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Photonic crystal slabs (PCSs) are a well-studied class of devices known to support optical Fano resonances 

for light normally incident to the slab, useful for narrow-band filters, modulators, and nonlinear photonic devices. 

In shallow-etched PCSs the linewidth of the resonances is easily controlled by tuning the etching depth. This 

design strength comes at the cost of large device footprints due to the poor in-plane localization of optical energy. 

In fully-etched PCSs realized in high-index-contrast material systems, the in-plane localization is greatly 

improved, but the command over linewidth suffers. This disadvantage in fully-etched PCSs, also known as high 

contrast gratings (HCGs), can be overcome by accessing symmetry-protected bound states in the continuum 

(BICs). By perturbing an HCG, the BIC may be excited from the free space with quality factor showing an 

inverse squared dependence on the magnitude of the perturbation, while inheriting the excellent in-plane 

localization of their unperturbed counterparts. Here, we report an exhaustive catalog of the selection rules (if 

and to which free space polarization coupling occurs) of symmetry-protected BICs controlled by in-plane 

symmetry breaking in six types of two-dimensional PCS lattices. The chosen lattices allow access to the three 

highest symmetry mode classes of unperturbed square and hexagonal PCSs. The restriction to in-plane symmetry 

breaking allows for manufacturing devices with simple lithographic fabrication techniques in comparison to out-

of-plane symmetry breaking, useful for practical applications. The approach reported provides a high-level road 

map for designing PCSs supporting controllable sharp spectral features with minimal device footprints using a 

mature fabrication platform. To demonstrate the use of the resulting alphabet of structures, we numerically 

demonstrate nonlocal metasurface platforms for terahertz generation, mechanically tunable optical lifetimes, and 

wavefront shaping 

exclusively at resonance. 

DOI: 10.1103/PhysRevB.102.035434 

I. INTRODUCTION 

Enhancement of light-matter interactions is a key 

capability for improving and expanding the functionality of a 

wide gamut of photonic devices. Spatially and temporally 

confining light enables compact planar optical modulators 

with fast switching speeds [1–4], narrow-band bandpass 

filters [5–9], sensitive biological and refractive index sensors 

[10–12], efficient optical microelectromechanical devices 

[13,14], novel lasers [15–19], and enhanced nonlinear [20–

23] and quantum optical phenomena [24,25]. This is 

conventionally achieved by the introduction of an optical 

cavity, which circulates optical energy, affording a photon 

many passes through a material. 

Planar diffractive optics enable uniquely compact optical 

confinement in lightweight quasi-two-dimensional systems 

fabricated by mature micro- and nanofabrication 

technologies. Traditional plasmonic materials such as gold 

enable strong light-matter interaction in metasurfaces 

[23,26–30] but are incompatible with standard 
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complementary metal-oxide semiconductor (CMOS) 

foundries. Alternative plasmonic materials are an active area 

of study [31,32] but without exception introduce substantial 

optical losses that reduce the efficiency of a photonic device. 

These limitations motivate exploring methods of confining 

optical energy without metals, restricting the optical 

materials to common dielectric materials such as silicon and 

its oxide. 

A classic example of a dielectric diffractive optical element 

with enhanced light-matter interactions is the low-contrast 

grating (LCG) or guided mode resonance filter [5–8]. By 

periodically corrugating a thin slab with subwavelength 

periodicity, a laterally propagating waveguide mode supported 

by the slab may couple to normally incident light. The leakage 

out of the slab interferes with the direct optical pathways (here, 

the Fabry-Perot resonance), producing a well-known Fano 

resonance [33–35]. Related phenomena have been studied for 

over a century, beginning with Wood’s anomalies [36–38]. In 

an LCG, the degree of corrugation can be easily controlled 

experimentally and is a design parameter that directly controls 

the linewidth of the resonant spectral feature. In particular, for 

small corrugation the quality factor (Q factor) of the resonance 

is known to be inversely related to the depth of the corrugation 

[39]. However, this attractive design feature comes with an 
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inherent drawback: The long optical lifetime comes from the 

long distance the guided mode travels within the device before 

coupling back to free space; the device therefore needs to be 

of a lateral size comparable to this characteristic travel 

distance in order to observe a narrow spectral feature. In other 

words, LCGs are constrained by a tradeoff between spatial 

confinement (device size) and temporal confinement (Q 

factor). 

Another well-studied diffractive optical element is the high 

contrast grating (HCG) [40–42], known to enable compact 

devices due to large in-plane Bragg reflection laterally 

confining optical energy. Since the corrugation is deep (and, 

typically, complete) in HCGs, the ease of control of the Q 

factor by the method present in LCGs is lost. HCGs are best 

known for their broadband spectral features for this reason. 

However, HCGs are also known to support sharp spectral 

features in the form of Fano resonances [42–44]. In particular, 

for certain combinations of optical materials, geometries, 

wavelength, angle, and polarization, the Q factor may become 

infinite, a phenomenon known as a “bound state in the 

continuum” (BIC) [45–48]. Operating near a BIC in the 

relevant multidimensional parameter space allows tuning of a 

resonance with finite Q factor. Unfortunately, because of the 

complex and sensitive dependence on many parameters 

simultaneously, this control is not robust in comparison to the 

control in an LCG. 

However, HCGs can support two classes of BICs: those 

excluded from coupling to free space due to symmetry 

constraints (or “symmetry-protected”) and those excluded for 

reasons unrelated to symmetry (or “accidental” [49]). It has 

been argued recently [50] that symmetry-protected BICs in 

HCGs are better suited than accidental BICs for creating 

compact optical devices with sharp spectral features. It is well 

known that by reducing the symmetry [9,28,51–60] of an HCG 

or PCS, symmetry-protected BICs become quasibound in the 

continuum, at which point they are referred to as “quasi-BICs” 

[61]. Quasi-BICs couple to light at normal incidence with 

optical lifetimes controlled by the magnitude of the 

perturbation that breaks the symmetry protecting them, 

thereby restoring a robust design paradigm for controlling the 

Q factor of a sharp spectral feature. Furthermore, it has also 

recently been shown [54,60] that proper perturbation 

(including breaking vertical symmetry) allows excellent 

control of the band structure. Therefore, a symmetry-broken 

HCG inherits the benefits of both LCGs and HCGs relevant to 

sharp spectral features in compact devices. 

In particular, a period doubling perturbation (a dimerization 

of an HCG) allows modes previously bound [under the light 

line at the edge of the first Brillouin zone (FBZ)] to be brought 

into the continuum, coupling to a range of angles near normal 

incidence to a degree controlled solely by the perturbation 

[53–56,60,62,63]. Consequently, a “dimerized high contrast 

grating” (DHCG [50]) is an excellent candidate platform for 

planar optical devices with both spatial and temporal 

confinement of light. Much of the study of DHCGs has 

focused on simple, one-dimensional devices, enabling control 

of the mode in one in-plane direction but not in the orthogonal 

direction. Two-dimensional, high-index-contrast PCSs with 

periodic perturbations are the natural extension of DHCGs that 

solve this limitation and are the subject of this paper. The 

number of symmetries in a two-dimensional PCS is 

significantly greater than the simple one-dimensional case; the 

wealth of modal interactions between free space and two-

dimensional PCSs with periodic perturbation therefore 

requires detailed exploration. 

Symmetry-protected BICs are commonly studied in 

monatomic PCSs, where even/odd symmetry conditions may 

preclude coupling to free space at normal incidence. The BICs 

in diatomic PCSs (e.g., DHCGs) are subject to the analogous 

even/odd symmetry conditions, so that once the period 

doubling has folded the bound modes into the continuum, they 

may still be left bound in the continuum. If the relevant 

even/odd symmetry is broken, the symmetry-protected BICs 

become quasi-BICs. Both the monatomic and diatomic 

approaches fall under the same category of symmetry-

protected BICs but access distinct high symmetry modes (that 

is, modes with distinct periodicity and field profiles). 

Therefore, to fully utilize the available perturbations and 

modes, we study both monatomic and multiatomic PCSs. 

We note that the simplest method of breaking the relevant 

in-plane symmetries is to excite quasi-BICs with light at an 

incident angle just off the substrate’s normal. However, as 

argued in Ref. [50], this approach is restrictive in comparison 

to breaking the symmetry by perturbing the structure. In 

particular, this method works only for light with a limited 

angular spread of optical momentum centered at a precise 

angle (to get the target Q factor), therefore requiring devices 

with large footprints and precise tilt of the device relative to 

the source optics. 

Lastly, while in this paper we describe quasi-BICs as 

supported by all-dielectric PCSs, we note that the group 

theory approach taken here is valid irrespective of materials 

system, so long as the materials are isotropic. For instance, 

arrays of silicon pillars are treated the same as arrays of holes 

in a silicon (or even metal) slab. The choice of materials 

system may be made based on the needs of the application; 

an analogous set of modes (as classified by their in-plane 

symmetries) obeying the selection rules derived here will 

exist, albeit with widely varying field profiles and resonant 

frequencies. 

In this paper, we study the optical response due to inplane 

perturbations applied to high-symmetry PCS lattices. 

Throughout, we assume these PCSs have cross sections 

invariant in the out-of-plane direction, and we assume any 

outof-plane symmetry introduced by the presence of a 

substrate is negligible. In Sec. IIA, we review quasi-BICs and 

how they spatially and temporally confine light. In Sec. IIB, 

we review the classification in the language of group theory 

of the three types of high symmetry modes supported by each 
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of square and hexagonal PCSs (six types of modes in total). 

Section IIIA explores six classes of perturbed lattices chosen 

to target the six high symmetry modes. To determine the 

impact of these perturbations, Sec. IIIB derives the symmetry 

constrained coupling conditions specifying which, if any, 

free space polarization couples upon perturbation. The 

degenerated space groups compatible with each unperturbed 

lattice are exhaustively listed, and in Sec. IIIC the 

polarization dependence for each mode and each space group 

is written down by applying group theory principles. The 

result is a catalog of the selection rules for quasi-BICs 

describing all the unique ways that the six highest symmetry 

modes of square and hexagonal photonic crystal lattices may 

be accessed by in-plane symmetry breaking. Finally, in Sec. 

IV we discuss notable aspects of the catalog and sketch 

several example device applications. In particular, here and 

in the accompanying paper [64] we show how the catalog 

guides device design using successive perturbations to 

achieve multifunctional control of optical spectra and 

introduce a novel class of metasurfaces that use this 

multifunctional control to spatially control resonant 

wavefronts. 

II. BACKGROUND 

A. Quasibound states in the continuum 

We begin by reviewing the design process to create a 

finite-sized DHCG; we explore a BIC in a diatomic lattice 

artistically depicted in Fig. 1(a). Figures 1(b) and 1(c) define 

the geometric parameters of the unperturbed and perturbed 

lattices, respectively. The two “atoms” (here, pillars of 

silicon) in the perturbed lattice are identical in height√ H and 

diameter 

 

D and sit in a lattice of period 2P, where P is the period of 

the unperturbed lattice. The perturbation can be quantified as 

the gaps between atoms: The perturbed gap is g2 = g+ δ, where 

g is the unperturbed gap (g = P − D) and δ is the perturbation. 

The FBZs of the unperturbed and the perturbed lattices are 

shown in Figs. 1(d) and 1(e), respectively, with high 

symmetry points defined and the primed coordinates 

representing the perturbed lattice. The effect of the lattice√ 

 

transformation (taking the period in real space from P to 2P 

and rotating the basis vectors by 45◦) is to shrink the extent 

of the FBZ and rotate it by 45◦. The states belonging to 

sections of the unperturbed FBZ that lie outside of the new, 

perturbed FBZ are, by Bloch’s theorem, equivalent to states 

within the new FBZ. They are brought into the new FBZ by 

translation of a reciprocal lattice vector (a process known as 

Brillouin zone folding) as depicted graphically in Fig. 1(e) 

for the shaded area near the X point. The bound modes that 

were at the X point are now at the  point (that is, in the 

continuum) due to the perturbation. 

The new modes brought into the continuum may now 

couple and produce Fano-like sharp spectral features for 

normally incident light. By construction, the coupling 

strength is related to the magnitude of the perturbation. It has 

been shown [50] that the coupling strength for small 

perturbations is of the order of δ. Since the Q factor of a sharp 

resonance is inversely proportional to the square of the 

coupling strength [39], a symmetry-protected BIC has a Q 

factor governed by [50,61] 

 Q = C/δ2, (1) 

where the constantC can vary depending on the mode, 

geometry, materials, and polarization. Figures 1(f) and 1(g) 

show the mode profiles for the fundamental mode depicted in 

Fig. 1(a). Figure 1(h) shows full-wave simulations of the Q 

factor of the fundamental mode as a function of perturbation 

strength, agreeing well with Eq. (1) with C ≈ 6.5P2. Figure 

1(i) contains the band diagram for the perturbed structure 

calculated by the plane-wave expansion method (PWEM) 

using the supercell method, with high symmetry points 

defined relative to both the unperturbed and perturbed lattices. 

The modes are calculated in the unperturbed structure 

following the red arrows in Fig. 1(d) and then artificially 

folded into the FBZ. 

The band structure of the perturbed PCS in Fig. 1(i) can 

help predict the accuracy of Eq. (1) for finite devices. In an 

infinite device, a plane wave corresponds to a single state (for 

instance, a mode at the  point) and the band curvature is 

irrelevant. However, a finite device excited by a Gaussian 

beam will behave as some combination of responses excited 

by the plane waves composing that Gaussian beam. One 

simple model for predicting the behavior of a finite device is 

to perform a weighted sum of the spectra corresponding to 

the constitutive plane waves [50]. We model a band by a 

Taylor expansion about the  point, ωres(k) = ω0 + bk2, where 

ω0 is the angular frequency of the mode at k = 0 and b

. A Gaussian beam with a characteristic spread 

in wave vector of k will excite a characteristic spread of 

frequencies ω = bk2. It is natural to expect that if this spread 

of frequencies is larger than the linewidth of the resonance 

dω excited in an infinite device by a plane wave, the spectral 

feature will be washed out, lowering the observed Q and 

invalidating Eq. (1). This suggests a constraint 

Q. (2) dω ω bk2 

In other words, there is an upper limit on the Q factor 

attainable in a finite device due to the band curvature near the  
point. 

While this simple model does not account for all of the 

possible finite size effects (e.g., edge effects and a more 

complex modal structure), the derived constraint suggests that 

optimizing the band flatness will tend to allow for the most 

compact devices. In particular, the factor to minimize is F = 

|b|/ω0, which serves as a figure of merit when designing a 

device by computing its band structure. Figure 1(j) maps F as 

calculated for a variety of diameters and heights (relative to 

the period) of silicon pillars sitting on a silicon dioxide 

substrate. While the curvature is different along -M, or the kx 
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direction, compared to along -X, or the ka direction, this band 

is limited by its curvature in the kx direction; we therefore 

restrict the calculation of F to the band along the kx direction. 

We choose a design with the smallest F according to Fig. 

1(j) and scale its geometrical parameters by a factor λ/λres such 

that the operating resonant wavelength is λ = 1.58 μm for a 

calculated resonant wavelength λres. Figure 1(k) shows 

transmittance spectra calculated by full-wave simulations of 

an infinitely periodic device excited by a plane wave of either 

x or y polarization, demonstrating that this coupling only 

occurs for y polarization. Figure 1(k) also shows a 

transmittance spectrum of a device of finite size (30 μm × 30 

μm) excited by a Gaussian beam with a waist radius of w0 = 7 

μm calculated by full-wave simulations. The spectral feature 

remains intact, confirming that the flat band in Fig. 1(i) 

determined through the optimization shown in Fig. 1(j) allows 

for compact devices with moderately high Q ≈ 103. 

Figure 1 overviews the design process of a compact optical 

device (a two-dimensional DHCG) supporting a sharp spectral 

feature due to a quasi-BIC. However, this process represented 

just one high symmetry mode and explored the behavior as a 

result of only one specific perturbation. This behavior was 

shown to be weakly dependent on incident angle [Fig. 1(i)] but 

strongly dependent on incident polarization [Fig. 1(k)]. The 

key result of this paper is a theoretical description allowing 

prediction of the polarization behavior (selection rules) of all 

high symmetry modes and perturbations. With this result, 

which we call the “catalog of selection rules,” the design 

process overviewed in Fig. 1 can be summarized as having 

three steps: (1) Choose a high symmetry mode for its realspace 

properties (e.g., for its field overlap with the high index 

material); (2) optimize the band structure by tuning the 

parameters in unperturbed structure [as in Fig. 1(i)]; (3) choose 

a proper perturbation according to the desired selec- 
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FIG. 1. (a) Artistic rendering of a quasibound state in the continuum in a periodically perturbed square lattice. (b) Geometry of the 

unperturbed lattice. (c) Geometry of the perturbed lattice. (d) First Brillouin zone of the unperturbed lattice, with red arrows tracing the path 

used in the band diagram of (i). (e) First Brillouin zone of the perturbed lattice, showing band folding. (f),(g) Out-of-plane magnetic field and 

in-plane electric field components of the fundamental mode of the perturbed lattice. (h) Dependence of the Q factor on the perturbation, δ = g2 

− g. (i) Band diagram (with target band highlighted in red) of the folded modes in a finite height PCS with D = 0.411 μm, H = 0.295 μm, P = 

0.527 μm. These parameters correspond to an operating wavelength of λ = 1.58 μm with the optimal (minimal) figure of merit |F| as found 

by the parameter sweep in (j), in which |F| is mapped for varying D/P and H/P. The taller diamondlike window in (i) represents the region 
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of energy-momentum space where the superstrate (air) supports only a single diffractive order (m = 0); the shorter window represents the same 

for the substrate (silicon dioxide). (k) Transmittance T near the fundamental mode frequency of an infinitely periodic device excited by a plane 

wave at normal incidence and of a finite device (30 μm × 30 μm) with δ = 80 nm excited by a Gaussian beam with e−2 waist radius of w0 = 7 

μm. Both devices show Q ≈ 1000 and excellent resonance visibility, indicating that the performance of the finite device is maintained despite 

its small footprint. 

tion rules (e.g., targeting y polarization). The catalog serves 

as a comprehensive guide for step (3), clarifying the wealth 

of options in conjunction with the choice in step (1) of the 

desired high symmetry mode; it thereby provides a high-level 

road map for this three step design process resulting in a PCS 

that confines light in both space and time. This design scheme 

may be further coupled with computational inverse design 

techniques [65] to reduce the dimensions of the design 

parameter space to be explored. 

B. Classification of high symmetry modes 

The first step to determining the selection rules of 

perturbed PCSs is to classify the modes present. Since the 

selection rules arise from symmetry breaking, a mode 

classification scheme employing the symmetries of the 

allowed modes is the natural choice. Although the final 

devices of interest are three dimensional in nature (having a 

finite thickness in the outof-plane direction, z), it 

considerably simplifies the analysis to begin with Maxwell’s 

equations in two dimensions. In this case, Maxwell’s curl 

equations decouple into two separate sets of three equations, 

each set defining modes characterized by either the out-of-

plane magnetic field Hz (referred to as TE modes) or the out-

of-plane electric field Ez (referred to as TM modes). Each 

mode is then definable by this single field component. We 

therefore select, review, and carry out a group theory 

approach detailed in Ref. [66] to classify the modes by in-

plane symmetries of the out-of-plane field component. We 

note that this group theory analysis is valid for any materials 

system, for instance, an array of silicon pillars, holes in a 

silicon slab, or even a metallic structure. For convenience, 

and comparison to conventional metasurfaces, we first 

consider arrays of silicon pillars. But the resulting selection 

rules are immediately transferable to any other materials 

system. 

Since the fields exist in a periodic lattice, they are 

characterized by plane waves with magnitudes and directions 

corresponding to high symmetry points of the reciprocal 

lattice. When the index contrast is low, this characterization 

is excellent; when the index contrast is large (such as a silicon 

and air system), significant deviations in resonant frequencies 

occur relative to the low index contrast systems, but the 

symmetries of the possible modes remain unchanged. The 

modes can therefore be studied with reference to the extended 

zone scheme. 

Figure 2(a) depicts the extended zone scheme for a square 

lattice, with notable high symmetry points marked. In 

particular, the  points, M points, and X points are labeled by 

an index pertaining to their distance from the origin, (0). These 

points have point group symmetries C4v, C2v, and C4v, 

respectively (see Appendix A for the character tables and 

other relevant group theory tables), and the modes 

decomposable by plane waves corresponding to these points 

are describable by these point groups. These three sets of 

points are the highest symmetry points in the reciprocal 

lattice and therefore correspond to the modes of interest in 

the square lattice. The three analogous sets of points in the 

hexagonal lattice [Fig. 2(b)] are the  points, M points, and K 

points. 

A group theory approach [66–68] predicts the number and 

nature of the modes from each set of high symmetry points in 

the extended zone scheme. Figure 2(c) contains a table 

summarizing the modes possible at each of the high 

symmetry points in the square lattice. The degeneracy of a set 

of high symmetry points N is also the number of modes 

corresponding to that set. The magnitude of the wave vectors 

k of the plane waves of a set will correspond to the expected 

eigenfrequencies of the modes (however, as noted above, this 

correspondence is poor in high-index-contrast systems). 

Lastly, the irreducible representations describe the mode 

symmetries. That is, modes that “transform like” (share all 

the symmetries of) each irreducible representation listed in an 

extended zone will be present at that extended zone. Note that 

the E irreducible representations are doubly degenerate and 

so account for two modes. 

Figures 3 and 4 depict the TM modes from the first four 

extended zones of each high symmetry point in the square and 

hexagonal lattices, respectively. An analogous set exists for 

TE modes, identical in symmetries (in Hz instead of Ez) but 

spatially distorted and differing in eigenfrequency. The modes 

are organized by the extended zone order (columns) and 

irreducible representation (rows). Reference to the relevant 

character tables [Appendix A, Fig. 17(a)] shows that modes 

labeled by a given irreducible representation transform the 

same way as the corresponding row in the character table: A 1 

in a column of this row means the mode will be symmetric 

under the class of operations of that column; a −1 means 

antisymmetric; a 0 means not symmetric; a magnitude of 2 

signifies that the mode is degenerate. 

Finally, the out-of-plane property of the modes is 

characterized by the order n or number of antinodes per atom 

of the PCS in the z direction. The inclusion of out-of-plane 

characteristics captures all the relevant features of the modes 

within the scope of this paper if the PCS has mirror symmetry 

about an xy plane. However, two-dimensional PCSs with a 
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substrate are known to exhibit chiral behavior: Incident 

circularly polarized light can behave in a manner depending 

on the handedness [62,69]. The chiral effects of a substrate and 

vertical symmetry breaking are beyond the scope of this paper 

and represent a fruitful avenue for future research. We restrict 

ourselves to PCSs composed of vertically extruded two-

dimensional lattices, and we find that the presence of a low-

index substrate (such as glass) generally has little practical 

effect of this kind (and so can be ignored). 

With the in-plane and out-of-plane features of each mode 

classified, we are motivated to provide a naming scheme. We 

call a mode: 

 ψLm,,Sn, (3) 

where ψ is TM or TE if the mode is characterized by Ez or Hz, 

respectively, L signifies the reciprocal lattice point (e.g., ), S is 

the irreducible representation (e.g., A1), m is the extended zone 

order, and n is the out-of-plane order. For instance, the mode 

in the B2 row and X (1) column in Fig. 3, with a single out-of-

plane antinode per unit cell of the PCS would be called 

TMX
1,

,
1
B2, which is the lowest frequency Ez mode in this square 

lattice. TEX
1,

,
1

B2 is the mode explored in Fig. 1. 
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Importantly, we discuss the relationship of the 

twodimensional description of the modes and the modes of a 

finite-thickness PCS, which we assume throughout this paper 

is simply extruded (its cross section is invariant) in the z 

direction. The modes depicted in Figs. 3 and 4 may be 

considered as the modes traveling in the z direction in a semi-

infinite two-dimensional photonic crystal. In this case, these 

eigenmodes are described by folding the eigenmodes of an 

unpatterned isotropic medium (i.e., plane waves), while in a 

finite PCS, as discussed in Ref. [66], the eigenmodes are 

described by folding the eigenmodes of the unpatterned slab. 

While the underlying bases are distinct, the resulting modal 

symmetries are identical. However, polarization mixing 

occurs in the PCS as a result of the finite thickness, yielding 
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FIG. 2. Extended zone scheme mode classification. (a),(b) Extended zones in reciprocal space of the square and hexagonal lattices. (c),(d) 

Mode classification tables for the square and hexagonal lattices detailing the point group (column labeled “Group”), extended zone (column 

labeled “Point”), number of modes (column labeled “N”), characteristic wave vector of the plane wave (column labeled “k”), and the 

irreducible representations (mode symmetries) present at each extended zone for each of the six high symmetry mode types. 
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modes that are quasi-TE and quasi-TM, rather than pure. But 

due to the vertical extrusion, and for normally incident light, 

the new polarization components cannot introduce or destroy 

any symmetries, which are described by the point group; that 

is, the TM (TE) components of the quasi-TE (quasi-TM) 

modes contain equivalent symmetry properties to the 

analogous pure-TE (pure-TM) modes, and therefore have no 

bearing on the selection rules for normally incident light. We 

refer to quasi-TE (quasi-TM) modes as simply TE (TM) for 

this reason and are free to treat the PCS modes as equivalent 

to their two-dimensional counterparts for the purposes of 

studying the selection rules at normal incidence. 

The modes of a PCS also may have additional, out-of-plane 

symmetries compared to their two-dimensional counterparts. 

If there is a xy mirror plane (at the center of the PCS), then 

the point groups used here are not sufficient to describe the 

modes. For instance, the modes of the hexagonal lattice are 

described by the dihedral group D6h = C6v ⊗C1h, where the 

C1h group accounts for whether the modes are symmetric or 

antisymmetric with respect to that xy mirror plane. This 

symmetry determines, in part, the “handedness” of the Fano 

resonance [39] (that is, whether the reflection peak occurs at 

a redder or bluer wavelength than the reflection dip). 

However, it has no bearing on the selection rules at normal 

incidence and may therefore be ignored for our purposes. 

Furthermore, in the most practical scenario a low-index 

substrate is present, 
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FIG. 3. Modes at the high symmetry points in the square lattice, classified by in-plane symmetries (column-wise) and extended zone (row-

wise). The three tables correspond to the modes at the , M, and X points, respectively. Modes are calculated by plane-wave expansion method 

for the electric field out of plane (TM modes); an analogous set exists with magnetic field out of plane (TE modes). 
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FIG. 4. Modes at the high symmetry points in the hexagonal lattice, classified by in-plane symmetries (column-wise) and extended zone 

(row-wise). The three tables correspond to the modes at the , M, and K points, respectively. Modes are calculated by plane-wave expansion 

method for the electric field out of plane (TM modes); an analogous set exists with magnetic field out of plane (TE modes). 
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breaking this mirror symmetry and leaving only in-plane 

symmetries. Since inclusion of the mirror plane needlessly 

doubles the number of modal labels, we exclude it. 

Instead, we use the modal index n to refer the out-of-plane 

characteristics of the PCS modes. When n is odd (even), the 

decay symmetry is even (odd), meaning that the mode naming 

scheme in Eq. (3) contains the relevant information about the 

handedness of the asymmetric lineshape (note that the decay 

symmetries hold approximately even in the presence of a low-

index substrate). Consequently, there is a 1:many 

correspondence between the modes of a semi-infinite photonic 

crystal and a PCS: Each mode in Figs. 3 and 4 has identical in-

plane symmetries to many modes in the PCS that differ only 

out-of-plane according to the modal index n. Such a 

relationship between accidental BICs supported by an HCG 

and the vertically propagating waveguide modes of the 

corresponding 1D waveguide array is described in Ref. [40], 

wherein a round-trip phase condition of the vertically 

propagating modes predicts the dispersion of the BICs; here, 

the integer multiple of 2π picked up upon a round trip is the 

modal index n. 

Finally, we note that the K point modes in the hexagonal 

lattice are more complex than the other five high symmetry 

modes. In particular, the K point in the unperturbed lattice has 

point symmetry of C3v, as evident in Fig. 2(b). However, there 

are two identical sets of these K points; the set not pictured in 

Fig. 2(b) can be obtained by reflection about the ky axis. As 

demonstrated in Fig. 1, the modes only become BICs once 

folded to the  point by an appropriate perturbation (depicted in 

Fig. 5). For K point modes, the analogous perturbation results 

in a triatomic lattice and therefore triples the number of modes 

at the new  point compared to the unperturbed monatomic 

lattice. At the perturbed  point, a set of modes originating from 

each set of K points will mix in pairs. The symmetries of the 

mixed modes are described by the direct product group Cs 

⊗C3v, corresponding to the relationship of the two sets of K 

points. This direct product group is isomorphic to (shares the 

same character table as) the group C6v, allowing the modes to 

be named in C6v. Naming the modes according to C6v is 

inconsistent with the modes in an unperturbed lattice at a 

single K point but consistent with the modes upon folding to 

the  point and mixing in the relevant perturbed lattice. Since 

our goal is to study these modes in the perturbed lattice, 

defining the modes in C6v is the more fruitful choice. 

III. SELECTION RULES 

By proper periodic perturbation, any of the six classes of 

high symmetry modes can be accessed from free space if 

additional symmetry constraints are satisfied. These symmetry 

constraints can be treated with a group theory approach and 

result in a catalog detailing how each high symmetry mode 

classified above couples to free space under a given planar 

perturbation. In the following, we identify six lattice types 

chosen to target the six high symmetry modes (Fig. 5), list all 

the degenerated space groups compatible with those lattice 

types (Fig. 6), and then derive the selection rules for every case 

(exemplified in Figs. 7 and 8). The resulting catalogs (Figs. 9 

and 10) can be used as a high-level road map in the design of 

planar photonic devices. 

A. Target space groups 

The six types of high symmetry modes described above 

motivate six types of lattices, each one uniquely targeting one 

of the six high symmetry mode types. For each of these 

lattices, an exhaustive list of lattices with lower symmetry 

attainable by planar perturbation is explored. The symmetry 

degeneration from higher symmetry to lower symmetry will 

constrain which polarization, if any, may couple to free space 

for each high symmetry mode. 

The six lattice types, depicted in Fig. 5, are named based 

on the modes they target and whether they begin with square 

or hexagonal symmetries. For instance, the Sq is a monatomic 

photonic crystal with a square lattice where the perturbation 

has periodicity equal to that of the unperturbed lattice. This 

lattice is labeled by  because it supports none of the other 

types of modes of interest supported by the square lattice (that 

is, M and X modes) in the continuum. Figure 5 (top left) 

depicts an example real space lattice, FBZ, and band diagram 

for the Sq lattice. The white region in the band diagram is the 

region of the continuum of interest, wherein only the zeroth 

diffractive order is allowed. We constrain ourselves to the 

area near the  point of the white region, where the symmetry-

protected BICs can produce sharp spectral features described 

above. 

The SqM lattice (top middle of Fig. 5), on the other hand, 

is a photonic crystal with perturbations with periodicity 

double that of the unperturbed lattice in a single direction. 

This period doubling (in the x direction in Fig. 5) halves the 

extent of the FBZ in the kx direction. The shaded portion 

outside the new FBZ is then translated into the FBZ by a 

reciprocal lattice vector. As a result, the M point of the 

unperturbed lattice overlaps with the  point, bringing the M 

point modes into the continuum in an analogous way 

described in the example in Fig. 1. This Brillouin zone 

folding also changes the shape of the zeroth order diffraction 

region of the band diagram. The  point will now have both 

the modes at the unperturbed  point as well as at the 

unperturbed M points. The SqM lattice is the only lattice in Fig. 

5 to bring the M point modes of a square lattice into the 

continuum, motivating its name. The remaining lattices target 

X modes of the square lattice (SqX , which is the lattice type 

explored in Fig. 1), and , M, and K point modes of the 

hexagonal lattice (Hex, HexM, and HexK, respectively) in an 

analogous way. Notably, two distinct regions are folded into 

the FBZ of the HexK lattice: As discussed above, two sets of 

modes are folded to the  point, one from each distinct K point. 

We note that the six lattices chosen in Fig. 5 are not an 

exhaustive set: Lattices with any number of atoms per unit 

cell are possible. Ordering this list of lattices by number of 

atoms per unit cell, the six chosen lattices are the lowest order 

lattices uniquely targeting the six high symmetry modes of 
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interest. Appendix B describes three examples of higher order 

lattices. The approach described in what follows may be used 

to generate the catalog for any higher order lattice. 

Next, the space groups of degenerated lattices that are 

compatible (attainable through perturbation) with each lattice 

order diffractive modes. 

are determined and reported in Fig. 6, the space group 

compatibility table. First, all 17 “wallpaper groups” are listed 

and categorized by the compatible lattice family (e.g., 

“Rectangular”). The point group of each of these is given for 

reference. Then, for each target lattice type (e.g., SqM) the 

space groups compatible with the lattice class (i.e., square or 

hexagonal) are listed. For instance, the space group p6mm 

requires hexagonal tiling and is therefore omitted as a 

possibility for any Sq lattice. Likewise, a Hex lattice cannot 

be perturbed into a square lattice without distortion of the 

lattice vectors, but it can be perturbed into a rectangular 

lattice. The space groups of the square lattice family are 

therefore omitted from all Hex lattices, but those of the 

rectangular lattice family are not. 

Next, the glide reflection operation (a reflection and a 

translation by a fraction of a unit cell) is tested for each type 

of lattice. Glide reflections are present in only some two-

dimensional space groups and are not compatible with all of 

the six target lattice types. As an example, it is quickly found 

by inspection that the Sq lattice does not support glide 

symmetries in directions other than along the diagonals (more 

rigorously, in the language of crystallography, monatomic 

PCSs are incompatible with nonsymmorphic space groups). 

This excludes the space groups pg, pgg, and pmg, which are 

correspondingly grayed out in the column for Sq. For the 

same reason, for the SqM lattice, glide planes along the 

direction where the lattice is unperturbed (and therefore 

monatomic) are incompatible (the y direction in Fig. 5). 

 

FIG. 5. Six lattices target six distinct high symmetry modes. They are named for their lattice family (Sq for square lattices and Hex for 

hexagonal lattices) and the high symmetry mode they uniquely target (e.g., SqM folds the M point modes of a square lattice into the continuum 

by a period doubling perturbation). An example unit cell with a perturbation is given with high symmetry points defined (γ,μ,ξ, and κ). The 

FBZ is also given with high symmetry points defined (,M,X, and K), dashed lines denoting the FBZ of the unperturbed lattice and solid lines 

that of perturbed lattice. Lastly, an example band diagram is shown for infinitely tall PCSs for the TM polarization case, showing generally 

the presence of flat bands at the  point and band folding in the relevant cases. The red arrows in the Sq and Hex FBZs depict a representative 

path taken through the FBZ for the band diagrams. Modes in the light shaded area are bound. Modes in the white areas are in the continuum 

accessible to a single diffractive order (“zeroth order diffraction”) and are the focus of this paper. Modes in the dark shaded area are higher 
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Additionally, all diagonal glides are incompatible for the SqM 

lattice because they correspond to reflection axes that are not 

included in the point group of any SqM lattice. This excludes 

cm, pg, and cmm for SqM, which are grayed out accordingly. 

There are no such constraints for the SqX lattice, which can be 

degenerated into a lattice of any space group (except the 

 

FIG. 6. Space group compatibility table. Different lattice families 

(column 1) are compatible with various point groups (column 2), each 

of which can be further subdivided into the 17 “wallpaper groups” (or 

two-dimensional space groups, column 3). The remaining columns 

track the compatible space groups of each degenerated lattice studied. 

A blank entry means that corresponding space group is excluded due 

to a mismatch in lattice family; a grayed entry means that it is 

excluded because it has an incompatible glide symmetry. 

hexagonal ones). Similar arguments can be made for the Hex 

lattices, and the results are reported in Fig. 6. 

Finally, it must be noted that there exist multiple high 

symmetry points in each real space lattice. These are given 

names in Fig. 5 for each case. For instance, the Sq lattice has 

two points having the full symmetry of the C4v point group, 

named γ and ξ. Both are perfectly acceptable to choose as the 

reference point: In the mode naming scheme in Sec. IIB, the ξ 

point is the reference point, but the modes may all be renamed 

according to the γ point if desired. Similarly, a degenerated 

space group may choose either of these points to have in 

common with the unperturbed lattice. Generally speaking, 

every degenerated space group may be tried with each of the 

high symmetry points in common with the unperturbed lattice, 

thereby allowing for more than a single unique example of 

each space group in each lattice. For instance, there are three 

distinct cmm space groups in the SqX catalog (see Fig. 9): one 

with the γ point as the high symmetry point in common, one 

with ξ, and the last with μ (which is the space group of the 

perturbation in Fig. 1). As shown in Fig. 9, though these have 

identical space groups, they do not have identical selection 

rules because they are attained through distinct perturbations. 

Therefore, to determine all of the unique symmetry 

degenerations possible, an attempt is made to construct each 

compatible space group (Fig. 6) with each high symmetry 

point in common between the unperturbed and perturbed 

lattices. The successful attempts comprise the set of all 

degenerated lattices compatible with those chosen in Fig. 5. 

This proof by exhaustion is omitted here. For each of these 

degenerated lattices, the modes derived in the previous section 

can be studied and their selection rules derived. The results are 

tabulated in Figs. 9 and 10 following the methods derived in 

Secs. IIIB and IIIC. 

B. Deriving the coupling condition 

To derive the selection rules reported in Figs. 9 and 10, we 

study the end-fire coupling of free-space light normally 

incident to a semi-infinite two-dimensional photonic crystal 

supporting the modes depicted in Figs. 3 and 4. As described 

in Sec. IIB, there is a 1:many correspondence preserving in-

plane symmetries between the modes excited by this endfire 

coupling and the modes excited in a finite-height PCS (under 

the assumptions that the cross section is invariant along the z 

direction, whose substrate and superstrate are isotropic 

media). At normal incidence, the two cases therefore have 

identical selection rules with respect to in-plane symmetry 

breaking, and so we may proceed with the simpler case of 

end-fire coupling. The multiplicity of modes of the PCS 

differentiated by the modal index n have identical selection 

rules; it is only the in-plane symmetries that are relevant. In 

particular, we determine under which conditions the end-fire 

coupling coefficient γe is nonvanishing: 

 zˆ dx dy, (4) 

where zˆ is the unit vector in the z direction and bold symbols 

refer to vector quantities. We exclude a normalization factor 

for simplicity (it does not affect whether γe vanishes) and 

evaluate the integral over the area A of a unit cell. Here, we 

take the incident field to be a normally incident plane wave, 

with electric field 

Ax 

E(5) 

0 

and magnetic field 

 H , (6) 

where η0 is the impedance of free space. The mode has electric 

field 
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 E  (7) 

and magnetic field 

 H , (8) 

where β is the propagation constant satisfying the dispersion 

relation ω = cβ. Evaluating the cross products in Eq. (4), the 

free-space coupling coefficient is written as 

 dx dy. (9) 

Using Maxwell’s curl equations, the in-plane components 

(Ex,Ey,Hx,Hy) are replaced with the out-of-plane components 

(Ez,Hz) to both simplify the equation and allow the previous 

mode classification scheme (based on the out-of-plane field 

components) to straightforwardly apply. The resulting form 

is 

 

 +Ay(c1∂yEz + c2∂xHz)]dx dy, (10) 

where 

c  (11) iβ 1 − εr(x,y) 

and 

 2η0 1 

c2 = − (12) iβ 1 εr(x,y) 

with the replacement εr(x,y) = ε(x,y)/ε0 as the relative 

permittivity. This can be written more compactly as 

 γe Ax Ay , (13) 

where angled brackets indicate integration over a unit cell. 

While it is possible to proceed with this form by considering 

the symmetries of each component, it is considerably simpler 

and more informative to reduce this to individual choices of 

incident polarization (e.g., choose Ax = 0) and mode type (i.e., 

choose either TM modes or TE modes). In this case, we write 

 cj∂iψ dx dy, (14) 

where ψ is TM or TE, ∂i refers to the partial derivative in a 

relevant high-symmetry direction (i = x,y,a,b), and cj is c1 

when ψ is TM and c2 when ψ is TE. 

C. Determining the selection rules 

We now apply Eq. (14) to the modes supported by a 

twodimensional photonic crystal. The modes in the 

unperturbed lattice can be described as the eigenvectors of an 

eigenvalue equation 

 H0ψ0 = E0ψ0. (15) 

where the superscript marks reference to the unperturbed 

eigenvalue problem. We are interested in particular in the ψ0 

that are uncoupled to free space [i.e., ψ0 for which the integral 

in Eq. (14) vanishes] due to symmetry. To proceed we apply 

perturbation theory to determine any nonvanishing terms 

present in the generalized eigenvalue problem of a 

degenerated lattice: 

 Hψ = Eψ, (16) 

where H = H0 +V is perturbed by the perturbation operator V, 

and ψ = ψ0 + ψ1 is the perturbed field profile with ψ1 as the 

first order correction. First order perturbation theory gives 

the form of the nth mode  as 

 . (17) 
 = 

That is, the perturbed portion of the field is a superposition of 

the unperturbed fields. [Note that Eq. (17) is the nondegenerate 

form of perturbation theory, but it can be applied to degenerate 

states as well if the “correct” orthogonal linear combination of 

states is known ahead of time. Since these will correspond to 

a high symmetry direction of the perturbed lattice, they are 

easy to predict; we therefore use this form to apply to 

degenerate modes.] However, inspection of the coefficient,

, in front of each ψm
0 reveals that not all ψm

0 will 

contribute: Many will vanish due to symmetry. 

The process of determining ψm
0 that contribute can be 

clarified and expedited in the language of group theory. 

Specifically, if we can determine the irreducible 

representations of each factor within the integrand, we can find 

the symmetries of the total integrand by computing the direct 

product of those irreducible representations. A direct product 

is an abstract way to obtain the symmetries of the product of 

two functions f and g: If h = fg, the symmetries of h may be 

obtained by performing the direct product of the 

representations of f and g. That is, h g, where h is the 

representation of h in some point group. Since the fields have 

been classified already in terms of their irreducible 

representations, we write the irreducible representation of 

ψm
0

,n as m,n and simply refer to Figs. 3 or 4. Then, we must 

determine the irreducible representation of V, or V , which can 

be achieved following a process described below. We finally 

write the direct product as integrand . 

A necessary condition for this integral to be nonvanishing 

is that this direct product must contain a component that 
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transforms as a constant: The sinusoidal components do not 

contribute upon integration over a unit cell. Since a constant is 

fully symmetric (that is, it transforms as 1, which is the highest 

symmetry irreducible representation in every point group), this 

condition is identical to saying that integrand must contain 1. Note 

that this condition is necessary but not sufficient. For instance, 

a cosine transforms as 1 about the origin but integrates to zero 

over a period. We can therefore say that  is 

nonvanishing only if m . 

A direct product is easily calculated by referring to the 

direct product table of the relevant point group (see Appendix 

A, Fig. 18). A notable feature of these tables is that two 

irreducible representations i and j satisfying 

i , also satisfy i = j. Consequently, we can 

reframe the condition on the integrand, m  

1 + ... to be m n. In other words, a field contributes to 

the perturbed field ψn
1 only if m . 

Since ψn
1 will transform as the components comprising it (that 

is, the ψm
0 with nonvanishing integrals), we finally arrive at 

the conclusion that n. Since the index n refers to any 

particular mode of interest, we may drop it: 

 . (18) 

 

FIG. 7. Graphical derivation of the selection rules for the X point 

modes in the SqX lattice belonging to the cmm space group. The modes 

are shown in their unperturbed form as calculated by the plane-wave 

expansion method. Then, they are schematically drawn as perturbed 

by the perturbation and decomposed into the unperturbed portion and 

perturbed portion. The green arrows represent the gradient and predict 

coupling to a free space plane-wave excitation if a net dipole moment 

is present. The black arrows represent the corresponding free space 

polarization each mode couples to. 

That is, the first order perturbed field profile transforms as the 

direct product of the irreducible representations of the 

perturbation operator and the unperturbed field profile in 

question. 

Understanding the symmetries of the perturbed portion of 

the wave function allows us to simplify the free-space 

coupling condition, Eq. (14): 

 cj∂iψ dx dy cj∂i(ψ0 + ψ1)dx dy. (19) 

Since cj is a function of in-plane permittivity distribution of a 

perturbed lattice, it is natural to expect that it has a portion that 

transforms like H0, which we call cH0, and a portion that 

transforms like V, which we call cV . We can write these 

portions explicitly to first order using the binomial 

approximation. Taking c2 = cH0 + cV , for instance, the 

unperturbed portion is written 

1 − εr0(x,y) 

 
(c) 

 

     

 
1 1 1 1 

 
1 1 −1 −1 

 
1 −1 1 −1 

 
1 −1 −1 1 

 

 

     
Γ Γ 1 1 1 1 

 

 

     
Γ X 1 −1 −1 1 

 

  

 2η0 1 

 

cH0 = iβ 1 − εr0(x,y), 

and the perturbed portion is written 

(20) 

δεr(x,y) 

 cV = cH0, 
(21) 

Γ Γ = Γ X = 

0 

Γ 

= 

= 

+ 

+ 

( a ) 

) ( b 

/2 
- /2 
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(d) 

FIG. 8. Group theory derivation of the selection rules for the X 

point modes in the SqX lattice belonging to the cmm space group. (a) 

Graphical depiction (excluding the background permittivity for 

simplicity) of the decomposition such that H = H0 +V for the target 

degenerated SqX lattice. (b) Further decomposing V into portions 

with different periods. (c) Determining the irreducible 

representation of each component of V in C  (character table 

reproduced for reference). (d),(e) Worksheet depicting the process 

of deriving the selection rules. The first column shows the 

irreducible representations of the target modes; the second column 

shows the degenerated irreducible representations of those modes; 

the third column is the direct product of the perturbation operator 

and each mode; the fourth column marks the free space polarizations 

matching the direct product in column 3. 

where ) is decomposed into the 

unperturbed portion, ), and perturbed portion, δεr(x,y), 

of the relative permittivity. Since εr
0(x,y) transforms as 1 by 

construction of the unperturbed lattices, it is evident that cH0 

transforms as 1: For an even function f (x), the function 1/(1 

− f (x)) is also even. Decomposing the factors in cV , it is clear 

that it transforms as V because δεr(x,y) transforms as V by 

definition of the perturbation, and the remaining factors in cV 

transform as 1 (which acts as the identity in direct products). 

A similar argument reveals the equivalent result for c1. We 

therefore write γe as the sum of four terms: 

cH0∂iψ0 dx dy cH0∂iψ1 dx dy 

 cV ∂iψ0 dx dy cV ∂iψ1 dx dy. (22) 

The first term vanishes for symmetry-protected BICs. As 

described above, H , and so, using Eq. (18), the second 

term’s integrand transforms as  

    
(e) 
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FIG. 9. Selection rules catalog of the three square lattice families (Sq, SqM, and SqX ). As depicted by the legend (upper right), along the 

symmetry columns each entry specifies the space group, the point group used to describe V, and the irreducible representations of the two 

components of V (the first having periodicity of the unperturbed lattice, and the second of the perturbed lattice). The example column depicts 

an example perturbed unit cell matching the specifications in the symmetry column. Colored squares and ovals denote points with fourfold 

and twofold rotational symmetry, respectively. The remaining columns are labeled , M, or X and report the selection rules for each high 

symmetry mode at the corresponding position in the unperturbed FBZ. Rows are indexed by the legend and correspond to different irreducible 

representations present at the point in the FBZ labeled by the column (example TM modes of each row and column are shown in the legend 



SELECTION RULES FOR QUASIBOUND STATES IN THE … PHYSICAL REVIEW B 102, 035434 (2020) 

035434-17 

for reference). Entries in these columns and rows refer to the free-space polarizations that excite the corresponding modes due to the 

perturbation and are defined by the given axes. The polarization pertains to the free space electric field for TM modes and the magnetic field 

for TE modes. A blank entry signifies a forbidden mode excitation (the mode remains a symmetry-protected BIC), and a dash indicates that 

the M point does not have a fifth irreducible representation. 

 

FIG. 10. Selection rules catalog of the three hexagonal lattice families (Hex, HexM, and HexK). As depicted by the legend (upper right), 

along the symmetry columns each entry specifies the space group, the point group used to describe V, and the irreducible representations of 

the two components of V (the first having periodicity of the unperturbed lattice and the second of the perturbed lattice). The example column 

depicts an example perturbed unit cell matching the specifications in the symmetry column. Colored stars, triangles, and ovals denote points 
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with sixfold, threefold, and twofold rotational symmetry, respectively. The remaining columns are labeled , M, or K and report the selection 

rules for each high symmetry mode at the corresponding position in the unperturbed FBZ. Rows are indexed by the legend and correspond to 

different irreducible representations present at the point in the FBZ labeled by the column (example TM modes of each row and column are 

shown in the legend for reference). Entries in these columns and rows refer to the free-space polarizations that excite the corresponding modes 

due to the perturbation and are defined by the given axes. The polarization pertains to the free space electric field for TM modes and the 

magnetic field for TE modes. A blank entry signifies a forbidden mode excitation (the mode remains a symmetry-protected BIC), and a dash 

indicates that the M point does not have a fifth or sixth irreducible representation. 

. The third term’s integrand straightforwardly 

transforms as V , identical to the second term 

(inspection of Appendix A, Fig. 18 shows that the direct 

products in question commute). The fourth term vanishes to 

first order, because it is the product of two factors of the 

perturbation. We are therefore left with two generally 

nonvanishing terms whose integrands transform identically. 

As before, γe is nonvanishing only if the integrand has a 

component that transforms like 1. We therefore arrive at the 

symmetry constrained coupling condition: 

 . (23) 

Since a partial derivative in the i direction transforms like a 

vector in that direction, it also transforms the same as a free 

space polarization i. The physical interpretation of the 

coupling condition, Eq. (23), then, is that the symmetries of 

the perturbed part of the field (i.e., V ) must match the 

symmetries of a free space polarization (i.e., ∂i ). That is to say, 

the perturbed field must have a net dipole moment to couple 

to free space. 

The coupling condition is equivalent to considering 

whether the integral 

 dx dy (24) 

vanishes. This form justifies a convenient and insightful 

graphical method [57] of determining whether γe is nonzero, 

without directly determining ψ1, which is not obvious at first 

glance at Eq. (17). The perturbed mode can be simply drawn 

by altering the magnitude of the unperturbed field according 

to the shape and sign of the perturbation. Then, this new 

perturbed field is decomposed into the unperturbed portion 

and the perturbed portion (corresponding to Vψ0). Taking the 

derivative amounts to treating the product Vψ0 as “charges” 

and the gradient as the “moment;” then, if there is a net dipole 

moment, the mode couples to the corresponding free space 

polarization. Figure 7 depicts this process for determining the 

selection rules of the TMX
m

,
,
S

n modes in a SqX lattice with a 

cmm space group (the same used in Fig. 1). The polarization 

depicted corresponds to the out-of-plane field component. 

That is, if ψ0 is a TE (TM) mode, the polarization depicted 

describes the magnetic (electric) polarization of free space 

that couples to ψ. Figure 7 therefore correctly predicts the 

polarization dependence seen in Fig. 1 for TE1
X

,
,
1

B2. 

A more expedient method to generate the selection rules, 

however, is to determine the irreducible representations 

present in V and then employ the direct product tables [see 

Appendix A, Figs. 18(a) and 18(b)] to immediately write the 

selection rules for all modes present at the  point of the 

perturbed lattice. This is done by (1) finding the point group 

in common amongV and ψ, (2) writing the irreducible 

representations of each factor in that point group, and then (3) 

determining if the direct product V  matches the 

irreducible representation of a free space polarization [which 

are reported for each relevant point group in Appendix A, Fig. 

18(c)]. 

The irreducible representations of V can be found by 

conventional group theory methods if required but are 

generally apparent by inspection. Figure 8 depicts the 

decomposition of V for the same space group as Fig. 7. The 

process is simplified by properly choosing H0 such that V 

transforms as simply as possible. For instance, H0 is written 

as a circle with permittivity ε shadowing a square cross 

oriented in the x,y directions with permittivity ε/2, as shown 

in Fig. 8(a). It is then clear to see that the V depicted obtains 

H upon addition of H0. 

Next, V can be decomposed into two portions, one (called 

V) with the periodicity of the unperturbed lattice, and one 

(called VX , here) with the periodicity of the perturbed lattice 

[Fig. 8(b)]. Importantly, Eq. (23) refers only to functions as 

they exist in the unperturbed FBZ, in which modes 

characterized by the X point are orthogonal to modes 

characterized by the  point. Consequently, V contributes only 

to the modes at the  point in the unperturbed lattice, while VX 

contributes only to the modes at the X point in the unperturbed 

lattice. The point group of both V and VX is the same as the 

point group of the space group, C2
v
v. Referring to the character 

table of C2
v
v [Fig. 8(c) or Appendix A, Fig. 17(a)], it is readily 

apparent that V transforms as A1 and VX transforms as B2. 

Finally, the coupling constraint [Eq. (23)] is evaluated. 

However, since the modes of interest are defined in a higher 

group than that of V, we must first determine how they 

degenerate into the lower group. This can be done by referring 

to the symmetry degeneration tables [see Appendix A, Fig. 

17(c)]. Then, the direct products V  are taken with 

reference to the direct product table for the point group C2
v
v. 

Since x,y polarized plane waves transform as B1,B2 in C , the 

modes for which the product V  

couple to x,y polarization, respectively. Figures 8(d) and 8(e) 

show a worksheet of this process. It bears repeating that this 

polarization corresponds to that of the out-of-plane field 

component. For example, if ψ is a Hz mode, then x refers to the 

Hx component of the free space plane wave, corresponding to 

y polarized light as conventionally defined by the electric field. 
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The resulting selection rules are in agreement with those 

derived using the graphical method in Fig. 7, but derivation 

required a single diagram to decompose V instead of one for 

each mode and straightforwardly gave the selection rules for 

the  point modes as well (for which the graphical method 

would require another set of diagrams). 

The method detailed throughout this section may be 

summarized as follows. First, the unique space groups 

compatible with each lattice type are determined by exhaustion. 

Second, for each of these space groups, the perturbation is split 

into V and VL, where L is the high symmetry point of the 

unperturbed reciprocal lattice that is folded to the  point. Third, 

the irreducible representation of each portion of the 

perturbation is determined. Fourth, the coupling condition, Eq. 

(23), is evaluated for each mode, usingV for ψ,
m,

S
n andVL for 

ψL
m

,
,
S

n; the matching polarization (if any) is marked down by 

reference to Fig. 18(c). 

With this method, a catalog for each of the six lattice types 

is generated, for each of the compatible degenerated space 

groups described above. The catalogs are given in Fig. 9 for 

square lattices and in Fig. 10 for hexagonal lattices. An entry 

of the catalog lists the space group by name, the point group 

used to describe V, the irreducible representations of V and VL, 

an example visualization of the degenerated lattice (using the 

“keyhole” motif [57]), and the selection rules for all the modes 

present at the  point in the perturbed lattice. 

Note that the selection rules for the twofold cyclic space 

group p2 in the catalog are specified by some angle, φ or θ, 

which are ill defined relative to the lattices’ axes: The 

polarization angle must be numerically determined, will 

generally change with the magnitude of the perturbation, and 

may differ between TM and TE modes of the same symmetry. 

However, for small perturbations, two modes controlled by the 

same p2 perturbation and specified by φ will be excited by the 

same polarization angle φ; θ denotes the angle orthogonal to 

φ. Note that the group theory approach in Fig. 8 can only say 

that some polarization couples to the mode but cannot specify 

φ and θ; for this, the diagrammatic approach in Fig. 7 is used. 

The selection rules for p1 are ill defined in a similar way: Some 

polarization couples with a direction unconstrained by group 

theory and are therefore specified as any. The remaining cyclic 

space groups, p3, p4, and p6, only allow access to degenerate 

modes in a polarization independent manner and so for 

simplicity are specified as x,y. 

IV. DISCUSSIONS AND APPLICATIONS 

The process described above lays out the derivation of the 

selection rules for two-dimensional PCSs with in-plane 

perturbations applied. The resulting catalog, split into Figs. 9 

and 10, contains a great amount of information and warrants 

further discussion and exploration. In particular, a few unique 

features present in the catalog readily motivate device 

applications not possible in the simpler one-dimensional PCSs. 

For instance, due to the two-dimensional nature of the 

device, the band structure can be optimized in both in-plane 

directions, allowing for full optimization of the band structure 

and thereby optimally compact devices. One-dimensional 

structures (e.g., devices composed of rectangular grating 

fingers, invariant in one in-plane direction) can be understood 

as a special case of a subsection of the SqM lattice but with 

limited to no control over the behavior along the direction of 

the grating fingers. Additionally, the higher in-plane symmetry 

of two-dimensional structures means the presence of 

degenerate E-type modes (“partner” modes with identical 

eigenfrequencies that couple to orthogonal polarizations), 

which do not exist in one-dimensional structures. This allows 

for compact, polarization independent devices such as filters 

and modulators to be designed. The manipulation of 

degenerate modes is therefore of considerable technological 

interest. Last, we note a parent-child relationship between 

higher and lower order space groups within the catalog and 

find that child space groups constructed by successively 

adding distinct parent space groups result in optical control 

with independent degrees of freedom introduced by the parent 

space groups. We show that this principle enables controlling 

a large number of parameters characterizing an optical 

spectrum, well surpassing the state of the art. 

With these considerations in mind, Sec. IVA discusses the 

degenerate modes that exist in monatomic and multiatomic 

PCSs, providing a comprehensive set of options for 

polarization-independent devices using the catalog. Section 

IVB details a device application motivated by this discussion, 

demonstrating that the degenerate fundamental modes of HexK, 

as controlled by three successive perturbations, are suitable for 

terahertz generation via four-wave mixing. As a second 

application of successive perturbations apparent from studying 

the entries of the catalog, Sec. IVC shows the potential for a 

PCS on a stretchable substrate to enable mechanically tunable 

optical lifetimes. Finally, Sec. IVD reports the discovery of a 

geometric phase associated with circularly polarized light 

coupling into a p2 space group of the SqM lattice, controllable 

simultaneously with the Q factor of the resonance. We then 

show how spatially varying this geometric phase enables a 

novel class of photonic devices in which the outgoing Fano 

resonant wavefront is spatially tailored while the nonresonant 

light is left unaffected. 

A. Degenerate modes 

We first consider the nature of degenerate modes. The 

degenerate modes generally transform as partners of a 

degenerate irreducible representation (e.g., E in C4v), which 

are written Ex and Ey corresponding to their dipole moments. 

Because of this dipole moment, the Ex and Ey modes in the 

unperturbed Sq lattice generally couple to free space (and 

the E1 modes couple to free space in the unperturbed Hex 

lattice). In other words, the integral 

 cH0∂iψ0 dx dy, (25) 

which has an integrand that transforms as , is 

nonvanishing for E modes because ∂i = E in C4v (likewise, ∂i = 

E1 in C6v). The coupling can numerically vanish for certain 
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combinations of angle, polarization, and optical materials, 

but since these are reasons unrelated to the symmetry 

arguments above, they are accidental BICs; all modes other 

than the ψ,
m,

E
n for Sq and ψ,

m,
E

n
1 for Hex in the mode 

classification are symmetry-protected BICs. For the modes 

already coupled to free space in the unperturbed lattice, the 

only significant impact a perturbation has is to split the 

degeneracy upon symmetry degeneration (for instance, 

perturbing a lattice with C4v down to C2v). In other words, if 

the lattice is made structurally birefringent, the Ex and Ey 

modes will degenerate into irreducible representations in a 

lower order point group with different eigenfrequencies, but 

the coupling rate to free space will generally be changed to a 

negligible degree. For this reason, Figs. 9 and 10 simply label 

the corresponding entries x,y. 

Of more interest here are the degenerate 

symmetryprotected BICs. The M point modes of either square 

or hexagonal lattices have no such degenerate modes because 

the C2v point group has no degenerate irreducible 

representation (a rectangle is not identical in the x,y 

directions). However, the ψ,m,En2 for Hex, ψXm,,En for SqX , and 

ψKm,,En1 and ψKm,,En2 for HexK are degenerate symmetry-

protected BICs. Therefore, a polarization insensitive filter or 

modulator must use one of these lattices in order to utilize the 

advantages of quasi-BICs [that is, a Q factor controllable by 

Eq. (1) independent of the band structure]. We consider the 

degenerate modes in each of these three lattices in turn. 

The Hex supports the E2 modes, which are uncoupled to 

free space in the absence of a perturbation (E1 ⊗ E2 = B1 + B2 

+ E1, which does not contain 1 in C6v) and are degenerate BICs. 

Reference to the catalog shows that reducing the symmetry to 

C3v or lower may allow free-space coupling to these modes. 

A polarization independent filter or modulator with Q factor 

following Eq. (1) could be made utilizing the E2 

 

FIG. 11. Mode “twisting” in a SqX lattice. (a) Example p4m 

lattice. (b) Example p4g lattice. The white dashed boxes in (a) and 

(b) denote the perturbed unit cell, and the black dashed boxes denote 

the plotting area in (c) and (d). (c) Normalized field distribution for 

the TE1
X

,
,
1
Ey partner excited by a plane wave with magnetic 

polarization in the x direction. (d) Normalized field distribution for 

the TE1
X

,
,
1
Ex partner excited by the same polarization in (c). 

modes of a Hex lattice according to either the p31m or p3m1 

entry of the catalog. 

The SqX lattice supports degenerate modes that are bound 

in the unperturbed lattice. Upon perturbation, they are 

brought to the  point, allowing coupling to free space at 

normal incidence. Several space groups in the SqX lattice 

leave these modes uncoupled in the continuum, making them 

BICs, while most others allow coupling, making them quasi-

BICs. The space groups with C4v and C4 leave the 

eigenfrequencies degenerate, while lower order symmetry 

groups introduce birefringent behavior. Therefore, a 

polarization independent filter or modulator with Q factor 

following Eq. (1) may be made utilizing the E modes of a SqX 

lattice according to any of the p4m, p4g, or p4 entries of the 

catalog as reference. 

An interesting feature of the catalog is the prediction of 

coupling of the Ex partner of the E modes of a SqX lattice to 

either x or y polarized light (equivalently, y polarized light 

may couple into either the Ex or Ey partner). Compare, for 

instance, the p4m with VX = A1 [Fig. 11(a)] and p4g with VX = 

A2 [Fig. 11(b)] space groups in the SqX lattice. Figures 11(c) 

and 11(d) depict, for the p4m and p4g cases, respectively, the 

field profiles calculated by full-wave simulations at the 

frequency of the TEX
1,

,
1

E modes excited by y polarized light 

(magnetically x polarized light). The former shows that the 

magnetically x polarized plane wave couples to the E mode 

with the apparent dipole in the y direction (that is, the Ey 

partner, as defined in Fig. 7), while for the latter it couples to 

the E mode with the apparent dipole in the x direction (that is, 

the Ex partner). This mode “twisting” is written in the catalog 

by writing y,x for p4m, in contrast to the entry of x,y for p4g, 

and it is easily predicted by tracking how the partners 

degenerate to C2v in the worksheet of Fig. 8 or by using the 

diagrammatic approach in Fig. 7. This is a phenomenon that 

does not occur in the more often studied E or E1 degenerate 

modes of the Sq or Hex lattices and is thus representative of 

the larger range of behaviors present in multiatomic lattices. 

Especially notable is that the dependence of the polarization 

angle of the incident light on the in-plane orientation of 

elliptical structures suggests that a geometric phase is 

associated with this coupling. This will be explored in Sec. 

IVD. 

Next, the HexK lattice is a special case, having degenerate 

modes of two distinct types. The unit cell is a trimer and 

therefore contains three times the number of modes as the 

unperturbed lattice. As described in Sec. IIB, two sets of 

modes (corresponding to K1 and K2 points in the FBZ in Fig. 5) 

( a ) ( b ) 

( c ) ( d ) 
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are folded to the  point. Because of the symmetry of the 

unperturbed lattice, a mode in one of the sets has a counterpart 

in the other set with equal eigenfrequency. These pairs mix at 

the perturbed  point, producing a final set of modes describable 

in C6v. The lattice therefore supports E1 and E2 modes newly 

brought to the  point by the perturbation, analogous to the E1 

and E2 modes in the Hex lattice. 

However, inspection of the band diagram for the HexK 

lattice near the  point in Fig. 5 (bottom right) shows many more 

degeneracies than explainable by the E1 and E2 modes alone. 

All of the newly folded modes, in fact, are degenerate, despite 

the mode classification scheme in Fig. 2 predicting the 

presence of modes not describable by E irreducible 

representations. In particular, the fundamental modes are 

degenerate (last band diagram in Fig. 5) but have irreducible 

representations A1 and B1. Although visibly quite different [see 

the K(1) column of Fig. 4], and having distinct symmetries in 

C6v, they are nonetheless identical in eigenfrequency. This 

degeneracy is born of the trimerization of the lattice: A pair of 

modes with the same eigenfrequency are superposed upon 

translation to the  point and can be superposed either in phase 

or out of phase, producing a pair of distinct modes with 

identical eigenfrequency. 

One consequence of this is that in the p31m HexK lattice 

with point group C , the A1 and B1 modes form a degenerate 

pair that together correspond to a spectral feature that is 

polarization insensitive (a similar behavior is seen in the p3 

lattice where VK transforms as a partner of the E irreducible 

representation: the fourth entry in the HexK lattice). This 

reveals another way to consider this degeneracy: The A1 and 

B1 modes are partners of the E irreducible representation of the 

C  point group, defined about the κ point in the real space 

lattice (as defined in the Hex lattice in Fig. 5). Because the γ 
point has the full symmetries of C6v, this description of the 

modes about the κ point misses relevant symmetries; 

nevertheless, the ability to describe them in C as partners of 

the E modes means their eigenfrequencies must be identical. 

Upon further symmetry degeneration (for instance, to cmm, or 

cm in the HexK lattice), the modes behave differently, splitting 

in both eigenfrequency and polarization dependence. This 

behavior is unique to the HexK lattice in Figs. 9 and 10 because 

it is the only lattice with more than two atoms per unit cell. 

Higher order lattices, such as those shown in Fig. 19, may 

exhibit similar behavior. 
 1 1 

FIG. 12. Terahertz generation with four-wave mixing. (a) Schematic of device excited by two (narrow- band) near-infrared pump 

near TEand TE1
K

,
,
1
B1 lasers (shown in cyan and green), producing terahertz radiation (shown radiating in red). (b) Transmittance 

modes, which are degenerate in the unperturbed lattice. (c) Map of reflectance R showing control of the frequency spacing of the two resonant 

modes by altering the radius of the center pillar in (e). (d) Map of the figure of merit, FoM, with a dashed contour for 1/λ4 = 1/λ1 − 1/λ2 shown. 

The FoM is maximized along this contour for Terahertz generation at the coordinates (λ1, λ2), corresponding to enhancement due to both 

resonances. (e) Successive perturbations to the unperturbed hexagonal lattice. V1 controls the frequency spacing between the two resonant 

modes in (b), V2 controls the Q factor of the B1 mode, and V3 controls the Q factors of both the A1 and B1 modes. (f),(g) Magnetic field profiles 

for the TE1
K

,
,
1
A1 and TE1

K
,
,
1
B1 modes normalized to the magnetic field of the incident plane wave, H0. (h) Visualization of the integrand in the 

FoM, calculated using (i),(j) the Ey components of TE1
K

,
,
1
A and TE1

K
,
,
1
B normalized to the electric field of the incident plane wave, E0. 
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B. Application: Terahertz generation 

We explore the degenerate fundamental modes of the HexK 

lattice to aid in generating terahertz (THz) frequencies through 

nonlinear processes enhanced by optical resonances. 

Sketching the design of such a device is a useful exercise to 

demonstrate the utility and an example use of the catalog. 

Figure 12(a) depicts a schematic of the device, with a HexK 

lattice made of silicon pillars in the gap of a bowtie antenna 

resonant to a THz frequency. Figure 12(b) shows an example 

spectrum of the PCS portion of this device, showing two 

closely spaced resonances at λ1 = 3.147 μm and λ2 = 3.161 μm, 

both excited by y polarized light and 

associated with the split degeneracy of the TE1
K

,
,
1

A1 and 

TEK
1,

,
1

B1 modes. If optical power is normally incident at pump 

wavelengths λa and λb such that λa = λ1 and λb = λ2, and a low-

frequency bias (corresponding to a radio frequency with 

wavelength λ3) is electrically applied across the antenna, 

fourwave mixing will produce photons at a THz wavelength 

with improved efficiency (compared to a bulk material) due to 

the enhanced light-matter interactions from the PCS and 

antenna resonances. The case shown in Fig. 12(b) corresponds 

to λ4 = 711 μm, but Fig. 12(c) shows that λ4 can be easily tuned 

by the radius of the central pillar R1. Figure 12(d) confirms that 

the figure of merit (defined below) is indeed maximal at λ4 

when the pump photons have wavelengths of λ1,λ2 (1/λ3 = 0 for 

simplicity, here; it may generally be used to finely and actively 

tune λ4). 

A key advantage of using these degenerate modes is the 

unique robustness of the control of both the spectral spacing 

and linewidths of the resonances. Since the modes are 

degenerate in the unperturbed lattice, they are necessarily 

closely spaced in a weakly perturbed lattice. Then, by 

controlling the radius of one of the pillars, the frequency 

spacing can be finely tuned. The spectral map in Fig. 12(c) 

shows the impact of tuning the radius of the central pillar R1, 

depicting a classic anticrossing behavior [39] as the 

resonance spacing changes. This utilization of degenerate 

modes offers a considerably more robust control of closely 

spaced resonances compared to relying on controlling two 

unrelated resonances by tuning geometric parameters: Fine 

tuning the separation of two unrelated resonances is highly 

sensitive to fabrication errors, while the split degeneracy here 

is guaranteed by symmetry. 

Notably, λ4 (or the spacing of the resonances) can be tuned 

largely independently of the linewidths of the resonances. 

This is easily understood by considering the portion of the 

perturbation V1 that corresponds to changing R1. Depicted in 

Fig. 12(e), a lattice perturbed by V1 alone produces a HexK 

lattice with the p6mm space group; reference to the catalog 

(Fig. 10) reveals that no coupling to the target modes is 

introduced by this perturbation. Tuning the radius of the 

central pillar therefore does not affect the coupling to first 

order. Then, the addition of V2 degenerates the space group to 

cmm, which couples the TE1
K

,
,
1
B1 mode to the magnetic x 

polarization but not the TE1
K

,
,
1

A1 mode. Finally, the addition 

of V3 creates a lattice with the cm space group with the Cs
v 

point group, allowing coupling the TE1
K

,
,
1

A1 mode to the 

magnetic x polarization. Notably, if the other cm space group 

(with point group Cs
d in the third table of Fig. 10) were used, 

the two resonances would be cross polarized. Tuning these 

three portions of the perturbation therefore allows 

independent tuning of each of the linewidths and the spacing 

of the two resonances in either a co-polarized or cross-

polarized fashion. The copolarization of the two previously 

degenerate resonances is unique to the HexK lattice in the 

catalog, as the E1 and E2 modes of the hexagonal lattices (and 

E modes in the square lattices) are only accessible in a cross-

polarized fashion. Copolarized split degenerate states are a 

unique feature of lattices with more than two atoms (such as 

the lattices containing four atoms seen in, for instance, Fig. 

19). In the present application, the freedom to have the pump 

wavelengths be co-polarized allows a single pulse (with 

bandwidth spanning the two resonances) as the pump. 

To complete the demonstration of the advantages of the 

HexK lattice for terahertz generation, we compute a simple 

figure of merit related to the efficiency of this conversion (see, 

for instance, Refs. [22,23]): 

FoM dx dy  

where the bounds of integration are over the entire device and 

χ(3)(x,y) is the spatially dependent third-order nonlinear 

susceptibility and the electric fields are normalized to the 

corresponding incident fields. Given the scale difference of 

λ3 to a unit cell (i.e., ), a reasonable approximation to 

this integral is that E∗(ω3) = F3 and E∗(ω4) = F4 are constants 

equal to the electric field enhancement due to the bowtie 

antenna. We may then integrate over a unit cell: 

 FoM

dx dy, (27) 

where Fy = Ey
∗() and G 1 where there is silicon and is 0 where 

there is vacuum. That is, the figure of merit is proportional to 

the overlap integral of the two pumps within the silicon 

portion of a unit cell. 

The integrand may be calculated from the mode profiles 

taken from full-wave simulations of unit cell of the device. 

The Hz components of the modes for the spectrum in Fig. 12(b) 

are shown in Figs. 12(f) and 12(g), corresponding to the 

choice in Fig. 12(c) of R1 = 0.38 μm. The integrand of Eq. (27) 

is shown in Fig. 12(h), as calculated from the Ey components 

of the modes [shown in Figs. 12(i) and 12(j)] and the 

refractive index profile of the device. The numerical value for 

this case is FoM/χ , meaning that for a 
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modest enhancement of |F3| = |F4| ≈ 10 by the bowtie 

antenna we will have a total enhancement of FoM/χSi
(3) ≈ 104 

in efficiency. Figure 12 therefore demonstrates a platform to 

produce THz light from two infrared pumps taking advantage 

of large electric field enhancement at every frequency 

involved in the four-wave mixing process. The phase 

matching condition is guaranteed by the subwavelength scale 

of the device in the vertical direction, the resonance spacing 

is robustly controlled by the radius of the central pillar, and 

the resonant linewidths can be tuned largely independently 

by the successive degeneration from C6v to C2v to Cs. We note 

that there is some partial cancellation upon integration of the 

integrand of Eq. (27) but not complete cancellation. Future 

work could optimize the perturbations chosen such that this 

cancellation is minimized. 

C. Application: Mechanically tunable optical lifetimes 

Next, we remark on a type of periodic perturbation 

achieved by stretching or shearing a high symmetry lattice. 

Since the symmetry of the lattice is reduced, the 

symmetryprotected BICs may be excited. However, the 

condition on coupling [that is, Eq. (23)] still applies, and 

therefore this class of perturbation follows the same selection 

rules as the equivalent point group degeneration entries. For 

instance, by shearing an unperturbed Sq lattice’s unit cell from 

a square into a rhombus, the space group is reduced to p1 and 

any mode at the  point may now couple to free space with a 

strength related to the degree of shear. However, the 

polarization direction of the coupled plane wave will be ill 

defined in general, changing, for instance, with the degree of 

shear. (Recall that it is for this reason that the p1 entries are all 

specified as any, because no general comment can be made.) 

Of more interest is stretching along a high symmetry axis, 

affording well-defined selection rules. This has been explored 

in Ref. [28] for plasmonic heptamers arranged in a square 

lattice by degenerating the symmetry of the heptamer from C6v 

to C2v by stretching the substrate. Since the Fano resonance in 

the plasmonic heptamer is both (1) well confined to a unit cell 

of the overall lattice and (2) due to the coupling between 

plasmonic modes, analysis of the point group of the unit cell 

alone suffices to analyze the resonance. However, for a low 

loss, high Q-factor demonstration using dielectric structures, 

this analysis is insufficient because the coupling across unit 

cells of the array is integral to the presence of BICs. The 

catalog of selection rules derived above provides the necessary 

information for proper analysis in dielectric systems. 

Inspection of the catalog of the square lattices (Fig. 9) 

reveals that square lattices afford no interesting cases: The 

only impact of a lattice deformation along a high symmetry 

axis is to split degeneracies, not introduce any new coupling. 

This is not true for the hexagonal lattices, however. Figure 

13(a) shows a HexK lattice with p6mm space group (one pillar 

of the trimer has a larger radius than the others) on a 

stretchable substrate. In the unstretched case, the lattice has C6v 

symmetry, and the selection rules forbid coupling to any but 

the E1 modes at normal incidence. However, inspection of the 

cmm space group reveals that degeneration from C6v to C2v 

enables coupling to the B1 and B2 modes. Stretching the HexK 

lattice with p6mm space group along the x axis also 

degenerates the point group from C6v to C2v and so ought to 

enable coupling to those modes to a degree controlled by the 

strength of the lattice deformation. Figure 13(b) depicts 
(a) (b) 

/3 

FIG. 13. Mechanically tunable optical lifetime. (a) Schematic of a 

HexK lattice with a p6mm space group on a stretchable substrate. (b) 

Full-wave simulations mapping the spectral reflectance R near the 

wavelength λ of the TE1
K

,
,
1
B1 mode for various degrees of stretching. 

(c) The unstretched lattice, with spacing P. (d) Stretched lattice, with 

spacing P along the horizontal. Single sided arrows denote the lattice 

vectors in (c) and (d). confirmation of this prediction via full-

wave simulations near the TM1
K

,
,
1
B1 mode, showing redshift 

and a changing Q factor as a function of deformation. 

Inspection of the HexK catalog (or an analogous case in the Hex 

lattice) therefore enables a low-loss dielectric-based flexible 

device platform with mechanically tunable resonant lifetime. 

D. Nonlocal metasurfaces 

The preceding applications demonstrated the utility of the 

catalog to guide device design using successive perturbations. 

In other words, the key to their design came from 

understanding how the final, lower order space group was 

constructed from the higher order space groups, which 

together form a parent-child relationship. In this section, we 

supplement the approach in the accompanying paper [64] in 

which we use this principle to demonstrate how particular p2 

space groups may be constructed from two parent space 

groups. We elucidate a geometric phase that is a consequence 

of the parent space groups exhibiting mode “twisting” of the 

sort shown in Fig. 11 and how if this geometric phase is 

spatially varied, we may realize devices with anomalous 

reflection and refraction only on resonance. 

We begin by focusing on the relationship between three 

space groups in the SqM lattice, shown in Fig. 14(a). Two 

) ( c ) ( d 
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parent space groups (pmg and pmm) are shown on the left. 

These two space groups share no symmetries in common 

except twofold rotations at the center of the silicon pillars. 

Consequently, if the perturbations are added successively, the 

child space group will retain only these twofold rotations, 

resulting in the p2 space group shown on the right in Fig. 14(a). 

This example of a parent-child relationship be- 

 

FIG. 14. Metaunits that introduce two factors of the geometric 

phase. (a) Hierarchical relationship between a p2 (child) space group 

and two higher order (parent) space groups in the SqM lattice. (b) 

Schematic of a metaunit composed of ellipses etched into a slab of 

silicon, excited by RCP light incident from the substrate. (c) 

Reflectance map for a metaunit library constructed by varying α and 

Da to keep a constant resonant frequency. (d) Amplitude and phase 

responses of the LCP and RCP components of the reflected light on 

resonance. (e) Amplitude and phase responses of the LCP and RCP 

components of the transmitted light on resonance. 

tween higher order parents and lower order children is very 

general; the full hierarchy for the SqM and SqX lattice is 

reported in Fig. 20. (Note: the hierarchy particular to the 

multiwavelength metasurface introduced in the 

accompanying paper [64] is reported in Fig. 21.) 

Examining Fig. 14(a) shows that the pmm parent space 

group allows for coupling to a polarization angle φ = 0◦ from 

the x axis (that is, x polarization), while the pmg parent space 

group allows for coupling to a polarization angle φ = 90◦ from 

the x axis (that is, y polarization). As seen in the inset of Fig. 

14(a), the child space group may be parameterized by an 

orientation angle α that yields the pmm parent space group 

when α = 0◦ and the pmg parent space group when α = 45◦. In 

other words, as α varies continuously from 0◦ to 45◦, the 

corresponding polarization angle must vary from 0◦ to 90◦. 

The linear interpolation of this behavior is 

 φ = 2α. (28) 

This form is highly reminiscent of the well-known geometric 

phase 2α, which is introduced when the handedness of circular 

polarization is flipped while light is scattered by an anisotropic 

scatterer oriented along the α direction. This similarity 

suggests studying a p2 space group under circularly polarized 

illumination, as shown in Fig. 14(b). 

In particular, upon studying the phase of circularly 

polarized light exiting the device on both the reflection side 

and transmission side, we find that this system imparts a 

geometric phase to light exiting with the converted 

handedness [for right circularly polarized (RCP) incidence, 

this is left circularly polarized (LCP) light in transmission and 

RCP light in reflection] that is twice the conventional 

geometric phase. As in conventional dichroic optical 

elements (e.g., a plasmonic bar antenna), two projections of 

the polarization basis are required to analyze the outgoing 

light, one from coupling into the element and the second from 

coupling out. We will consider each in turn. 

First, only the component of free-space light that is 

linearly polarized in the φ direction completely couples to the 

mode. This light, which constitutes half of the power of the 

RCP incident light, is resonantly reflected, while 

orthogonally polarized light (at an angle θ = φ + 90◦) is 

transmitted. Decomposing the incident RCP light into two 

linearly polarized components, the φ component carries a 

phase , and the θ component carries a phase t1 = φ + 90◦. 

Since the φ direction is defined by the orientation angle α by 

Eq. (28), the resonantly reflected light is therefore associated 

with a phase  and the orthogonally polarized 

transmitted light has a phase t
1 = 2α + 90◦. 

Second, the output light on resonance is linearly polarized 

and can be decomposed into its constituent LCP and RCP 

components. These components have a geometric phase  
∓φ in reflection and t

2 = ±θ in transmission, where the first 

sign corresponds to LCP, and the second corresponds to RCP. 

We can finally determine the total phases  of the 

LCP and RCP components in reflection and transmission: 

 r
LCP = 2α − 2α = 0◦ (29a) 

 r
RCP = 2α + 2α = 4α (29b) 

t
LCP = + ◦) + (2α + 90◦) = 4α + 180◦ (29c) (2α

 90 

 t
RCP = (2α + 90◦) − (2α + 90◦) = 0◦. (29d) 
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That is, RCP light in reflection and LCP light in 

transmission vary as 4α, while LCP light in reflection and 

RCP light in transmission are invariant to α. The two factors 

of the geometric phase come from the two instances of 

changing the basis for the polarization state: first from 

circular to linear (coupling into a single linear state) and 

second from linear to circular (decomposing into its 

constituent spins). In this case, the final value is twice the 

conventional geometric phase because the eigenpolarization 

(characterizing the projection bases) varies as φ ≈ 2α 

compared to the conventional case of φ = α (e.g., a plasmonic 

bar antenna oriented in-plane by an angle α). We note that the 

form φ ≈ 2α is not a general rule for quasi-BICs; for instance, 

the p2 space group in the HexK lattice with a cross motif 

follows φ ≈ −4α for the B1 mode. This results in a geometric 

phase that is −8α. 

We next explore the physics and applications exploiting 

this geometric phase as a new degree of freedom. Because the 

geometric phase is completely controlled by α, we may use 

the remaining geometric degrees of freedom of the unit cell 

to maintain a spatially constant resonant frequency across a 

device with a spatially varying geometric phase profile. In 

other words, as in conventional metasurface approaches, we 

may construct a library of geometries (“metaunits”) such that 

full phase coverage and constant amplitude are achieved. 

Then, by spatially arranging these metaunits, an output 

wavefront with a designer phase profile may be realized at 

the resonant frequency. 

To confirm this approach, we construct such a metaunit 

library targeting wavelengths in the telecommunications range. 

A metaunit, seen in Fig. 14(b), is composed of a silicon slab 

with two etched ellipses, which are identical but for a 90◦ 

rotation. The chosen thickness of the slab is H = 250 nm, and 

the lattice constant is a = 400 nm. The in-plane geometric 

parameters that are varied to construct the metaunit library are 

the diameters along the semimajor axis Da and semiminor axis 

Db and the orientation angle α. For simplicity, we keep Db 

constant and vary Da and α so as to achieve full phase coverage 

with minimal shift in resonant wavelength. 

A spectral map of reflectance, calculated by fullwave 

simulations, is shown in Fig. 14(c) illustrating a near constant 

resonant wavelength across the metaunit library. The 

amplitude and phase of the reflected (transmitted) LCP and 

RCP components are recorded in Fig. 14(d) [Fig. 14(e)] at the 

operating wavelength, λop = 1.52 μm. The amplitudes of the 

LCP and RCP components are approximately equal (each 

representing roughly one quarter of the input power) and vary 

little across the metaunit library. The small inequality is due to 

the presence of the substrate breaking the symmetry in the out-

of-plane direction. The phase of the component with converted 

handedness (which for reflection is RCP and for transmission 

is LCP) varies across 2π as α varies across 90◦ and follows 

closely with the predicted  = 4α dependence [see Figs. 14(d) 

and 14(e)]. 

With the metaunit library constructed, a wavefront with a 

spatially shaped phase profile within a narrow bandwidth near 

λop may be realized. A common function is to linearly vary the 

output phase so as to create anomalous reflection and 

refraction. We may choose either to vary the phase profile in 

the same direction as the dimerization [the x direction in Fig. 

14(b)] or the orthogonal direction. We will begin with the 

former choice (see the accompanying paper for the latter 

[64]). 

Figure 15(a) shows a schematic of a device deflecting the 

component with the converted handedness at the resonant 

wavelength for RCP light normally incident from the substrate 

side. Figure 15(b) depicts the electric field on resonance 

calculated by fullwave simulations, overlaid with the geometry 

of the device [Fig. 15(e)]. Figures 15(c) and 15(d) show the 

output polarization states and phases of the LCP and RCP 

components at the reflection side and transmission side, 

respectively. In both cases, the output polarization is 

approximately linear across the device. As such, the phase of 

the signal with unconverted handedness is uniform while the 

phase of the signal with converted handedness varies across 4π 

as α varies over 180◦. 

Figure 15(f) confirms that the resonance of the metasurface 

remains intact, despite the variance of geometry across the 

metasurface. However, a noticeable blueshift has occurred 
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only on resonance. 

relative to the originally chosen λop. Nevertheless, at the 

resonant peak of the device, λdev = 1.46 μm, deflection to the 

second diffractive order occurs for signal with the converted 

handedness [Figs. 15(g)–15(j)]. A device with identical 

deflection angle is shown in the accompanying paper [64] but 

with a phase gradient applied in the orthogonal direction to the 

dimerization direction. The blueshift is also present in that case 

but significantly reduced. 

The explanation for this blueshift comes from a unique 

feature of this metasurface: The deflection of light with 

converted handedness is mediated by a supermode of the 

device. That is, unlike conventional metasurfaces, whose 

metaunits scatter light based on local resonances, this 

metasurface scatters light due to a global resonance (associated 

with a supermode) supported by many neighboring metaunits. 

To explore the physics here, we consider the dependence of a 

gradient resonant metasurface on the incident angle of the RCP 

light. Figure 16(a) schematically shows a device with a spatial 

phase gradient in a direction orthogonal to the dimerization 

direction, with light incident from the substrate at a set of 

angles θx (along the phase gradient) and θy (along the 

dimerization direction). Since the deflection only occurs on 

resonance, the resonant frequency follows some dispersion 

relation (i.e., the band structure). Figure 16(b) depicts the 

resonant frequency dispersion while varying θy from −40◦ to 

40◦ (corresponding, by Snell’s Law, to ±68.7◦ in air). This mode 

is concave up, meaning that at higher in-plane momenta, a 

blueshift occurs. 

To understand the blueshift at normal incidence, we must 

consider (1) the modes supported by the device and (2) the 

inplane momentum of the resonant mode. First, these resonant 

modes exist in the device with a superperiod of Px = 8a in the 

phase gradient direction. We therefore consider all of the 

supermodes supported by a device with this superperiod. 

Because the superperiod is composed of perturbed versions of 

the same PCS, the supermodes will be well approximated by 

artificial Brillouin folding corresponding to period doubling a 

metaunit three times. Figure 16(c) depicts such a process for 

the mode in question, showing the band of the unit cell 

(containing two ellipses) copied every integer multiple of the 

 

FIG. 16. Angular dispersion of resonant metasurfaces. (a) 

Schematic of a resonant metasurface excited from off normal angles. 

(b) Reflectance map while varying θy, showing that the resonance 

follows the dispersive concave-up band of the mode. (c) Region of 

an extended zone (shaded gray) band diagram near the resonance of 

the device in (a) with artificial Brillouin zone folding; the red band 

corresponds to the band shifted by a k vector equal and opposite to 

that introduced by the phase gradient due to coupling into the 

supermode (i.e., one factor of the geometric phase). (d) Reflectance 

 

FIG. 15. Gradient resonant metasurface. (a) Schematic depicting the device and its functionality: A thin film of silicon on top of quartz is 

patterned with elliptical holes (inset shows top view of the geometry), resonantly deflecting light with converted handedness when excited by 

circularly polarized light. (b) Top view of the complex field on resonance overlaid on the gradient resonant metasurface. (c),(d) Top view of 

spatial distributions of the reflected and transmitted polarization states, er and et, and phase responses of ERCP
r , ERCP

t , ELCP
r , and ELCP

t . (e) 

Geometrical parameters of the device in (b). (f) Transmission and reflection spectra of the device in (b). (g)–(j) Farfield angular and spectral 

intensity distributions calculated from the optical near field, such as the results in (c),(d), showing deflection of light with converted handedness 
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map while varying θx, showing that the resonance follows the band 

shifted by a factor of the geometric phase gradient. 

grating vector kG = 2π/Px in the kx = k0sin(θx) direction. The 

supermodes present at normal incidence are the modes at kx = 

0 in this diagram. 

Second, upon coupling in, there is a spatially varying 

geometric phase, corresponding to twice the local rotation 

angle of the ellipses. The derivative of this spatial phase is 

equivalent to a k vector, 

 kgeo . (30) 

 ∂x Px 

In other words, the resonant supermode is the resonant mode 

of an unperturbed lattice modulated by an in-plane wave 

vector in the x direction. This corresponds to a supermode 

that is kgeo away from the unperturbed  point, kx = 0 (the flat 

part of the band). The supermode is highlighted red in Fig. 

16(c). Consequently, as seen in Fig. 16(d), as θx is varied, the 

resonance follows the dispersion of the band as it existed in 

the unperturbed lattice, shifted by −kgeo. Notably, this also 

means that the resonant frequencies corresponding to the pair 

of incident momenta kx = 0 and kx = −2kgeo are identical. This 

is consistent with the requirements of reciprocity: These two 

momenta are the input and output momenta of the deflection 

process; reversing the output must yield the original input at 

all frequencies. 

Finally, we comment on the achievable phase gradient 

limited by this angular dispersion. As encapsulated by Eq. (2), 

the component k vectors involved with the resonance must be 

limited according to the linewidth and angular dispersion of 

the resonance in order to maintain large resonance visibility. 

For a resonant metasurface lens or hologram shaping an 

incident plane wave, the range of output k vectors must 

satisfy Eq. (2). In the cylindrical metasurface lens reported in 

the accompanying paper [64], the resonance visibility is 

maintained despite the range of deflection angles in the θx 

direction across the device, which may be characterized by 

the numerical aperture NA. We find that increasing the NA 

gradually reduces the resonance visibility, but a substantial 

resonance visibility (a peak reflectance of >40%) is still 

maintained at a high value of NA = 0.7. This is not true for a 

cylindrical lens focusing in the θy direction, where NA < 0.1 

is required to retain appreciable resonance visibility, as the 

angular dispersion is large in the θy direction compared to that 

in the θx direction [comparing Figs. 16(b) and 16(d)]. This is 

consistent with the constraint on Q factor, band flatness, and 

spread in incident k vector encapsulated by Eq. (2). In other 

words, it suggests that by including band structure 

engineering, a fully radially focusing resonant metasurface 

lens may be realized and that we must generally take care to 

engineer the band structure of the unperturbed resonant 

metasurfaces before applying the perturbation, as laid out in 

the three-step process described in Sec. IIA. 

Given the lack of impact on the nonresonant light waves, 

which may transmit with high efficiency irrespective of 

incident angle, we anticipate these resonantly deflecting and 

focusing metasurfaces to be of significant interest to 

augmented reality displays, which aim to superimpose a 

desired image on top of information transmitted through the 

glass originating from the external world. By further 

application of the principle of successive perturbations, we 

show in the accompanying paper [64] that the single-

wavelength resonant metasurfaces may be extended to 

multiwavelength devices with independently tunable phase 

profiles. The hierarchy of the child space group constructed 

from eight parents is shown in Fig. 21. The eight parents 

represent eight degrees of freedom to spatially and spectrally 

shape an incident wavefront: The Q factors and polarization 

angles (i.e., geometric phases) of four modes with distinct 

symmetries may be controlled simultaneously. Notably, these 

eight degrees of freedom are in addition to the degrees of 

freedom present in the unperturbed lattice, which may be 

used to control the resonant frequencies and band curvatures 

of the desired modes. This degree of spatial and spectral 

control over an optical spectrum greatly surpasses the state of 

the art and is readily apparent from careful study of the 

catalog in conjunction with the design principle of successive 

perturbations. 

V. SUMMARY 

In summary, we derived the selection rules for Fano 

resonances due to quasibound states in the continuum 

supported by photonic crystal slabs. Targeting the high 

symmetry modes of both square and hexagonal lattices, we 

explored six lattices designed to bring each class of high 

symmetry mode into the continuum. We exhaustively reported 

the degenerated space groups due to in-plane perturbations that 

are compatible with these six lattices and cataloged the 

selection rules in each case by applying principles of group 

theory to determine the free space polarization of the leaky 

portion of the perturbed modes. 

Together with band structure engineering, the principles, 

approach, and results outlined here provide a high-level guide 

to designing compact photonic crystal slabs supporting sharp 

resonances: devices confining light in both space and time and 

manufacturable by mature fabrication technologies. Future 

work will be well guided by the rational design principles 

considered here to reduce the search space required to 

optimize a compact, resonant optical device. In particular, we 

showed that the band structure may be engineered in the 

unperturbed lattice before a periodic perturbation is applied to 

couple the targeted mode(s) to the desired free space 

polarization(s). We showed, here and in the accompanying 

paper [64], that in addition to the degrees of freedom present 

in choosing the unperturbed lattice, a series of successive 

perturbations may realize multifunctional control of the 

resonances (up to eight parameters at once). The insights of the 

catalog of selection rules produced by group theory arguments 

have straightforwardly motivated novel devices, such as 

polarization independent planar optical modulators, terahertz 

generation in photonic crystal slabs with lifted degeneracies, 
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devices with mechanically tunable optical lifetimes, and a 

novel class of metasurfaces that uses two factors of a 

geometric phase to spatially shape a resonant wavefront. We 

therefore believe that careful understanding and examination 

of the patterns and features of the selection rules represent a 

fruitful launching point for future efforts. 
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APPENDIX A: GROUP THEORY TABLES 

For ease of reference, the character tables of all relevant 

point groups are reported in Fig. 17(a). The left column of 

tables in Fig. 17(a) contains the point groups compatible with 

the square and rectangle lattices, and the right contains those 

compatible with hexagonal lattices. Figure 17(b) summarizes 

the subgroups of each of the point groups shown in Fig. 17(a). 

This prescribes the necessary components of the symmetry 

degeneration tables, shown in Fig. 17(c), which track how 

higher symmetry modes (irreducible representations) 

degenerate into lower groups. That is, reference to the 

symmetry degeneration tables provides the answers to how a 

higher symmetry mode would be named in a lower order 

symmetry group (for instance, B2 in C4v would be called A2 in 

C  

Next, Fig. 18 provides the group theory tables helpful for 

determining the selection rules through the direct product 

(a) Character tables (b) Subgroups 
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  (c)Symmetry Degeneraon 

FIG. 17. Group theory tables for point groups. (a) The character tables 

of the point groups relevant to the square (left) and hexagonal (right) 

lattices. (b) The subgroups of the higher symmetry lattices. (c) The 

symmetry degeneration tables, describing how irreducible 

representations 
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approach. Figure 18(a) provides the direct product table for 

the C6v point group, and Fig. 18(b) provides the same for the 

C4v point group. The direct product tables for the lower order 

point groups are a subset of these. For instance, for C2v, Fig. 

18(b) may be used excluding the final row and column. Lastly, 

Fig. 18(c) contains the irreducible representations for the 

partial derivative operators relevant for direct products such 

as in Eq. (23). This tracks how free space polarizations 

transform in each lattice type. 

APPENDIX B: ADDITIONAL LATTICES 

The six lattices cataloged in Figs. 9 and 10 were chosen 

because they access the six high symmetry modes in the 

simplest way. For instance, the SqM lattice accesses only the  
and M (but not the X) modes of a square lattice, while 

 

FIG. 18. Group theory tables for deriving the selection rules. 

(a) The direct product table for C6v. (b) The direct product table for 

C4v. The direct product tables for the lower order point groups are 

subsets of (a) and (b). (c) The irreducible representation describing 

the partial derivative operator in each direction. This describes how 

free space polarizations transform in each point group. 

the SqX accesses the  and X (but not the M) modes. However, 

if desired, it is possible to access all three modes in a single 

lattice by period doubling in both lattice directions. Figure 19 

shows this lattice, called SqMX , depicting the real space and 

FBZ. This lattice is a “quadromer,” having four atoms per 

unit cell, and therefore has four times the modes compared to 

the unperturbed case. In particular, it has the  and X modes, 

as well as two copies of the M modes (one from each Mx and 

My), which mix at the  point in a similar way to the K modes 

of the HexK lattice. 

Also pictured in Fig. 19 are the HexMMM and HexM, both of 

which are examples of quadromer lattices. HexMMM is still of 

the hexagonal lattice family, while HexM (much like HexM) is 

rectangular. HexMMM contains three copies of the M modes, 

which will mix at the  point. HexM, on the other hand, 

accesses a unique set of modes at the  point in the unperturbed 

FBZ (see the last panel in Fig. 19), which have the point 

group Cs
d (that is, they are either symmetric or antisymmetric 

about the x axis). 

The lattices shown in Fig. 19 are by no means the only 

additional lattices that may be explored. Instead, they serve 

as an example of the next few lattices in the infinite list of 

lattices ordered by number of atoms in the perturbed unit cell. 

The lattices in this list are generally increasingly complicated, 

but the same approach outlined in Sec. IIIC may be applied 

to determined the selection rules if desired. 

APPENDIX C: SPACE GROUP HIERARCHY 

A feature of the SqX lattice is that there are two points in 

the unperturbed lattice with C4v about which to apply the 

dimerizing perturbation. This has the consequence that there 

are two p4g groups in the catalog of the SqX lattice, each with 

X 

FIG. 19. Three additional examples of periodically perturbed 

lattices. Each of these lattices is a “quadromer” lattice, with four 
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atoms per unit cell upon perturbation, and therefore have four times 

the modes of the unperturbed lattices at the  point. 

a different high symmetry point in common with the 

unperturbed lattice (likewise for the two p4m groups). 

Similarly, there are two equivalent points with at leastC2v 

symmetry that may be chosen while perturbing to a SqM lattice 

(and equivalently, the HexM lattice), producing an analogous 

set of paired perturbations. Note that the Sq lattice (and 

equivalently, the Hex lattice) has no such feature. The HexK 

lattice has no such pairing of perturbations because there is 

only one point in the unperturbed lattice with C6v symmetry. 

An interesting feature of the paired sets of perturbation is 

the relationship of the symmetries those members have in 

common with each other. By adding the two perturbations 

together, a space group of lower symmetry is created with only 

those symmetries the two parent space groups had in common. 

In the words of crystallography, this process is finding a 

order space groups. 

translationengleiche subgroup in common (and finding theC4v 

parent space groups is finding klassengleiche subgroups of the 

 

FIG. 20. Hierarchy of space groups in the (a) SqM lattice and (b) SqX lattice, showing how lower order space groups are related to higher 
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FIG. 21. Complete hierarchy adding eight space groups with C2v 

point symmetry and “orthogonal” selection rules to achieve a final p1 

space group with eight degrees of freedom: the Q factors and 

polarization angles of four distinct modes. 

unperturbed lattice). This resulting child space group must, 

naturally, be a member of the catalog. Such a relationship 

may be studied for all of the space groups in the lattices with 

this pairing of perturbations. The resulting relationships are 

seen in Fig. 20, showing complete sets of relationships 

between higher and lower space groups. Note that for the SqX 

lattice, one of the cmm space groups has its highest symmetry 

point in common with the C2v symmetry point of the 

unperturbed lattice. It may therefore not be made by adding 

higher order space groups. Likewise, it is well known to 

crystallographers that the pmg space group has no parent 

(translationengleiche supergroup), and therefore also stands 

alone. However, both of these “parent-less” space groups 

share symmetries with the other members of the SqX lattice 

and therefore may be combined to create space groups of 

lower symmetry. 

We note that while these relationships do not prove that 

the catalog is exhaustive, the closed, consistent system is 

highly suggestive that it is. Indeed, in an earlier version of 

this manuscript, one of the p4g space groups of the SqX 

catalog was omitted, and its existence and selection rules 

were predicted while attempting constructing Fig. 20(b): A 

fourth space group with C4v symmetry was needed to produce 

a consistent hierarchy. 

Finally, for completeness we report in Fig. 21 the entire 

hierarchy enabling control of the Q factor and polarization 

angle for four modes simultaneously and independently, used 

in the accompanying paper [64]. The resulting lattice is SqMX 

(refer to Fig. 19) constructed from two SqM lattices, one 

dimerized in the x direction, whose modes are referred to as 

Mx, and the other in the y direction, whose modes are referred 

to as My. 
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