAD INCREASE AND PATH DILATION (%)
Traffic mix Typical Light Heavy
/ Load 40 20 | 40 | 60 20 | 40
. Load 3 (] 9 | 04 | O8] 14 | 3 | 11|15
increase
Path
dilation B [15]23) 4 & 14 | 26| 15 | 21

Fall-Back to DCQCN: To evaluate DCQCN fall-backs in
Dart, Table | shows the percent of short-flow packets with
ECN marks under DCQCN and Dart. Because long flows are
not latency-critical, we focus on short flows. As expected,
both schemes incur more ECN marks as the load increases.
However, Dart cuts the number of ECN marks by more than
4x at higher loads in typical and heavy mixes (i.e., significant
fraction of short flows) where there is more congestion. These
results (1) show that by filtering out receiver congestion and
localized in-network congestion, Dart drastically reduces the
number of DCQCN fall-backs and (2) reconfirm that these
congestion components are significant,

Load Increase and Path Dilation Due to TOFD; Table 11
shows the percent increase in (a) network load and (b) short-
flow path length under IOFD relative to DCOQCN. Both the
load and path dilation increase with more short flows ((ie.,
light < typical < heavy) and at higher loads. For typical
and heavy mixes, Dart increases the network load by 7%
{geometric mean over the load settings) and dilates short-low
paths by 16% which is roughly one hop (our topology has
5.8 hops on average). Thus, Dart incurs a modest amount of
network load to reduce congestion delays significantly.

C. Isolating Dart's Techniques

We quantify the relative contributions of Dart’s two tech-
niques: DASR and IOFD. Figure 14 plots Dart’s 99'" per-
centile flow completion latency for the 8-KB short flows
normalized to that of DCQCN (Y-axis) for the typical load
mix (i.e., 40% short flows and 60% long flows) at various
load levels (groups of bars along the X-axis). In addition
to Dart, we quantify the benefits of DCQCN with priority
queucs using two priority levels to prioritize short Qows over
long flows (Pri-(), LOFD without DASR. (fOFD-only), DASR
without 1OFD or the look-ahead optimization in Section 1I-D
(DASR wie LA), and DASE with look-ahead but without IOFD
(DASR-oniy).

As we see from Figure 14, Pri-() does not improve latency at
low loads where the long flows do not cause much congestion
and hence provide limited opportunity. At higher loads,
Pri-) improves latency as expected. However, the
improvement is limited because Pri-Q does not alleviate
congestion among short flows, and, therefore, performs worse
than 1OFD-only and DASR-only, our key techniques. 10FD
and DASR specifically address congestion among short
flows — TOFD addresses localized congestion, whereas

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

= DODCOCN OFr-Q @810F0-only @DASE (wie LA) BDASR-only B Dart
1.0

i k-]

308 |

* 04 %]

E ||ﬂ _ | 'NIEy - \
E oo %l b I E—

20 40 60
Load (%]
Fig. 14. Isolating Darl's technigues.

DASR addresses receiver congestion. Three key trends
regarding the relative benefits of DASR and TOFD are
apparent in Figure 14. First, at the intermediate load of 40%
(middle bars), each of DASR (including the look-ahead) and
IOFD contribute to Dart’s improvements. DASR contributes
more because receiver congestion is the common case
(Section VI-B). Further, the difference between DCQCN and
10FD-only shows that l1OFD can handle localized congestion
without triggering DCQCN fall-back (Section TV-B). Second,
at lower loads (left bars), most of the gains come from
DASR which effectively protects the short flows from the
long flows (79% of the 84% total latency reduction). This
result is not surprising because in-network congestion is less
likely at lower loads. The sizable ditference between DASR
wio LA and DASR-only shows the look-ahead’s impact. In the
absence of localized congestion, the oppormnity for 1OFD
is lower; as such [OFD-only contributes only 31% latency
reduction in isolation, and approximately 21% incremental
latency reduction over DASE-only. Finally, in contrast to the
low-load results, I0FD contributes relatively more to the
overall latency reduction at higher loads, where in-network
congestion is more likely (79% of the 93% total latency
reduction at 60% load). IOFD handles even this higher
congestion without falling back to DCQCN. DASR-only's
relative contribution is smaller than TOFDYs (779 latency
reduction in isolation, and 35% incremental latency over
TOFD-only). The median latencies follow the same trends.
The effectiveness of DASR-only and JOFD-only illustrate the
power of Dart’s divide-and-specialize approach.

Sensitivity: We varied the deflection threshold
(Section TV-B) as 5, 15 (default) and 20 KB. TOFD
works well in the range of 5-15 KB, whereas the 20-KB
threshold being close to the ECN threshold (22.5 KB) results
in 10OFD being disabled. We also varied the short-flow sizes
as 2, 4 and 8 (default) KB. Dart’s improvement across these
flow sizes match those in Figure 11. Finally, we varied the
incast degree as 6, 16 (default), and 26. At higher incast
degree, Dart’s latency improvement over DCQCN increases.
However, at 60% load and incast degree of 26, the network
saturates leaving no room for Dart. These results are not
shown due to lack of space.

0. Comparison to RCP and ExpressPass

a) Comparison to RCP: We study RCP's convergence
using an ns-3 implementation [49]. We simulate a simple
topology with three servers that connect to a single switch.
The topology uses 10 Gbps links with a delay of 5 us,
matching today’s datacenters. We set RCP's main parameters,
a=10.4 and 3 = 0.4, as recommended [29], [50].

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS 333

£ : ™ Flaw 1 g z —Flow 1
5] Y Flaw 2 o Flow 2
381 N — ¥ 5] e}
B 4 F Ly % 4 4 :
H 24 :
E E : E P |
T 0 1020 30 40 §0 5O 7O 80 0 10 20 30 40 50 &0
Tirne (RTT units) Tirne (RTT unils)
Fig. 15. Comvergence time for RCP and Dart.

We compare how fast RCP and Dart converge to the fair-
share rate of 5 Gbps for the simple case of receiver congestion
with two flows. In our experiment, the second flow starts after
the first flow. Figure 15 shows time, in RTT time units, along
the X axis and the throughputs achieved by the two flows for
RCP (in Figure 15(a)) and Dart (in Figure 15{b}), along the
Y axis. Because RCP does nol explicitly count flows,
it requires about 60 RTTs to converge (i.e., the second flow
joins at about 15 RTTs but the rate does not converge to
5 Ghps until 75 RTTs). In contrast, Dart converges in 1 RTT
by explicitly tracking the number of senders at the receiver.

b) Comparison to ExpressPass: We obtained the
ExpressPass [31] simulator from the authors. We found that
while ExpressPass converges in 4 RTTs for two senders
and two receivers in a simple dumbbell topology (matches
ExpressPass paper’s results), it takes 20 RTTs for 10 senders
and one receiver in the fal tree topology used in the paper
i{the paper does not show this case). In the former case,
convergence is effected by fair queuing of credit packets at
the switch where the two flows collide, whereas the latter
case converges using ExpressPass’s BIC-TCP-like algorithm,
which is iterative and slow,

VII. RELATED WORK

Because we have discussed DCQCN, TIMELY, NUM-
Fabric, ExpressPass, and NDP at length in earlier sections,
we focus on other work related to our key technigues — DASR
{congestion control) and TOFD (load balancing),

DCTCP [9]. a pioneering work in dalacenler transporl
protocols, finely modulates the sending rate by observing
ECN marks in each RTT and nearly eliminates incast-induced
timeouts. D?*TCP [51] builds upon DCTCP to prioritize flows
based on deadlines. TCP Bolt [48] uses flow-level congestion
control via ECN to address PFC's limitations. ICTCP [52] iter-
atively adjusts the TCP receive window before incast-induced
packet drops. Like DCQCN and TIMELY, all these TCP vari-
ants incur several RTTs (i.e., tens or hundreds) to converge to
the appropriate sending rate. In RCP [29], another pioneering
work, routers explicitly convey the fair share rate to the senders
that share a link. However, because RCP routers don’t have
per-flow state and many short flows begin and end in each
RTT, RCP's convergence is iterative and takes many RTTs,
D3 [53] and PDQ) [54] employs explicit rate control to priori-
tize critical fows. For the same reasons as RCP, D3 and PDOY's
convergence requires several RTTs. pFabric [47], Karuna [55],
UPS [56] and pHost [37] address flow scheduling but their rate
control is still iterative. Eye(} [15] leverages RCP to provide
weighted fair share in multi-tenant datacenters but inherits
RCP’s iterative convergence. QCN [58] provides end-to-end
congestion control for RDMA in Layer2 but not in TP-swilched
datacenter-scale networks. TRN [40] adapts ideas from

I-WARP to avoid the problems associated with PFC. Unlike
DASR, none of the above work isolates receiver congestion to
achieve fast, one-RTT convergence. DIATCP [59] is a receiver-
based rate control protocol where each sender informs the
receiver of the message size and deadline so that the receiver
calculates the per-sender sending rate accordingly. Though
DIATCP can achieve one-RTT convergence, its calculation
requires an a priori globally-common RTT which is achieved
by artificially delaying acks. In a DC setting, such delay
would force all fows to have the same RTT as the tail,
which is often 2-5x longer than the median [9]. In contrast,
Dart sends only the sender count to the senders each of
which then flexibly and locally arrives al a sending rate based
on the currently-observed, individual RTT. Apart from this
fundamental difference. while both Dart and DIATCP use
timeouts (Section Ill-B) they do so for different purposes.
Because RDMA has explicit message start/end markers, Dart
does not need to use timeouts for message ends. Instead,
Dart uses timeouts for infrequent, catastrophic events like
crashes. In contrast, DIATCP uses timeouts to detect idling
because TCFP does not have message start/fend markers. Thus,
Dart's mechanisms are optimized for RDMA unlike DIATCP.
Because flow idling is more frequent than crashes, DIATCP's
timeouts can affect performance — a timeout being too short
means delayed flow completions and being too long means
wasled throughput. Further, each sender in DIATCP provides
its deadline and message size to the receiver at the time of
establishing the connection. This exchange occurs before each
flow starts, but not necessarily before the start of all the other
flows in an incast group. As such, DIATCP cannot know the
correct rate before all the flows start. In contrast, DASR's
lockahead (Section [1I-D) is based on the application where
all the flows in an incast group know before any of them start
that they are a part of an incast group. Thus, DIATCP does
not achieve DASR's lookahead,

Among load balancing schemes, MPTCP [21], [60] splils
a TCP flow into many sub-flows that may be routed inde-
pendently along ditferent paths. FlowBender [25] proposes
re-hashing at end-hosts to change flow paths. Presto [26]
splits large flows into equal-sized flowcells and uses a central
scheduler to balance the load. DeTail [24], Random Packet
Spraying [23], and DIBS [28] balance load at the finer
granularity of packets. Recent schemes [61], [62] improve load
balancing but they also require reordering at the receiver. In
contrast to these above schemes all of which reorder packets
which is not supported by EDMA, 1OFD is designed to deflect
without packet reordering. SPAIN [22] and CONGA [27]
also avoid packet reordering. However, SPAIN pre-computes
multiple paths which are mapped to different VL ANz but such
precomputation may be slow in reaction to short flows in
a datacenter. CONGA uses global congestion information to
load balance at the granularity of flowlets. However, CONGA
works only with two-tier leaf-spine topology and does not
scale to large datacenters.

VIII. CoNCLUSION

RDMA can significantly reduce datacenter network laten-
cies compared to TCP but provides suboptimal end-to-end
congestion control for the well-known problem of incasts.

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

334

Previous schemes target the full generality of the conges-
tion problem and rely on slow, iterative convergence to the
appropriate sending rates. Several papers have shown that
even in oversubscribed datacenter networks most congestion
occurs at the receiver. Accordingly, we proposed a divide-and-
specialize approach, called Darr, which isolates the common
case of receiver congestion and further sub-divides the remain-
ing in-network congestion into the simpler spatially-localized
and the harder spatially-dispersed cases. To address receiver
congestion, we proposed direct apportioning of sending rates
(DASR) in which a receiver for n senders directs each sender
to cut its rate by a factor of n. DASR converges in only
one RTT. For the spatially-localized case. Dart adds novel
switch hardware for in-order flow deflection (IOFD) because
RDMA disallows packet reordering on which previous load
balancing schemes rely. IOFD provides fast (under one RTT),
light-weight response. For the uncommon spatially-dispersed
case, Dart falls back to DCQCN. Our small-scale testbed
measurements showed that Dart converges in one RTT and
achieves 60% (2.5x) lower tail (99*"-percentile) latency than
and similar throughput as InfiniBand. Our at-scale simulations
showed that Dart achieves T9% (4.8x) lower tail latency,
and 58% higher throughput than TIMELY and DCQCN.
As datacenter networks evolve towards adopting RDMA 1o
avoid TCP's overhead, Dart's superior latency and throughput
characteristics are likely to be attractive.

REFERENCES

[11 1. Liu, J. Wu, and D. K. Panda, *High performance RDMA-based
MPI implementation over infiniband,” fnt. . Paraile! Prograom., vol. 32,
ne. 3, pp. 167—198, Jun. 2004, doiz 10.1023/B:1IPP.OOM29272,
GOBGS.c1.

H. Lim, . Han, D, G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage.” in Proc. [fth USENIX
Confl. Netw, Svsi. Design Implement. (NSDM). Berkeley, CA, USA:
USENIX Association, 2014, pp. 429-444. [Online). Available: hup:idl
acm.orgfcitation.cfmTid=261 644826 1 K488

C. Milchell, ¥. Geng, and 1. Li, “Using one-sided RDMA reads
o build a fast, CPU-efficient key-value store,” in Proc. USENIX
Conf. Anmw. Tech, Conf (USENIX ATC). Berkelay, CA, USA:
USEMIX Association, 2013, pp- 103114, [Omline]. Available: h.l.lp:ffl:ll.
acm.orgfoitation.cfmTid=2535461.2535475

A, Dragojevic, D. Narayanan, 0. Hodson, and M. Castro, “Farm: Fast
remate memory.” in Proc, 71th SENTX Svmp. Netw, Svst, Design Tmple-
ment. (NSDM). Ei:‘rte]e‘].r. CA, USA: USENIX Association, Apr. 2014,
[Online]. Awvailable: hitpefresearch.microsoft.com/apps/pubsidefault.
aspy Hid=208395

A, Kalia, M, Kaminsky, and T, G. Andersen, “Tsing RDMA efficiently
for key-value services” in Proc. ACM Conf. (SIGCOMM). New York,
NY, USA: ACM, 2014, pp. 295-306, doi: 10.1145/2619239.26262499,
1. Jose &t ai., “Scalable memcached design for infiniband clusters using
hybrid transports” in Proc. f2th TEEEACM Int. Svmp. Cluster, Cloud
Grid Comtput. (Cegrid). Washington, DC, USA: IEEE Computer Society,
2012, pp. 236243, doi: 10,1 10WCCGAd. 2012141,

E. G. Gran et al., “First experiences with congestion control in infiniband
hardware,” in Proc. JEEE fnf. Symp. Parallel Distrib. Process. (IPDPS),
Apr. 2010, pp. 1-12.

0. Crupnicoff, 5. Das, and E. Zahavi, “White paper: Deploying qual-
ity of service and congestion control in infiniband-based data center
networks,” Mellanox Technol., Sunnyvale, CA, USA, Tech. Rep. 2379,
Mowv, 2005.

M. Alizadeh et al, “Data center TCP (DCTCF)L" in Proc. ACM
SIGCOMM Conf MNew York, NY, USA: ACM, 2010, pp. 63-74,
doi: 10.1145/1851182.1851192.

M. Al-Fares, A, Louokissas, and A, Vahdat, “A scalable, commodity
dats center network architecture,” in Proc. ACM SIGCOMM Confl Data
Commmun. New York, NY, USA: ACM, 2008, pp. 63-74, doi: 1001145/
1402958, 1402967,

[2

[3]

[4]

[5

6]

[

[3]

191

1o

IEEESACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FERRUARY 2020

[11] €. E. Leiserson, “Fai-trees: Universal networks for hardware-
efficient supercomputing,” [EEE Trans, Compatr, vol. C-34, no., 10,
pp. 892901, Oct. 1985, [Online]. Available: hitpeffdl. sem ongfoitation.
cim7id=4492.4495

Y. Zhu et al., “Congestion control for larpe-scale RDMA deployments,”
in Proc. ACM Conf. Special Interest CGroup Data Conmun. (SIGOOMM).
Mew York, NY, USA: ACM. 2015, pp. 523536, doi: 10.1145/27T85956.
2TET484.

R. Mittal er al, “Timely: RTT-based congestion control for the dat-
acenter,” in Proc. ACM Confl Special Interest Group Data Covmmin,
(SIGCOMM). New York, NY, USA: ACM, 2015, pp. 537-550,
doi; 10.11452785956.2787310,

T. Benson, A, Akella, and D, A, Maltz, “Metwork traffic characteristics
of data centers in the wild,” in Proc, Tlth ACM SIGCOMM Conf,
Intermet Meas. (IMC). New York, NY, USA: ACM, 2010, pp. 267280,
doi: 10,1145 187914118791 75.

V. Jeyakumar, M, Alizadeh, D. Mazigres, B. Prabhakar, C. Kim, and
A. Greenberg, “Eye(): Practical network performance isolation at the
edge.” in Proc. J0h USENIX Conf. Netw. Syst. Design Implement.
(NSDI), 2013, pp. 297-312.

Q). Zhang, V. Liu, H. Feng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursis” in Proc. fnfernel Meas. Confl
(IMC). New York, NY, USA: ACM, 2017, pp. 78-85.

M. Handley ef al., “Re-archilecting datacenter networks and stacks for
low latency and high performance.” in Proc. Confl ACM Special fnterest
Group Data Commun. (SIGCOMM), New York, NY, USA: ACM, 2017,
pp- 2942

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc, ACM Conf Special
Interest Grouwp Data Conmre. (SIGCOMM). New York, NY, USA:
ACM, 2015, pp. 123-137.

A, Singh et al, “Jupiter rising: A decade of clos topologies and
centralized control in Google's datacenter network,” in Proc. ACM Conf.
Special fnferest Group Dalg Comprnn. (SIGCOMM). New Yook, NY,
USA: ACM, 2015, pp. 183-197.

5. Kandula, 5. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measuremenis & analysis.” in Proc
Grh ACM SIGCOMM Conf. Internet Meas., (TMC). New York, WY, USA:
ACM, 2009, pp. 202-208.

C. Raiciu, 5. Barre, C. Pluntke., A. Greenhalgh, D. Wischik., and
M. Handley, “Improving datacenter performance and robustness with
multipath TCPE" in Proc. ACM SIGCOMM Conf. (SIGCOMM).
Mew York, NY, USA: ACM, 2011, pp. 266-377, doi: 10.1145/2018436.
2008467,

1. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “Spain:
Coits data-center Ethernet for multipathing over arbitrary topologies” in
Proc. Jif USENIX Confl Netw. Sysi. Design Implemeni. (NSDE), 2010,
A. Dixit, P. Prakash, Y. Hu, and R. Kompella, *On the impact of packet
spraying in duts center networks,” in Proc. [EEE INFOCOM, Apr. 2013,
pp. 2120-2138.

[. Zats, T. Das, P. Mohan, D. Borthakur, and R Kste, “DeTuil: Reducing
the flow completion time tail in da@acenter networks,” in Proc ACKH
SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput

[12]

[13]

[14]

[15]

[16]

(171

[18]

[191

(20

[21]

[22]

[23

[24]

T
Mew York, NY, USA: ACM, 2012, pp. 139-150, doi: 10.1145/2342356,
2347390,

A, Kabbani, B, Vamanan, J. Hasan, and F. Duchenz, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” in Proc. 1lth ACM Int. Conf Emerg. Netw. Exp. Technol.,
2014, pp. 149-160,

K. He. E. Rogner, K. Agarwal, W. Felter, . Carter, and A. Akella,
“Prestn: Edge-based load balsncing for fast datacenter networks” in
Proc. ACM Confl Special fnferest Group Data Commuin, (SIGOOMM),
2015, pp. 463478,

M. Alizadeh et al, *Conga: Distributed congestion-aware load balancing
for datacenters,” in Proc. ACM Confl (SIGCOMM), 2014, pp. 503-514.
K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and I. Padhye,
“Dibs: Just-in-time congestion mitigation for data centers.” in Proc. 9ih
Eur. Confl Computl, Svsl. (EuroSys). New York, NY, USA: ACM, 2014,
pp. 616014, doi: 10,1 145/2592798, 2502806,

M. Dukkipati, M. Kobayashi, R. Zhang-Shen, and M. McKeown,
“Processor sharing flows in the Intermet,” in Proc, 13th Tnt Conf,
Qual, Service (TWQ0S), New York, WY, USA: Springer-Verlag, 2005,
pp. 271-285.

K. Wagaraj, D Bharadia, H. Mao, 5. Chinchali, M. Alizadeh, and
5. Katti, *Numfabric: Fast and flexible bandwidth allocstion in data-
centers,” in Proc. C'r?nf. ACM SIGOOMM 'I'__f.lrg,[(SIGCOMM), 2016,
pp. 188201,

[25]

[26]

1271

(28]

[29]

[30]

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2619239.2626299
http://dx.doi.org/10.1109/CCGrid.2012.141
http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/2785956.2787510
http://dx.doi.org/10.1145/1879141.1879175
http://dx.doi.org/10.1145/2592798.2592806
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2018436.2018467
http://dx.doi.org/10.1145/2018436.2018467
http://dx.doi.org/10.1145/2342356.2342390
http://dx.doi.org/10.1145/2342356.2342390

XUE e al.; DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION [N RDMA-BASED DATACENTER NETWORKS

[31]

[32]

133]
[34]
[35]
[36]
[37]
[38]

139]

[40]

[41]
[42]

[43]

[44

[43]

[46]

[47]

[42]

[49]

[507

[51]

[52]

[53]

[54]

[35]

(58]

I. Che, K. Jang, and D, Han, “Credit-scheduled delay-bounded con-
gestion control for datacenters,” in Proc, Conf ACM Special Tnrerest
Grroup Dufa Commun. (SIGCOMM). New York, NY, USA: ACM, 2017,
pp. 239-252,

I. Duato, “A new theory of deadlock-free adasptive mouting in worm-
hole networks” JEEE Trans, Parallel Disieib. Svsr, vol. 4, no. 12,
pp. 1320-1331, Dec. 1993, doi: 10.110671.250114.

P. Bamn, “On distibuted communications networks” [EEE Trans
Cormmtn, Svat., vol. 12, no. 1, pp. 1-9, Mar. 1964,

1. Dean and L. A. Barroso, “The tail at scale” Commun. ACM, vol. 56,
no. 2 pp. 7480, Feb, 2003, doi: 1001145/ 24068776, 2408704,

0. Dunning ef al, “The virtual interface architecture,” TEEE Micro,
vol. 18, no. 2. pp. 6676, Mar/Apr. 1998, doi: 1001109040067 1404,
(2017). Infiniband Trade Association. [Onling]. Availsble: httpeifaaw.
infinibandia.org

(2017). RDOMA wver Converged Ethernet. [Online]. Available:
httpedferww.mellanox. comfpage/products_dynproduct_family="7%
Agilio CX EmartWICS. Accessed: Dec. 28, 20019, [Online]. Availahle:
https:ifwww netronome.comdproducts/agilio-cx

Mellanox Comnecty-3 Product Brief. Accessed: Dec. 28, 2019, [Online].
Availshle: hitpoifeww.mellanox.comérelated -docs/prod_adapter_cards/
PB_ConnectX-5_VPI_Card.pdf

R. Mittal ef @i, “Revisiting network support for RDMA.” in Proc. Conf.
ACM Special Interest Group Daig Commun. (SIGCOMM). New York,
NY, USA: ACM, 2018, pp. 313-326, doi: 10L1145/3230543.3230557.
C. Clos, “A study of non-blocking switching networks,” Beil Labs Tech.
Jowvol. 32, no. 2, pp. 406424, 1953

L. Gan, *On inferring sutonomous system relationships in the Internet,”
TEEEACM Trans. Merw,, vol. 9, no. 6, pp. 733-745, Dec. 2001,

F. Silla and J. Duoato, “Improving the efficiency of adaptive routing in
networks with irregular topology,” in Proc, 4tk Int. Confl High-Perform.
Compat., Dec, 1997, pp. 330335,

S, Huo e al, “Tagger: Practical PFC deadlock prevention in data
center networks,” IEEEACM Trans. Nemw, vol. 27, no, 2, pp. 889902,
Apr, 2009,

W. I Dally and C. L. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” TEEE Trans, Compur, vol, C-36,
no. 5, pp. 347-553, May 1987

8. Hu er al,, *“Deadlocks in datacenter networks: Why do they form,
and how to avoid them,” in Proc. {3th ACM Workshop Hot Toapics Nefw
{HoiNets). New York, NY, USA: ACM, 2006, pp. 92-98, doi: 1001145/
3005745, 3005760

M. Alizadeh et al, *pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Confl SIGCOMM. New York, NY, USA:
ACM, 2013, pp. 435-446, doi: 10.1145/2486001.2436031,

B. Stephens, A, Cox, A. Singla, J. Carter, C. Dixon, and W, Feler,
“Practical DCB for improved data center networks.” in Proc. [EEE
INFOCOM, Apr. 2014, pp. 18241832,

M. Flores, A. Wenzel, and A. Kuzmanovic, “Enabling router-assisted
congastion control on the Tntemnet,” in Proc, TEEE 24th Tnt, Conf. Netw,
Protocoly (ICNF), Nov. 2016, pp. 1-10.

M. Dukkipati, “Rate controd protocol (RCF): Congestion control o make
flows complete quickly,” Ph.D, dissertation, Dept, Elect. Eng., Stanford
Univ., Stanford, CA, USA, 2008,

B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tep (d2tep)” in Proc. ACM SIGCOMM Conf. Appl., Technol, Archit.,
Protocols Comput. Cownrin. (SIGCOMM), 2012,

H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCF: Incast congestion con-
trol for TCP in data center networks,” in Proc. Gtf Int. Conf. [Co-NEXT).
Mew York, NY. USA: ACM, 2010, pp. 13:1-13:12, doi: 10,1145/
1921168.1921 186,

C. Wilson, H. Ballani, T. Karagiannis, and A. Rowiron, “Beller never
than Jate; Meeting deadlines in datacenter networks” in Proc, ACM
SIGCOMM Conf. (SIGCOMM). New York, NY, USA: ACM, 2011,
pp. 50-61, doi: 101145/ 2018436 2018443

C.-Y, Hong, M. Caesar, and F. B, Godfrey, “Finishing flows quickly
with preemptive scheduling” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Archil., Protocols Compui. Contrnun, (SIGCOMM). MNew York,
WY, USA: ACM, 2012, pp. 127-138, doi: 10L1145/2342356.2342389,
L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-lows in
commodity datacenters with karuna™ in Proc. Confl ACM SIGOOMM
Conf. (SIGCOMM), 2016, pp. 174187

E. Mittal, . Agarwal, 5. Ratnasamy, and 5. Shenker, “Universal packet
scheduling,” in Proe, 13th USENTX Conf, Nerw, Svst. Design Tmplement.
{NSDIJ, 2016, pp. 501-521.

[571

(58]

1591

[60]

[61]

[62]

335

F X. Gao, A, Marayan, G. Komar, R. Agarwal, 5. Ratnasamvy, and
5. Shenker, “pHost: Distribited near-optimal datacenter transport over
commodity network fabric” in Proc. [ith ACM Conf. Emerg. Netw:. Exp.
Technol, (CoNEXT), 2015, pp. 1:1-1:12.

(2007). QCN: Quaniized Congesifon Nodification an Overview.
[Online]. Available: hitpefiwanw, ieeeB02 orgll/ffiles/public/docs 2007/
au_prabhakar_gen_overview_geneva.pdf

1. Hwang, J. Yoo, and N. Choi, “Deadline and incast aware TCP
for cloud data center networks” Compur. Nemw, vol. 68, pp. 20-34,
Aug, 2014,

C. Raiciu er al,, “How hard can it be? Designing and implementing a
deployable multipath TCP” in Proc. USENIX Symp. Nefw, Syst. Design
Implemeni. (NSDI), San Jose, CA, USA, 2012,

H. Zhang, I. Fhang, W, Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load halancing in the wild” in Proc, Conf ACM Special
Interest Growp Data Commun. (SIGCOMM), 2017, pp. 253-266.

8. Ghorbani, Z. Yang, F. B. Godfrey, Y. Ganjali, and A_ Firoozshahian,
“Drrill: Micro load balancing for low-latency data center networks.” in
Prac, Conf, ACM Special Tnterest Group Data Commun, (SIGCOMM),
2017, pp. 225-238.

Jiachen Xue received the bachelor's degree in com-
puter engineering from Beihang University in 2006,
the M.5. degree in electrical engineering from Ari-
#ona State University in 2008, and the Ph.D. degree
in computer engineering from Purdue University
in 2017, He currently works as a Senior Distributed
System Enginear at NVIDTA,

Muhammad Usama Chaudhry received the bach-
elor's degree from the National University of Com-
puter Science, Tslamahad, Pakistan, in 2014, and the
M.5. degree from the Computer Science Depart-
ment, University of Hlinois at Chicago, in 2019, He
is currently a Software Engineer with YMware Inc.

Ralajee Vamanan received the Ph.Ty, degree from
Purdue University in 2015. Prior to his Ph.D., he
worked at NVIDLA as a Design Engineer. He is cur-
rently an Assistant Professor with the Department of
Computer Science, University of Tlinois at Chicago
(UIC). His research interests span various aspects of
compuler networks and compuler systems.

T. M. Vijuykumar is currently a Professor with
the School of Electrical and Computer Engineering,
Purdue University, His research interests include
compuler archilecture targeting on varous aspects
of performance, power, programmability. and relia-
bility of computer hardware and systems. Recogni-
tion of his work has received awards inchuding the
1999 NSF CAREER Award, the IEEE Micrm's Top
Ficks on computer architecture papers in 2003 and
2005, being listed in the International Symposium
on Computer Architecture (TSCA) Hall of Fame, and

the First Prize in 2009 Burton D). Morgan Business Plan Competition,

Mithuna Thottethodi received the B Tech. degree
(Hons.) in computer science and engineering from
the Indian Institute of Technology Kharagpur and
the Ph.D. degree in computer science from Duke
University. He is currently an Associate Professor
of electrical and computer engineering with Purdue
University. His research interests include computer
architecture, distributed systems, and networks, He
received the NSF CAREER Award in 2007.

,«A

Authonzed licensed use limited fo University of lllinois at Chicage Library. Downloaded on August 28 2020 at 19:44-29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/71.250114
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1109/40.671404
http://dx.doi.org/10.1145/3230543.3230557
http://dx.doi.org/10.1145/2486001.2486031
http://dx.doi.org/10.1145/2018436.2018443
http://dx.doi.org/10.1145/2342356.2342389
http://dx.doi.org/10.1145/3230543.3230557
http://dx.doi.org/10.1145/3005745.3005760
http://dx.doi.org/10.1145/3005745.3005760
http://dx.doi.org/10.1145/1921168.1921186
http://dx.doi.org/10.1145/1921168.1921186

