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Abstract

Experimental solubilities have been determined for 1-chloroanthraquinone, anthracene,
biphenyl, pyrene, benzil, benzoic acid, acetylsalicylic acid, 4-tert-butylbenzoic acid, 3,4-
dichlorobenzoic acid, 2-chloro-5-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-
methoxybenzoic acid, 4-methoxybenzoic acid, 3,4-dimethoxybenzoic acid, 3.,4,5-
trimethoxybenzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methyl-3-nitrobenzoic
acid, 4-nitrobenzoic acid, benzoin, salicylamide, thioxanthen-9-one, 1,4-dichloro-2-nitrobenzene
and phenothiazine dissolved in diethyl carbonate at 298.15 K. Results of our experimental
measurements, combined with published solubility and activity coefficient data, have been used
to derive Abraham model correlations for describing solute transfer into diethyl carbonate. The
derived mathematical correlations back-calculate the observed experimental data to within an

overall standard deviation of 0.13 log units.
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1. Introduction

Organic solvents play an important role in many chemical manufacturing processes. They
provide a liquid medium for the synthesis of new products, for the development of new analytical
methodologies based on spectroscopic measurements and volumetric titrations, and for the
extraction and isolation of phytochemicals from plant materials. Each year the chemical
manufacturing sector consumes and disposes of several million tons of organic solvents that are
harmful to the environment. The environmental impact is profound, and in many instances is
irreversible. If not checked the environmental damage is likely to increase as the annual
consumption of organic solvents is project to grow in future years to accommodate the expected
population growth. Increased environmental awareness, combined public concern regarding
workplace safety, have resulted in new governmental regulations regarding the utilization and
subsequent disposal of toxic chemicals in industrial manufacturing processes. To address these
concerns the manufacturing sector is continuously searching for safer solvent alternatives and for
“solvent free” synthetic methods. Replacement of harmful organic solvents is not an easy task as
very little information is available regarding the solubilizing properties of many of the potential
solvent candidates.

In recent years [1-15] there has been renewed interest in performing solubility
measurements for crystalline organic compounds dissolved both in organic mono-solvents and in
binary solvent mixtures. The primary objective of these studies has been to identify suitable
solvents for purifying medicinal and cosmetic compounds, pesticides and herbicides, and other
synthesized chemical products through recrystallization. For the most part the fore-mentioned

studies have been limited to only a handful of different organic mono-solvents and solvent



mixtures. Very little attention was given to extending the measured data to predict the solubility
of the studied compounds in additional organic solvents.
Our solubilization studies [ 16-24] differ from those performed by other research groups in

that we have used our experimental data to develop Abraham model correlations [25-27]:
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that can be used to predict molar solute solubilities and infinite dilution activity coefficients in
additional organic solvents. The Abraham solvation parameter model is based on a firm,
fundamental understanding of how molecules interact in fluid solution. Each term on the right-
hand side of Eqns. 1 and 2 represent a different type of molecular interaction as quantified by the
product of a solute property times the complementary solvent property. Solute properties (called
solute descriptors) are defined as follows: E corresponds to the molar refraction of the given solute
in excess of that of a linear alkane having a comparable molecular size; S is a combination of the
electrostatic polarity and polarizability of the dissolved solute; A and B quantify the respective
hydrogen-bond donating and hydrogen-bond accepting abilities of the solute; V refers to the
solute’s McGowan molecular volume (calculated from atomic sizes and chemical bond numbers
[28]); and L denotes the logarithm of the solute’s measured gas-to-hexadecane partition coefficient
at 298.15 K.

The complementary solvent properties (¢p, €p, Sp, @p, bp, Vp, Ck, €k, Sk, ar, b, and Ii) in Eqns.
1 and 2 are obtained by curve-fitting logarithms of experimental water-to-organic solvent

partition/transfer coefficients, log P, logarithms of experimental gas-to-organic solvent
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and log( ), in accordance to the Abraham model. The subscripts “org solv”, “water”

and “gas phase” associated with the molar solubilities indicate the phase to which the molar

solubility pertains. For example Cots e org sorr A0d Csgtyte water denote the molar solubility of the
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solute in the organic solvent and in water, respectively. The quantity

concentration of the solute in the gas phase whose numerical value is often determined as part of
the solute descriptor calculations. The Abraham model is described in greater detail in several
earlier publications [25, 26, 29-31]. The advantage that the Abraham model offers over solution
models used by other researchers is that once an Abraham model equation coefficients have been
determined for a given solvent, one can then predict the solubility and/or infinite dilution activity
coefficients of more than 8,000 different compounds in the given solvent. Abraham model solute
descriptors are readily available for over 8,000 organic, organometallic and inorganic compounds
[32].

To date we have determined Abraham model process coefficients for several different
classes of organic compounds including alkanes, alkylbenzene, chloroalkanes, perfluoroalkanes,
halogenated benzenes, alkanols and alkanediols, alkyl alkanoates, dialkyl ethers, alkoxyalcohols,
alkanenitriles, alkylformamides, alkylacetamides and many other miscellaneous organic solvents
(dimethyl sulfoxides, aniline, acetophenone, benzonitrile, nitrobenzene, carbon disulfide, acetic
acid, tributyl phosphate, propylene carbonate) [16-24, 27, 33-35]. Process equation coefficients
have also been determined for binary aqueous-methanol [36] and binary aqueous-ethanol [37, 38]
solvent mixtures. The aforementioned correlations provide the chemical manufacturer sector with

predictive solubility and solute transfer expressions for a wide range of chemically diverse solvent



media. One solvent class that is not very well represented by our earlier studies is alkyl carbonates.
We have studied only a single alkyl carbonate, namely propylene carbonate [39].

In the present communication we extend our solubilization studies to include diethyl
carbonate, which is an important organic co-solvent used in lithium ion batteries [40, 41] and as
an extraction solvent for the removal of carboxylic acids from aqueous solutions [42 - 44]. Organic
carbonates have also been studied as possible “green” solvents in polymer membrane preparation
[45]. As noted by Rasool and coworkers [45] “Organic carbonates in general are environmentally
friendly, have low eco-toxicity, and show good biodegradability.” Experimental solubilities have
been determined for 1-chloroanthraquinone, anthracene, biphenyl, pyrene, benzil, benzoic acid,
acetylsalicylic acid, 4-tert-butylbenzoic acid, 3,4-dichlorobenzoic acid, 2-chloro-5-nitrobenzoic
acid, 4-chloro-3-nitrobenzoic acid, 2-methoxybenzoic acid, 4-methoxybenzoic acid, 3,4-
dimethoxybenzoic acid, 3,4,5-trimethoxybenzoic acid, 2-methylbenzoic acid, 3-methylbenzoic
acid, 4-methyl-3-nitrobenzoic acid, 4-nitrobenzoic acid, benzoin, salicylamide, thioxanthen-9-one,
1,4-dichloro-2-nitrobenzene and phenothiazine dissolved in diethyl carbonate at 298.15 K. Results
of our measurements, combined with published solubility data for helium [46], neon [46], argon
[46], krypton [46], xenon [46], hydrogen [46], nitrogen [46], oxygen [47], sulfur hexafluoride [46],
carbon dioxide [48], tetrafluorocarbon [46], hydrogen sulfide [48], methane [46], ethane [46],
ethene [46], 1,1,1,2-tetrafluoroethane [49] and diphenyl carbonate [50] and published infinite
dilution activity coefficient data for hexane [51], octane [52], dodecane [53], cyclohexane [54],
benzene [55], carbon tetrachloride [56], methyl fert-butyl ether [57] and dimethyl carbonate [58,
59], have been used to derive Abraham model correlations for solute transfer into diethyl carbonate

from both water (Eqn. 1) and from the gas phase (Eqn. 2).

2. Chemical Materials and Experimental Methodology



In assembling the crystalline organic compounds for the solubility determinations we
selected compounds that exhibit a wide range of chemical diversity and that span a wide range of
solute descriptors values. All chemicals used in the solubility measurements were purchased from
commercial sources. The sample of diethyl carbonate was dried over activated molecular sieves
and distilled shortly before use. Samples of 1-chloroanthraquinone, benzil, salicylamide,
thioxanthen-9-one, pyrene, 1,4-dichloro-2-nitrobenzene, and biphenyl were recrystallized three
times from anhydrous methanol and dried for two days at 333 K prior to use. Anthracene was
recrystallized three times from anhydrous acetone and dried for two days at 333 K. The carboxylic
acid solutes were dried for two days at 333 K prior to use. Gas chromatographic analysis (flame
ionization detector) indicated that the purities of purified samples of diethyl carbonate, 1-
chloroanthraquinone, benzil, anthracene, biphenyl, pyrene, 1,4-dichloro-2-nitrobenzene,
thioxanthen-9-one and salicylamide were 0.997 mass fraction. The purities of the fourteen
carboxylic acid samples were determined by a non-aqueous titrimetric method based on the
published method of Fritz and Lisicki [60]. The method was modified for health reasons in that
benzene was replaced by toluene in preparing the titration solvent. Acid-base titrations with
freshly standardized sodium methoxide (thymol blue indicator) indicated that the purities of
acetylsalicylic acid, benzoic acid, 4-tert-butylbenzoic acid, 3,4-dichlorobenzoic acid, 2-chloro-5-
nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-methoxybenzoic acid, 4-methoxybenzoic acid,
3,4-dimethoxybenzoic acid, 3,4,5-trimethoxybenzoic acid, 2-methylbenzoic acid, 3-
methylbenzoic acid, 4-methyl-3-nitrobenzoic acid, and 4-nitrobenzoic acid were 0.998 (+0.003)
mass fraction. The commercial suppliers and chemical purities of the chemicals used in the

solubility measurements are summarized in Table 1.



Table 1. Chemical Sources and Mass Fraction Purities of Chemicals Used in the Solubility Studies

Chemical Supplier Purification Method Purity (Mass
Fraction)

Diethyl carbonate Acros Organics, Morris Stored over molecular and | 0.997
Plains, New Jersey, USA | distilled

1-Chloroanthraquinone | Aldrich Chemical Recrystallization from 0.997
Company, Milwaukee, anhydrous methanol
Wisconsin, USA

Phenothiazine Acros Organics Used as received 0.99

Biphenyl Aldrich Chemical Recrystallization from 0.997
Company anhydrous methanol

Benzil Aldrich Chemical Recrystallization from 0.997
Company anhydrous methanol

Anthracene Aldrich Chemical Recrystallization from 0.997
Company anhydrous acetone

Pyrene Aldrich Chemical Recrystallization from 0.997
Company anhydrous methanol

Acetylsalicylic acid Aldrich Chemical Dried for two days at 333 | 0..998
Company K

Thioxanthen-9-one Aldrich Chemical Recrystallization from 0.997
Company anhydrous methanol

Salicylamide Aldrich Chemical Recrystallization from 0.997
Company anhydrous methanol

Benzoin Aldrich Chemical Recrystallization from 0.997
Company anhydrous methanol

1,4-Dichloro-2- TCI America Chemical Recrystallization from 0.997

nitrobenzene Company, Portland, anhydrous methanol
Oregon, USA

Benzoic acid Aldrich Chemical Dried for two days at 333 | 0.998
Company K

4-tert-Butylbenzoic TCI America Chemical Dried for two days at 333 | 0.998

acid Company K

2-Chloro-5- Acros Organics Dried for two days at 333 | 0.998

nitrobenzoic acid K

4-Chloro-3- Acros Organics Dried for two days at 333 | 0.998

nitrobenzoic acid K

3.,4-Dichlorobenzoic Aldrich Chemical Dried for two days at 333 | 0.998

acid Company K

2-Methoxybenzoic acid | Aldrich Chemical Dried for two days at 333 | 0.998
Company K

4-Methoxybenzoic acid | Aldrich Chemical Dried for two days at 333 | 0.998
Company K




3,4-Dimethoxybenzoic | Across Organics Dried for two days at 333 | 0.998

acid K

3,4,5-Trimethoxybenzoic | Aldrich Chemical Dried for two days at 333 | 0.998

acid Company K

2-Methylbenzoic acid | Aldrich Chemical Dried for two days at 333 | 0.998
Company K

3-Methylbenzoic acid | Aldrich Chemical Dried for two days at 333 | 0.998
Company K

4-Methyl-3- Aldrich Chemical Dried for two days at 333 | 0.998

nitrobenzoic acid Company K

4-Nitrobenzoic acid Acros Organics Dried for two days at 333 | 0.998

K

Toluene Aldrich Chemical None 0.998,
Company anhydrous

Sodium methoxide, 25 | Aldrich Chemical None

mass % solution in | Company

methanol

2-Propanol Aldrich Chemical None 0.99
Company

Solubilities of the 24 crystalline organic compounds were measured using a static
equilibration method followed by a spectroscopic determination of the concentration of the
dissolved solute in the saturated solution based on the Beer-Lambert law. The experimental
methodology that we use has been given in many of our earlier publications [61-65], and to
conserve journal space will only be briefly described in this communication. Aliquots of the
saturated solutions were transferred by syringe into weighed volumetric flasks after the samples
had equilibrated in sealed amber glass bottles in a constant temperature water bath at 298.15 +
0.05 K for at least three days. The samples were periodically agitated to facilitate dissolution and
mixing. The volumetric flasks containing the transferred aliquots were weighed on an electronic
analytical balance. The transferred solutions were diluted quantitatively with 2-propanol.
Absorbances of the diluted solutions and of the nine standard solutions of known solute

concentrations were recorded on a Milton Roy Spectronic 1000 Plus spectrophotometer (Milton

Roy, Rochester, NY, USA). The concentration of each diluted solution was computed from a
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Beer-Lambert law plot of absorbance versus concentration curve obtained from the measured
absorbances of nine standard solutions of known solute molarity. The analysis wavelengths and
concentration ranges used for each solute have been given in our earlier publications [61-81]. We
checked to make sure that diethyl carbonate did not absorb light at the analysis wavelengths and
at the diethyl carbonate concentrations in the diluted solutions.

Molar concentrations of the diluted samples deduced from the Beer-Law law graph were
converted into mole fraction solubilities using the volume of the volumetric flasks that the solute
was transferred into, the mass of the sample analyzed, molar masses of the solvent and the
respective solutes, and any dilutions that may have been needed in order for the sample’s measured
absorbance to fall on the Beer-Lambert law curve. We checked each equilibrated solid phase for
possible solvate formation by determining the melting point temperature of the equilibrated solid
phases recovered from the saturated solutions after the solubility measurements of each solute
were completed. The melting point temperature of each equilibrated solid phase was within £+ 0.5
K of the melting point temperature of the commercial sample or recrystallized compound prior to
being in contact with the diethyl carbonate solvent.

The experimental mole fraction solubilities, x52,;., of the crystalline organic solutes in
diethyl carbonate are tabulated in the second column of Table 2. The numerical values represent
the average of 4 to 10 independent experimental determinations, which were reproducible to within
+ 2 9% (relative error). To the best of our knowledge there are no published solubility data for these
organic solutes in diethyl carbonate that we can compare our experimental values against. The
only published solubility data that we were able to find for solid organic compounds dissolved in
diethyl carbonate were the value previously published by Li and coworkers [50] for diphenyl

carbonate.
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Table 2. Mole Fraction Solubilities, x5%f,,., of 24 Crystalline Organic Compounds Dissolved in

Diethyl Carbonate at a Temperature of 298.15 K

sat

Crystalline Organic Compound Xsolute
1-Chloroanthraquinone 0.00775
Phenothiazine 0.0376
Biphenyl 0.234
Benzil 0.133
Anthracene 0.00547
Pyrene 0.0451
Acetylsalicylic acid 0.0226
Thioxanthen-9-one 0.00323
Salicylamide 0.0364
Benzoin 0.109
1,4-Dichloro-2-nitrobenzene 0.438
Benzoic acid 0.112
4-tert-Butylbenzoic acid 0.0332
2-Chloro-5-nitrobenzoic acid 0.0309
4-Chloro-3-nitrobenzoic acid 0.0133
3,4-Dichlorobenzoic acid 0.00809
2-Methoxybenzoic acid 0.0366
4-Methoxybenzoic acid 0.00600
3,4-Dimethoxybenzoic acid 0.00401
3,4,5-Trimethoxybenzoic acid 0.00698
2-Methylbenzoic acid 0.0996
3-Methylbenzoic acid 0.0951
4-Methyl-3-nitrobenzoic acid 0.0123
4-Nitrobenzoic acid 0.00614

3. Development of Abraham Model Correlations for Solute Transfer into Diethyl Carbonate

Development of Abraham model correlations to describe solute transfer into diethyl
carbonate requires constructing an Eqn 1 and Eqn. 2 for each of the 50 individual organic and

inorganic solutes considered in the current study. The solute descriptors needed for the right-hand
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sides of the two equations are tabulated in Table 3. The transfer properties needed on the left-hand
side of Eqns. 1 and 2 are calculated from the experimental mole fraction solubility data given in
Table 2 or from the experimental solubility data and activity coefficients retrieved from the
published chemical and engineering. Mole fraction based solubilities are converted into molar

solubilities by dividing x3% ., by the ideal molar volume of the saturated solution:

sat
Csat _ Xsolute (3)
solute,org solv — sat sat
9 (1=x351ute) Vsolent+ X5otute Vsolute

The numerical values used for the molar volumes of the hypothetical subcooled liquid solutes are

Csat

given in our earlier publications [63-86], along with the aqueous molar solubilities, Cg1yte waters

c9%s

solute,gas> Needed in calculating the two molar solubility

and solute molar gas concentrations,

ratios. The mole fraction solubility of diphenyl carbonate in diethyl carbonate that was retrieved
from the published literature [50] was similarly converted to a molar solubility. The molar

solubility ratios are tabulated in the eighth and ninth columns of Table 3.

Table 3. Logarithms of Experimental Partition Coefficients, log P and log K, Logarithms of Molar

- . Cootut L Cootut L . .
Solubility Ratios, log(—=g—2=*) and log(—ar—>2>=), and Solute Descriptors for Organic
Csolute,water Csolute,gas phase

Compounds and Inorganic Gases Dissolved in Diethyl Carbonate at 298.15 K

Solute E S A B L \% LogK* | LogP® Ref.
Helium 0.000 0.000 0.000 | 0.000 -1.741 | 0.0680 -1.504 0.516 [46]
Neon 0.000 0.000 0.000 | 0.000 | -1.575 | 0.0850 -1.378 0.582 [46]
Argon 0.000 0.000 0.000 | 0.000 -0.688 | 0.1900 -0.571 0.899 [46]
Krypton 0.000 0.000 0.000 | 0.000 | -0.211 | 0.2460 -0.132 1.078 [46]
Xenon 0.000 0.000 0.000 | 0.000 0.378 | 0.3290 0.420 1.390 [46]
Hydrogen 0.000 0.000 0.000 | 0.000 -1.200 | 0.1086 -1.107 0.613 [46]
Nitrogen 0.000 0.000 0.000 | 0.000 | -0.978 | 0.2222 -0.813 0.987 [46]
Oxygen 0.000 0.000 0.000 | 0.000 -0.723 | 0.1830 -0.713 0.787 [47]
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Sulfur hexafluoride -0.600 -0.200 | 0.000 | 0.000 | -0.120 | 0.4643 0.018 2.238 [46]
Tetrafluoromethane -0.580 -0.260 | 0.000 | 0.000 | -0.817 | 0.3203 -0.667 1.623 [46]
Carbon dioxide 0.000 0.280 | 0.050 | 0.100 | 0.058 | 0.2809 0.713 0.793 [48]
Hydrogen sulfide 0.350 0.310 | 0.100 | 0.070 | 0.723 | 0.2721 1.056 0.656 [48]
Methane 0.000 0.000 | 0.000 | 0.000 | -0.323 | 0.2495 -0.261 1.199 [46]
Ethane 0.000 0.000 | 0.000 | 0.000 | 0.492 | 0.3904 0.495 1.835 [46]
Ethene 0.107 0.100 | 0.000 | 0.070 | 0.289 | 0.3474 0.499 1.439 [46]
Hexane 0.000 0.000 | 0.000 | 0.000 | 2.668 | 0.9540 2.887 4.707 [51]
Octane 0.000 0.000 | 0.000 | 0.000 | 3.677 | 1.2358 3.437 5.547 [52]
Dodecane 0.000 0.000 | 0.000 | 0.000 5.696 | 1.7994 5.441 7.971 [53]
Cyclohexane 0.305 0.100 | 0.000 | 0.000 | 2.964 | 0.8454 2.610 3.510 [54]
1,1,1,2-Tetrafluoroethane -0.410 0.410 | 0.060 | 0.020 | 0.530 | 0.4612 1.562 1.972 [49]
Tetrachloromethane 0.460 0.380 | 0.000 | 0.000 | 2.823 | 0.7391 3.134 3.194 [56]
Benzene 0.610 0.520 | 0.000 | 0.140 | 2.786 | 0.7164 3.232 2.602 [55]
Methyl fert-butyl ether 0.024 0.220 | 0.000 | 0.590 | 2.380 | 0.8718 2.674 1.084 [57]
Dimethyl carbonate 0.142 0.540 | 0.000 | 0.570 | 2.328 | 0.6644 3.308 [58,59]
Diethyl carbonate 0.060 0.580 | 0.000 | 0.530 3.412 | 0.9462 4.099 1.659 Unity
Diphenyl carbonate 1.280 1.530 | 0.000 | 0.590 7.843 | 1.5982 9.374 4.242 [50]
1-Chloroanthraquinone 1.900 1.790 0.000 | 0.570 9.171 | 1.6512 10.376 4.342 | This work
Anthracene 2.290 1.340 | 0.000 | 0.280 | 7.568 | 1.4544 8.111 5.081 | This work
Biphenyl 1.360 0.990 | 0.000 | 0.260 6.014 | 1.3242 6.540 4.590 | This work
Pyrene 2.808 1.710 | 0.000 | 0.280 8.833 | 1.5850 9.211 5.711 | This work
Benzil 1.445 1.590 | 0.000 | 0.620 7.611 | 1.6374 8.930 4.060 | This work
Benzoic acid 0.730 0.900 | 0.590 | 0.400 | 4.657 | 0.9317 6.660 1.520 | This work
Acetylsalicylic acid 0.781 1.690 | 0.710 | 0.670 6.279 | 1.2879 9.446 0.946 | This work
4-tert-Butylbenzoic acid 0.730 1.111 0.551 | 0.443 6.547 | 1.4953 8.553 3.329 | This work
3,4-Dichlorobenzoic acid 0.950 0.920 0.670 | 0.260 5.623 1.1766 7.542 2.802 | This work
2-Chloro-5-nitrobenzoic

acid 1.250 1.400 | 0.670 | 0.460 6.513 | 1.2283 8.941 1.991 | This work
4-Chloro-3-nitrobenzoic

acid 1.250 1.470 | 0.700 | 0.440 6.685 | 1.2283 9.249 2.039 | This work
2-Methoxybenzoic acid 0.899 1.410 0.450 | 0.620 5.636 | 1.1313 7.831 1.031 | This work
4-Methoxybenzoic acid 0.899 1.250 0.620 | 0.520 5.741 | 1.1313 8.192 1.492 | This work
3,4-Dimethoxybenzoic

acid 0.950 1.646 | 0.570 | 0.755 6.746 | 1.3309 9.459 1.012 | This work
3,4,5-Trimethoxybenzoic

acid 1.001 1.760 | 0.603 | 0.850 7.711 | 1.5309 10.562 1.307 | This work
2-Methylbenzoic acid 0.730 0.840 | 0.420 | 0.440 | 4.677 | 1.0726 6.272 1.972 | This work
3-Methylbenzoic acid 0.730 0.890 | 0.600 | 0400 | 4.819 | 1.0726 7.012 2.032 | This work
4-Methyl-3-nitrobenzoic

acid 1.040 1.461 0.659 | 0.521 6.434 | 1.2468 8.972 1.687 | This work
4-Nitrobenzoic acid 0.990 1.520 | 0.680 | 0.400 5.770 | 1.1059 8.582 1.682 | This work
Thioxanthen-9-one 1.940 1.441 0.000 | 0.557 8.436 | 1.5357 9.031 3.963 | This work
Benzoin 1.585 2.115 0.196 | 0.841 9.159 | 1.6804 11.351 2.620 | This work
Salicylamide 1.160 1.650 | 0.630 | 0.480 5910 | 1.0315 8.912 1.227 | This work
1,4-Dichloro-2-

nitrobenzene 1.120 1.289 | 0.000 | 0.199 5.783 | 1.1354 6.747 3.846 | This work

13




Phenothiazine 1.890 1.560 | 0.310 | 0.300 8.389 | 1.4789 9.987 4.584 | This work

Csat
solute,org solv )

Csat
solute,gas phase

Csat
solute,org solv)

Csat
solute,water

 For crystalline solutes the tabulated value is log(

® For crystalline solutes the tabulated value is log(

The experimental data for the dissolved liquid solutes was given in the published literature
as the infinite dilution activity coefficient, yg5co- Infinite dilution activity coefficients are
converted to the logarithm of the gas-to-organic solvent partition coefficients through standard

thermodynamic relationships:

RT

logK = log(—

Vsolute Psotute Vsolvent @
where R is the universal gas constant and p2;,;. is the saturated vapor pressure of a pure solute
at the solution temperature, which in this study is 7=298.15 K. As an informational note infinite
dilution activity coefficient of diethyl carbonate dissolved in itself is unity.

The published solubility data for the gaseous solutes was given either in terms of gas-to-

diethyl carbonate partition coefficient, K, or in terms of the Henrys law constant, Kxenry. Henrys

law constants are converted to log K values through Eqn. 5.

log K = log( i ) 6]

KHenry Vsolwent

The log K values for the liquid and gaseous solutes are converted to log P values by:

IOg P= log K - log Kater (6)

where Kwater 1S the solute’s gas-to-water partition coefficient, which is available for the different
solutes considered in the current study [82-86]. We have also tabulated the numerical values of

log K and log P values for the liquid and gases in the eighth and ninth columns of Table 3. As the
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column headings indicate the tabulated numerical values for the crystalline organic solutes pertain

. . . Codtue I Cotut l
to the two respective solubility ratios, log(—g——2=) and log(—sgr——22).
Csolute,gas phase Csolute,water

Our experimental measurements, combined with our search of the published literature,
have experimental partition coefficients and solubility ratios for 50 different organic and inorganic
compounds. The solutes are chemically diverse, they cover a wide range of solute polarities and
hydrogen-bonding capability, and include several fairly strong H-bond donors (acetylsalicylic
acid, A = 0.710; 4-chloro-3-nitrobenzoic acid, A = 0.700) and several fairly strong H-bond
acceptors (3,4,5-trimethoxybenzoic acid, B = 0.850; benzoin, B = 0.841). Regression analysis of

the experimental values yielded the following two Abraham model expressions:

sat
log P and log(W) =0.133(0.044) + 0.135(0.075) E — 0.309(0.121) S — 1.532(0.103) A
solute,water
— 4.816(0.183) B + 4.398(0.069) V (7)

(with N =49, SD =0.134, R*> = 0.994, F = 1333)

Csat

log K and log(Zzr—>">*) = 0.092(0.027) - 0.598(0.057) E + 1.527(0.078) S

solute,gas phase

+1.942(0.088) A +0.948(0.014) LL (8)
(with N =50, SD=0.117, R>=0.999, F = 13898)
The correlations were obtained using the IBM SPSS Statistical 22 commercial software. The
statistical information pertaining to each correlation is given below the respective correlation,
where N refers to the number of experimental data points used in determining the equation
coefficients, SD is the standard deviation, R? corresponds to the squared correlation coefficient,
and F represents the Fisher F-statistic. Standard errors in the equation coefficients (at 95 % level)

are given in parenthesis after the coefficient itself. As an informational note the bk + B was
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removed from Eqn. 8 because diethyl carbonate lacks an acidic hydrogen and therefore cannot act
as a hydrogen-bond donor. Removal of the bk - B led to an insignificant increase in the standard
deviation, from SD = 0.115 to SD =0.117. The b, - B term was retained in Eqn. 7, however, as
the expression pertains to solute transfer into diethyl carbonate from water. Here the b, equation
coefficient represents the difference in the acidity of diethyl carbonate and water, which does
possess two acidic hydrogens capable of engagement in hydrogen-bond formation.

As noted in the introduction a major advantage that the Abraham model offers over the
solution models that other research groups are using to mathematically describe experimental
solubility data is that the derived correlations can be used to predict the solubility and/or infinite
dilution activity coefficient of many additional organic, organometallic and inorganic solutes
dissolved in the given solvent media. An indication of Eqns. 7 and 8 ability to estimate partition
coefficients and solubility ratios can be obtained by examining each correlation’s ability to
describe the 50 experimental values given in Table 3. The small standard deviations, SD = 0.134
log units and SD = 0.117 log units, and near unity squared correlation coefficients, R?>=0.994 and
R? = 0.999, indicate that Eqs. 7 and 8 provide reasonably accurate mathematical descriptions of
the observed experimental data used in both regression analyses. Figures 1 and 2 provide a

graphical comparison of the experimental data versus back-calculated values based on Eqgs. 7 and

. . . : Coth
8, respectively. As an informational note the experimental log K and log(csffth‘“’M) data span

solute,gas phase

Csalt .
solute,org solv \ __
Csat—) =11.351
solute,gas phase

a range of just under 12 log units, from log K = -1.504 for helium to log(

for benzoin. A slightly smaller range of approximately 7.5 log units is covered by the experimental

Csalt .

solute,org solv

Csat—) data.
solute,water

log P and log(
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Diethyl carbonate is the second carbonate solvent that we have studied. Previously we

determined Abraham model correlations for propylene carbonate [39]:

sat

log P and 1og(w) =0.004 +0.168 E+0.504S—1.283 A—4.407B+3.421V  (9)

sat
solute,water

sat
log K and log(—=2teorasolv y _ 356 _ (0413 E +2.587 S +2.207 A +0.455 B +0.717 L

csat
solute,gas phase

(10)
based on experimental solubility and activity coefficient data for 69 compounds. The equation
coefficients of the two carbonate solvents are somewhat different. Propylene carbonate exhibits
greater dipolarity/polarizability, and is a better H-bond acceptor and H-bond donor as evidenced

by the larger sk, bk and ax equation coefficients.
4. Conclusion

Mathematical expressions based on the Abraham solvation parameter model have been
shown to provide reasonably accurate correlations of the solute transfer properties of a wide range
of organic and inorganic compounds into diethyl carbonate from both water and from the gas
phase. Experimental properties that were described by the derived Abraham model expressions
include the logarithm of the water-to-diethyl carbonate transfer coefficient, the logarithm of the

gas-to-diethyl carbonate transfer coefficient, and the logarithms of two molar solubility ratios

csat csat

solute,org solv l solute,org solv
Csat )5 (Csat

solute,water solute,gas phase

given by log( ). The derived correlations described the fore-

mentioned experimental solute transfer properties to within 0.13 log units (or less). Based on our

more than 20 years of experience in using the Abraham model we believe that our derived Eqns.

csat

solute,org solv d

csat ) an
solute,water

7 and 8 will provide reasonably accurate predictions of the log P, log K, log(
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csat

1 solute,org solv
Csat

solute,gas phase

) values for additional organic and inorganic compounds dissolved in diethyl

carbonate at 298.15 K, provided of course that the solute descriptors of the compounds fall within
the range of numerical values used in obtaining these correlations. Partition coefficients predicted
by the Abraham model can be transformed into ygg;,:. Values through Egs. 4 and 6. In closing
we note that predicted log P and log K values at 298.15 K can be extrapolated to slightly lower
and higher temperatures using our published enthalpy of solvation correlations, AHso, [87] based
on experimental AH,o1v data for 80 solutes dissolved in diethyl carbonate. Our published Abraham
model correlations provide the manufacturing sector with important tools to aid in the solvent

selection process.
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