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Abstract
The design of surgical needles used in biopsy procedures have remained fairly standard despite the
increase in complexity of surgeries. Higher needle insertion forces and deflection can increase
tissue damage and decrease biopsy sample integrity. To overcome these drawbacks, we present a
novel bioinspired approach to reduce insertion forces and minimize needle-tip deflection. It is well
known from the literature, design of bioinspired surgical needles results in decreasing insertion
forces and needle-tip deflection from the needle insertion path. This technical note studies the
influence of vibration on bioinspired needle to further reduce insertion forces and needle-tip
deflection. Bioinspired needle geometrical parameters such as barb shapes and geometries were
analyzed to determine the best design parameters. Static and dynamic (vibration) needle insertion
tests were performed to determine the maximum insertion forces and to estimate needle-tip
deflection. Our results show that introducing vibration on the bioinspired needle insertion can
reduce the maximum insertion force by up to 50%. It was also found that the needle-tip deflection
is decreased by 47%.

1. Introduction

Needles are commonly used in medical procedures
such as biopsy, brachytherapy and blood sampling.
The effectiveness of a needle insertion in these pro-
cedures is highly dependent on the insertion accuracy
[1]. The most important factors contributing to nee-
dle misplacement are tissue deformation and needle
deflection [2, 3]. These drawbacks are directly related
to the force experienced by the needle, and results
in high insertion force and tip deflection from the
insertion path [4, 5]. To minimize the needle place-
ment errors and tissue damage, a practical approach
is to reduce insertion force. Decreasing insertion force
could also help with less pain, trauma and edema
caused to the patients, such that it allows the patient
to recover in a shorter time [6].

The insertion force occurs when the needle first
breaks through the tissue, and a high insertion force
leads to more tissue damage [7]. The parameters that
affect the insertion force are needle geometry, needle-
tip and speed of insertion [1, 8–11]. Needle-tips

have been designed to decrease the insertion force,
but inadvertently create an uneven distribution of
force on the tip causing needle deflection. The needle
deflection also depends on the speed of insertion,
in which it reduces the needle bending [12]. Also,
studies have shown that vibration-assisted needle
insertion helps in increasing the needle placement
accuracy [13] and reducing the cutting forces
[14–16], ultimately decreasing insertion forces.

Many research efforts to mimic insect stingers are
ongoing with penetration mechanisms such as hon-
eybee [17–19] and mosquito [20] to help facilitate
better needle insertion. Insect stingers hold promise
for modernizing needle design, as the stingers have
evolved and become adept at entering human tissue
through various mechanical and dynamic insertion
techniques [21]. In particular, a mosquito inspired
vibration has gained interest due to its penetrating
technique in reducing insertion forces with mini-
mal pain [22–24]. The penetrating process of the
mosquito vibration to the bioinspired needle in this
study was investigated experimentally.
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Figure 1. (a) A schematic representation of the bioinspired needle with final design parameters as length of the needle = 180 mm,
diameter = 4 mm, barb front angle = 165◦, barb height = 0.5 mm, barb thickness = 0.15 mm, barb back angle = 90◦ and no of
barbs = 10, (b) microscopic view (magnification:16×) of bioinspired needle and (c) standard bevel-tip needle.

To further study how vibration reduces the inser-
tion force during its penetration into tissue, Huang
et al [14] showed 28% reduction in peak insertion
forces using hypodermic needle (27-gauge needle),
Clement et al [25] showed 73% reduction in peak
insertion forces using hypodermic needle (25-gauge
needle). The reduction in insertion forces were also
achieved by applying axial vibration on microneedle
[26], and ultrasonic vibration on hypodermic nee-
dles [14]. These forces were tested by varying fre-
quencies and amplitudes in optimizing the vibration
on tissue cutting [27]. Furthermore, to improve the
needle position accuracy, Bi and Lin [13] studied
vibration effect during needle insertion to reduce
deflection. Through this study, the mechanical and
procedural facets of mosquito-inspired vibration
were implemented in novel bioinspired needle design.

The aim of our work is to study the effect of
vibration on bioinspired needle to decrease inser-
tion forces and to minimize needle-tip deflection.
The outline of this paper is as follows: the materials
and method section discussess the bioinspired nee-
dle design, experimental procedure and needle deflec-
tion analysis to study needle-tip deflection. The results
and discussion section provides bioinspired needle
parameter analysis such as barb height, barb front

angle, vibrational frequency and lastly, effect of vibra-
tion on bioinspired needle insertion force and deflec-
tion. Finally, the conclusion section demonstrates the
importance of the new needle design to reduce inser-
tion forces and minimize needle-tip deflection.

2. Materials and methods

2.1. Bioinspired needle design
The insect inspired for this biomimetic needle design
were barbs and vibration. The honeybee stinger is
covered in asymmetric barbs [19] that lay flush
against the body of the stinger. These barbs have
shown to lower the insertion forces of the stinger, but
increase the extraction forces to about 70 times that
of the acupuncture needle [17, 28] and is caused by
the asymmetric distribution of barbs along the nee-
dle body. Considering this drawback of barbed nee-
dles, the design of the final needle used symmetric
barbs surrounding the circumference of the tip of the
needle. Also, studies have shown that needles with
scaled-up diameter have an average insertion force
of 1.45 N [29] and an average of 4 N [19] for PVC
with Young’s Modulus of 3.5 kPa [30]. It has also been
shown that bevel-tip needles have less insertion force
compared to conical needles [12]. The final com-
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Figure 2. CAD model (top) and 3D printed (bottom) bioinspired needle with piezo actuator.

ponents of bioinspired needle design are labeled as
follows: the bevel tip angle (35◦), the length and diam-
eter of the needle body (180 mm and 4.0 mm, respec-
tively). The typical medical needle for our application
is approximately 1.5–2 mm in diameter. Due to the
manufacturing complexity of the true-scale design,
the diameter of the needle was chosen to be 4 mm
(about 2 times of a typical needle size) to study the
influence of vibration on the insertion force of bioin-
spired needle. From our previous study [19], barb
back angle of 90◦, barb tip thickness of 0.15 mm and
the number of barbs of 10 were considered constant
throughout this study as shown in figure 1. However,
the barb front angle and barb height were experi-
mentally studied due to its significant contribution
in reducing insertion forces. 3D model of the barbed
needle was generated using CAD software and was 3D
printed (see figure 2) using Connex350 3D printer.
Additionally, the final needle was combined with a
piezoelectric actuator (Physik Instrumente, Auburn,
MA) that vibrated needle in the axial direction with
a sinusodial waveform at a frequency ranging from
60–100 Hz. Furthermore, a digital microscope (Dino-
Lite, AnMo Electronics Corporation, New Taipei City,
Taiwan) was used to take images with a magnification
of 16× (see figures 1(b) and (c)) of bioinspired and
standard bevel-tip needle.

2.2. Dynamic needle insertion test procedure
The dynamic needle insertion setup (see figure 3) of
this experiment included a horizontal linear inser-
tion motor with a six-axis Force/Torque Transducer
Nano17® (ATI Industrial Automation, Apex, NC)

connected to a data acquisition system (National
Instruments Corporation, Austin, TX). The force
sensor was used to record the insertion forces and
these force data were acquired using programable
data acquisition system utilizing LabVIEW software.
The needle guider was used to steer the needle and
decrease the buckling of the needle. The tissue phan-
tom was housed in a 3D printed gel mount. Addition-
ally, a piezoelectric actuator, and an amplifier were
added to the setup as shown in figure 3. The insertion
tests were done using PVC gel phantoms (1.8 kPa)
which is commonly utilized to mimic soft tissues.
The PVC and softener were combined to mimic the
viscoelastic properties of the tissue. This solution
was heated until it became an activated solution and
cooled using a freezer till it turns to a thick solid-
ified solution. Additionally, a gelatin was used to
study needle-tip deflection. To create a gelatin phan-
tom, 111 grams of gelatin powder was mixed with
225 ml of de-ionized degassed water in a sanitized
container before adding ten drops of vyse defoamer
solution (Vyse Gelatin Co., Schiller Park, IL, USA).
The mixture (evaporated milk/water of 500 ml and
275 ml of de-ionized water) was heated to 80 ◦C
and added into gelatin/water mixture where it was
thoroughly stirred. This mixture was allowed to cool
to 40 ◦C before transfering into a phantom mold.
The main objective of the dynamic insertion system
was to vibrate the bioinspired needle at a frequency,
and amplitude, that would mimic the mosqutio on
a larger scale and reduce the insertion force. The
maximum insertion depth during needle insertion
was 5 cm both in PVC gel and chicken breast.
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Figure 3. Dynamic needle insertion test setup.

Figure 4. The distance from edge of the tissue to centre of the wound: (a) top view showing the initial section and (b) a schematic
representation (side view) of the needle deflection inside the gelatin with coloured dye region.

This was accomplished using a piezoelectric actuator
with an amplitude of 5 μm and insertion speed of
10 mm s−1.

A mosquito vibrates its stinger within the range of
15–30 Hz [20] during its insertion into human skin
and a scaled-up vibration frequency was also studied
and showed that it is ideal for mimicking mosquito
proboscis vibration [22, 31]. This frequency for nee-
dle to vibrate was found to be 60 Hz (see results
section 3.3), with an amplitude of 5 μm in sinuso-
dial waveform and addressing the problems of high
insertion forces with traditional needles in a distinc-
tive dual bioinspired approach. The number of test
trials for each parameter were five using PVC gel
phantom and three using chicken breast. The aver-
age and the standard deviation (SD) of these trials
were calculated and presented. Firstly, the parame-
ters that contribute major changes in insertion force
were studied i.e. the front barb angle and barb height
with no effect of vibration. All the other additional
parameters such as barb back angle of 90◦, barb tip
thickness of 0.15 mm and the number of barbs of
10 were constant throughout this study. Secondly, the
vibration frequencies were studied with the parame-
ters that showed less maximum insertion force for the

bioinspired needle. Finally, the influence of vibra-
tion on the insertion force of bioinspired needle were
performed and compared with standard bevel-tip
needle.

2.3. Needle deflection analysis
The needle deflection analysis to study needle-tip
deflection on gelatin tissue was studied to quantify
the position of the needle throughout the insertion
and measure deflection. The insertion tests as shown
in figure 3 were performed into gelatin to study the
needle-tip deflection. In this method, the insertion
path in the gelatin sample was categorized as ‘wound’
within the tissue, and the spreading of dye within
this wound allowed for visualization of the damage
to surrounding tissue as shown in figure 4. This dam-
age was quantified for the final needle to understand
the effect of the design decisions outside of insertion
force. The damaged wound of the gelatin sample was
sliced into sections (see figure 4(a) for sample section)
and a colored dye was used to spread across the sample
sections. A digital camera was used to image the initial
and final sections of the gealtin sample. A schematic
representation of how the needle deflected inside the
tissue was shown in figure 4(b)). The needle insertion
path was located on this colored dye sections and dis-
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Figure 5. Effect of different barb front angles on bioinspired needle (without vibration) insertion force.

tance from edge of the tissue to centre of the wound
was measured using ImageJ software.

3. Results and discussions

The insertion tests into tissue-mimicking PVC gels
(Young’s modulus (E) of 1.3 kPa) [32] was carried out
using barbed needle. Before performing the dynamic
needle insertion, analysis on bioinspired parameters
(such as barb front angle, barb height and vibration
frequency) are done experimentally and statistically
studied (with 5% significance level) to choose the
best design for testing, and to study the maximum
insertion forces of bioinspired needle.

3.1. Effect of barb front angle on bioinspired
needle insertion force
The insertion forces were measured with different
barb front angles of the bioinspired needle. The aver-
age maximum insertion forces of five trials of barb
front angles for bioinspired needles with barb height
of 0.5 mm are shown in figure 5. The maximum inser-
tion force decreases with increase in barb front angle.
The comparison of barb front angle showed that the
needle with 165◦ angle have significant lower maxi-
mum force compared to the needles with 140◦, 145◦,
150◦, 155◦ and 160◦ angles. Furthermore, increasing
the barb angle showed reduction in maximum inser-

tion forces, which means removal of extra material
from the needle results in less frictional force and thus
decreasing insertion forces.

3.2. Effect of barb height on bioinspired needle
insertion force
The insertion tests were done into PVC gels to study
the barb height parameter. Since larger barb height
results in removal of extra material, ultimately result-
ing in less insertion forces due to less friction. The
other parameters considered for this needle are barb
front angle of 165◦ barb. There was statistical differ-
ence between the insertion forces of different barb
height groups, and the 0.5 mm barb height group
presented the lowest maximum insertion force with
a mean of 1.1 N with no effect of vibration. Further-
more, the maximum insertion force for the bioin-
spired needle with barb height of 0.5 mm is less than
the smaller barb heights. Based on these results, the
barb height was chosen to be 0.5 mm (see figure 6)
along with 165◦ barb front angle (result from previous
section) for the next parameter study.

3.3. Effect of vibration frequencies on
bioinspired needle insertion force
The final parameter analyzed to the needle design
was mosquito inspired vibration and is discussed on
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Figure 6. Effect of different barb heights on insertion force of the bioinspired needle without vibration.

what vibration frequency effect can reduce the inser-
tion force of a bioinspired needle. Since a mosquito
vibration ranged between 15–30 Hz [20, 22, 31] and
increasing frequency resulted in higher forces. But, in
order to mimic this on a larger scale, empirical test-
ing was done to determine the lowest frequency that
had an effect on the insertion force measurements,
while still being below 100 Hz to be representative of
the mosquito. Between the vibartional frequency of
15 and 60 Hz, there is little difference on the inser-
tion forces. This is because the diameter of the needle
is higher and the vibration effect is small: therefore,
the vibration frequency ranging from 60–100 Hz with
an amplitude of 5 μm was studied. The results for
this analysis are shown in figure 7, and it was found
that there was significant difference between the fre-
quencies from 60–100 Hz on the bioinspired needle
and frequency with 60 Hz showed less mean inser-
tion forces compared to other frequencies. There was
a close relationship between the frequency parameter
and insertion force, this force increased with increase
in frequency, and is due to the effect of high vibra-
tory actuation on cutting tissues [31]. Furthermore,
signal to noise ratio during needle insertion shown to
be higher and reliable at 60 Hz with an amplitude of
5 μm.

3.4. Effect of vibration on the insertion force of
bioinspired needle
Now with all the parameters statistically analysed, the
effectiveness of the vibration on bioinspired needle
is evaluated with barb front angle of 165◦, a barb
height of 0.5 mm and vibration frequency of 60 Hz
with an amplitude of 5 μm. The performance of the
vibratory bioinspired needle in PVC gel (see figure 8)
and chicken breast (figure 9) was demonstrated by
comparing the maximum insertion force of the bioin-
spired needle (with and without vibration) and stan-
dard bevel-tip needle without vibration as shown in
figure 8. The final maximum insertion force of a
dynamic needle insertion obtained was 1.99 N. The
maximum insertion force of the vibratory bioinspired
needle insertion force was qualitatively lower than the
bioinspired needle without vibration. The maximum
insertion force of the bioinspired needle (without
vibration) was found to be a mean of 3.24 N, whereas
the final net insertion for the bioinspired needle (with
vibration) was 1.99 N. Lastly, the maximum inser-
tion force of a standard bevel-tip needle found was
3.96 N, which is significantly higher than the bioin-
spired needle. The PVC gel phantom in this study is
close to tissue-mimicking material [32]. The inser-
tion tests into PVC gel showed higher insertion forces
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Figure 7. Effect of vibration frequencies on maximum insertion force of the bioinspired needle with barb front angle = 165◦,
barb height = 0.5 mm.

Figure 8. The maximum insertion forces obtained for bioinspired needle (with and without vibration) and standard bevel-tip
needle (without vibration) from insertion tests into PVC gels.

for a tissue with E = 1.3 kPa was due to the diam-

eter of the needle. This study focuses on influence of

vibration on the insertion force of bioinspired needle.

Therefore, our experiments were performed in both

PVC gel phantom to study the influence of vibration.

Additionally, the insertion tests into higher tissue
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Figure 9. The maximum insertion forces obtained from insertion tests into chicken breast.

Table 1. Bioinspired needle insertion (with and without vibration) deflection values for distance from edge of the tissue to centre of
wound.

Distance from edge of the tissue to centre of wound in sliced gelatin sample

Group Initial deflected distance (mm) Final deflected distance (mm) Total distance (mm) = initial − final

With vibration 9.31 ± 0.08 7.87 ± 0.03 1.44 ± 0.10
Without vibration 9.56 ± 0.02 6.84 ± 0.05 2.72 ± 0.03

properties such as chicken breast [33] were performed
to study the influence of vibration on bioinspired nee-
dle. The applying of vibratory actuation during bioin-
spired needle insertion reduces the amount of force
required for bioinspired needle penetration.

From the results, it shows that having barbs
decreases friction forces and ultimately reducing
insertion forces. Furthermore, it has been demon-
strated that having vibration actuation during needle
insertion reduces maximum insertion force by up to
50% in PVC gel and 43% in chicken breast compared
to needle insertion without vibration.

3.5. Effect of vibration on the deflection of
bioinspired needle
In addition to insertion force measurements, needle-
tip deflection was done in gelatin (4.2 kPa) to
determine the effect of vibration on the deflection
of the bioinspired needle. The maximum insertion
forces in gelatin with vibration was 2.94 ± 0.08 N
and without vibration was 3.44 ± 0.07 N. Due to

viscoelastic properties in PVC [32], lack of tissue
damage was seen compared to gelatin in this method.
Therefore, the damage analysis was done on gelatin
with higher Young’s modulus to study the bioin-
spired needle deflection with and without vibration.
The initial and final distance (see figure 4) mea-
sured values and the standard deviation values for
distance from edge of the tissue to centre of wound
are presented in table 1. The results obtained from
this method for three trials of experiments showed
that the average deflection of the vibratory bioin-
spired needle was 1.44 mm and without vibration was
2.72 mm. Thus, the fabrication test proved that the
decisions made for bioinspired needle with vibration
were capable of decreasing deflection significantly by
47%.

4. Conclusions

In this work, the effect of mosquito-inspired vibra-
tory actuation on the bioinspired needle insertion
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force was studied. Results showed significant decrease
in insertion force of bioinspired needle during its
insertion into PVC gels. Analysis was done on the
bioinspired parameters such as barb front angle, barb
height and vibration to determine the best design that
reduces the insertion forces. The maximum insertion
force for the final bioinspired needle with 60 Hz vibra-
tion is reduced by up to 50% in PVC gel and 43% in
chicken breast than the force without vibration. Fur-
thermore, the bioinspired needle-tip deflection with
the vibration showed 47% reduction compared to the
needle without vibration. The vibratory actuation for
the bioinspired needle mentioned above helps to pre-
cisely control the needle during insertion and reduce
the forces. In future research, in vivo tests will be per-
formed to acquire detailed knowledge about the influ-
ence of vibration on bioinspired needles for clinical
applications.
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