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In photonic lattices with thin-film geometry, TE modes
possess an in-plane electric field component parallel to
the film surface, whereas TM modes have a magnetic field
component similarly oriented. This study reports the essen-
tial properties of, and differences between, TE and TM
band gaps induced by laterally periodic thin-film photonic
lattices at the first Bragg condition. Because TE and TM
guided waves obey different wave equations, TE and TM
band gaps exhibit different evolution as the film thickness
varies. The first TM band exhibits both band gap closure
and band flips wherein the symmetry properties of the
band-edge modes are reversed by variation of film thick-
ness. In the first TE band, in contrast, there is neither band
gap closure nor band flip. The work provides an insightful
semianalytical formulation whose results are verified by
rigorous computations. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004658

Thin-film photonic lattices and metastructures possessing pho-
tonic band gaps are of interest due to their ability to manipulate
light propagation and localization at subwavelength scales.
Various photonic devices such as waveguides [1,2], lasers
[3,4], wide-band reflectors [5], and filters [6] are realized based
on photonic band gaps of periodic photonic lattices with one-
dimensional (1D) or two-dimensional (2D) refractive index
modulation. Thin-film photonic lattices are attractive because
they allow both nonleaky and leaky stop bands [7]. Nonleaky
band gaps are useful in controlling the flow of light inside slab
structures [8], and leaky stop bands are associated with diverse
spectral responses generated by lateral guided-mode resonances
[9,10]. Moreover, guided waves in thin-film photonic lattices
are classified into two categories by their polarization directions.
A TE mode is described by electric field components parallel to
the film and a TMmode by parallel magnetic field components
[11]. Hence, diverse polarization-dependent photonic devices
are feasible because the position and size of TE and TM band
gaps are different in general.

The purpose of this Letter is to introduce and analyze the
fundamentally different properties of TE and TM band gaps in
thin-film photonic lattices. In ideal 1D photonic lattices with
infinite lateral extent (∼Bragg stacks) under broadside normal

incidence, TE and TM band gaps are not distinguishable be-
cause TE and TM modes are perfectly degenerate. In periodic
thin-film photonic lattices with finite thickness, however, TE
and TM modes are distinct. We show herein that the TE and
TM band gaps undergo dissimilar evolution as the film thick-
ness varies. The first TM band exhibits band gap closure and
a band flip, wherein the symmetry properties of band edge
modes are converted by the variation of thin-film thickness.
The TE band, in contrast, has neither a band gap closure nor
a band flip. To understand the properties of the TE and TM
bands, we employ a semianalytical dispersion model and finite-
difference time-domain (FDTD) simulations [12].

As shown in Fig. 1, for simplicity and clarity, we model a 1D
photonic lattice of alternating media with high �εh� and low
�εl � dielectric constants. The width of the high-dielectric-
constant part is ρΛ, where Λ is the period, and the lattice thick-
ness is d . The photonic lattice supports both TE and TM
guided modes via total internal reflection because its average
dielectric constant εavg � εl � ρ�εh − εl � exceeds that of the
surrounding medium εs. As represented in Fig. 1, the TE
(TM) mode has an in-plane electric (magnetic) field compo-
nent parallel to the film surface and propagates along the z di-
rection. Photonic band gaps open for both TE and TM modes
when Δε � εh − εl > 0 and 0 < ρ < 1. In general, if the
lattice supports numerous guided modes, each mode can have
multiple band gaps at the Bragg condition kz � qK∕2 where
kz is the modal wavenumber, K � 2π∕Λ is the magnitude of
the grating vector, and q is an integer denoting the Bragg order
[13]. In this Letter, we focus on the nonleaky first band
�q � 1� of the fundamental TE0 and TM0 modes because this
simple case clearly shows the essential difference between the
TE and TM band gaps under variation of film thickness d .

Fig. 1. Model of a 1D photonic lattice with finite thickness d in the
x direction and with infinite lateral extent in the y and z directions.
The first TE and TM band gaps open at kz � π∕Λ.
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Figures 2(a) and 2(b) show the evolution of the first TE and
TM band gaps, respectively, under variation of thickness d . As
seen in Fig. 2(a), the first TM band gap opens at kz∕K � 0.5,
and its size increases as d increases from zero. As the thickness
further increases, however, the gap size decreases and becomes
zero when d � 0.82Λ. The TM band gap reopens and widens
on additional increase in d . Band flip is seen clearly by the
spatial magnetic field profiles of band edge modes plotted in
the insets of Fig. 2(a). Spatial field distributions are calculated
at the y � 0 plane, and vertical dotted lines represent the mir-
ror plane, the center of the high dielectric constant part, in the
computational cells. When the thickness is 0.20Λ and 0.60Λ,
the upper and lower band edge modes have asymmetric and
symmetric magnetic field (Hy) distributions according to
the mirror plane, respectively. With d � 0.82Λ, the TM band
gap closes and band edge modes degenerate. When d � 0.90Λ
and d � 1.10Λ, the field profiles are reversed and the upper
(lower) band edge modes have symmetric (asymmetric) field
distributions. As shown in Fig. 2(b), the TE band gap also
opens and its size increases with d . However, the gap size slowly
decreases by additional increase in d . The insets of Fig. 2(b)
show that the upper and lower band edge modes have asym-
metric and symmetric spatial electric field (Ey) distributions,
respectively, irrespective of d . In the case of the TE mode, un-
like the TM mode, there is no band closure and no band flip
induced by variation of film thickness. Incidentally, Fig. 2 also
shows that the frequency positions of the TE and TM band
gaps downshift as d increases because the effective indices of
the guided modes increase when d increases. However, we
focus our attention on the evolution of the band structure
and on the change in the symmetry properties of the band edge
modes under variation of film thickness.

To understand the physical origin of the different evolution
of the TE and TM band gaps shown in Fig. 2, we investigate
the photonic band structures by solving the wave equations for

TE mode with Ey and TM mode with Hy given by

∂2Ey

∂x2
� ∂2Ey

∂z2
� εk20Ey � 0, (1)

∂
∂x

�
ξ
∂Hy

∂x

�
� ∂

∂z

�
ξ
∂Hy

∂z

�
� k20Hy � 0, (2)

where ξ � 1∕ε is the inverse of the dielectric function [14,15].
To solve Eqs. (1) and (2), we use a semianalytical dispersion
model in which the electric and magnetic field distributions
for TE and TM modes are approximated as

Ey�x, z� ≈ �A�z�e�iXz � B�z�e−iXz �φTE�x�, (3)

Hy�x, z� ≈ �A�z�e�iXz � B�z�e−iXz �φTM�x�, (4)

respectively, where X � 0.5 K, φTE�x� and φTM�x� represent
the transverse TE and TM mode profiles of the unmodulated
waveguide, respectively, and A�z� and B�z� are slowly varying
envelopes of two counter-propagating waves characteristic of
such lattices. The dielectric function ε�x, z� and its inverse
ξ�x, z� are expanded as Fourier series, and we consider only
the zeroth and first-order Fourier harmonics such that

ε�x, z� ≈ ε0�x� � ε1�x� cos�Kz�, (5)

ξ�x, z� ≈ ξ0�x� � ξ1�x� cos�Kz�, (6)

where ε0�x� � εavg, ε1�x� � �2Δε∕π� × sin�πρ�, ξ0�x� �
ρ∕εh � �1 − ρ�∕εl , and ξ1�x� � −�2Δε∕εhεlπ� × sin�πρ�
when x ∈ �−d , 0� and ε0�x� � ξ0�x� � 1 and ε1�x� �
ξ1�x� � 1 when x ∉ �−d , 0�. The dispersion model for study-
ing the nonleaky first stop band herein is modified from the
Kazarinov and Henry (KH) model which employs the zeroth,
first, and second Fourier harmonics of the dielectric constant
modulation [16]. The KH model describes well the dynamics
of the second stop band of weakly modulated photonic lat-
tices as verified by rigorous calculation in many cases [7,17].

Fig. 2. (a) FDTD simulated dispersion relations near the first TM band gap for five different values of d . Here, the normalized frequency
Ω � k0∕K, where k0 represents the free-space wavevector, is real because we are investing the nonleaky first stop bands. The band gap closes
when d � 0.82Λ. Insets represent the spatial magnetic field (Hy) distributions of band edge modes. Before and after the band gap closure, spatial
field profiles of the band edge modes flip. (b) Simulated dispersion relations near the first TE band gap. Insets represent spatial electric field (Ey)
distributions of band edge modes. There is neither band gap closure nor band flip. In the FDTD simulations, we use structural parameters ρ � 0.40,
εs � 1.00, εavg � 9.00, and Δε � 1.00. The size of a computational cell is Δx × Δz � Λ × 8Λ and spatial resolution is set to Δx � Δz � 0.01Λ.
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We expect that our dispersion model is valid in the first stop
band because higher order harmonics εn≥2�x� × cos�nKz� and
ξn≥2�x� × cos�nKz� cannot contribute appreciably to the first
�q � 1� TE and TM band gaps [17]. For convenience, in this
study, we use the same geometric configuration and coordinate
system used in a previous study [18].

Solving Eqs. (1) and (2) with the approximated field
distributions and dielectric functions, we obtain two coupled
equations

�ΔΩ · �Kh0� − Δkz∕2�A� h1B � 0, (7)

�ΔΩ · �Kh0� � Δkz∕2�B � h1A � 0, (8)

where ΔΩ represents the deviation from the Bragg frequency
Ω0 under vanishing index modulation (εh ∼ εl ) [7,17,18];
Δkz is the wavevector deviation from X, and h0 and h1 re-
present the coupling coefficients associated with the zeroth and
first Fourier harmonics. Details of the mathematical process to
obtain Eqs. (7) and (8) are provided in Appendix A. From
Eqs. (7) and (8), near the first band edges, dispersion relations
can be written as

Ω�kz� � Ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 � �X − kz�2∕4

q
∕�Kh0�: (9)

We note that Eqs. (7)–(9) are valid for both TE and TMmodes
with different coupling coefficients given by

hTE0 � Ω
Z

∞

−∞
ε0�x�φTE�x�φ	

TE�x�dx, (10)

hTE1 � Ω2K

4

Z
0

−d
ε1�x�φTE�x�φ	

TE�x�dx, (11)

hTM0 � Ω
Z

∞

−∞
φTM�x�φ	

TM�x�dx, (12)

hTM1 � 1

4K

Z
0

−d
ξ1�x�

�
X2φTM�x�φ	

TM�x�

−
dφTM�x�

dx
dφ	

TM�x�
dx

�
dx: (13)

Equation (9) indicates that the first TE and TM band gaps
with two band edges Ωs � Ω0 − h1∕�Kh0� and Ωa �
Ω0 � h1∕�Kh0� open at kz � X. As displayed in Eqs. (7)
and (8), one band edge mode with Ωs is obtained when the
field distribution is a symmetric cosine function �A � B�, and
the other band edge mode with Ωa is obtained when the field
distribution is an asymmetric sine function �A � −B�. Because
the relative position of the two band edge modes as well as the
size of the TE and TM band gaps are directly associated with
the coupling coefficients presented in Eqs. (10)–(13), different
dynamics of TE and TM band gaps shown in Fig. 2 can be
understood by investigating the coupling coefficients.
Figures 3(a)–3(d) illustrate numerically calculated coupling
coefficients hTE0 , hTE1 , hTM0 , and hTM1 , respectively, as a function
of d . As shown in Figs. 3(a) and 3(b), values of hTE0 and hTE1 are
positive irrespective of d . Hence, the symmetric band edge
mode with frequency Ωs should locate below the asymmetric
band edge mode with Ωa. In the case of the TM mode, on the
other hand, Figs. 3(c) and 3(d) show that the sign of hTM1
changes once from positive to negative when d � 0.827Λ,
whereas hTM0 is positive irrespective of d . Therefore, the relative
position of the band edge modes changes with the sign change

of hTM1 . When the value of hTM1 is positive (negative), the sym-
metric mode with Ωs locates below (above) the asymmetric
mode with Ωa.

To check the validity of our semianalytical dispersion model,
we next investigate band gap size as a function of d . In Figs. 3(e)
and 3(f ), blue lines and red circles represent the size of the first
band gaps obtained from the semianalytical model and FDTD
simulations, respectively. As the thickness increases, as shown in
Fig. 3(e), the size of theTEband gapΔΩTE increases and reaches
amaximal value when d � 0.148Λ. The gap sizemonotonically
decreases as d is further increased. On the other hand, Fig. 3(f )
shows that as the thickness increases the size of the TMband gap
ΔΩTM increases, reaches a maximal value when d � 0.402Λ,
decreases, and becomes zero when d � 0.827Λ with hTM1 � 0.
On additional increases in d , the TM band gap reopens, and its
size increases again. We can verify that a band flip takes place
with band closure when d � 0.827Λ. In Figs. 3(e) and 3(f ),
the solid blue lines calculated from the dispersion model with
only the zeroth and first-order Fourier harmonics agree well
with the red circles obtained from FDTD simulations with a
nonapproximated lattice.

The sign of the coupling coefficients hTE0 , hTE1 , and hTM0
can be understood from the guided-mode profiles φTE�x�
and φTM�x� and the Fourier coefficients of the dielectric
constant modulation ε0�x� and ε1�x�. Because the transverse
profiles for TE and TM guided modes are real functions,
φTE�x�φ	

TE�x� � jφTE�x�j2 and φTM�x�φ	
TM�x� � jφTM�x�j2

are non-negative in x ∈ �−∞,∞�. Hence, hTM0 in Eq. (12) is
positive irrespective of d . Coefficients hTE0 in Eq. (10) and
hTE1 in Eq. (11) are also positive because ε0�x� and ε1�x� are pos-
itive in the ranges of integration �−∞,∞�, and �−d , 0�,
respectively.On the other hand, fromEq. (13) it is demonstrated

Fig. 3. Numerically calculated coefficients (a) hTE0 , (b) hTE1 , (c) hTM0 ,
and (d) hTM1 as functions of d . Lattice parameters are the same as in
Fig. 2. The sign of hTM1 changes once from positive to negative when
d � 0.827Λ, whereas coefficients hTE0 , hTE1 , and hTM0 are positive ir-
respective of d . The sizes of (e) TE band gap, and (f ) TM band gaps
obtained from our semianalytical dispersion model and FDTD
simulations agree well.
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that the sign of hTM1 is determined by the competition of two
different terms hTM1,1 � �1∕4K� R ξ1�x�X2jφTM�x�j2dx and
hTM1,2 � −�1∕4K� R ξ1�x�jdφTM�x�∕dxj2dx. Because ξ1�x�
is negative when x ∈ �−d , 0�, hTM1,1 is negative, and hTM1,2 is
positive irrespective of d . Hence, hTM1,1 �hTM1,2 � tends to locate
the symmetric band edge mode with Ωs above (below) the
asymmetric mode with Ωa. The coefficient hTM1,1 can be consid-
ered to represent the Bragg effect induced by the periodic
modulation of the dielectric function in the z direction
because hTM1,1 originates from the second derivative term
∂�ξ�x, z� · �∂Hy∕∂z��∕∂z in Eq. (2). Similarly, the coefficient
hTM1,2 originates in the discontinuity of the dielectric constant
at the surfaces of thin-film geometry in the x direction
because hTM1,2 comes from the first derivative term
∂�ξ�x, z� · �∂Hy∕∂x��∕∂x in Eq. (2). Because hTE1 originates
in only the in-plane index modulation by means of the second
derivative term ∂2Ey∕∂z2 in Eq. (1), we conclude reasonably
that TE and TM band gaps are different because only the
TM gaps are affected by the discontinuity of the dielectric
constant at the interfaces of the photonic lattice.

In summary, we treat the first Bragg TE and TM band gaps
of 1D thin-film photonic lattices through a semianalytical
dispersion model and FDTD simulations. With clear under-
standing rooted in the semianalytical model, we show that
the TM band gaps are governed by the discontinuity of the
dielectric constant at the interfaces of the photonic lattice as
well as by the periodic in-plane dielectric constant modulation.
The TM band gap closes when these two different effects cancel
each other out as in Eq. (13). Moreover, we verify TM band
flips wherein the modal profiles of the band edge modes are
reversed. In contrast, the TE band gaps are formed only by
in-plane coupling caused by index modulation and thus exhibit
no band closure. Our research is limited here to the first stop
band of the simplest 1D lattice. However, extension of this
work to higher-order stop bands and to 2D lattices is feasible.
This contribution may lead to deepened understanding of the
properties of the band structure and band dynamics of 1D and
2D photonic lattices.

APPENDIX A: COUPLED EQUATIONS IN
EQS. (7) AND (8)

Here, we provide the mathematical process to obtain Eqs. (7)
and (8). Substituting Eqs. (4) and (6) into Eq. (2) and collect-
ing terms with exp��iXz� and exp�−iXz�, we obtain two
coupled equations for TM mode given by�
∂
∂x

�
ξ0

∂
∂x

�
− X2ξ0 � �KΩ�2 − ΔkzKξ0�AφTM�x�

� 1

2

�
X2ξ1 �

∂
∂x

�
ξ1

∂
∂x

��
BφTM�x� � 0, (A1)

�
∂
∂x

�
ξ0

∂
∂x

�
− X2ξ0 � �KΩ�2 � ΔkzKξ0

�
BφTM�x�

� 1

2

�
X2ξ1 �

∂
∂x

�
ξ1

∂
∂x

��
AφTM�x� � 0: (A2)

Assuming that A�z� � A exp�iΔkzz� and B�z� �
B exp�iΔkzz� are slowly varying, where Δkz � kz − X, the

second-order derivative terms ∂2A�z�∕∂z2 and ∂2B�z�∕∂z2
have been dropped in Eqs. (A1) and (A2). Because
φTM�x� exp��iXz� is the homogeneous solution of Eq. (2)
at the Bragg frequency Ω0 (center of stop band), the following
equation holds:�

∂
∂x

�
ξ0

∂
∂x

�
− X2ξ0 � �KΩ0�2

�
φTM�x� � 0: (A3)

Substituting Eq. (A3) into Eqs. (A1) and (A2) and applying the
relation ΔΩ � Ω − Ω0 ≈ �Ω2 −Ω2

0�∕�2Ω�, we obtain�
�ΔΩ · K�Ω −

Δkz
2

ξ0

�
AφTM�x�

� 1

4K

�
X2ξ1 �

∂
∂x

�
ξ1

∂
∂x

��
BφTM�x� � 0, (A4)

�
�ΔΩ · K�Ω� Δkz

2
ξ0

�
BφTM�x�

� 1

4K

�
X2ξ1 �

∂
∂x

�
ξ1

∂
∂x

��
AφTM�x� � 0: (A5)

Equations (7) and (8) are obtained by multiplying
Eqs. (A4) and (A5) with φ	

TM�x� and integrating in the range
−∞ < x < ∞. Here, the mode profile is normalized asR
ξ0�x�jφTM�x�j2dx � 1. We can also obtain Eqs. (7) and

(8) for the TE mode by substituting Eqs. (3) and (5) into
Eq. (1) and following the same procedure. For TE modes,
normalization condition is

R jφTE�x�j2dx � 1.
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