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Selection rules for quasibound states in the continuum

Adam C. Overvig®, Stephanie C. Malek, Michael J. Carter, Sajan Shrestha, and Nanfang Yu®!
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027,
UsA

® (Received 19 November 2019; revised 28 May 2020; accepted 24 June 2020; published 24 July 2020)

Photonic crystal slabs (PCSs) are a well-studied class of devices known to support optical Fano resonances
for light normally incident to the slab, useful for narrow-band filters, modulators, and nonlinear photonic devices.
In shallow-etched PCSs the linewidth of the resonances is easily controlled by tuning the etching depth. This
design strength comes at the cost of large device footprints due to the poor in-plane localization of optical energy.
In fully-etched PCSs realized in high-index-contrast material systems, the in-plane localization is greatly
improved, but the command over linewidth suffers. This disadvantage in fully-etched PCSs, also known as high
contrast gratings (HCGs), can be overcome by accessing symmetry-protected bound states in the continuum
(BICs). By perturbing an HCG, the BIC may be excited from the free space with quality factor showing an
inverse squared dependence on the magnitude of the perturbation, while inheriting the excellent in-plane
localization of their unperturbed counterparts. Here, we report an exhaustive catalog of the selection rules (if
and to which free space polarization coupling occurs) of symmetry-protected BICs controlled by in-plane
symmetry breaking in six types of two-dimensional PCS lattices. The chosen lattices allow access to the three
highest symmetry mode classes of unperturbed square and hexagonal PCSs. The restriction to in-plane symmetry
breaking allows for manufacturing devices with simple lithographic fabrication techniques in comparison to out-
of-plane symmetry breaking, useful for practical applications. The approach reported provides a high-level road
map for designing PCSs supporting controllable sharp spectral features with minimal device footprints using a
mature fabrication platform. To demonstrate the use of the resulting alphabet of structures, we numerically
demonstrate nonlocal metasurface platforms for terahertz generation, mechanically tunable optical lifetimes, and
wavefront shaping
exclusively at resonance. complementary metal-oxide semiconductor (CMOS)
foundries. Alternative plasmonic materials are an active area
of study [31,32] but without exception introduce substantial
optical losses that reduce the efficiency of a photonic device.
These limitations motivate exploring methods of confining
optical energy without metals, restricting the optical
materials to common dielectric materials such as silicon and
its oxide.
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I. INTRODUCTION

Enhancement of light-matter interactions is a key
capability for improving and expanding the functionality of a

wide gamut of photonic devices. Spatially and temporally
confining light enables compact planar optical modulators
with fast switching speeds [1—4], narrow-band bandpass
filters [5-9], sensitive biological and refractive index sensors
[10-12], efficient optical microelectromechanical devices
[13,14], novel lasers [15—-19], and enhanced nonlinear [20—
23] and quantum optical phenomena [24,25]. This is
conventionally achieved by the introduction of an optical
cavity, which circulates optical energy, affording a photon
many passes through a material.

Planar diffractive optics enable uniquely compact optical
confinement in lightweight quasi-two-dimensional systems
fabricated by mature micro- and nanofabrication
technologies. Traditional plasmonic materials such as gold
enable strong light-matter interaction in metasurfaces
[23,26-30] but are incompatible with standard
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A classic example of a dielectric diffractive optical element
with enhanced light-matter interactions is the low-contrast
grating (LCG) or guided mode resonance filter [5—8]. By
periodically corrugating a thin slab with subwavelength
periodicity, a laterally propagating waveguide mode supported
by the slab may couple to normally incident light. The leakage
out of the slab interferes with the direct optical pathways (here,
the Fabry-Perot resonance), producing a well-known Fano
resonance [33-35]. Related phenomena have been studied for
over a century, beginning with Wood’s anomalies [36—38]. In
an LCG, the degree of corrugation can be easily controlled
experimentally and is a design parameter that directly controls
the linewidth of the resonant spectral feature. In particular, for
small corrugation the quality factor (Q factor) of the resonance
is known to be inversely related to the depth of the corrugation
[39]. However, this attractive design feature comes with an
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inherent drawback: The long optical lifetime comes from the
long distance the guided mode travels within the device before
coupling back to free space; the device therefore needs to be
of a lateral size comparable to this characteristic travel
distance in order to observe a narrow spectral feature. In other
words, LCGs are constrained by a tradeoff between spatial
confinement (device size) and temporal confinement (Q
factor).

Another well-studied diffractive optical element is the high
contrast grating (HCG) [40—42], known to enable compact
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devices due to large in-plane Bragg reflection laterally
confining optical energy. Since the corrugation is deep (and,
typically, complete) in HCGs, the ease of control of the O
factor by the method present in LCGs is lost. HCGs are best
known for their broadband spectral features for this reason.
However, HCGs are also known to support sharp spectral
features in the form of Fano resonances [42—44]. In particular,
for certain combinations of optical materials, geometries,
wavelength, angle, and polarization, the Q factor may become
infinite, a phenomenon known as a “bound state in the
continuum” (BIC) [45-48]. Operating near a BIC in the
relevant multidimensional parameter space allows tuning of a
resonance with finite Q factor. Unfortunately, because of the
complex and sensitive dependence on many parameters
simultaneously, this control is not robust in comparison to the
control in an LCG.

However, HCGs can support two classes of BICs: those
excluded from coupling to free space due to symmetry
constraints (or “symmetry-protected”) and those excluded for
reasons unrelated to symmetry (or “accidental” [49]). It has
been argued recently [50] that symmetry-protected BICs in
HCGs are better suited than accidental BICs for creating
compact optical devices with sharp spectral features. It is well
known that by reducing the symmetry [9,28,51-60] of an HCG
or PCS, symmetry-protected BICs become quasibound in the
continuum, at which point they are referred to as “quasi-BICs”
[61]. Quasi-BICs couple to light at normal incidence with
optical lifetimes controlled by the magnitude of the
perturbation that breaks the symmetry protecting them,
thereby restoring a robust design paradigm for controlling the
O factor of a sharp spectral feature. Furthermore, it has also
recently been shown [54,60] that proper perturbation
(including breaking vertical symmetry) allows excellent
control of the band structure. Therefore, a symmetry-broken
HCQG inherits the benefits of both LCGs and HCGs relevant to
sharp spectral features in compact devices.

In particular, a period doubling perturbation (a dimerization
of an HCG) allows modes previously bound [under the light
line at the edge of the first Brillouin zone (FBZ)] to be brought
into the continuum, coupling to a range of angles near normal
incidence to a degree controlled solely by the perturbation
[53-56,60,62,63]. Consequently, a “dimerized high contrast
grating” (DHCG [50]) is an excellent candidate platform for
planar optical devices with both spatial and temporal
confinement of light. Much of the study of DHCGs has
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focused on simple, one-dimensional devices, enabling control
of the mode in one in-plane direction but not in the orthogonal
direction. Two-dimensional, high-index-contrast PCSs with
periodic perturbations are the natural extension of DHCGs that
solve this limitation and are the subject of this paper. The
number of symmetries in a two-dimensional PCS is
significantly greater than the simple one-dimensional case; the
wealth of modal interactions between free space and two-
dimensional PCSs with periodic perturbation therefore
requires detailed exploration.

©2020 American Physical Society

Symmetry-protected BICs are commonly studied in
monatomic PCSs, where even/odd symmetry conditions may
preclude coupling to free space at normal incidence. The BICs
in diatomic PCSs (e.g., DHCGs) are subject to the analogous
even/odd symmetry conditions, so that once the period
doubling has folded the bound modes into the continuum, they
may still be left bound in the continuum. If the relevant
even/odd symmetry is broken, the symmetry-protected BICs
become quasi-BICs. Both the monatomic and diatomic
approaches fall under the same category of symmetry-
protected BICs but access distinct high symmetry modes (that
is, modes with distinct periodicity and field profiles).
Therefore, to fully utilize the available perturbations and
modes, we study both monatomic and multiatomic PCSs.

We note that the simplest method of breaking the relevant
in-plane symmetries is to excite quasi-BICs with light at an
incident angle just off the substrate’s normal. However, as
argued in Ref. [50], this approach is restrictive in comparison
to breaking the symmetry by perturbing the structure. In
particular, this method works only for light with a limited
angular spread of optical momentum centered at a precise
angle (to get the target Q factor), therefore requiring devices
with large footprints and precise tilt of the device relative to
the source optics.

Lastly, while in this paper we describe quasi-BICs as
supported by all-dielectric PCSs, we note that the group
theory approach taken here is valid irrespective of materials
system, so long as the materials are isotropic. For instance,
arrays of silicon pillars are treated the same as arrays of holes
in a silicon (or even metal) slab. The choice of materials
system may be made based on the needs of the application;
an analogous set of modes (as classified by their in-plane
symmetries) obeying the selection rules derived here will
exist, albeit with widely varying field profiles and resonant
frequencies.

In this paper, we study the optical response due to inplane
perturbations applied to high-symmetry PCS lattices.
Throughout, we assume these PCSs have cross sections
invariant in the out-of-plane direction, and we assume any
outof-plane symmetry introduced by the presence of a
substrate is negligible. In Sec. I1A, we review quasi-BICs and
how they spatially and temporally confine light. In Sec. IIB,
we review the classification in the language of group theory
of the three types of high symmetry modes supported by each
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of square and hexagonal PCSs (six types of modes in total).
Section IIIA explores six classes of perturbed lattices chosen
to target the six high symmetry modes. To determine the
impact of these perturbations, Sec. I1IB derives the symmetry
constrained coupling conditions specifying which, if any,
free space polarization couples upon perturbation. The
degenerated space groups compatible with each unperturbed
lattice are exhaustively listed, and in Sec. IIIC the
polarization dependence for each mode and each space group
is written down by applying group theory principles. The
result is a catalog of the selection rules for quasi-BICs
describing all the unique ways that the six highest symmetry
modes of square and hexagonal photonic crystal lattices may
be accessed by in-plane symmetry breaking. Finally, in Sec.
IV we discuss notable aspects of the catalog and sketch
several example device applications. In particular, here and
in the accompanying paper [64] we show how the catalog
guides device design using successive perturbations to
achieve multifunctional control of optical spectra and
introduce a novel class of metasurfaces that use this
multifunctional control to spatially control resonant
wavefronts.
II. BACKGROUND

A. Quasibound states in the continuum

We begin by reviewing the design process to create a
finite-sized DHCG; we explore a BIC in a diatomic lattice
artistically depicted in Fig. 1(a). Figures 1(b) and 1(c) define
the geometric parameters of the unperturbed and perturbed
lattices, respectively. The two “atoms” (here, pillars of
silicon) in the perturbed lattice are identical in heightv H and
diameter

D and sit in a lattice of period 2P, where P is the period of
the unperturbed lattice. The perturbation can be quantified as
the gaps between atoms: The perturbed gap is g» =g+ 8, where
g is the unperturbed gap (g = P — D) and & is the perturbation.
The FBZs of the unperturbed and the perturbed lattices are
shown in Figs. 1(d) and I(e), respectively, with high
symmetry points defined and the primed coordinates
representing the perturbed lattice. The effect of the latticev

transformation (taking the period in real space from P to 2P
and rotating the basis vectors by 45°) is to shrink the extent
of the FBZ and rotate it by 45°. The states belonging to
sections of the unperturbed FBZ that lie outside of the new,
perturbed FBZ are, by Bloch’s theorem, equivalent to states
within the new FBZ. They are brought into the new FBZ by
translation of a reciprocal lattice vector (a process known as
Brillouin zone folding) as depicted graphically in Fig. 1(e)
for the shaded area near the X point. The bound modes that
were at the X point are now at the point (that is, in the
continuum) due to the perturbation.

The new modes brought into the continuum may now
couple and produce Fano-like sharp spectral features for
normally incident light. By construction, the coupling
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strength is related to the magnitude of the perturbation. It has
been shown [50] that the coupling strength for small
perturbations is of the order of 6. Since the Q factor of a sharp
resonance is inversely proportional to the square of the
coupling strength [39], a symmetry-protected BIC has a O
factor governed by [50,61]

0=C/8, )

where the constantC can vary depending on the mode,
geometry, materials, and polarization. Figures 1(f) and 1(g)
show the mode profiles for the fundamental mode depicted in
Fig. 1(a). Figure 1(h) shows full-wave simulations of the O
factor of the fundamental mode as a function of perturbation
strength, agreeing well with Eq. (1) with C = 6.5P2. Figure
1(i) contains the band diagram for the perturbed structure
calculated by the plane-wave expansion method (PWEM)
using the supercell method, with high symmetry points
defined relative to both the unperturbed and perturbed lattices.
The modes are calculated in the unperturbed structure
following the red arrows in Fig. 1(d) and then artificially
folded into the FBZ.

The band structure of the perturbed PCS in Fig. 1(i) can
help predict the accuracy of Eq. (1) for finite devices. In an
infinite device, a plane wave corresponds to a single state (for
instance, a mode at the point) and the band curvature is
irrelevant. However, a finite device excited by a Gaussian
beam will behave as some combination of responses excited
by the plane waves composing that Gaussian beam. One
simple model for predicting the behavior of a finite device is
to perform a weighted sum of the spectra corresponding to
the constitutive plane waves [50]. We model a band by a
Taylor expansion about the point, wres(k) = wo + bk, where
wo is the angular frequency of the mode at k£ = 0 and b

1 P

= 37" lizo. A Gaussian beam with a characteristic spread
in wave vector of k will excite a characteristic spread of
frequencies w = bk%. It is natural to expect that if this spread
of frequencies is larger than the linewidth of the resonance
dw excited in an infinite device by a plane wave, the spectral
feature will be washed out, lowering the observed QO and

invalidating Eq. (1). This suggests a constraint

wp 2] Wy
=— g — =

0.(2) dw w bi?

In other words, there is an upper limit on the Q factor
attainable in a finite device due to the band curvature near the
point.

While this simple model does not account for all of the
possible finite size effects (e.g., edge effects and a more
complex modal structure), the derived constraint suggests that
optimizing the band flatness will tend to allow for the most
compact devices. In particular, the factor to minimize is F' =
|5|/wo, which serves as a figure of merit when designing a
device by computing its band structure. Figure 1(j) maps F as
calculated for a variety of diameters and heights (relative to
the period) of silicon pillars sitting on a silicon dioxide
substrate. While the curvature is different along -M, or the k.

035434-3



‘RVIG, MALEK, CARTER, SHRESTHA, AND YU

direction, compared to along -X, or the &, direction, this band
is limited by its curvature in the k. direction; we therefore
restrict the calculation of F to the band along the £, direction.

We choose a design with the smallest F' according to Fig.
1(j) and scale its geometrical parameters by a factor A/Ars such
that the operating resonant wavelength is A = 1.58 pm for a
calculated resonant wavelength A, Figure 1(k) shows
transmittance spectra calculated by full-wave simulations of
an infinitely periodic device excited by a plane wave of either
x or y polarization, demonstrating that this coupling only
occurs for y polarization. Figure 1(k) also shows a
transmittance spectrum of a device of finite size (30 um x 30
pum) excited by a Gaussian beam with a waist radius of wo=7
pum calculated by full-wave simulations. The spectral feature
remains intact, confirming that the flat band in Fig. 1(i)
determined through the optimization shown in Fig. 1(j) allows
for compact devices with moderately high O = 10°.

PHYSICAL REVIEW B 102, 035434 (2020)

Figure 1 overviews the design process of a compact optical
device (a two-dimensional DHCG) supporting a sharp spectral
feature due to a quasi-BIC. However, this process represented
just one high symmetry mode and explored the behavior as a
result of only one specific perturbation. This behavior was
shown to be weakly dependent on incident angle [Fig. 1(i)] but
strongly dependent on incident polarization [Fig. 1(k)]. The
key result of this paper is a theoretical description allowing
prediction of the polarization behavior (selection rules) of all
high symmetry modes and perturbations. With this result,
which we call the “catalog of selection rules,” the design
process overviewed in Fig. 1 can be summarized as having
three steps: (1) Choose a high symmetry mode for its realspace
properties (e.g., for its field overlap with the high index
material); (2) optimize the band structure by tuning the
parameters in unperturbed structure [as in Fig. 1(i)]; (3) choose
a proper perturbation according to the desired selec-
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FIG. 1. (a) Artistic rendering of a quasibound state in the continuum in a periodically perturbed square lattice. (b) Geometry of the
unperturbed lattice. (¢c) Geometry of the perturbed lattice. (d) First Brillouin zone of the unperturbed lattice, with red arrows tracing the path
used in the band diagram of (i). (e) First Brillouin zone of the perturbed lattice, showing band folding. (f),(g) Out-of-plane magnetic field and
in-plane electric field components of the fundamental mode of the perturbed lattice. (h) Dependence of the O factor on the perturbation, 6 = g2
- g. (1) Band diagram (with target band highlighted in red) of the folded modes in a finite height PCS with D = 0.411 pm, H = 0.295 um, P =
0.527 um. These parameters correspond to an operating wavelength of A = 1.58 um with the optimal (minimal) figure of merit | F'| as found

by the parameter sweep in (j), in which | F| is mapped for varying D/P and H/P. The taller diamondlike window in (i) represents the region
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of energy-momentum space where the superstrate (air) supports only a single diffractive order (m = 0); the shorter window represents the same

for the substrate (silicon dioxide). (k) Transmittance 7" near the fundamental mode frequency of an infinitely periodic device excited by a plane

wave at normal incidence and of a finite device (30 pm x 30 um) with & = 80 nm excited by a Gaussian beam with e~? waist radius of wo =7

pum. Both devices show O = 1000 and excellent resonance visibility, indicating that the performance of the finite device is maintained despite

its small footprint.

tion rules (e.g., targeting y polarization). The catalog serves
as a comprehensive guide for step (3), clarifying the wealth
of options in conjunction with the choice in step (1) of the
desired high symmetry mode; it thereby provides a high-level
road map for this three step design process resulting in a PCS
that confines light in both space and time. This design scheme
may be further coupled with computational inverse design
techniques [65] to reduce the dimensions of the design
parameter space to be explored.

B. Classification of high symmetry modes

The first step to determining the selection rules of
perturbed PCSs is to classify the modes present. Since the
selection rules arise from symmetry breaking, a mode
classification scheme employing the symmetries of the
allowed modes is the natural choice. Although the final
devices of interest are three dimensional in nature (having a
finite thickness in the outof-plane direction, z), it
considerably simplifies the analysis to begin with Maxwell’s
equations in two dimensions. In this case, Maxwell’s curl
equations decouple into two separate sets of three equations,
each set defining modes characterized by either the out-of-
plane magnetic field H. (referred to as TE modes) or the out-
of-plane electric field E. (referred to as TM modes). Each
mode is then definable by this single field component. We
therefore select, review, and carry out a group theory
approach detailed in Ref. [66] to classify the modes by in-
plane symmetries of the out-of-plane field component. We
note that this group theory analysis is valid for any materials
system, for instance, an array of silicon pillars, holes in a
silicon slab, or even a metallic structure. For convenience,
and comparison to conventional metasurfaces, we first
consider arrays of silicon pillars. But the resulting selection
rules are immediately transferable to any other materials
system.

Since the fields exist in a periodic lattice, they are
characterized by plane waves with magnitudes and directions
corresponding to high symmetry points of the reciprocal
lattice. When the index contrast is low, this characterization
is excellent; when the index contrast is large (such as a silicon
and air system), significant deviations in resonant frequencies
occur relative to the low index contrast systems, but the
symmetries of the possible modes remain unchanged. The
modes can therefore be studied with reference to the extended
zone scheme.

Figure 2(a) depicts the extended zone scheme for a square
lattice, with notable high symmetry points marked. In

particular, the points, M points, and X points are labeled by
an index pertaining to their distance from the origin, . These
points have point group symmetries Cay, Ciy, and Cu,,
respectively (see Appendix A for the character tables and
other relevant group theory tables), and the modes
decomposable by plane waves corresponding to these points
are describable by these point groups. These three sets of
points are the highest symmetry points in the reciprocal
lattice and therefore correspond to the modes of interest in
the square lattice. The three analogous sets of points in the
hexagonal lattice [Fig. 2(b)] are the points, M points, and K
points.

A group theory approach [66—68] predicts the number and
nature of the modes from each set of high symmetry points in
the extended zone scheme. Figure 2(c) contains a table
summarizing the modes possible at each of the high
symmetry points in the square lattice. The degeneracy of a set
of high symmetry points N is also the number of modes
corresponding to that set. The magnitude of the wave vectors
k of the plane waves of a set will correspond to the expected
eigenfrequencies of the modes (however, as noted above, this
correspondence is poor in high-index-contrast systems).
Lastly, the irreducible representations describe the mode
symmetries. That is, modes that “transform like” (share all
the symmetries of) each irreducible representation listed in an
extended zone will be present at that extended zone. Note that
the E irreducible representations are doubly degenerate and
so account for two modes.

Figures 3 and 4 depict the TM modes from the first four
extended zones of each high symmetry point in the square and
hexagonal lattices, respectively. An analogous set exists for
TE modes, identical in symmetries (in H: instead of E.) but
spatially distorted and differing in eigenfrequency. The modes
are organized by the extended zone order (columns) and
irreducible representation (rows). Reference to the relevant
character tables [Appendix A, Fig. 17(a)] shows that modes
labeled by a given irreducible representation transform the
same way as the corresponding row in the character table: A 1
in a column of this row means the mode will be symmetric
under the class of operations of that column; a -1 means
antisymmetric; a 0 means not symmetric; a magnitude of 2
signifies that the mode is degenerate.

Finally, the out-of-plane property of the modes is
characterized by the order n or number of antinodes per atom
of the PCS in the z direction. The inclusion of out-of-plane
characteristics captures all the relevant features of the modes
within the scope of this paper if the PCS has mirror symmetry
about an xy plane. However, two-dimensional PCSs with a
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substrate are known to exhibit chiral behavior: Incident
circularly polarized light can behave in a manner depending
on the handedness [62,69]. The chiral effects of a substrate and
vertical symmetry breaking are beyond the scope of this paper
and represent a fruitful avenue for future research. We restrict
ourselves to PCSs composed of vertically extruded two-
dimensional lattices, and we find that the presence of a low-
index substrate (such as glass) generally has little practical
effect of this kind (and so can be ignored).

With the in-plane and out-of-plane features of each mode
classified, we are motivated to provide a naming scheme. We
call a mode:

llJLm,,Sn , (3)

where U is TM or TE if the mode is characterized by E. or H-,
respectively, L signifies the reciprocal lattice point (e.g., ), S'is
the irreducible representation (e.g., A1), m is the extended zone
order, and # is the out-of-plane order. For instance, the mode
in the B, row and X ) column in Fig. 3, with a single out-of-
plane antinode per unit cell of the PCS would be called
TMyx", !5, which is the lowest frequency E. mode in this square
lattice. TEx",'5,1s the mode explored in Fig. 1.
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Importantly, we discuss the relationship of the
twodimensional description of the modes and the modes of a
finite-thickness PCS, which we assume throughout this paper

PHYSICAL REVIEW B 102, 035434 (2020)

eigenmodes are described by folding the eigenmodes of an
unpatterned isotropic medium (i.e., plane waves), while in a
finite PCS, as discussed in Ref. [66], the eigenmodes are

X X
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FIG. 2. Extended zone scheme mode classification. (a),(b) Extended zones in reciprocal space of the square and hexagonal lattices. (c),(d)
Mode classification tables for the square and hexagonal lattices detailing the point group (column labeled “Group”), extended zone (column
labeled “Point”), number of modes (column labeled “N”), characteristic wave vector of the plane wave (column labeled “k”), and the
irreducible representations (mode symmetries) present at each extended zone for each of the six high symmetry mode types.

is simply extruded (its cross section is invariant) in the z
direction. The modes depicted in Figs. 3 and 4 may be
considered as the modes traveling in the z direction in a semi-
infinite two-dimensional photonic crystal. In this case, these

described by folding the eigenmodes of the unpatterned slab.
While the underlying bases are distinct, the resulting modal
symmetries are identical. However, polarization mixing
occurs in the PCS as a result of the finite thickness, yielding
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modes that are quasi-TE and quasi-TM, rather than pure. But
due to the vertical extrusion, and for normally incident light,
the new polarization components cannot introduce or destroy
any symmetries, which are described by the point group; that
is, the TM (TE) components of the quasi-TE (quasi-TM)
modes contain equivalent symmetry properties to the
analogous pure-TE (pure-TM) modes, and therefore have no
bearing on the selection rules for normally incident light. We
refer to quasi-TE (quasi-TM) modes as simply TE (TM) for
this reason and are free to treat the PCS modes as equivalent
to their two-dimensional counterparts for the purposes of
studying the selection rules at normal incidence.

The modes of a PCS also may have additional, out-of-plane
symmetries compared to their two-dimensional counterparts.

PHYSICAL REVIEW B 102, 035434 (2020)

If there is a xy mirror plane (at the center of the PCS), then
the point groups used here are not sufficient to describe the
modes. For instance, the modes of the hexagonal lattice are
described by the dihedral group De; = Cov @ Cis, where the
Cij group accounts for whether the modes are symmetric or
antisymmetric with respect to that xy mirror plane. This
symmetry determines, in part, the “handedness” of the Fano
resonance [39] (that is, whether the reflection peak occurs at
a redder or bluer wavelength than the reflection dip).
However, it has no bearing on the selection rules at normal
incidence and may therefore be ignored for our purposes.
Furthermore, in the most practical scenario a low-index
substrate is present,
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breaking this mirror symmetry and leaving only in-plane
symmetries. Since inclusion of the mirror plane needlessly
doubles the number of modal labels, we exclude it.

Instead, we use the modal index # to refer the out-of-plane
characteristics of the PCS modes. When 7 is odd (even), the
decay symmetry is even (odd), meaning that the mode naming
scheme in Eq. (3) contains the relevant information about the
handedness of the asymmetric lineshape (note that the decay
symmetries hold approximately even in the presence of a low-
index substrate). Consequently, there is a I:many
correspondence between the modes of a semi-infinite photonic
crystal and a PCS: Each mode in Figs. 3 and 4 has identical in-
plane symmetries to many modes in the PCS that differ only
out-of-plane according to the modal index n. Such a
relationship between accidental BICs supported by an HCG
and the vertically propagating waveguide modes of the
corresponding 1D waveguide array is described in Ref. [40],
wherein a round-trip phase condition of the vertically
propagating modes predicts the dispersion of the BICs; here,
the integer multiple of 2rt picked up upon a round trip is the
modal index n.

Finally, we note that the K point modes in the hexagonal
lattice are more complex than the other five high symmetry
modes. In particular, the K point in the unperturbed lattice has
point symmetry of Csy, as evident in Fig. 2(b). However, there
are two identical sets of these K points; the set not pictured in
Fig. 2(b) can be obtained by reflection about the £, axis. As
demonstrated in Fig. 1, the modes only become BICs once
folded to the point by an appropriate perturbation (depicted in
Fig. 5). For K point modes, the analogous perturbation results
in a triatomic lattice and therefore triples the number of modes
at the new point compared to the unperturbed monatomic
lattice. At the perturbed point, a set of modes originating from
each set of K points will mix in pairs. The symmetries of the
mixed modes are described by the direct product group C;
&R Csy, corresponding to the relationship of the two sets of K
points. This direct product group is isomorphic to (shares the
same character table as) the group Csy, allowing the modes to
be named in Cs. Naming the modes according to Cey is
inconsistent with the modes in an unperturbed lattice at a
single K point but consistent with the modes upon folding to
the point and mixing in the relevant perturbed lattice. Since
our goal is to study these modes in the perturbed lattice,
defining the modes in Cs, is the more fruitful choice.

III. SELECTION RULES

By proper periodic perturbation, any of the six classes of
high symmetry modes can be accessed from free space if
additional symmetry constraints are satisfied. These symmetry
constraints can be treated with a group theory approach and
result in a catalog detailing how each high symmetry mode
classified above couples to free space under a given planar
perturbation. In the following, we identify six lattice types
chosen to target the six high symmetry modes (Fig. 5), list all
the degenerated space groups compatible with those lattice
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types (Fig. 6), and then derive the selection rules for every case
(exemplified in Figs. 7 and 8). The resulting catalogs (Figs. 9
and 10) can be used as a high-level road map in the design of
planar photonic devices.

A. Target space groups

The six types of high symmetry modes described above
motivate six types of lattices, each one uniquely targeting one
of the six high symmetry mode types. For each of these
lattices, an exhaustive list of lattices with lower symmetry
attainable by planar perturbation is explored. The symmetry
degeneration from higher symmetry to lower symmetry will
constrain which polarization, if any, may couple to free space
for each high symmetry mode.

The six lattice types, depicted in Fig. 5, are named based
on the modes they target and whether they begin with square
or hexagonal symmetries. For instance, the Sq is a monatomic
photonic crystal with a square lattice where the perturbation
has periodicity equal to that of the unperturbed lattice. This
lattice is labeled by because it supports none of the other
types of modes of interest supported by the square lattice (that
is, M and X modes) in the continuum. Figure 5 (top left)
depicts an example real space lattice, FBZ, and band diagram
for the Sq lattice. The white region in the band diagram is the
region of the continuum of interest, wherein only the zeroth
diffractive order is allowed. We constrain ourselves to the
area near the point of the white region, where the symmetry-
protected BICs can produce sharp spectral features described
above.

The Squ lattice (top middle of Fig. 5), on the other hand,
is a photonic crystal with perturbations with periodicity
double that of the unperturbed lattice in a single direction.
This period doubling (in the x direction in Fig. 5) halves the
extent of the FBZ in the £, direction. The shaded portion
outside the new FBZ is then translated into the FBZ by a
reciprocal lattice vector. As a result, the M point of the
unperturbed lattice overlaps with the point, bringing the M
point modes into the continuum in an analogous way
described in the example in Fig. 1. This Brillouin zone
folding also changes the shape of the zeroth order diffraction
region of the band diagram. The point will now have both
the modes at the unperturbed point as well as at the
unperturbed M points. The Sqaslattice is the only lattice in Fig.
5 to bring the M point modes of a square lattice into the
continuum, motivating its name. The remaining lattices target
X modes of the square lattice (Sqy, which is the lattice type
explored in Fig. 1), and , M, and K point modes of the
hexagonal lattice (Hex, Hexy, and Hexg, respectively) in an
analogous way. Notably, two distinct regions are folded into
the FBZ of the Hexk lattice: As discussed above, two sets of
modes are folded to the point, one from each distinct K point.

We note that the six lattices chosen in Fig. 5 are not an
exhaustive set: Lattices with any number of atoms per unit
cell are possible. Ordering this list of lattices by number of
atoms per unit cell, the six chosen lattices are the lowest order
lattices uniquely targeting the six high symmetry modes of
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interest. Appendix B describes three examples of higher order
lattices. The approach described in what follows may be used
to generate the catalog for any higher order lattice.

Next, the space groups of degenerated lattices that are
compatible (attainable through perturbation) with each lattice

SQM

PHYSICAL REVIEW B 102, 035434 (2020)

lattice vectors, but it can be perturbed into a rectangular
lattice. The space groups of the square lattice family are
therefore omitted from all Hex lattices, but those of the
rectangular lattice family are not.

Next, the glide reflection operation (a reflection and a

My

M’

FIG. 5. Six lattices target six distinct high symmetry modes. They are named for their lattice family (Sq for square lattices and Hex for
hexagonal lattices) and the high symmetry mode they uniquely target (e.g., Squ folds the M point modes of a square lattice into the continuum
by a period doubling perturbation). An example unit cell with a perturbation is given with high symmetry points defined (y,,§, and k). The
FBZ is also given with high symmetry points defined (,M,X, and K), dashed lines denoting the FBZ of the unperturbed lattice and solid lines
that of perturbed lattice. Lastly, an example band diagram is shown for infinitely tall PCSs for the TM polarization case, showing generally
the presence of flat bands at the point and band folding in the relevant cases. The red arrows in the Sq and Hex FBZs depict a representative
path taken through the FBZ for the band diagrams. Modes in the light shaded area are bound. Modes in the white areas are in the continuum
accessible to a single diffractive order (“zeroth order diffraction) and are the focus of this paper. Modes in the dark shaded area are higher

order diffractive modes.

are determined and reported in Fig. 6, the space group
compatibility table. First, all 17 “wallpaper groups” are listed
and categorized by the compatible lattice family (e.g.,
“Rectangular”). The point group of each of these is given for
reference. Then, for each target lattice type (e.g., Sqa) the
space groups compatible with the lattice class (i.e., square or
hexagonal) are listed. For instance, the space group p6mm
requires hexagonal tiling and is therefore omitted as a
possibility for any Sq lattice. Likewise, a Hex lattice cannot
be perturbed into a square lattice without distortion of the

translation by a fraction of a unit cell) is tested for each type
of lattice. Glide reflections are present in only some two-
dimensional space groups and are not compatible with all of
the six target lattice types. As an example, it is quickly found
by inspection that the Sq lattice does not support glide
symmetries in directions other than along the diagonals (more
rigorously, in the language of crystallography, monatomic
PCSs are incompatible with nonsymmorphic space groups).
This excludes the space groups pg, pgg, and pmg, which are
correspondingly grayed out in the column for Sq. For the
same reason, for the Squ lattice, glide planes along the
direction where the lattice is unperturbed (and therefore
monatomic) are incompatible (the y direction in Fig. 5).
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Additionally, all diagonal glides are incompatible for the Squs
lattice because they correspond to reflection axes that are not
included in the point group of any Squ lattice. This excludes
cm, pg, and cmm for Squ, which are grayed out accordingly.
There are no such constraints for the Sqxlattice, which can be

degenerated into a lattice of any space group (except the
Space group compatibilities

1 Point | Space
Lattice gm'up gfaup Sqr | Squ | Sqx |Hexr |Hexy |Hexg
(o pl prl pl pl rl pl prl
Oblique
C, p2 p2 p2 p2 p2 p2 p2
pm | pm [ pm | pm pm
Cs | pg rg | rg ryg
cm cm cm | cm cm
Rectangular pmm |pmm |pmm |pmm pmm
C, pmg pmg | pmg pmg
" | rgg rgg rg9g
cmm | cmm cmm | cmm cmm
Cy p4 p4 p4
Square c pdm | p4m pdm
" | p4g pg
G p3 pr3 p3
c p3ml p3ml p3ml
Hexagonal EL p31m p3 1m p31m
Ce p6 p6 p6
Cep [pOMM pomm pomm

FIG. 6. Space group compatibility table. Different lattice families
(column 1) are compatible with various point groups (column 2), each
of which can be further subdivided into the 17 “wallpaper groups” (or
two-dimensional space groups, column 3). The remaining columns
track the compatible space groups of each degenerated lattice studied.
A blank entry means that corresponding space group is excluded due
to a mismatch in lattice family; a grayed entry means that it is
excluded because it has an incompatible glide symmetry.

hexagonal ones). Similar arguments can be made for the Hex
lattices, and the results are reported in Fig. 6.

Finally, it must be noted that there exist multiple high
symmetry points in each real space lattice. These are given
names in Fig. 5 for each case. For instance, the Sq lattice has
two points having the full symmetry of the Ci, point group,
named y and §. Both are perfectly acceptable to choose as the
reference point: In the mode naming scheme in Sec. IIB, the §
point is the reference point, but the modes may all be renamed
according to the y point if desired. Similarly, a degenerated
space group may choose either of these points to have in
common with the unperturbed lattice. Generally speaking,
every degenerated space group may be tried with each of the
high symmetry points in common with the unperturbed lattice,
thereby allowing for more than a single unique example of
each space group in each lattice. For instance, there are three
distinct cmm space groups in the Sqycatalog (see Fig. 9): one
with the y point as the high symmetry point in common, one
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with § and the last with p (which is the space group of the
perturbation in Fig. 1). As shown in Fig. 9, though these have
identical space groups, they do not have identical selection
rules because they are attained through distinct perturbations.
Therefore, to determine all of the unique symmetry
degenerations possible, an attempt is made to construct each
compatible space group (Fig. 6) with each high symmetry
point in common between the unperturbed and perturbed
lattices. The successful attempts comprise the set of all
degenerated lattices compatible with those chosen in Fig. 5.
This proof by exhaustion is omitted here. For each of these
degenerated lattices, the modes derived in the previous section
can be studied and their selection rules derived. The results are
tabulated in Figs. 9 and 10 following the methods derived in
Secs. I1IB and IIIC.

B. Deriving the coupling condition

To derive the selection rules reported in Figs. 9 and 10, we
study the end-fire coupling of free-space light normally
incident to a semi-infinite two-dimensional photonic crystal
supporting the modes depicted in Figs. 3 and 4. As described
in Sec. IIB, there is a /:many correspondence preserving in-
plane symmetries between the modes excited by this endfire
coupling and the modes excited in a finite-height PCS (under
the assumptions that the cross section is invariant along the z
direction, whose substrate and superstrate are isotropic
media). At normal incidence, the two cases therefore have
identical selection rules with respect to in-plane symmetry
breaking, and so we may proceed with the simpler case of
end-fire coupling. The multiplicity of modes of the PCS
differentiated by the modal index » have identical selection
rules; it is only the in-plane symmetries that are relevant. In
particular, we determine under which conditions the end-fire
coupling coefficient y. is nonvanishing:

Ve X /f [E;knc X Hm(:dc + Emnd\: X Hﬁlc] *

A gdxdy, 4)
where 7" is the unit vector in the z direction and bold symbols
refer to vector quantities. We exclude a normalization factor
for simplicity (it does not affect whether y. vanishes) and
evaluate the integral over the area A4 of a unit cell. Here, we
take the incident field to be a normally incident plane wave,
with electric field

Ax . B
E(S) inc ¥
0
and magnetic field
*
L
mc U()
H 0] (©)

where nois the impedance of free space. The mode has electric
field
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L,
i(fz—awt)
fr—c E).

mode = €
E E: 7
and magnetic field
H,
mode — ei(,ﬁz—w!) 1_1\

H . | (8)

where B is the propagation constant satisfying the dispersion
relation w = ¢fB. Evaluating the cross products in Eq. (4), the
free-space coupling coefficient is written as
Ve X f/ [A\(rfﬂH\ + E\) 4- A_\‘(WOH\' + E_\' )]

A dx dy. )
Using Maxwell’s curl equations, the in-plane components
(EvE, Hy,H,) are replaced with the out-of-plane components
(E-,H-) to both simplify the equation and allow the previous
mode classification scheme (based on the out-of-plane field

components) to straightforwardly apply. The resulting form
is

Ve X f f [Ay(c10,E; + 20,H)
A
+A4,(c10,E- + ¢20:H:)]dx dy, (10)

where
1 T4e(y)

cl —

(1) iB 1 - £x,)
and
2[]0 1
2= - (12)iBlefxy)
with the replacement &.(x,y) = &(x,y)/e0 as the relative

permittivity. This can be written more compactly as

C| 8_{ C2 3_‘. E:
([ 1 oy o, || H
Ve \ded, LTTT A, (13)

where angled brackets indicate integration over a unit cell.
While it is possible to proceed with this form by considering
the symmetries of each component, it is considerably simpler
and more informative to reduce this to individual choices of
incident polarization (e.g., choose A, = 0) and mode type (i.c.,
choose either TM modes or TE modes). In this case, we write

o [
Acjo\p dx dy, (14)

where U is TM or TE, 9; refers to the partial derivative in a
relevant high-symmetry direction (i = x,y,a,b), and ¢; is ci
when  is TM and ¢, when ¢ is TE.

C. Determining the selection rules

We now apply Eq. (14) to the modes supported by a
twodimensional photonic crystal. The modes in the
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unperturbed lattice can be described as the eigenvectors of an
eigenvalue equation

HOYO = EY°. (15)

where the superscript marks reference to the unperturbed
eigenvalue problem. We are interested in particular in the (°
that are uncoupled to free space [i.e., Y° for which the integral
in Eq. (14) vanishes] due to symmetry. To proceed we apply
perturbation theory to determine any nonvanishing terms
present in the generalized eigenvalue problem of a
degenerated lattice:

HY = Ey, (16)

where H = H +V is perturbed by the perturbation operator V,
and =+ 'is the perturbed field profile with ! as the
first order correction. First order perturbation theory gives

the form of the nth mode ¥ r} as

n Z "
Em —&En

m n

0 *V 0
wl — ((wm) w”)y’f()_ (17)

That is, the perturbed portion of the field is a superposition of
the unperturbed fields. [Note that Eq. (17) is the nondegenerate
form of perturbation theory, but it can be applied to degenerate
states as well if the “correct” orthogonal linear combination of
states is known ahead of time. Since these will correspond to
a high symmetry direction of the perturbed lattice, they are
easy to predict; we therefore use this form to apply to
degenerate modes.] However, inspection of the coefficient,

() Vy ;(3), in front of each Y’ reveals that not all ,,° will
contribute: Many will vanish due to symmetry.

The process of determining ,,° that contribute can be
clarified and expedited in the language of group theory.
Specifically, if we can determine the irreducible
representations of each factor within the integrand, we can find
the symmetries of the total integrand by computing the direct
product of those irreducible representations. A direct product
is an abstract way to obtain the symmetries of the product of
two functions f'and g: If & = fg, the symmetries of 7 may be
obtained by performing the direct product of the
representations of f'and g. That is, = Ly ®g, where  is the
representation of / in some point group. Since the fields have
been classified already in terms of their irreducible
representations, we write the irreducible representation of
W’ as my and simply refer to Figs. 3 or 4. Then, we must
determine the irreducible representation of V, or -, which can
be achieved following a process described below. We finally
write the direct product as inegrana= I'm @ I'v @ 'y,

A necessary condition for this integral to be nonvanishing
is that this direct product must contain a component that
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transforms as a constant: The sinusoidal components do not
contribute upon integration over a unit cell. Since a constant is
fully symmetric (that is, it transforms as 1, which is the highest
symmetry irreducible representation in every point group), this
condition is identical to saying that inegrana must contain ;. Note
that this condition is necessary but not sufficient. For instance,
a cosine transforms as | about the origin but integrates to zero
over a period. We can therefore say that (VD) s
nonvanishing only if ,@ I'v @ I'y =T'y + ...,

A direct product is easily calculated by referring to the
direct product table of the relevant point group (see Appendix
A, Fig. 18). A notable feature of these tables is that two
irreducible representations ;and ; satisfying
B =T+ also satisfy ; = ;. Consequently, we can

reframe the condition on the integrand, ,& I'v & I'y =
+...tobe ,= I'v ®,. In other words, a field Iff;(;)zcontributes to
the perturbed field g,,' only if ,=T'v @ I,

Since ,,' will transform as the components comprising it (that
is, the ,," with nonvanishing integrals), we finally arrive at

the conclusion that v = I'v ®,. Since the index n refers to any
particular mode of interest, we may drop it:

v =Tv @Iy (18)

¢=w°+w1

" - ﬁ '> * +l+“+l+3 !

pd

FIG. 7. Graphical derivation of the selection rules for the X point
modes in the Sqxlattice belonging to the cmm space group. The modes
are shown in their unperturbed form as calculated by the plane-wave
expansion method. Then, they are schematically drawn as perturbed
by the perturbation and decomposed into the unperturbed portion and
perturbed portion. The green arrows represent the gradient and predict
coupling to a free space plane-wave excitation if a net dipole moment

PHYSICAL REVIEW B 102, 035434 (2020)

is present. The black arrows represent the corresponding free space
polarization each mode couples to.

That is, the first order perturbed field profile transforms as the
direct product of the irreducible representations of the
perturbation operator and the unperturbed field profile in
question.

Understanding the symmetries of the perturbed portion of
the wave function allows us to simplify the free-space
coupling condition, Eq. (14):

eI
Ac0p dx dy Ac0,(Y° + Y)dx dy. (19)

Since ¢;is a function of in-plane permittivity distribution of a
perturbed lattice, it is natural to expect that it has a portion that
transforms like H°, which we call ¢, and a portion that
transforms like ¥, which we call ¢y . We can write these
portions explicitly to first order using the binomial
approximation. Taking c¢» = c¢m + cy , for instance, the
unperturbed portion is written

2n0 1 (20)

cHo=1iB 1 - &gr0(x,y),

and the perturbed portion is written

Og,(x,
(x.y) @
cy= —— CHo,
1 - &r0(x,p)
V &
-8/2
- LKy
| 1 1
+ —= =
| 1n 1
Vx
| 1n 1 | 1n 1
= — = —= —
I 1n 1 | 1n 1

4,

=A
i Iv, 1

By

B,
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FIG. 8. Group theory derivation of the selection rules for the X
point modes in the Sqxlattice belonging to the cmm space group. (a)
Graphical depiction (excluding the background permittivity for
simplicity) of the decomposition such that H = H° +V for the target
degenerated Sqx lattice. (b) Further decomposing ¥ into portions
with different periods. (c) Determining the irreducible
representation of each component of V in C o (character table
reproduced for reference). (d),(e) Worksheet depicting the process
of deriving the selection rules. The first column shows the
irreducible representations of the target modes; the second column
shows the degenerated irreducible representations of those modes;
the third column is the direct product of the perturbation operator

PHYSICAL REVIEW B 102, 035434 (2020)

and each mode; the fourth column marks the free space polarizations
matching the direct product in column 3.

where &(X, ¥) = £)(x,¥) + 8&,(x, ¥) is decomposed into the
unperturbed portion, £ J(x, ¥), and perturbed portion, 8&,(x,y),
of the relative permittivity. Since €,%(x,y) transforms as | by
construction of the unperturbed lattices, it is evident that cgo
transforms as i: For an even function f'(x), the function 1/(1
- f(x)) is also even. Decomposing the factors in cy, it is clear
that it transforms as y because &¢.x,y) transforms as y by
definition of the perturbation, and the remaining factors in ¢y
transform as | (which acts as the identity in direct products).
A similar argument reveals the equivalent result for ¢;. We
therefore write y. as the sum of four terms:

»/f X f[
ACHOO;[IJ d dy /\CHOallIJ dx dy
f/l )/ d v/:/; /6
AC tllJ dx dy AC llIJ dx dy. (22)

The first term vanishes for symmetry-protected BICs. As
described above, » = I'1, and so, using Eq. (18), the second

term’s integrand transforms as ! @Iy @y =
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FIG. 9. Selection rules catalog of the three square lattice families (Sq, Sqa, and Sqx). As depicted by the legend (upper right), along the
symmetry columns each entry specifies the space group, the point group used to describe ¥, and the irreducible representations of the two
components of V' (the first having periodicity of the unperturbed lattice, and the second of the perturbed lattice). The example column depicts
an example perturbed unit cell matching the specifications in the symmetry column. Colored squares and ovals denote points with fourfold
and twofold rotational symmetry, respectively. The remaining columns are labeled , M, or X and report the selection rules for each high
symmetry mode at the corresponding position in the unperturbed FBZ. Rows are indexed by the legend and correspond to different irreducible
representations present at the point in the FBZ labeled by the column (example TM modes of each row and column are shown in the legend
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for reference). Entries in these columns and rows refer to the free-space polarizations that excite the corresponding modes due to the
perturbation and are defined by the given axes. The polarization pertains to the free space electric field for TM modes and the magnetic field
for TE modes. A blank entry signifies a forbidden mode excitation (the mode remains a symmetry-protected BIC), and a dash indicates that
the M point does not have a fifth irreducible representation.
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FIG. 10. Selection rules catalog of the three hexagonal lattice families (Hex, Hexy, and Hexxk). As depicted by the legend (upper right),
along the symmetry columns each entry specifies the space group, the point group used to describe V, and the irreducible representations of
the two components of ¥ (the first having periodicity of the unperturbed lattice and the second of the perturbed lattice). The example column
depicts an example perturbed unit cell matching the specifications in the symmetry column. Colored stars, triangles, and ovals denote points
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with sixfold, threefold, and twofold rotational symmetry, respectively. The remaining columns are labeled , M, or K and report the selection
rules for each high symmetry mode at the corresponding position in the unperturbed FBZ. Rows are indexed by the legend and correspond to
different irreducible representations present at the point in the FBZ labeled by the column (example TM modes of each row and column are
shown in the legend for reference). Entries in these columns and rows refer to the free-space polarizations that excite the corresponding modes
due to the perturbation and are defined by the given axes. The polarization pertains to the free space electric field for TM modes and the
magnetic field for TE modes. A blank entry signifies a forbidden mode excitation (the mode remains a symmetry-protected BIC), and a dash
indicates that the M point does not have a fifth or sixth irreducible representation.

5 @ Lv ®@Tyo The third term’s integrand straightforwardly
transforms as V® Iy @ r»’f“, identical to the second term
(inspection of Appendix A, Fig. 18 shows that the direct
products in question commute). The fourth term vanishes to
first order, because it is the product of two factors of the
perturbation. We are therefore left with two generally
nonvanishing terms whose integrands transform identically.

As before, y. is nonvanishing only if the integrand has a
component that transforms like ;. We therefore arrive at the
symmetry constrained coupling condition:

a=Tv @&y (23)

Since a partial derivative in the i direction transforms like a
vector in that direction, it also transforms the same as a free
space polarization i. The physical interpretation of the
coupling condition, Eq. (23), then, is that the symmetries of
the perturbed part of the field (i.e., yor ¥") must match the
symmetries of a free space polarization (i.e., s;). That is to say,
the perturbed field must have a net dipole moment to couple
to free space.

The coupling condition is equivalent to considering
whether the integral

o f f 2,V )
A dx dy (24)

vanishes. This form justifies a convenient and insightful
graphical method [57] of determining whether y. is nonzero,
without directly determining !, which is not obvious at first
glance at Eq. (17). The perturbed mode can be simply drawn
by altering the magnitude of the unperturbed field according
to the shape and sign of the perturbation. Then, this new
perturbed field is decomposed into the unperturbed portion
and the perturbed portion (corresponding to ¥°). Taking the
derivative amounts to treating the product V° as “charges”
and the gradient as the “moment;” then, if there is a net dipole
moment, the mode couples to the corresponding free space
polarization. Figure 7 depicts this process for determining the
selection rules of the TMy" ¢" modes in a Sqx lattice with a
cmm space group (the same used in Fig. 1). The polarization
depicted corresponds to the out-of-plane field component.
That is, if $°is a TE (TM) mode, the polarization depicted
describes the magnetic (electric) polarization of free space
that couples to . Figure 7 therefore correctly predicts the
polarization dependence seen in Fig. 1 for TE'y,'5,.

A more expedient method to generate the selection rules,
however, is to determine the irreducible representations
present in V and then employ the direct product tables [see

Appendix A, Figs. 18(a) and 18(b)] to immediately write the
selection rules for all modes present at the point of the
perturbed lattice. This is done by (1) finding the point group
in common amongl and Y, (2) writing the irreducible
representations of each factor in that point group, and then (3)
determining if the direct product , @ Iy matches the
irreducible representation of a free space polarization [which
are reported for each relevant point group in Appendix A, Fig.
18(c)].

The irreducible representations of V' can be found by
conventional group theory methods if required but are
generally apparent by inspection. Figure 8 depicts the
decomposition of V for the same space group as Fig. 7. The
process is simplified by properly choosing H° such that V
transforms as simply as possible. For instance, H° is written
as a circle with permittivity € shadowing a square cross
oriented in the x,y directions with permittivity €/2, as shown
in Fig. 8(a). It is then clear to see that the V" depicted obtains
H upon addition of H°.

Next, V can be decomposed into two portions, one (called
V) with the periodicity of the unperturbed lattice, and one

(called Vx, here) with the periodicity of the perturbed lattice
[Fig. 8(b)]. Importantly, Eq. (23) refers only to functions as
they exist in the unperturbed FBZ, in which modes
characterized by the X point are orthogonal to modes
characterized by the point. Consequently, ¥ contributes only
to the modes at the point in the unperturbed lattice, while Vy
contributes only to the modes at the X point in the unperturbed
lattice. The point group of both Vand Vyis the same as the
point group of the space group, C>"y. Referring to the character
table of C>'y [Fig. 8(c) or Appendix A, Fig. 17(a)], it is readily
apparent that Vtransforms as 4; and Vxtransforms as B.
Finally, the coupling constraint [Eq. (23)] is evaluated.
However, since the modes of interest are defined in a higher
group than that of V, we must first determine how they
degenerate into the lower group. This can be done by referring
to the symmetry degeneration tables [see Appendix A, Fig.
17(c)]. Then, the direct products @ Ty are taken with
reference to the direct product table for the point group C»'.
Since x,y polarized plane waves transform as B;,B in Cilv, the
modes for which the product & Iy =By, B,
couple to x,y polarization, respectively. Figures 8(d) and 8(e)
show a worksheet of this process. It bears repeating that this
polarization corresponds to that of the out-of-plane field
component. For example, if Y is a H. mode, then x refers to the
H, component of the free space plane wave, corresponding to
ypolarized light as conventionally defined by the electric field.
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The resulting selection rules are in agreement with those
derived using the graphical method in Fig. 7, but derivation
required a single diagram to decompose V instead of one for
each mode and straightforwardly gave the selection rules for
the point modes as well (for which the graphical method
would require another set of diagrams).

The method detailed throughout this section may be
summarized as follows. First, the unique space groups

compatible with each lattice type are determined by exhaustion.

Second, for each of these space groups, the perturbation is split
into V and Vi, where L is the high symmetry point of the
unperturbed reciprocal lattice that is folded to the point. Third,
the irreducible representation of each portion of the
perturbation is determined. Fourth, the coupling condition, Eq.
(23), is evaluated for each mode, using/ for ™" andV;, for
U,"¢"; the matching polarization (if any) is marked down by
reference to Fig. 18(c).

With this method, a catalog for each of the six lattice types
is generated, for each of the compatible degenerated space
groups described above. The catalogs are given in Fig. 9 for
square lattices and in Fig. 10 for hexagonal lattices. An entry
of the catalog lists the space group by name, the point group
used to describe ¥, the irreducible representations of Vand Vi,
an example visualization of the degenerated lattice (using the
“keyhole” motif [57]), and the selection rules for all the modes
present at the point in the perturbed lattice.

Note that the selection rules for the twofold cyclic space
group p2 in the catalog are specified by some angle, ¢ or 6,
which are ill defined relative to the lattices’ axes: The
polarization angle must be numerically determined, will
generally change with the magnitude of the perturbation, and
may differ between TM and TE modes of the same symmetry.
However, for small perturbations, two modes controlled by the
same p2 perturbation and specified by ¢ will be excited by the
same polarization angle ¢; 6 denotes the angle orthogonal to
¢. Note that the group theory approach in Fig. 8 can only say
that some polarization couples to the mode but cannot specify
¢ and 6; for this, the diagrammatic approach in Fig. 7 is used.
The selection rules for p1 are ill defined in a similar way: Some
polarization couples with a direction unconstrained by group
theory and are therefore specified as any. The remaining cyclic
space groups, p3, p4, and p6, only allow access to degenerate
modes in a polarization independent manner and so for
simplicity are specified as x,y.

IV. DISCUSSIONS AND APPLICATIONS

The process described above lays out the derivation of the
selection rules for two-dimensional PCSs with in-plane
perturbations applied. The resulting catalog, split into Figs. 9
and 10, contains a great amount of information and warrants
further discussion and exploration. In particular, a few unique
features present in the catalog readily motivate device

applications not possible in the simpler one-dimensional PCSs.

For instance, due to the two-dimensional nature of the
device, the band structure can be optimized in both in-plane
directions, allowing for full optimization of the band structure

PHYSICAL REVIEW B 102, 035434 (2020)

and thereby optimally compact devices. One-dimensional
structures (e.g., devices composed of rectangular grating
fingers, invariant in one in-plane direction) can be understood
as a special case of a subsection of the Squ lattice but with
limited to no control over the behavior along the direction of
the grating fingers. Additionally, the higher in-plane symmetry
of two-dimensional structures means the presence of
degenerate E-type modes (“partner” modes with identical
eigenfrequencies that couple to orthogonal polarizations),
which do not exist in one-dimensional structures. This allows
for compact, polarization independent devices such as filters
and modulators to be designed. The manipulation of
degenerate modes is therefore of considerable technological
interest. Last, we note a parent-child relationship between
higher and lower order space groups within the catalog and
find that child space groups constructed by successively
adding distinct parent space groups result in optical control
with independent degrees of freedom introduced by the parent
space groups. We show that this principle enables controlling
a large number of parameters characterizing an optical
spectrum, well surpassing the state of the art.

With these considerations in mind, Sec. IVA discusses the
degenerate modes that exist in monatomic and multiatomic
PCSs, providing a comprehensive set of options for
polarization-independent devices using the catalog. Section
IVB details a device application motivated by this discussion,
demonstrating that the degenerate fundamental modes of Hex,
as controlled by three successive perturbations, are suitable for
terahertz generation via four-wave mixing. As a second
application of successive perturbations apparent from studying
the entries of the catalog, Sec. IVC shows the potential for a
PCS on a stretchable substrate to enable mechanically tunable
optical lifetimes. Finally, Sec. IVD reports the discovery of a
geometric phase associated with circularly polarized light
coupling into a p2 space group of the Squlattice, controllable
simultaneously with the Q factor of the resonance. We then
show how spatially varying this geometric phase enables a
novel class of photonic devices in which the outgoing Fano
resonant wavefront is spatially tailored while the nonresonant
light is left unaffected.

A. Degenerate modes

We first consider the nature of degenerate modes. The
degenerate modes generally transform as partners of a
degenerate irreducible representation (e.g., £ in Ca), which
are written E*and E” corresponding to their dipole moments.
Because of this dipole moment, the £ and £’ modes in the
unperturbed Sq lattice generally couple to free space (and
the £ modes couple to free space in the unperturbed Hex
lattice). In other words, the integral

-[-[ACHodidJo dx dy, (25)

which has an integrand that transforms as ! el ® FW’, is
nonvanishing for £ modes because s,= E in Cay (likewise, o;=
Eiin Csy). The coupling can numerically vanish for certain
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combinations of angle, polarization, and optical materials,
but since these are reasons unrelated to the symmetry
arguments above, they are accidental BICs; all modes other
than the ™" for Sq and ™" for Hex in the mode
classification are symmetry-protected BICs. For the modes
already coupled to free space in the unperturbed lattice, the
only significant impact a perturbation has is to split the
degeneracy upon symmetry degeneration (for instance,
perturbing a lattice with C4y down to C»y). In other words, if
the lattice is made structurally birefringent, the E* and E£”
modes will degenerate into irreducible representations in a
lower order point group with different eigenfrequencies, but
the coupling rate to free space will generally be changed to a
negligible degree. For this reason, Figs. 9 and 10 simply label
the corresponding entries x,y.

Of more interest here are the degenerate
symmetryprotected BICs. The M point modes of either square
or hexagonal lattices have no such degenerate modes because
the C,y point group has no degenerate irreducible
representation (a rectangle is not identical in the x,y
directions). However, the U,m,Ex for Hex, Yxm, En for Sqx, and
Wkm, Em and Yxm,Enx for Hexg are degenerate symmetry-
protected BICs. Therefore, a polarization insensitive filter or
modulator must use one of these lattices in order to utilize the
advantages of quasi-BICs [that is, a O factor controllable by
Eq. (1) independent of the band structure]. We consider the
degenerate modes in each of these three lattices in turn.

The Hex supports the £> modes, which are uncoupled to

free space in the absence of a perturbation (E1 Q E>= B+ B>

+ E1, which does not contain ; in Csy) and are degenerate BICs.

Reference to the catalog shows that reducing the symmetry to
C3y or lower may allow free-space coupling to these modes.
A polarization independent filter or modulator with O factor
following Eq. (1) could be made utilizing the £>»

H,
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FIG. 11. Mode “twisting” in a Sqx lattice. (a) Example p4m
lattice. (b) Example p4g lattice. The white dashed boxes in (a) and
(b) denote the perturbed unit cell, and the black dashed boxes denote
the plotting area in (c) and (d). (c) Normalized field distribution for
the TE'x 'k partner excited by a plane wave with magnetic
polarization in the x direction. (d) Normalized field distribution for
the TE'x, g partner excited by the same polarization in (c).

modes of a Hex lattice according to either the p31m or p3ml
entry of the catalog.

The Sqxlattice supports degenerate modes that are bound
in the unperturbed lattice. Upon perturbation, they are
brought to the point, allowing coupling to free space at
normal incidence. Several space groups in the Sqx lattice
leave these modes uncoupled in the continuum, making them
BICs, while most others allow coupling, making them quasi-
BICs. The space groups with Ci and C4 leave the
eigenfrequencies degenerate, while lower order symmetry
groups introduce birefringent behavior. Therefore, a
polarization independent filter or modulator with Q factor
following Eq. (1) may be made utilizing the £ modes of a Sqx
lattice according to any of the p4m, p4g, or p4 entries of the
catalog as reference.

An interesting feature of the catalog is the prediction of
coupling of the E* partner of the £ modes of a Sqx lattice to
either x or y polarized light (equivalently, y polarized light
may couple into either the E* or E” partner). Compare, for
instance, the p4m with Vy= A4, [Fig. 11(a)] and p4g with Vx=
A> [Fig. 11(b)] space groups in the Sqxlattice. Figures 11(c)
and 11(d) depict, for the p4m and p4g cases, respectively, the
field profiles calculated by full-wave simulations at the
frequency of the TEx",'s modes excited by y polarized light
(magnetically x polarized light). The former shows that the
magnetically x polarized plane wave couples to the £ mode
with the apparent dipole in the y direction (that is, the E¥
partner, as defined in Fig. 7), while for the latter it couples to
the £ mode with the apparent dipole in the x direction (that is,
the E* partner). This mode “twisting” is written in the catalog
by writing y,x for p4m, in contrast to the entry of x,y for p4g,
and it is easily predicted by tracking how the partners
degenerate to C», in the worksheet of Fig. 8 or by using the
diagrammatic approach in Fig. 7. This is a phenomenon that
does not occur in the more often studied E or E| degenerate
modes of the Sq or Hex lattices and is thus representative of
the larger range of behaviors present in multiatomic lattices.
Especially notable is that the dependence of the polarization
angle of the incident light on the in-plane orientation of
elliptical structures suggests that a geometric phase is
associated with this coupling. This will be explored in Sec.
1VD.

Next, the Hexg lattice is a special case, having degenerate
modes of two distinct types. The unit cell is a trimer and
therefore contains three times the number of modes as the
unperturbed lattice. As described in Sec. IIB, two sets of
modes (corresponding to K and K> points in the FBZ in Fig. 5)
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are folded to the point. Because of the symmetry of the
unperturbed lattice, a mode in one of the sets has a counterpart
in the other set with equal eigenfrequency. These pairs mix at
the perturbed point, producing a final set of modes describable
in Cesy. The lattice therefore supports E1 and E> modes newly
brought to the point by the perturbation, analogous to the £,
and £> modes in the Hex lattice.

However, inspection of the band diagram for the Hexx
lattice near the pointin Fig. 5 (bottom right) shows many more
degeneracies than explainable by the £ and E> modes alone.
All of the newly folded modes, in fact, are degenerate, despite
the mode classification scheme in Fig. 2 predicting the
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FIG. 12. Terahertz generation with four-wave mixing. (a) Schematic of device excited by two (narrow-
lasers (shown in cyan and green), producing terahertz radiation (shown radiating in red). (b) Transmittance
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One consequence of this is that in the p31m Hexg lattice

with point group C.%Iu, the 4, and B; modes form a degenerate
pair that together correspond to a spectral feature that is
polarization insensitive (a similar behavior is seen in the p3
lattice where Vi transforms as a partner of the E irreducible
representation: the fourth entry in the Hexk lattice). This
reveals another way to consider this degeneracy: The 4; and
Bimodes are partners of the E irreducible representation of the

C.é{v point group, defined about the k point in the real space

lattice (as defined in the Hex lattice in Fig. 5). Because the y
point has the full symmetries of Cey, this description of the

N e
i -38
near-infrared pump

near TEand TE'x 'p

KA

modes, which are degenerate in the unperturbed lattice. (c) Map of reflectance R showing control of the frequency spacing of the two resonant
modes by altering the radius of the center pillar in (e). (d) Map of the figure of merit, FoM, with a dashed contour for 1/A4=1/A1 - 1/A2shown.
The FoM is maximized along this contour for Terahertz generation at the coordinates (A1, A2), corresponding to enhancement due to both
resonances. (e) Successive perturbations to the unperturbed hexagonal lattice. V1 controls the frequency spacing between the two resonant
modes in (b), V2 controls the QO factor of the Bi mode, and V3 controls the O factors of both the 41 and B1 modes. (f),(g) Magnetic field profiles
for the TE'x,' 1 and TE'x,' 51 modes normalized to the magnetic field of the incident plane wave, Ho. (h) Visualization of the integrand in the
FoM, calculated using (i),(j) the Ey components of TE'x,'sand TE'x !5 normalized to the electric field of the incident plane wave, Eo.
presence of modes not describable by FE irreducible modes about the Kk point misses relevant symmetries;
representations. In particular, the fundamental modes are
degenerate (last band diagram in Fig. 5) but have irreducible
representations 4; and B;. Although visibly quite different [see
the KV column of Fig. 4], and having distinct symmetries in
Csv, they are nonetheless identical in eigenfrequency. This
degeneracy is born of the trimerization of the lattice: A pair of
modes with the same eigenfrequency are superposed upon
translation to the point and can be superposed either in phase Higher order lattices, such as those shown in Fig. 19, may
or out of phase, producing a pair of distinct modes with  oxhibit similar behavior.

identical eigenfrequency. ! !

nevertheless, the ability to describe them in C.%fvas partners of
the £ modes means their eigenfrequencies must be identical.
Upon further symmetry degeneration (for instance, to cmm, or
cm in the Hex lattice), the modes behave differently, splitting
in both eigenfrequency and polarization dependence. This
behavior is unique to the Hexlattice in Figs. 9 and 10 because
it is the only lattice with more than two atoms per unit cell.
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B. Application: Terahertz generation

We explore the degenerate fundamental modes of the Hexk
lattice to aid in generating terahertz (THz) frequencies through
nonlinear processes enhanced by optical resonances.
Sketching the design of such a device is a useful exercise to
demonstrate the utility and an example use of the catalog.
Figure 12(a) depicts a schematic of the device, with a Hexx
lattice made of silicon pillars in the gap of a bowtie antenna
resonant to a THz frequency. Figure 12(b) shows an example
spectrum of the PCS portion of this device, showing two
closely spaced resonances at A; = 3.147 pm and A, =3.161 um,
both excited by y polarized light and

associated with the split degeneracy of the TE!x,'s and
TEk",' 5 modes. If optical power is normally incident at pump
wavelengths A, and A, such that A, = A; and Ay = A, and a low-
frequency bias (corresponding to a radio frequency with
wavelength A3) is electrically applied across the antenna,
fourwave mixing will produce photons at a THz wavelength
with improved efficiency (compared to a bulk material) due to
the enhanced light-matter interactions from the PCS and
antenna resonances. The case shown in Fig. 12(b) corresponds
to As=711 pm, but Fig. 12(c) shows that A4 can be easily tuned
by the radius of the central pillar R;. Figure 12(d) confirms that
the figure of merit (defined below) is indeed maximal at A4
when the pump photons have wavelengths of A;,A2 (1/A3 =0 for
simplicity, here; it may generally be used to finely and actively
tune A4).

A key advantage of using these degenerate modes is the
unique robustness of the control of both the spectral spacing
and linewidths of the resonances. Since the modes are
degenerate in the unperturbed lattice, they are necessarily
closely spaced in a weakly perturbed lattice. Then, by
controlling the radius of one of the pillars, the frequency
spacing can be finely tuned. The spectral map in Fig. 12(c)
shows the impact of tuning the radius of the central pillar Ry,
depicting a classic anticrossing behavior [39] as the
resonance spacing changes. This utilization of degenerate
modes offers a considerably more robust control of closely
spaced resonances compared to relying on controlling two
unrelated resonances by tuning geometric parameters: Fine
tuning the separation of two unrelated resonances is highly
sensitive to fabrication errors, while the split degeneracy here
is guaranteed by symmetry.

Notably, A4 (or the spacing of the resonances) can be tuned
largely independently of the linewidths of the resonances.
This is easily understood by considering the portion of the
perturbation V7 that corresponds to changing R;. Depicted in
Fig. 12(e), a lattice perturbed by V) alone produces a Hexx
lattice with the p6mm space group; reference to the catalog
(Fig. 10) reveals that no coupling to the target modes is
introduced by this perturbation. Tuning the radius of the
central pillar therefore does not affect the coupling to first
order. Then, the addition of V> degenerates the space group to
cmm, which couples the TE'x,'s mode to the magnetic x
polarization but not the TE'x,' sy mode. Finally, the addition
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of V3 creates a lattice with the cm space group with the C,"
point group, allowing coupling the TE!x,'4, mode to the
magnetic x polarization. Notably, if the other cm space group
(with point group C?in the third table of Fig. 10) were used,
the two resonances would be cross polarized. Tuning these
three portions of the perturbation therefore allows
independent tuning of each of the linewidths and the spacing
of the two resonances in either a co-polarized or cross-
polarized fashion. The copolarization of the two previously
degenerate resonances is unique to the Hexy lattice in the
catalog, as the E| and E> modes of the hexagonal lattices (and
E modes in the square lattices) are only accessible in a cross-
polarized fashion. Copolarized split degenerate states are a
unique feature of lattices with more than two atoms (such as
the lattices containing four atoms seen in, for instance, Fig.
19). In the present application, the freedom to have the pump
wavelengths be co-polarized allows a single pulse (with
bandwidth spanning the two resonances) as the pump.

To complete the demonstration of the advantages of the
Hexk lattice for terahertz generation, we compute a simple
figure of merit related to the efficiency of this conversion (see,
for instance, Refs. [22,23]):

3

= Ufxm(xs.\-’)E*(wl)E(wz)E*(wa)E*(w::)dx (26)

FoM
where the bounds of integration are over the entire device and
x®(x,y) is the spatially dependent third-order nonlinear
susceptibility and the electric fields are normalized to the
corresponding incident fields. Given the scale difference of
Asto a unit cell (i.e., 25> A), a reasonable approximation to
this integral is that £*(w3) = F3 and E*(w4) = F4 are constants
equal to the electric field enhancement due to the bowtie
antenna. We may then integrate over a unit cell:

FoM

w)E (02)G(x, y (x,y) =

=bres [[ Roy
A dx dy, 27

where F, = E,*() and G 1 where there is silicon and is 0 where
there is vacuum. That is, the figure of merit is proportional to
the overlap integral of the two pumps within the silicon
portion of a unit cell.

The integrand may be calculated from the mode profiles
taken from full-wave simulations of unit cell of the device.
The H.components of the modes for the spectrum in Fig. 12(b)
are shown in Figs. 12(f) and 12(g), corresponding to the
choice in Fig. 12(c) of R; =0.38 um. The integrand of Eq. (27)
is shown in Fig. 12(h), as calculated from the £, components
of the modes [shown in Figs. 12(i) and 12(j)] and the
refractive index profile of the device. The numerical value for

(3) . - )
this case is FoM/xsi 114”‘3”P4|, meaning that for a
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modest enhancement of |F3| = |Fi| = 10 by the bowtie
antenna we will have a total enhancement of FoM/xsi{® = 10*
in efficiency. Figure 12 therefore demonstrates a platform to
produce THz light from two infrared pumps taking advantage
of large electric field enhancement at every frequency
involved in the four-wave mixing process. The phase
matching condition is guaranteed by the subwavelength scale
of the device in the vertical direction, the resonance spacing
is robustly controlled by the radius of the central pillar, and
the resonant linewidths can be tuned largely independently
by the successive degeneration from Ce,to Cayto Cs. We note
that there is some partial cancellation upon integration of the
integrand of Eq. (27) but not complete cancellation. Future
work could optimize the perturbations chosen such that this
cancellation is minimized.

C. Application: Mechanically tunable optical lifetimes

Next, we remark on a type of periodic perturbation
achieved by stretching or shearing a high symmetry lattice.
Since the symmetry of the lattice is reduced, the
symmetryprotected BICs may be excited. However, the
condition on coupling [that is, Eq. (23)] still applies, and
therefore this class of perturbation follows the same selection
rules as the equivalent point group degeneration entries. For
instance, by shearing an unperturbed Sq lattice’s unit cell from
a square into a rhombus, the space group is reduced to p1 and
any mode at the point may now couple to free space with a
strength related to the degree of shear. However, the
polarization direction of the coupled plane wave will be ill
defined in general, changing, for instance, with the degree of
shear. (Recall that it is for this reason that the p1 entries are all
specified as any, because no general comment can be made.)

Of more interest is stretching along a high symmetry axis,
affording well-defined selection rules. This has been explored
in Ref. [28] for plasmonic heptamers arranged in a square
lattice by degenerating the symmetry of the heptamer from Ce,
to Cyy by stretching the substrate. Since the Fano resonance in
the plasmonic heptamer is both (1) well confined to a unit cell
of the overall lattice and (2) due to the coupling between
plasmonic modes, analysis of the point group of the unit cell
alone suffices to analyze the resonance. However, for a low
loss, high O-factor demonstration using dielectric structures,
this analysis is insufficient because the coupling across unit
cells of the array is integral to the presence of BICs. The
catalog of selection rules derived above provides the necessary
information for proper analysis in dielectric systems.

Inspection of the catalog of the square lattices (Fig. 9)
reveals that square lattices afford no interesting cases: The
only impact of a lattice deformation along a high symmetry
axis is to split degeneracies, not introduce any new coupling.
This is not true for the hexagonal lattices, however. Figure
13(a) shows a Hex lattice with p6mm space group (one pillar
of the trimer has a larger radius than the others) on a
stretchable substrate. In the unstretched case, the lattice has Cey
symmetry, and the selection rules forbid coupling to any but
the £y modes at normal incidence. However, inspection of the
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cmm space group reveals that degeneration from Csy to Coy
enables coupling to the B; and B, modes. Stretching the Hexg
lattice with p6bmm space group along the x axis also
degenerates the point group from Cs, to Coy and so ought to
enable coupling to those modes to a degree controlled by the

strength of the lattice deformation. Figure 13(b) depicts
(a) (b)

] N
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FIG. 13. Mechanically tunable optical lifetime. (a) Schematic of a
Hexk lattice with a p6mm space group on a stretchable substrate. (b)
Full-wave simulations mapping the spectral reflectance R near the
wavelength A of the TE'x !5 mode for various degrees of stretching.
(c) The unstretched lattice, with spacing P. (d) Stretched lattice, with
spacing Palong the horizontal. Single sided arrows denote the lattice
vectors in (c) and (d). confirmation of this prediction via full-
wave simulations near the TM'y,'s mode, showing redshift
and a changing Q factor as a function of deformation.
Inspection of the Hex catalog (or an analogous case in the Hex
lattice) therefore enables a low-loss dielectric-based flexible
device platform with mechanically tunable resonant lifetime.

D. Nonlocal metasurfaces

The preceding applications demonstrated the utility of the
catalog to guide device design using successive perturbations.
In other words, the key to their design came from
understanding how the final, lower order space group was
constructed from the higher order space groups, which
together form a parent-child relationship. In this section, we
supplement the approach in the accompanying paper [64] in
which we use this principle to demonstrate how particular p2
space groups may be constructed from two parent space
groups. We elucidate a geometric phase that is a consequence
of the parent space groups exhibiting mode “twisting” of the
sort shown in Fig. 11 and how if this geometric phase is
spatially varied, we may realize devices with anomalous
reflection and refraction only on resonance.

We begin by focusing on the relationship between three
space groups in the Squ lattice, shown in Fig. 14(a). Two
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parent space groups (pmg and pmm) are shown on the left.
These two space groups share no symmetries in common
except twofold rotations at the center of the silicon pillars.
Consequently, if the perturbations are added successively, the
child space group will retain only these twofold rotations,
resulting in the p2 space group shown on the right in Fig. 14(a).
This example of a parent-child relationship be-
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FIG. 14. Metaunits that introduce two factors of the geometric
phase. (a) Hierarchical relationship between a p2 (child) space group
and two higher order (parent) space groups in the Squ lattice. (b)
Schematic of a metaunit composed of ellipses etched into a slab of
silicon, excited by RCP light incident from the substrate. (c)
Reflectance map for a metaunit library constructed by varying o and
Dato keep a constant resonant frequency. (d) Amplitude and phase
responses of the LCP and RCP components of the reflected light on
resonance. (e) Amplitude and phase responses of the LCP and RCP
components of the transmitted light on resonance.

tween higher order parents and lower order children is very
general; the full hierarchy for the Squ and Sqx lattice is
reported in Fig. 20. (Note: the hierarchy particular to the
multiwavelength  metasurface  introduced in  the
accompanying paper [64] is reported in Fig. 21.)

Examining Fig. 14(a) shows that the pmm parent space

group allows for coupling to a polarization angle ¢ = 0° from
the x axis (that is, x polarization), while the pmg parent space
group allows for coupling to a polarization angle ¢ = 90° from

the x axis (that is, y polarization). As seen in the inset of Fig.
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14(a), the child space group may be parameterized by an

orientation angle a that yields the pmm parent space group
when a = 0" and the pmg parent space group when a =45°". In
other words, as a varies continuously from 0° to 45°, the
corresponding polarization angle must vary from 0°to 90°.

The linear interpolation of this behavior is

b = 20. (28)

This form is highly reminiscent of the well-known geometric
phase 2a, which is introduced when the handedness of circular
polarization is flipped while light is scattered by an anisotropic
scatterer oriented along the o direction. This similarity
suggests studying a p2 space group under circularly polarized
illumination, as shown in Fig. 14(b).

In particular, upon studying the phase of circularly
polarized light exiting the device on both the reflection side
and transmission side, we find that this system imparts a
geometric phase to light exiting with the converted
handedness [for right circularly polarized (RCP) incidence,
this is left circularly polarized (LCP) light in transmission and
RCP light in reflection] that is twice the conventional
geometric phase. As in conventional dichroic optical
elements (e.g., a plasmonic bar antenna), two projections of
the polarization basis are required to analyze the outgoing
light, one from coupling into the element and the second from
coupling out. We will consider each in turn.

First, only the component of free-space light that is
linearly polarized in the ¢ direction completely couples to the
mode. This light, which constitutes half of the power of the
RCP incident light, is resonantly reflected, while
orthogonally polarized light (at an angle 8 = ¢ + 90°) is
transmitted. Decomposing the incident RCP light into two
linearly polarized components, the ¢ component carries a
phase 1=® andthe component carries a phase ‘1 = ¢ + 90",
Since the ¢ direction is defined by the orientation angle a by
Eq. (28), the resonantly reflected light is therefore associated
with a phase 1=20 and the orthogonally polarized
transmitted light has a phase 1 = 2a + 90°.

Second, the output light on resonance is linearly polarized
and can be decomposed into its constituent LCP and RCP
components. These components have a geometric phase 1=
Fo in reflection and , = 0 in transmission, where the first
sign corresponds to LCP, and the second corresponds to RCP.
We can finally determine the total phases = ®1 + @2 of the
LCP and RCP components in reflection and transmission:

"Ler=2a-2a=0 (29a)
"rep =200+ 20 = 4a (29b)
ter= + )+ (2a+90%) =4a+ 180" (29¢) 2a

90
Rer=(2a+90°) - 2a+90°) =0-. (294d)
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That is, RCP light in reflection and LCP light in
transmission vary as 4a, while LCP light in reflection and
RCP light in transmission are invariant to a. The two factors
of the geometric phase come from the two instances of
changing the basis for the polarization state: first from
circular to linear (coupling into a single linear state) and
second from linear to circular (decomposing into its
constituent spins). In this case, the final value is twice the
conventional geometric phase because the eigenpolarization
(characterizing the projection bases) varies as ¢ = 2a
compared to the conventional case of ¢ = a (e.g., a plasmonic
bar antenna oriented in-plane by an angle a). We note that the
form ¢ = 2a is not a general rule for quasi-BICs; for instance,
the p2 space group in the Hexg lattice with a cross motif
follows ¢ = —4a for the By mode. This results in a geometric
phase that is -8a.

We next explore the physics and applications exploiting
this geometric phase as a new degree of freedom. Because the
geometric phase is completely controlled by a, we may use
the remaining geometric degrees of freedom of the unit cell
to maintain a spatially constant resonant frequency across a
device with a spatially varying geometric phase profile. In
other words, as in conventional metasurface approaches, we
may construct a library of geometries (“metaunits”) such that
full phase coverage and constant amplitude are achieved.
Then, by spatially arranging these metaunits, an output
wavefront with a designer phase profile may be realized at
the resonant frequency.

To confirm this approach, we construct such a metaunit
library targeting wavelengths in the telecommunications range.
A metaunit, seen in Fig. 14(b), is composed of a silicon slab
with two etched ellipses, which are identical but for a 90°
rotation. The chosen thickness of the slab is H = 250 nm, and
the lattice constant is a = 400 nm. The in-plane geometric
parameters that are varied to construct the metaunit library are
the diameters along the semimajor axis D, and semiminor axis
Dy and the orientation angle a. For simplicity, we keep Dj
constant and vary D,and a so as to achieve full phase coverage
with minimal shift in resonant wavelength.

A spectral map of reflectance, calculated by fullwave
simulations, is shown in Fig. 14(c) illustrating a near constant
resonant wavelength across the metaunit library. The
amplitude and phase of the reflected (transmitted) LCP and
RCP components are recorded in Fig. 14(d) [Fig. 14(e)] at the
operating wavelength, Aop = 1.52 pm. The amplitudes of the
LCP and RCP components are approximately equal (each
representing roughly one quarter of the input power) and vary
little across the metaunit library. The small inequality is due to
the presence of the substrate breaking the symmetry in the out-
of-plane direction. The phase of the component with converted
handedness (which for reflection is RCP and for transmission
is LCP) varies across 2m as a varies across 90° and follows
closely with the predicted = 4a dependence [see Figs. 14(d)
and 14(e)].

PHYSICAL REVIEW B 102, 035434 (2020)

With the metaunit library constructed, a wavefront with a
spatially shaped phase profile within a narrow bandwidth near
Aop may be realized. A common function is to linearly vary the
output phase so as to create anomalous reflection and
refraction. We may choose either to vary the phase profile in
the same direction as the dimerization [the x direction in Fig.
14(b)] or the orthogonal direction. We will begin with the
former choice (see the accompanying paper for the latter
[64]).

Figure 15(a) shows a schematic of a device deflecting the
component with the converted handedness at the resonant
wavelength for RCP light normally incident from the substrate
side. Figure 15(b) depicts the electric field on resonance
calculated by fullwave simulations, overlaid with the geometry
of the device [Fig. 15(e)]. Figures 15(c) and 15(d) show the
output polarization states and phases of the LCP and RCP
components at the reflection side and transmission side,
respectively. In both cases, the output polarization is
approximately linear across the device. As such, the phase of
the signal with unconverted handedness is uniform while the
phase of the signal with converted handedness varies across 4mn
as a varies over 180"

Figure 15(f) confirms that the resonance of the metasurface
remains intact, despite the variance of geometry across the
metasurface. However, a noticeable blueshift has occurred
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FIG. 15. Gradient resonant metasurface. (a) Schematic depicting the device and its functionality: A thin film of silicon on top of quartz is
patterned with elliptical holes (inset shows top view of the geometry), resonantly deflecting light with converted handedness when excited by
circularly polarized light. (b) Top view of the complex field on resonance overlaid on the gradient resonant metasurface. (c),(d) Top view of

spatial distributions of the reflected and transmitted polarization states, e-and e;, and phase responses of Erce”, Erce’, ELcp”, and EvLcp’

. (e)

Geometrical parameters of the device in (b). (f) Transmission and reflection spectra of the device in (b). (g)—(j) Farfield angular and spectral
intensity distributions calculated from the optical near field, such as the results in (¢),(d), showing deflection of light with converted handedness

Ol‘lly on resonance.

relative to the originally chosen A,. Nevertheless, at the
resonant peak of the device, Agey = 1.46 pm, deflection to the
second diffractive order occurs for signal with the converted
handedness [Figs. 15(g)-15(G)]. A device with identical
deflection angle is shown in the accompanying paper [64] but
with a phase gradient applied in the orthogonal direction to the
dimerization direction. The blueshift is also present in that case
but significantly reduced.

The explanation for this blueshift comes from a unique
feature of this metasurface: The deflection of light with
converted handedness is mediated by a supermode of the
device. That is, unlike conventional metasurfaces, whose
metaunits scatter light based on local resonances, this
metasurface scatters light due to a global resonance (associated
with a supermode) supported by many neighboring metaunits.
To explore the physics here, we consider the dependence of a
gradient resonant metasurface on the incident angle of the RCP
light. Figure 16(a) schematically shows a device with a spatial
phase gradient in a direction orthogonal to the dimerization
direction, with light incident from the substrate at a set of
angles O; (along the phase gradient) and 6, (along the
dimerization direction). Since the deflection only occurs on
resonance, the resonant frequency follows some dispersion
relation (i.e., the band structure). Figure 16(b) depicts the
resonant frequency dispersion while varying 6, from -40° to
40°(corresponding, by Snell’s Law, to £68.7°in air). This mode
is concave up, meaning that at higher in-plane momenta, a
blueshift occurs.

To understand the blueshift at normal incidence, we must
consider (1) the modes supported by the device and (2) the

inplane momentum of the resonant mode. First, these resonant
modes exist in the device with a superperiod of Py = 8a in the
phase gradient direction. We therefore consider all of the
supermodes supported by a device with this superperiod.
Because the superperiod is composed of perturbed versions of
the same PCS, the supermodes will be well approximated by
artificial Brillouin folding corresponding to period doubling a
metaunit three times. Figure 16(c) depicts such a process for
the mode in question, showing the band of the unit cell
(containing two ellipses) copied every integer multiple of the

(a) b
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FIG.
Schematic of a resonant metasurface excited from off normal angles.

16. Angular dispersion of resonant metasurfaces. (a)

(b) Reflectance map while varying 6,, showing that the resonance
follows the dispersive concave-up band of the mode. (c) Region of
an extended zone (shaded gray) band diagram near the resonance of
the device in (a) with artificial Brillouin zone folding; the red band
corresponds to the band shifted by a k vector equal and opposite to
that introduced by the phase gradient due to coupling into the
supermode (i.e., one factor of the geometric phase). (d) Reflectance
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map while varying 6x, showing that the resonance follows the band
shifted by a factor of the geometric phase gradient.
grating vector kg = 2n/P; in the k. = kosin(B,) direction. The

supermodes present at normal incidence are the modes at k, =

0 in this diagram.

Second, upon coupling in, there is a spatially varying
geometric phase, corresponding to twice the local rotation
angle of the ellipses. The derivative of this spatial phase is
equivalent to a k vector,

P 2
kgeom= — = ko = —.
ox P,

In other words, the resonant supermode is the resonant mode
of an unperturbed lattice modulated by an in-plane wave
vector in the x direction. This corresponds to a supermode
that is kgeo away from the unperturbed point, k. = 0 (the flat
part of the band). The supermode is highlighted red in Fig.
16(c). Consequently, as seen in Fig. 16(d), as 6, is varied, the
resonance follows the dispersion of the band as it existed in
the unperturbed lattice, shifted by —kgo. Notably, this also
means that the resonant frequencies corresponding to the pair
of incident momenta k; = 0 and k. = —2kge, are identical. This
is consistent with the requirements of reciprocity: These two
momenta are the input and output momenta of the deflection
process; reversing the output must yield the original input at
all frequencies.

Finally, we comment on the achievable phase gradient
limited by this angular dispersion. As encapsulated by Eq. (2),
the component & vectors involved with the resonance must be
limited according to the linewidth and angular dispersion of
the resonance in order to maintain large resonance visibility.
For a resonant metasurface lens or hologram shaping an
incident plane wave, the range of output k vectors must
satisfy Eq. (2). In the cylindrical metasurface lens reported in
the accompanying paper [64], the resonance visibility is
maintained despite the range of deflection angles in the 6.
direction across the device, which may be characterized by
the numerical aperture NA. We find that increasing the NA
gradually reduces the resonance visibility, but a substantial
resonance visibility (a peak reflectance of >40%) is still
maintained at a high value of NA = 0.7. This is not true for a
cylindrical lens focusing in the 8, direction, where NA < 0.1
is required to retain appreciable resonance visibility, as the
angular dispersion is large in the 6, direction compared to that
in the 6, direction [comparing Figs. 16(b) and 16(d)]. This is
consistent with the constraint on Q factor, band flatness, and
spread in incident k£ vector encapsulated by Eq. (2). In other
words, it suggests that by including band structure
engineering, a fully radially focusing resonant metasurface
lens may be realized and that we must generally take care to
engineer the band structure of the unperturbed resonant
metasurfaces before applying the perturbation, as laid out in
the three-step process described in Sec. ITA.

Given the lack of impact on the nonresonant light waves,
which may transmit with high efficiency irrespective of

(30)
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incident angle, we anticipate these resonantly deflecting and
focusing metasurfaces to be of significant interest to
augmented reality displays, which aim to superimpose a
desired image on top of information transmitted through the
glass originating from the external world. By further
application of the principle of successive perturbations, we
show in the accompanying paper [64] that the single-
wavelength resonant metasurfaces may be extended to
multiwavelength devices with independently tunable phase
profiles. The hierarchy of the child space group constructed
from eight parents is shown in Fig. 21. The eight parents
represent eight degrees of freedom to spatially and spectrally
shape an incident wavefront: The Q factors and polarization
angles (i.e., geometric phases) of four modes with distinct
symmetries may be controlled simultaneously. Notably, these
eight degrees of freedom are in addition to the degrees of
freedom present in the unperturbed lattice, which may be
used to control the resonant frequencies and band curvatures
of the desired modes. This degree of spatial and spectral
control over an optical spectrum greatly surpasses the state of
the art and is readily apparent from careful study of the
catalog in conjunction with the design principle of successive
perturbations.

V. SUMMARY

In summary, we derived the selection rules for Fano
resonances due to quasibound states in the continuum
supported by photonic crystal slabs. Targeting the high
symmetry modes of both square and hexagonal lattices, we
explored six lattices designed to bring each class of high
symmetry mode into the continuum. We exhaustively reported
the degenerated space groups due to in-plane perturbations that
are compatible with these six lattices and cataloged the
selection rules in each case by applying principles of group
theory to determine the free space polarization of the leaky
portion of the perturbed modes.

Together with band structure engineering, the principles,
approach, and results outlined here provide a high-level guide
to designing compact photonic crystal slabs supporting sharp
resonances: devices confining light in both space and time and
manufacturable by mature fabrication technologies. Future
work will be well guided by the rational design principles
considered here to reduce the search space required to
optimize a compact, resonant optical device. In particular, we
showed that the band structure may be engineered in the
unperturbed lattice before a periodic perturbation is applied to
couple the targeted mode(s) to the desired free space
polarization(s). We showed, here and in the accompanying
paper [64], that in addition to the degrees of freedom present
in choosing the unperturbed lattice, a series of successive
perturbations may realize multifunctional control of the
resonances (up to eight parameters at once). The insights of the
catalog of selection rules produced by group theory arguments
have straightforwardly motivated novel devices, such as
polarization independent planar optical modulators, terahertz
generation in photonic crystal slabs with lifted degeneracies,
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devices with mechanically tunable optical lifetimes, and a
novel class of metasurfaces that uses two factors of a
geometric phase to spatially shape a resonant wavefront. We
therefore believe that careful understanding and examination
of the patterns and features of the selection rules represent a
fruitful launching point for future efforts.
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APPENDIX A: GROUP THEORY TABLES

For ease of reference, the character tables of all relevant
point groups are reported in Fig. 17(a). The left column of
tables in Fig. 17(a) contains the point groups compatible with
the square and rectangle lattices, and the right contains those
compatible with hexagonal lattices. Figure 17(b) summarizes
the subgroups of each of the point groups shown in Fig. 17(a).

) Subgroups
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in higher order groups degenerate in lower order groups. This prescribes the necessary components of the symmetry

degeneration tables, shown in Fig. 17(c), which track how
higher symmetry modes (irreducible representations)
degenerate into lower groups. That is, reference to the
symmetry degeneration tables provides the answers to how a
higher symmetry mode would be named in a lower order
symmetry group (for instance, B, in Cs4 would be called 4, in
Cao)-

Next, Fig. 18 provides the group theory tables helpful for
determining the selection rules through the direct product

No. DI5SAP00111 and No. HR0011-17-2-0017), the National
Science Foundation (Grants No. ECCS-2004685 and No. QII-
TAQS-1936359), and the Air Force Office of Scientific
Research  (Grant No. FA9550-14-1-0389). A.C.O.
acknowledges support from the NSF IGERT program (Grant
No. DGE-1069240). S.C.M. acknowledges support from the
NSF Graduate Research Fellowship Program (Grant No.

035434-28



LECTION RULES FOR QUASIBOUND STATES IN THE ...

approach. Figure 18(a) provides the direct product table for
the Cgy point group, and Fig. 18(b) provides the same for the
C4y point group. The direct product tables for the lower order
point groups are a subset of these. For instance, for C»,, Fig.
18(b) may be used excluding the final row and column. Lastly,
Fig. 18(c) contains the irreducible representations for the
partial derivative operators relevant for direct products such
as in Eq. (23). This tracks how free space polarizations
transform in each lattice type.

APPENDIX B: ADDITIONAL LATTICES

The six lattices cataloged in Figs. 9 and 10 were chosen
because they access the six high symmetry modes in the
simplest way. For instance, the Squ lattice accesses only the
and M (but not the X) modes of a square lattice, while
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Ay + A; B; + B, (L E E
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FIG. 18. Group theory tables for deriving the selection rules.
(a) The direct product table for Cev. (b) The direct product table for
Csy. The direct product tables for the lower order point groups are
subsets of (a) and (b). (c) The irreducible representation describing
the partial derivative operator in each direction. This describes how
free space polarizations transform in each point group.

the Sqxaccesses the and X (but not the M) modes. However,
if desired, it is possible to access all three modes in a single
lattice by period doubling in both lattice directions. Figure 19
shows this lattice, called Squx, depicting the real space and
FBZ. This lattice is a “quadromer,” having four atoms per
unit cell, and therefore has four times the modes compared to
the unperturbed case. In particular, it has the and X modes,
as well as two copies of the M modes (one from each M, and
M,), which mix at the point in a similar way to the K modes
of the Hexx lattice.

Also pictured in Fig. 19 are the Hexannsand Hexy, both of
which are examples of quadromer lattices. Hexamnyis still of
the hexagonal lattice family, while Hex s (much like Hexy) is
rectangular. Hexyany contains three copies of the M modes,
which will mix at the point. Hexy, on the other hand,
accesses a unique set of modes at the point in the unperturbed
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FBZ (see the last panel in Fig. 19), which have the point
group Cy? (that is, they are either symmetric or antisymmetric
about the x axis).

The lattices shown in Fig. 19 are by no means the only
additional lattices that may be explored. Instead, they serve
as an example of the next few lattices in the infinite list of
lattices ordered by number of atoms in the perturbed unit cell.
The lattices in this list are generally increasingly complicated,
but the same approach outlined in Sec. IIIC may be applied
to determined the selection rules if desired.

APPENDIX C: SPACE GROUP HIERARCHY

A feature of the Sqx lattice is that there are two points in
the unperturbed lattice with Cs about which to apply the
dimerizing perturbation. This has the consequence that there
are two p4g groups in the catalog of the Sqxlattice, each with

Amx

FIG. 19. Three additional examples of periodically perturbed
lattices. Each of these lattices is a “quadromer” lattice, with four
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atoms per unit cell upon perturbation, and therefore have four times
the modes of the unperturbed lattices at the point.

a different high symmetry point in common with the
unperturbed lattice (likewise for the two p4m groups).
Similarly, there are two equivalent points with at leastCa,
symmetry that may be chosen while perturbing to a Sqlattice
(and equivalently, the Hexy lattice), producing an analogous
set of paired perturbations. Note that the Sq lattice (and
equivalently, the Hex lattice) has no such feature. The Hexx
lattice has no such pairing of perturbations because there is
only one point in the unperturbed lattice with Cs, symmetry.

An interesting feature of the paired sets of perturbation is
the relationship of the symmetries those members have in
common with each other. By adding the two perturbations
together, a space group of lower symmetry is created with only
those symmetries the two parent space groups had in common.
In the words of crystallography, this process is finding a

[
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FIG. 20. Hierarchy of space groups in the (a) Squ lattice and (b) Sqxlattice, showing how lower order space groups are related to higher
order space groups.

translationengleiche subgroup in common (and finding the Cs,
parent space groups is finding klassengleiche subgroups of the
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FIG. 21. Complete hierarchy adding eight space groups with Cav
point symmetry and “orthogonal” selection rules to achieve a final p1
space group with eight degrees of freedom: the Q factors and
polarization angles of four distinct modes.
unperturbed lattice). This resulting child space group must,
naturally, be a member of the catalog. Such a relationship
may be studied for all of the space groups in the lattices with
this pairing of perturbations. The resulting relationships are
seen in Fig. 20, showing complete sets of relationships
between higher and lower space groups. Note that for the Sqx
lattice, one of the cmm space groups has its highest symmetry
point in common with the C,, symmetry point of the
unperturbed lattice. It may therefore not be made by adding
higher order space groups. Likewise, it is well known to
crystallographers that the pmg space group has no parent
(translationengleiche supergroup), and therefore also stands
alone. However, both of these “parent-less” space groups
share symmetries with the other members of the Sqx lattice
and therefore may be combined to create space groups of
lower symmetry.

We note that while these relationships do not prove that
the catalog is exhaustive, the closed, consistent system is
highly suggestive that it is. Indeed, in an earlier version of
this manuscript, one of the p4g space groups of the Sqx
catalog was omitted, and its existence and selection rules
were predicted while attempting constructing Fig. 20(b): A
fourth space group with Cy, symmetry was needed to produce
a consistent hierarchy.

Finally, for completeness we report in Fig. 21 the entire
hierarchy enabling control of the O factor and polarization
angle for four modes simultaneously and independently, used
in the accompanying paper [64]. The resulting lattice is Squy
(refer to Fig. 19) constructed from two Squ lattices, one
dimerized in the x direction, whose modes are referred to as

PHYSICAL REVIEW B 102, 035434 (2020)

M, and the other in the y direction, whose modes are referred

to as M,.
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