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Abstract: Reversible addition–fragmentation chain–transfer (RAFT) polymerization of methyl
methacrylate (MMA) is modeled and monitored using a multi-rate multi-delay observer in this work.
First, to fit the RAFT reaction rate coefficients and the initiator efficiency in the model, in situ 1H
nuclear magnetic resonance (NMR) experimental data from small-scale (<2 mL) NMR tube reactions is
obtained and a least squares optimization is performed. 1H NMR and size exclusion chromatography
(SEC) experimental data from large-scale (>400 mL) reflux reactions is then used to validate the
fitted model. The fitted model accurately predicts the polymer properties of the large-scale reactions
with slight discordance at late reaction times. Based on the fitted model, a multi-rate multi-delay
observer coupled with an inter-sample predictor and dead time compensator is designed, to account
for the asynchronous multi-rate measurements with non-constant delays. The multi-rate multi-delay
observer shows perfect convergence after a few sampling times when tested against the fitted model,
and is in fair agreement with the real data at late reaction times when implemented based on the
experimental measurements.

Keywords: RAFT polymerization; multi-rate observer; nonlinear sampled-data system; measurements
with delay; parameter fitting

1. Introduction

Reversible addition–fragmentation chain–transfer (RAFT) polymerization is a living polymerization
that is based on free-radical polymerization [1]. Free-radical polymerization reactions are made living
by the addition of a RAFT agent, which controls the polymerization via chain equilibration, in which
radicals are shared between growing polymer chains. Since RAFT polymerization was first reported by
Krstina et al. [2], it has been further investigated by many researchers to show that it works with a wide
variety of monomers and RAFT agents [2–9]. RAFT polymerization has been used to create polymers
in many fields, including drug delivery [10], electrochemical applications such as fuel cells [11] and
batteries [12], and surface modification [13], showing its versatility and applicability.

Key advantages of RAFT polymerization include the synthesis of polymers with narrow
polydispersities [1], the ability to form polymers of complex architecture (i.e., block, star), and the
ability to work with multiple monomer types—allowing for synthesis of homopolymers and block
co-polymers with controlled molecular weights and dispersities. Control of properties such as
dispersity and molecular weight is especially important during block copolymer synthesis, in which
polymer morphology and micro-phase structure is determined by the polymer block composition [14].
However, no information about these properties is available from online sensors. Offline analysis
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techniques like 1H NMR and SEC, which give more insight into the process, require time to analyze
samples, and the results are usually obtained after significant delays or even after the whole process
is completed. The lack of timely information, which is critical to the progress of polymerization,
brings challenges to the quality control of RAFT polymerization. A live model, which accounts for
these measurement delays with observers, would be useful for monitoring RAFT polymerization for
quality control.

RAFT polymerization was first modeled by Zhang and Ray [15]. They modeled RAFT polymerization
of methyl methacrylate in batch, semi-batch, and continuous stirred tank reactors, providing insight
into how the mechanism of RAFT polymerization behaved throughout a typical reaction. Many
more models have been developed to further explore the fundamentals of RAFT polymerization as
more experimental data has become available [16–23]. Few of these models are validated against
experimental data at higher monomer conversions, and those that are have few experimental data
points above 60% monomer conversion. Additionally, the RAFT agent kinetic rate constants found in
these models as fitting parameters are expected to be different for each monomer and RAFT agent pair.

The monitoring of polymerization processes with state estimation techniques based on
mathematical models would help target desired polymer compositions and molecular weights during
large scale reactions by predicting reaction termination times, and ensuring controlled polymerization
by predicting expected dispersities of reactions. However, it is not an easy task to develop the state
estimation due to the lack of online measurements and the significant nonlinearity of the systems. There
have been a number of studies on state estimation for polymerization applications, with a focus on free
radical polymerization, since the early 1980s. The extended Kalman filter (EKF) has been popularly
applied to industry with good performance [24–31]. This kind of estimator is designed based on a local
linearization approximation and is thereby less effective in the presence of strong system nonlinearities.
The state observer, which reconstructs the missing state variables based on the system dynamics
with certain feedback terms from the measurement, is an alternative way to design a soft sensor
for polymerization processes. For example, Astorga implemented a continuous-discrete observer
to an emulsion copolymerization reactor [32]. Appelhaus et al. developed an extended Luenberger
observer for a batch polycondensation reactor, in order to get the estimation for concentrations
of ethylene glycol and hydroxyl end groups as well as a mass transfer parameter [33]. Several
high-gain observers have also been designed for polymerization processes [34,35]. In the observer
approach, the convergence properties were mathematically proved under most circumstances, and the
computational cost is lowered compared to EKF. Although a significant number of studies have been
completed for monitoring different polymerization applications, no state estimation study has been
conducted on RAFT polymerizations. Tatiraju and Soroush used a nonlinear open-loop reduced-order
observer to estimate the unobservable states in a homopolymerization reactor, and obtained accurate
estimation results [36,37]. In our work, a similar idea will be adopted as the basis for the design of
a multi-rate multi-delay observer.

One key challenge for the state estimation problem for polymerization is that the measurements
are not available at the same rate and usually come with delays. For example, in polymerization
processes, the sampling may not be done in a uniform frequency and the measurement information
only becomes available after analysis. Therefore, there is a need for the design of a multi-rate
multi-delay observer to address this issue. For the multi-rate estimation, the problem has been widely
studied based on EKF framework [38]. Moving horizon estimation (MHE) [39–41] and other state
observer design [37,42,43] have also been investigated. However, most of the EKF and MHE-based
methods will not account for the inter-sample dynamic behavior and are incapable of giving estimation
for asynchronously sampled measurements. As for the delay effects accompanied with sampling
measurements, some observer design approaches were proposed accordingly [44–51], but few of
them have been proved stable through a rigorous approach. In some recent works by Ling and
Kravaris [52–57], a multi-rate multi-delay observer based on a continuous-time design, coupled with
inter-sample predictors and dead time compensators, is proposed. Irrespective of perturbations in the
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sampling schedule, the input-to-output stability property for this observer was first well established
for linear systems [53,57], and extended to nonlinear systems with noises [55,56], in the presence of
non-uniform and asynchronous measurement with non-constant, arbitrarily large measurement delays,
as long as the maximum sampling period does not exceed a certain limit. This observer will be used to
estimate the missing information between the sampling measurements for the RAFT polymerization
process in the current work.

In this study, small-scale experiments are performed and characterized with in situ 1H NMR
analysis to more accurately monitor RAFT polymerization. Accurate prediction of RAFT specific kinetic
rate constants (specifically, kra f t f , kra f tr, kra f t f R and kra f trR) is obtained, allowing for an improved RAFT
polymerization model that can be used to monitor larger scale reactions to high monomer conversion
values. The improved model is used to test multi-rate, multi-delay observers, which improve predictive
modeling of larger scale RAFT reactions allowing for real-time monitoring of reactions and targeted
reaction termination times.

2. Model and Observer Design

2.1. Modeling RAFT Polymerization—Improving the Model by Zhang and Ray

The RAFT polymerization model used in this work is based on a model presented by Zhang and
Ray [15]. This subsection will provide a brief review of their model as well as the specific changes and
additions made to their model to help the reader follow subsequent sections of this paper.

RAFT polymerization is modeled by including standard free radical polymerization kinetics
(i.e., initiation, propagation, chain transfer and termination) with the RAFT reaction steps in the
presence of a RAFT agent. The RAFT reactions are shown in Scheme 1. These RAFT steps create three
dormant polymer populations based on the state of the RAFT agent end group. In total, five polymer
populations exist within the model: growing polymer chains, dead polymer chains and three types
of dormant polymer chains. To simplify the model, these populations are modeled using moments,
for which the mathematical definitions are given in Table 1. The terms brackets are as follows: [Pn],
concentration of growing polymer chain of degree of polymerization n; [PnAR], concentration of
RAFT agent bonded to a primary radical and a polymer chain of degree of polymerization n; [PnA],
concentration of RAFT agent bonded to a polymer chain of degree of polymerization n; [PnAPm],
concentration of RAFT agent bonded to two polymer chains of degree of polymerization n and
m; and [Dn], concentration of dead polymer chains of degree of polymerization n. When using
polymer moments, it is not possible to apply different kinetic rate constants based on polymer chain
length, and we must make the assumption that the kinetic rate constants are independent of polymer
chain length. This assumption, although it may introduce some error, is made out of necessity for
model simplicity.

Scheme 1. Kinetic scheme of reactions involving the RAFT agent.
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Using these polymer moment definitions and the monomer concentration (CM), the monomer
conversion (Xp), number average degree of polymerization (DPn), weight average degree of
polymerization (DPw) and dispersity (Ð) can be calculated as shown in Equation (1):

Xp =
µ1 + ν1 + ξ1 + λ1 + ζ10

µ1 + ν1 + ξ1 + λ1 + ζ10 + CM
,

DPn =
µ1 + ν1 + ξ1 + ζ10 + λ1

µ0 + ν0 + ξ0 + 0.5ζ00 + λ0
,

DPw =
µ2 + ν2 + ξ2 + ζ20 + 0.5ζ11 + λ2

µ1 + ν1 + ξ1 + ζ10 + λ1
,

Ð =
DPw

DPn
.

(1)

Table 1. Polymer moment definitions.

Chain Type Moment Definition

Growing Polymer µi = ∑∞
n=1 ni[Pn]

Dormant Polymer Type 1 νi = ∑∞
n=1 ni[Pn AR]

Dormant Polymer Type 2 ξi = ∑∞
n=1 ni[Pn A]

Dormant Polymer Type 3 ζij = ∑∞
n=1 ∑∞

m=1 nimi[Pn APm]

Dead Polymer λi = ∑∞
n=1 ni[Dn]

Using the kinetic scheme from Zhang and Ray and Scheme 1, the 23 balance equations given
in Equation (2) are used to represent each of the species in the model. The definitions for the state
variables are listed in Table 2, and the definitions and values for the reaction rate constants are given
in Table 3.

This model differs from the Zhang and Ray model in two ways: first, in the way termination is
modeled, and second, in the rate constants. In the Zhang and Ray model, termination is modeled
accounting for both combination and disproportionation reactions. In this model, termination is
modeled accounting for just one general termination reaction based on more recent work in the
literature [58]. With this change in how termination reactions are modeled, the corresponding rate
constants are also changed. In the Zhang and Ray model, ktc and ktd are used to represent the rates for
combination and disproportionation reactions, respectively. In this work, a single termination reaction
rate constant kt is used instead to represent all termination reactions. Additionally, the propagation
rate constant has been updated from the Zhang and Ray model based on a more recent work in
the literature [59]. Finally, two additional kinetic rate constants for the RAFT agent pre-equilibrium
reactions are included (kra f t f R and kra f trR) based on literature [23,60,61] showing a difference for
reactions between the RAFT agent and primary radicals when compared to reactions between the
RAFT agent and growing polymer chains.

Most of the reaction rate constants are based on free radical polymerization. The exceptions to
this are ktrCTA, kra f t f , kra f tr, kra f t f R and kra f trR. These five reaction rate constants are dependent on the
choice of RAFT agent used, and are expected to change for each RAFT agent. In this model, the effect
of chain transfer to CTA is considered negligible and ktrCTA is set to zero:
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dµ0

dt
= kpCRCM + ktrmµ0CM − kt(CR + µ0)µ0 − ktrmµ0CM − ktrsµ0CS

− ktrCTAµ0CCTA − kra f t f µ0(CAR + ξ0) + kra f tr(ν0 + ζ00),

dµ1

dt
= kpCRCM + ktrmµ0CM + kpCMµ0 − kt(CR + µ0)µ1 − ktrmµ1CM − ktrsµ1CS

− ktrCTAµ1CCTA − kra f t f µ1(CAR + ξ0) + kra f tr(ν1 + ζ10),

dµ2

dt
= kpCRCM + kpCM(µ0 + 2µ1)− kt(CR + µ0)µ2 − ktrmµ2CM − ktrsµ2CS

ktrCTAµ2CCTA − kra f t f µ2(CAR + ξ0) + kra f tr(ν2 + ζ20),

dν0

dt
= kra f t f µ0CAR + kra f t f RCRξ0 − kra f trν0 − kra f trRν0,

dν1

dt
= kra f t f µ1CAR + kra f t f RCRξ1 − kra f trν1 − kra f trRν1,

dν2

dt
= kra f t f µ2CAR + kra f t f RCRξ2 − kra f trν2 − kra f trRν2,

dξ0

dt
= − kra f t f µ0ξ0 − kra f t f RCRξ0 + kra f trζ00 + kra f trRν0,

dξ1

dt
= − kra f t f µ0ξ1 − kra f t f RCRξ1 + kra f trζ10 + kra f trRν1,

dξ2

dt
= − kra f t f µ0ξ2 − kra f t f RCRξ2 + kra f trζ20 + kra f trRν2,

dζ00

dt
= 2kra f t f µ0ξ0 − 2kra f trζ00,

dζ10

dt
= kra f t f (µ1ξ0 + µ0ξ1)− 2kra f trζ10,

dζ20

dt
= kra f t f (µ2ξ0 + µ0ξ2)− 2kra f trζ20,

dζ11

dt
= 2kra f t f µ1ξ1 − 2kra f trζ11,

dλ0

dt
= kt(CR + µ0)µ0 + ktrmµ0CM + ktrsµ0CS + ktrCTAµ0CCTA,

dλ1

dt
= kt(CR + µ0)µ1 + ktrmµ1CM + ktrsµ1CS + ktrCTAµ1CCTA,

dλ2

dt
= kt(CR + µ0)µ2 + ktrmµ2CM + ktrsµ2CS + ktrCTAµ2CCTA,

dCR
dt

= 2 f kdCI − kpCRCM − ktCR(CR + µ0) + ktrsµ0CS + ktrCTAµ0CCTA

− kra f t f RCR(CAR + ξ0) + kra f trR(2CRAR + ν0),

dCAR
dt

= − kra f t f CARµ0 − kra f t f RCARCR + kra f trν0 + 2kra f trRCRAR,

dCRAR
dt

= kra f t f RCRCAR − 2kra f trRCRAR,

dCI
dt

= − kdCI ,

dCM
dt

= − kpCM(CR + µ0)− ktrmµ0CM,

dCS
dt

= − ktrsµ0CS,

dCCTA
dt

= − ktrCTAµ0CCTA.

(2)
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Table 2. State variables.

Variables Description

µ0 Growing polymer chain zeroth moment
µ1 Growing polymer chain first moment
µ2 Growing polymer chain second moment
ν0 Dormant polymer chain type 1 zeroth moment
ν1 Dormant polymer chain type 1 first moment
ν2 Dormant polymer chain type 1 second moment
ξ0 Dormant polymer chain type 2 zeroth moment
ξ1 Dormant polymer chain type 2 first moment
ξ2 Dormant polymer chain type 2 second moment
ζ00 Dormant polymer chain type 3 zeroth moment
ζ10 Dormant polymer chain type 3 first moment
ζ20 Dormant polymer chain type 3 second moment part one
ζ11 Dormant polymer chain type 3 second moment part two
λ0 Dead polymer chain zeroth moment
λ1 Dead polymer chain first moment
λ2 Dead polymer chain second moment
CR Concentration of primary radicals

CAR Concentration of RAFT agent
CRAR Concentration of primary intermediate

CI Concentration of initiator
CM Concentration of monomer
CS Concentration of solvent

CCTA Concentration of chain transfer agent

Table 3. Reaction rate constant definitions.

Reaction Rate Constant Definition Equation/Value Units Reference

kd Initiator formation 1.0533× 1015e
−30704

RT s−1 [62]
kp Live chain propagation 106.427e

−5344
RT L mol−1 s−1 [59]

ktrM Radical transfer to monomer kp × 10−5 L mol−1 s−1 [63]
ktrS Radical transfer to solvent 0, assumed negligible L mol−1 s−1

ktrCTA Radical transfer to CTA 0, assumed negligible L mol−1 s−1

kt Termination 109.586e
−3106

RT L mol−1 s−1 [58]
kra f t f Forward RAFT main equilibrium Unknown L mol−1 s−1

kra f tr Reverse RAFT main equilibrium Unknown s−1

kra f t f R Forward RAFT pre-equilibrium Unknown L mol−1 s−1

kra f trR Reverse RAFT pre-equilibrium Unknown s−1

f Initiator efficiency Unknown

Methyl methacrylate is known for undergoing the Trommsdorff–Norrish effect (i.e., the gel
effect) during polymerization, in which the propagation rate accelerates, and the termination rate
decelerates, at high viscosities as growing polymer chains entangle. This effect is included in the model
by Zhang and Ray, and was considered in this work. In this work, high solvent to monomer ratios
dilute the polymer concentration and prevent the viscosity from increasing high enough to induce the
Trommsdorff–Norrish effect, and therefore this effect was not observed.

The large-scale reaction experiments in this work are performed under reflux and do not occur
at a constant temperature. As monomer is consumed, the composition, and therefore the bubble
point of the volatile components in the reactor change. Temperature of the reactor for large-scale
experiments is estimated by calculating the bubble point of a binary mixture based on the volatile
components of the reacting mixture (i.e., the solvent and the monomer). Data for the bubble point
temperature of the binary mixture was calculated using UNIFAQ in ASPEN, and a polynomial fit was
applied to the data and the corresponding equation is shown in Equation (3), where xTHF denotes
the mole fraction composition of tetrahydrofuran (THF) in the reacting mixture. This fit was used
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within the model to calculate reaction temperature as a function of reacting mixture composition for
the large-scale experiments:

T = 9.4893x3
THF − 4.032x2

THF − 39.482xTHF + 100.13. (3)

The RAFT polymerization model includes the following assumptions. The reactions are performed
under ideal mixing. Reactions involving polymers and their corresponding kinetic rate constants are
independent of polymer chain length, allowing for polymer moments to be used. All primary radicals
are treated as identical, regardless of the reactions leading to their formation (i.e., a primary radical
formed from initiator decomposition is identical to a primary radical from chain transfer reactions).
Kinetic rate constants kra f t f , kra f tr, kra f t f R and kra f trR are not dependent on reaction temperature.

2.2. Observer Design

2.2.1. Multi-Rate Multi-Delay Observer—Background

This part gives the basic background for the design method for the multi-rate multi-delay observer
used in this work. The state estimation problem for the RAFT polymerization process in the current
work will be a special case of the observer presented in this section.

The starting point for the design of the multi-rate multi-delay observer will be a continuous time
observer. A reduced order observer that simulates a subsystem driven by the measurements can be
built following Soroush [64]. In the following part, the particular observer driven by the measurement
is introduced.

For simplicity, consider a continuous system with a part of the state vector to be directly measured.
Note that a measurement variable could always be included as a state variable through appropriate
coordinate transformation:

ẋR(t) = fR(xR(t), xM(t)), (4a)

ẋM(t) = fM(xR(t), xM(t)), (4b)

y(t) = xM(t), (4c)

where xR ∈ Rn−m and xM ∈ Rm are the unmeasured and measured state vectors; y is the continuous
output. It is assumed that the unmeasured subsystem (4a) is locally asymptotically stable.

A reduced order observer that is driven by the measurable outputs is of the form

˙̂xR(t) = fR(x̂R(t), y(t)), (5)

where x̂R ∈ Rn−m is the vector of estimated states that guarantee the estimation error e(t) = x̂R(t)− xR
converges to 0 as t → ∞ [64]. This reduced order observer is based on a different philosophy
than the traditional closed-loop observers that involve a correction term multiplied by an observer
gain. However, it still incorporates the feedback effect in the sense that it uses the measurement to
drive the simulation; and the stability of system dynamics would imply the stability of the observer
error dynamics.

When the sampling is performed at a slow rate with asynchronous intervals, the missing
inter-sample information needs to be accurately predicted by a multi-rate observer. Now, consider the
dynamic system (4a) and (4b) with multi-rate slow-sampled measurements

ẋR(t) = fR(xR(t), xM(t)),

ẋM(t) = fM(xR(t), xM(t)),

yi(ti
j) = xi

M(ti
j), j ∈ Z+, i = 1, 2, . . . , m,

(6)
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where ti
j denotes the j-th sample time for the i-th measured component of xM, at some sequence of

time instants S = {tk}∞
k=0. The intervals between each sampling time are not necessarily uniform.

A multi-rate observer is designed based on a continuous-time observer, coupled with inter-sample
predictors to handle the inter-sample behavior. For the predictor, the dynamic system (6) is simulated
to obtain a prediction for the missing output information in between two consecutive measurements.
This prediction will then be given to the continuous-time observer (5) functioning as the continuous
outputs. For t ∈ [t+k , tk+1], the multi-rate sampled-data observer for the multi-rate system (6) is [56]:

˙̂xR(t) = fR( ˙̂xR(t), w(t)) t ∈ [tk, tk+1),

ẇ(t) = fM(x̂R(t), w(t)), t ∈ [tk, tk+1),

wi(tk+1) = yi(tk+1),

(7)

where w ∈ Rm is the predicted output. The predictors will give continuous estimates of the sampled
outputs between two sampling times, but note that these two sampling times tk, tk+1 are not necessarily
from the same output. The i-th component wi(t) will be reset to yi(tk+1) once the new measurement
obtained, and the other predictor states will not change until the corresponding measurements
become available.

Now, consider a system with possible delays in the multi-rate sampled measurement yi(ti
j)

ẋR(t) = fR(xR(t), xM(t)),

ẋM(t) = fM(xR(t), xM(t)),

yi(ti
j) = xi

M(ti
j − δi

j), j ∈ Z+, i = 1, 2, . . . , m,

(8)

where ti
j is the time when j-th measurement of xi

M is obtained after certain delay δi
j > 0. That is to say,

the measurement yi(ti
j) arrived at ti

j reflects the value of xi
M at time ti

j − δi
j.

The proposed observer for the system (6) with multiple measurement delays is based on
the multi-rate observer design (7) combined with dead time compensation. When the sampled
measurement arrives at ti

j after a delay δi
j, a dead time compensator would be initiated to recalculate

the past estimates for t ∈ [ti
j − δi

j, ti
j] with the following observer design [55]:

˙̂xR(t) = fR( ˙̂xR(t), w(t)), (9a)

ẇ(t) = fM(x̂R(t), w(t)), (9b)

wi(ti
j − δi

j) = yi(ti
j), (9c)

wi′(ti′
j′ − δi′

j′ ) = yi′(ti′
j′), ∀ti′

j′ , (t
i′
j′ − δi′

j′ ) ∈ [ti
j − δi

j, ti
j), (9d)

where w ∈ Rm denotes the corrected state prediction that generates the past estimates for xM(t).
Equation (9c) formulates the reinitialization of the i-th dead time compensator for xi

M(t) by using
the delayed measurement yi(ti

j) corresponding to the sampling time ti
j − δi

j. The other measurement

yi′(ti′
j′) that is sampled between ti

j − δi
j and ti

j can be used to reset other corrected state prediction wi′(t)
at their respective sampling times, as is represented by Equation (9d).

After the dead time compensation has updated the past estimates, the inter-sample prediction
will be applied for the missing points between two measurements for t ∈ [ti

j, ti′
j′ ] in the same spirit

as the delay-free multi-rate observer (7). If a measurement is available at ti
j without any delay, then

no dead time compensation is needed and the inter-sample prediction runs immediately after reset.
A detailed explanation for the estimation process will be given in the following part based on the
RAFT polymerization process that is studied in this paper.
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2.2.2. Prediction of RAFT Polymerization

Throughout the polymerization, it is important to keep track of monomer conversion (Xp), degree
of polymerization (DPn), and dispersity (Ð) of the polymer formed in the reacting mixture. Monomer
conversion shows the reaction is proceeding, and is used to gauge how quickly polymerization
occurs. Degree of polymerization is used to target the reaction end point when a desired degree
of polymerization is reached. Dispersity is used to gauge the control of the RAFT agent on the
polymerization; high dispersities indicate loss of control of the polymerization.

1H NMR and SEC are used to characterize these properties from the reaction mixture aliquots.
However, this data is not available in real time. Data from these analysis techniques become available
only after analysis, and the time to perform analysis for each technique differs. In general, 1H NMR
provides monomer conversion (Xp) data after a typical delay of approximately 30 min. SEC provides
molecular weight data (Mn, Mw), degree of polymerization data (DP), dispersities (Ð), and monomer
conversion data (Xp) after a typical delay of 4 h. The delays for each technique are inherent to proper
sample preparation and analysis procedure for each technique. As a result, reaction data for updating
the observer comes with a multi-rate, multi-delay nature.

Note that the concerned measured variables Xp, DPn and Ð are not part of the state variables.
However, through a coordinate transformation via (1), we can introduce them as three state variables
into the dynamic system (2) and substitute three existing states. The RAFT process can be described
in the form of Equation (8) with xM = [Xp DPn Ð]T and xR to be a column vector with 20 remaining
state variables out of the 23 variables listed in Table 2. The measurement for the problem could be
formulated as

y1(tNMR
j ) = Xp(tNMR

j − δNMR
j ),

y2(tSEC
j′ ) = DPn(tSEC

j′ − δSEC
j′ ), j, j′ ∈ Z+,

y3(tSEC
j′ ) = Ð(tSEC

j′ − δSEC
j′ ).

(10)

As these measurements are sampled with delay, no timely information is available in between
measurements. Using observers to monitor the polymerization allows for an estimation of the missing
information between each measurement, and thus provides an accurate estimation near the end point
of the reaction to guide the operation of processes. Therefore, in this case, instead of the unmeasured
states xR, the accurate estimation for xM is expected from the observer through:

x̂M(t) = w(t), (11)

where w(t) is calculated from both the dead time compensator (9) and the inter-sample predictor (7).
Figure 1 depicts the two-step estimation process from time t0. We will use the workflow after

the n-th sample is taken, to demonstrate how the multi-rate multi-delay observer works. As a first
step, when the delayed 1H NMR measurement (which gives Xp) for the n-th sample becomes available
at tNMR

n , the dead time compensation is triggered. Past estimation is generated by integrating the
observer and compensator equations for the time range [tNMR

n − δNMR
n , tNMR

n ]. In this compensator,
the new value for Xp is used as a delay-free measurement to reset the corresponding compensator
w1. The compensator consequently updates the estimation for all states at tNMR

n , the ending time of
compensation. This step makes use of the available measurements in the delay-free observer, in the
same order as they are sampled. As a second step, the updated estimates are used as the initial
condition for the observer coupled with inter-sample output predictors (7) at tNMR

n . In addition, this
multi-rate multi-delay observer now works like a delay-free multi-rate observer with no delayed
measurement, until the next measurement from SEC becomes available at tNMR

n+1 .
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Figure 1. An illustration of the two-step estimation process of a multi-rate multi-delay observer for the
RAFT polymerization process starting from t0.

Note that the proposed multi-rate multi-delay observer is based on the continuous reduced-order
observer (5). It has been proved that, as long as the maximum sampling period satisfies a certain limit,
the stability of error dynamics for the continuous observer of (5) implies the validity of the multi-rate
multi-delay observer [56]. However, as the continuous observer of (5) does not have a feedback
correction term led by an observer gain, the rate of error dynamics is not adjustable.

3. Experimental Methods and Results

3.1. Materials and Methods

Materials. 4-cyano-4-(((dodecylthio)carbonothioyl)thio)pentanoic acid (chain transfer agent
(CTA), 97%, Boron Molecular, Raleigh, NC, USA), tetrahydrofuran (THF, anhydrous, ≤99.9%,
inhibitor-free, Sigma-Aldrich, Milwaukee, WI, USA), tetrahydrofuran (HPLC THF, inhibitor-free,
for HPLC, ≤99.9%, Sigma-Aldrich, Milwaukee, WI, USA), tetrahydrofuran-d8 (THF-d8, ≤99.5% atom
% D, Sigma-Aldrich, Milwaukee, WI, USA), chloroform-d (CDCl3, 99.96 atom % D, contains 0.03%
(v/v) TMS, Sigma-Aldrich, Milwaukee, WI, USA), and methanol (MeOH, ACS reagent, ≤99.8%,
Sigma-Aldrich, Milwaukee, WI, USA) were used as received. Azobis(isobutyronitrile) (AIBN, 98%,
Sigma-Aldrich, Milwaukee, WI, USA) was purified via recrystallization twice from methanol. Methyl
methacrylate (MMA, 99%, contains ≤30 ppm MEHQ as inhibitor, Sigma-Aldrich, Milwaukee, WI,
USA) was purified by distillation over CaH2 at a reduced pressure.

Characterization. The molecular weights and dispersitys of all polymers and reacting mixture
aliquots were determined by size exclusion chromatography (SEC) using a Waters GPC system
(Milford, MA, USA) equipped with a THF Styragel column (Styragel@HR 5E, effective separation of
molecular weight range: 2–4000 kg mol−1) and a 2414 reflective index (RI) detector. All measurements
were performed at 40 ◦C, where THF was used as the mobile phase at a flow rate of 1.0 mL min−1.
Poly(styrene) standards (Shodex, Tokyo, Japan) with molecular weights ranging from 2.97 to
983 kg mol−1 were used for calibration. Molecular weight values determined against the poly(styrene)
standards were converted to the true poly(methyl methacrylate) values using the Universal Calibration
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procedure. Chemical structures of all polymers and reacting mixture aliquots from large-scale reactions
were characterized by 1H NMR (Nuclear Magnetic Resonance) Spectroscopy using a Bruker Avance
500 MHz spectrometer (Billerica, MA, USA) at 23 ◦C with CDCl3 as the solvent. The chemical
shifts were referenced to chloroform at 7.27 ppm. Small-scale PMMA macro-CTA reactions were
characterized by 1H NMR spectroscopy using a Varian NMRS 500 MHz spectrometer (Palo Alto, CA,
USA) at 60 ◦C with THF-d8 as the solvent. The chemical shifts were referenced to THF at 1.73 ppm.

Polymer Synthesis Procedures. Two synthesis scales were executed in this work: large-scale and
small-scale reactions. Large-scale reactions (>400 mL) consisted of a reflux reactor, which allowed for
the removal of reacting mixture via aliquots during the reaction with negligible effect on the reacting
volume. All aliquots were analyzed by 1H NMR spectroscopy and SEC. Small-scale reactions (<2 mL)
consisted of reactions occurring in sealable temperature-controlled NMR tubes, where frequent in situ
NMR analysis of the reacting mixture is possible without collecting aliquots from the reactor. SEC
analysis of small-scale reactions were only conducted on the final product.

Large-Scale Reaction Procedure. A general procedure for large-scale polymer synthesis in a reflux
reactor is outlined here with reaction details for each reaction listed in Table 4. Monomer and CTA
were mixed with solvent in a 2000 mL three-neck round-bottom flask, where the central neck of the
flask was connected to a reflux condenser (connected to bubbler and a nitrogen source from a Schlenk
line) and the other two necks of the flask were sealed with rubber septa. The reacting mixture was
degassed by bubbling nitrogen gas through the reacting mixture for 2 h. After degassing, the reactor
was placed into an oil bath, covered in aluminum foil, and heated to reflux. In a separate 10 mL
vial sealed with a septum, the initiator was dissolved in solvent and degassed by bubbling nitrogen
gas through the solution for 5 min. At the first sign of reflux, the degassed initiator solution was
injected into the reacting mixture, and a 1 mL aliquot was collected from the reactor for 1H NMR and
SEC analysis. The reaction was carried out under reflux for seven days. Additional aliquots were
collected throughout the reaction for analysis. The resulting polymer was twice precipitated dropwise
in methanol, filtered, and then dried under dynamic vacuum in an oven at room temperature for 24 h.

Small-Scale Reaction Procedure. A general procedure for small-scale polymer synthesis in an
NMR tube reactor is outlined here with reaction details for each reaction listed in Table 4. Monomer,
CTA and initiator were mixed with solvent in a sealable low pressure/vacuum NMR tube, connected
to a nitrogen Schlenk line, and subjected to four freeze-pump-thaw degassing cycles. After degassing,
the NMR tube was sealed under a nitrogen environment. The NMR tube reactor was inserted into
a Varian NMRS 500 MHz NMR spectrometer at 60 ◦C for 23 h, where NMR spectra were collected
every 10 min. The resulting polymer was twice precipitated in methanol, filtered, and then dried under
dynamic vacuum in an oven at room temperature for 24 h.

Synthesis of Poly(methyl methacrylate). The synthesis of poly(methyl methacrylate) (PMMA)
macro-CTA is shown in Scheme 2. In total, four PMMA synthesis reactions were performed: two
large-scale and two small-scale reactions. Reaction details for each reaction are listed in Table 4. Product
details for each reaction are listed in Table 5. Monomer: MMA; solvent: THF; initiator: AIBN. 1H NMR
(500 MHz, CDCl3, 23 ◦C) δ (ppm): 3.57 (s, 3H, O-CH3), 1.84-1.76 (d, 2H, CH2-C(CH3)), 0.94-0.74 (d, 3H,
CH2-C(CH3)).

Scheme 2. Synthesis of PMMA macro-CTA. (1) Large-scale: THF, AIBN, 161 h; Small-scale: THF-d8,
AIBN, 23 h.
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Table 4. Reaction conditions for all polymerization reactions.

Reaction a Scale Recipe b Monomer (g) CTA (g) Initiator (g) Solvent (g) c

PMMA-1 Large 215:1:0.1 250.63 4.7 0.191 626.58
PMMA-2 Large 70:1:0.1 173.62 10.0 0.407 714.48

PMMA-3 Small 215:1:0.1 0.5333 0.01 0.0004 1.3331
PMMA-4 Small 70:1:0.1 0.3472 0.02 0.0008 0.8681

a Polymer-reaction number. b A:B:C = Monomer:CTA:Initiator (in mol). c THF-d8 was used for PMMA small-scale reactions.

Table 5. Final product properties for all polymerization reactions.

Reaction a Scale Recipe b Yield (g) Mn (g mol−1) c Mw (g mol−1) c Ð c

PMMA-1 Large 215:1:0.1 240 (94%) 21121 26347 1.247
PMMA-2 Large 70:1:0.1 158 (86%) 7877 10025 1.273

PMMA-3 Small 215:1:0.1 - 11971 14698 1.228
PMMA-4 Small 70:1:0.1 - 6669 8101 1.215

a Polymer-reaction number. b A:B:C = Monomer:CTA:Initiator (in mol). c Determined by SEC.

3.2. Experimental Results

Figure 2 shows the SEC profiles for large-scale reaction of PMMA (PMMA-1) as a function of
time. Data only after 240 min is shown as aliquots at earlier times did not precipitate due to low
monomer conversion. Molecular weights and dispersity data were calculated from the SEC data for all
aliquots (all time points) and are listed in Appendix A (Table A1) for PMMA-1 and the other large-scale
polymerization reaction (PMMA-2: Table A2). The SEC profiles clearly shift to earlier elution volumes
at later reaction times, indicating the growth of polymer chains throughout the reaction. Molecular
weight increases from an Mn of 6,324 Da at 240 min to an Mn of 21,121 Da at 8580 min. Dispersity is
well controlled throughout the reaction as shown by the minimal change in the breadth of the profiles
and dispersities less than 1.3 for all profiles except for the profiles at reaction times of 240 min and
300 min. High dispersities at low monomer conversions (i.e., early reaction times) are expected in
RAFT polymerization reactions. Chromatogram profiles form a tail at high elution volumes at later
reaction times signifying the formation of dead polymer chains due to termination reactions.

Figure 2. SEC profiles for PMMA-1 vs. time (normalized intensity bands).
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Figure 3 shows the corresponding 1H NMR spectra for all aliquots for the large-scale PMMA
reaction (PMMA-1). Analysis of these spectra provides monomer conversion data, which is listed
for each time point in Appendix A (Table A1) for PMMA-1 and the other large-scale polymerization
reaction (PMMA-2: Table A2). Four primary bands are visible (a, b, c and d) in each spectrum and
were subsequently integrated. Monomer conversion was calculated from comparing integral of band
b at specified time to integral of band b at t = 0, where integral of band a was set as the reference.
Monomer conversion ranges from 0% at 0 min to 95% at 8,580 min.

Figure 3. 1H NMR spectra of PMMA-1 vs. time (scaled to reference band a).

Figure 4 shows the polymerization kinetics data as calculated by the 1H NMR analysis in Figure 3.
Tabulated results are listed in Appendix A (Table A1) for PMMA-1 and the other large-scale
polymerization reaction (PMMA-2: Table A2).

Figure 4. Polymerization kinetics (monomer conversion) of PMMA-1 as determined by 1H NMR.
The inset window highlights magnified early reaction time results.



Processes 2019, 7, 768 14 of 25

Figure 5 shows the polymerization kinetics as calculated by NMR analysis for the small-scale
PMMA polymerization (PMMA-3). The NMR spectra for PMMA-3 were processed similar to the
procedure described for PMMA-1. Using THF-d8 in PMMA-3 instead of THF in PMMA-1 did not
affect the NMR spectra processing procedure. The data appears to follow first order reaction kinetics
similar to the large-scale reaction results.

Figure 5. Polymerization kinetics (monomer conversion) of PMMA-3 as determined by in situ 1H
NMR analysis.

Data for the other polymerization reactions (PMMA-2, PMMA-4) is available in Appendix A.

4. Results and Discussion

In this part, the results for both model fitting and the multi-rate multi-delay observer will be
demonstrated. The small-scale experiment results, which contain 127 conversion data points measured
using 1H NMR and 1 ending data point measured with SEC for both PMMA-3 and PMMA-4 sets,
are used for parameter fitting purposes. The two sets of large-scale experimental results, with fewer
but more comprehensive and practical sampled data points, are to be used to validate the calculated
parameters. The observer will be designed based on the fitted model and tested on one of the large-scale
reaction data sets.

4.1. Parameter Fitting

For the model (2) introduced in Section 2, values of the parameters for some specific experiments
have been identified by other researchers as shown in Table 3. With regards to the experimental setting
introduced in Section 3, a RAFT agent is used for which no kinetics data was found in literature.
Therefore, its kinetic characteristics remain unknown. Additionally, initiator efficiency varies in
different environments and must be identified. Therefore, there are five parameters for the current
system to be fitted: the forward RAFT main equilibrium reaction rate coefficient kra f t f , the reverse
RAFT main equilibrium reaction rate coefficient kra f tr, the forward RAFT pre-equilibrium reaction rate
coefficient kra f t f R, the reverse RAFT pre-equilibrium reaction rate coefficient kra f trR, and the initiator
efficiency f . While the small scale reaction is operated under a constant temperature of 60 ◦C and the
large scale reaction at the bubble point of the reaction mixture (65–80 ◦C), it is assumed that the effect
of temperature on these parameters is negligible over this range. This assumption, while not ideal,
is necessary due to limitations in the reaction techniques. Small-scale reactions cannot be performed at
reflux, and large-scale reactions must be performed at reflux. The small-scale reactions were performed
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as close to reflux temperature as possible without risking evaporation of solvent, and damage to
the NMR.

Because the least squares parameter fitting problem is highly non-convex and non-smooth,
the PatternSearch solver in MATLAB (version 9.7.0.1190202 (R2019b), MathWorks, Natick, MA, USA)
with multiple random initial points is used to solve for the global optimal solution. In order to set
up the optimization problem, an appropriate objective function is needed. It is preferable to use the
variable that has a large number of sampled data in the objective function, which is the conversion
Xp in this case. However, it is observed that, when minimizing the error of conversion, in the basin
region near the global optimum, the error becomes less sensitive to the fitting parameters. Additionally,
the optimal solution could not guarantee whether the model also matches the SEC data. Thereby,
the dispersity (Ð) and the number average degree of polymerization (DPn) measured from SEC for the
ending point are also used as a part of the objective function, and normalized to the proper scale with
a weighting coefficient of 5 and 1/25, respectively. The global optimal parameters are calculated as:
kra f t f = 3.74× 104 L/(mol · s), kra f tr = 1.82 /s, kra f t f R = 9.34× 106 L/(mol · s), kra f trR = 8.75 /s and
f = 0.323. These values match the typical values found in the literature [60].

Figure 6 shows the experimental data obtained from the small-scale in situ 1H NMR experiments,
as well as the obtained fits which give the best estimation of the fitting parameters using least squares.
It can be observed that the fitting model shows excellent agreement with the Xp measurement. As for
the single sampled Ð and DPn points on the right two plots, the estimated values from the model also
match the experimental data well, especially for the PMMA-3 set.

Figure 6. Experimental data obtained from small-scale reactions versus optimal fitting results. (Green
circles are the data collected from PMMA-3 set and magenta ones are from PMMA-4 set. The solid
symbols represent the Ð and DPn estimated from the model.)

For validation purposes, we test the model against two large-scale reaction sets (PMMA-1 and
PMMA-2) in Figure 7. The measurement of conversion Xp is obtained from 1H NMR measurement.
The DPn and Ð data are collected from SEC measurement. The large-scale reactions are operated under
reflux. The temperature is simulated as a function of the composition and used for the calculation
of reaction kinetics coefficients except for kra f t f , kra f tr, kra f t f R and kra f trR, which are assumed to be
independent of temperature.
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Figure 7. First row: conversion of MMA into polymer with respect to time; second row: evolution of
number average degree of polymerization with respect to time; third row: evolution of dispersity with
respect to time; Left: PMMA-1; Right: PMMA-2.

Overall, the model satisfactorily matches the experimental data. Monomer conversion (Xp) and
degree of polymerization (DPn) match well at early reaction times, with some discordance appearing
at late reaction times, especially for PMMA-1. The discordance may be due to temperature effects
which are unaccounted for in the model due to the assumption that kra f t f , kra f tr, kra f t f R and kra f trR are
not functions of temperature. The large-scale and small-scale experimental reactions were performed
at temperatures as close to each other as experimentally possible, but there was still a 10 to 15 ◦C
difference between the two reaction scales. Dispersities (Ð) match well, with the sharp peak around
Ð = 2 in the model at early times expected from typical RAFT polymerization. SEC data at early
reaction times is not available for comparison because the corresponding reaction aliquots did not
precipitate due to low monomer conversion.
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4.2. Multi-Rate Multi-Delay Observer

In this part, we test the multi-rate multi-delay observer proposed in Section 2.2.2 against both the
fitting model and the experimental data, to check its fidelity to the model and its performance under
real circumstances in the presence of errors.

The data set collected from the PMMA-2 large-scale experiment is used to test the design of the
observer, as this data set shows a better consistence with the fitting model than the data set from the
PMMA-1 large-scale experiment. During the reaction, aliquots were collected approximately every
5% monomer conversion, which resulted in a non-uniform sampling schedule with respect to time.
The sampling schedule for the reaction and the delays in measurement for those samples are shown
in Table 6.

Table 6. Actual sampling schedule and measurement delays in the large-scale reactor.

Sampling (h) 1 2 3 4 5 6 7 9 14 19 23 30 41 53 70 92 116 142
SEC delay (h) 2 3 3 4 4 5 5 6 6 4 4 6 4 3 6 8 5 4

NMR delay (h) 0.5 0.5 1 1 1 1 0.5 1 1.5 1 0.5 0.5 2.5 1 0.5 0.5 1.5 1

In Figure 8, simulated data generated from the model is used as the measurement to test the
observer’s performance against the fitting model with the same sampling schedule as shown in Table 6.
The observer shows good prediction for monomer conversion, as the measurement from NMR has less
delay than the measurement from SEC. The estimated DPn undergoes a period of oscillation and Ð
shows a higher peak than the actual data, due to the fact that the first measurement from SEC only
becomes available 3 h after the reaction starts. However, the prediction shows higher accuracy after
a few samplings.
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Figure 8. Test of observer performance against the model for (a) monomer conversion Xp; (b) number
average molecular weight DPn, (c) dispersity Ð.
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In Figure 9, the observer is designed based on real experimental data, and the comparison
between estimated values from this observer and the sampled points is demonstrated. In these figures,
the plotted estimation only shows the real-time information at each moment, and does not reflect
the updated historical estimation for the past delayed time period that is corrected by the dead-time
compensator later on. As a result, the magenta line does not go through the black measured points,
but leaps to the levels corresponding to the newest sampling data after certain delays, with the
dead-time compensator correction effects applied. Because the experimental data points themselves
are fluctuating with measurement noises and the fitted model already shows deviation from the real
samples, the performance of the observer is not as good as in Figure 8, in terms of a slower convergence
rate and fluctuation at early reaction times. However, the observer still predicts conversion and
dispersity with high accuracy after more sampling points become available.
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Figure 9. Observer performance based on experimental data for (a) monomer conversion Xp;
(b) number average molecular weight DPn; (c) dispersity Ð.

5. Conclusions

In this work, a RAFT polymerization model was improved using small-scale reactions with in situ
1H NMR analysis that allowed for more accurate prediction of RAFT reaction kinetic rate parameters
(specifically, kra f t f , kra f tr, kra f t f R and kra f trR). The resulting model with the fitted parameters was
used to predict RAFT reactions on a larger scale with differing initial conditions to high values
of monomer conversion, Xp. The fitted model accurately predicted the polymer properties of the
large-scale reactions with slight discordance at late reaction times. Finally, multi-rate, multi-delay
observers were used to more accurately monitor a reaction and its product’s quality in real time by
incorporating information from the sampled and delayed measurements. The observer was tested
both against the fitted model and the experimental data. At early reaction times, both observers show
some deviations due to limited characterization data. However, at later reaction times, the observer
against the fitted model shows perfect convergence, while the one based on the experimental data
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matches well with slight shifts upon receiving new measurements, owing to the inherent noises of
the analysis techniques. Ultimately, accurate monitoring allowed for targeted termination, making it
easier to synthesize polymers of desired properties.

RAFT polymerization is very versatile, being compatible with a wide array of monomer and
RAFT agent types. In this work, a trithiocarbonate RAFT agent was used; however, other types,
such as dithiocarbonates, are also common. Certain RAFT agents work better with certain monomer
types; and now some RAFT agents, such as pyrazole based RAFT agents, even work effectively
with all monomer types viable for RAFT polymerization. The methodology presented in this work
for monitoring RAFT polymerization reactions could be applied to different monomer-RAFT agent
combinations, allowing for monitoring of RAFT polymerizations in general.

In this work, the small-scale reactions used for the parameter fitting occurred at a different
temperature than the large-scale reactions, due to limitations in the experimental apparatus and
procedures. The temperature difference leads to some discordance when comparing the model to the
large-scale reaction results. This discordance is attributed to the temperature difference. Large-scale
reactions occur at a slightly higher temperature than the small-scale reactions, and would be expected
to exhibit larger reaction rate constants. The methodology to determine the values of the RAFT reaction
rate coefficients can be improved by determining temperature dependent reaction rate constant values.
Further studies with multiple small-scale reactions at various temperatures can be performed to
determine the temperature dependence of the RAFT reaction rate constants.

Additionally, as a living polymerization, polymers synthesized via RAFT polymerization are able
to be chain extended into block copolymers. The block copolymers can be synthesized with different
monomers with controlled block composition, while maintaining low dispersity. Block copolymers
synthesized in this fashion have many applications due to the multiple properties. Many of these
properties, such as morphology, depend on the block composition ratios, giving importance to targeting
precise block composition during synthesis. Future work in this area would include modeling and
monitoring these chain-extension polymerizations using a polymer reactant synthesized via RAFT
polymerization. The resulting block copolymer compositions can be targeted, based on desired block
copolymer properties, by using the observer based RAFT polymerization model to accurately predict
reaction termination times and conditions.
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Appendix A

Table A1. Summary of 1H NMR and SEC data for PMMA-1.

Time (h) Time (min) NMR Conv. (%) SEC Conv. (%) Mn (g mol−1) Mw (g mol−1) Ð a DP b

0 0 0 - - - - -
0.5 30 5 - - - - -
1 60 9 - - - - -

1.5 90 11 - - - - -
2 120 15 - - - - -
3 180 21 42.9 9637 12,409 1.288 92
4 240 26 27.5 6324 9949 1.573 59
5 300 31 41.5 9334 13,227 1.417 89
6 360 33 50.4 11,261 13,954 1.239 108
7 420 38 53.5 11,927 14,858 1.246 115
8 480 41 55.6 12,383 15,382 1.242 120
10 600 47 56.3 12,523 15,800 1.262 121
13 780 59 60.1 13,346 17,018 1.275 129
17 1020 59 64.5 14,293 17,964 1.257 139
22 1320 64 68.9 15,240 19,357 1.270 148
33 1980 75 79.7 17,560 21,400 1.219 171
47 2820 81 85.1 18,724 22,974 1.227 183
58 3480 85 86.2 18,957 23,296 1.229 185
66 3960 87 86.6 19,052 23,744 1.246 186
90 5400 91 91.5 20,107 25,067 1.247 197

114 6840 94 94.9 20,824 25,766 1.237 204
143 8580 95 96.2 21,121 26,347 1.247 207

a Ð = dispersity; b DP = degree of polymerization.

Table A2. Summary of 1H NMR and SEC data for PMMA-2.

Time (h) Time (min) NMR Conv. (%) SEC Conv. (%) Mn (g mol−1) Mw (g mol−1) Ð a DP b

0 0 0 - - - - -
1 60 14 23.4 2042 c 2990 c 1.464 16
2 120 12 34.4 2814 c 3918 c 1.392 24
3 180 22 40.0 3208 c 4433 c 1.382 28
4 240 23 48.1 3777 5055 1.338 34
5 300 27 53.6 4162 5604 1.346 38
6 360 37 55.5 4292 5910 1.377 39
7 420 39 58.1 4472 6122 1.369 41
9 540 48 81.5 6112 7877 1.289 57
14 840 59 90.7 6759 8496 1.257 63
19 1140 62 94.2 7003 8672 1.238 66
23 1380 70 104.1 7698 9203 1.195 73
30 1800 77 101.2 7497 9304 1.241 71
41 2460 81 104.9 7754 9620 1.241 73
53 3180 85 108.9 8035 9809 1.221 76
70 4200 86 104.2 7704 9671 1.255 73
92 5520 87 109.1 8051 9933 1.234 76
116 6960 89 106.0 7834 9893 1.263 74
142 8520 90 106.6 7877 10,025 1.273 75
a Ð = dispersity; b DP = degree of polymerization; c These values are below the lower calibration limit of the
SEC and determined by extrapolating the calibration curve to the corresponding elution volumes.

PMMA-2. Figure A1 shows the SEC profiles for PMMA-2 as a function of time. Data only after
60 min is shown as aliquots at earlier times did not precipitate due to low monomer conversion.
Molecular weights and dispersity data were calculated from SEC data for all aliquots (all time points)
and are listed in Table A2. The SEC profiles clearly shift to earlier elution volumes at later reaction
times, indicating the growth of polymer chains throughout the reaction. Molecular weight increases
from an Mn of 2042 Da at 60 min to an Mn of 7877 Da at 8520 min. Early reaction time profiles show
a second peak near an elution volume of 10.7 mL, which is attributed to unreacted CTA present at
early reaction times. The height of this CTA peak relative to the polymer peak decreases as the reaction
progresses, disappearing after 540 min of reaction time. Dispersity is well controlled throughout the
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reaction as shown by the lack of change in the breadth of the chromatogram profiles, with dispersities
less than 1.3 for all profiles at reacting times greater than 540 min. This is partially due to the presence of
the CTA peak. Additionally, high dispersities at low monomer conversion (i.e., early reaction times) are
expected in RAFT polymerization reactions. Chromatogram profiles form a tail at high elution volumes
at later reaction times signifying the formation of dead polymer chains due to termination reactions.

Figure A1. SEC profiles for PMMA-2 vs. time (normalized intensity bands).

Figure A2 shows the corresponding 1H NMR spectra for all aliquots for the large-scale PMMA
reaction (PMMA-2). Analysis of these spectra provide monomer conversion data, which is listed for
each time point in Table A2. Four primary bands are visible (a, b, c and d) in each spectrum and were
subsequently integrated. Monomer conversion was calculated from comparing the integral of band b
at specified time to the integral of band b at t = 0, where the integral of band a was set as the reference.
Monomer conversion ranges from 0% at 0 min to 90% at 8520 min.

Figure A2. 1H NMR spectra of PMMA-2 vs. time (scaled to reference band a).

Figure A3 shows the polymerization kinetics data as calculated by the 1H NMR analysis
in Figure A2. Tabulated results are listed in Table A2 for PMMA-2. The reaction appears to follow first
order reaction kinetics.
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Figure A3. Polymerization kinetics (monomer conversion) of PMMA-2 as determined by 1H NMR.
The inset window highlights magnified early reaction time results.

PMMA-4. Figure A4 shows the polymerization kinetics as calculated by 1H NMR analysis for
the small-scale PMMA polymerization (PMMA-4). The 1H NMR spectra for PMMA-4 were processed
similar to the procedure used for PMMA-2. Using THF-d8 in PMMA-4 instead of THF in PMMA-2
did not affect the NMR spectra processing procedure. The data appears to follow first order reaction
kinetics similar to the large-scale reaction results.

Figure A4. Polymerization kinetics (monomer conversion) of PMMA-4 as determined by in situ 1H
NMR analysis.
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